

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Martin

 Report Reference No......
 MWR150600103

 FCC ID......
 RQQHLT-E435

Compiled by

(position+printed name+signature)..: File administrators Martin Ao

Supervised by

(position+printed name+signature)..: Test Engineer Martin Ao

Approved by

(position+printed name+signature)..: Manager Dixon Hao

Representative Laboratory Name.: Maxwell International Co., Ltd.

Guangdong, China

Testing Laboratory Name...... Shenzhen CTL Testing Technology Co., Ltd.

Address...... Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road,

Nanshan, Shenzhen, China

Applicant's name...... HYUNDAI CORPORATION

Address...... 140-2, Kye-dong, Chongro-ku, Seoul, South Korea

Test specification....:

Standard...... FCC Part 15.247: Operation within the bands 902-928 MHz,

2400-2483.5 MHz and 5725-5850 MHz

TRF Originator...... SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTD

Maxwell International Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Maxwell International Co., Ltd. as copyright owner and source of the material. SHENZHEN JIETONG INFORMATION TECHNOLOGY CO., LTDtakess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Mobile Phone

Trade Mark..... HYUNDAI

Manufacturer WASAM TECHNOLOGY (SHEN ZHEN) CO.,LTD.

Model/Type reference..... E435

Listed Models: N/A

Modulation Type...... GFSK,8DPSK,π/4DQPSK

Operation Frequency.....: From 2402MHz to 2480MHz

Rating...... DC 3.80V

Hardware version...... T6461 - V2.0

Result..... PASS

Page 2 of 56 Report No.: JTT20150500103

TEST REPORT

Tost Poport No :	MWR150600103	Jun 17, 2015
Test Report No. :	WWW 150600 105	Date of issue

Equipment under Test : Mobile Phone

Model /Type : E435

Listed Models : N/A

Applicant : HYUNDAI CORPORATION

Address : 140-2, Kye-dong, Chongro-ku, Seoul, South Korea

Manufacturer : WASAM TECHNOLOGY (SHEN ZHEN) CO.,LTD.

B, F Building, (Hengqiang Industrial Park), Bogang Taifeng

Address Industrial Zone, Shajing Town, Bao'an District, Shenzhen,

China

Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: JTT20150500103

Contents

1.	TEST STANDARDS	4
2.	SUMMARY	5
2.1.	General Remarks	5
2.2.		5
2.3.	the state of the s	6
2.4.		6
2.5.		6
2.6.	Internal Identification of AE used during the test	7
2.7.		7
2.8.		7
2.9.	NOTE	7
3.	TEST ENVIRONMENT	8
3.1.	Address of the test laboratory	8
3.2.		8
3.3.		8
3.4.	Test Conditions	8
DΑ	00-705	8
DΑ	00-705	8
3.5.	Summary of measurement results	9
3.6.		10
4.	TEST CONDITIONS AND RESULTS	11
4.1.	AC Power Conducted Emission	11
4.2.	Radiated Emission	14
4.3.	Maximum Peak Output Power	21
4.4.	20dB Bandwidth	22
4.5.		27
4.6.		35
4.7.		37
4.8.		39
4.9. 4.10	·	43 54
4.10 4.11		54 55
-7 . 1 1	Antoma Negalienient	55
5	TEST SETUP PHOTOS OF THE FUT	5.6

1. TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.4-2009</u>: American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

<u>DA 00-705(Released March 30, 2000)</u>: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	May 04, 2015
Testing commenced on	:	May 05,2015
Testing concluded on	:	Jun 16, 2015

2.2. Product Description

The **HYUNDAI CORPORATION** 's Model: E435 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Mobile Phone
Model Number	E435
Madilation Turns	GMSK for GSM/GPRS/EDGE, 8-PSK for EDGE only
Modilation Type	Downlink,QPSK for UMTS
Antenna Type	Internal
UMTS Operation Frequency Band	Device supported UMTS FDD Band II and FDD Band V
	IEEE 802.11b:2412-2462MHz
WLAN FCC Operation frequency	IEEE 802.11g:2412-2462MHz
WEART GO Operation frequency	IEEE 802.11n HT20:2412-2462MHz
	IEEE 802.11n HT40:2422-2452MHz
BT CE Operation frequency	2402MHz-2480MHz
HSDPA Release Version	Release 7
HSUPA Release Version	Release 6
DC-HSUPA Release Version	Not Supported
WCDMA Release Version	R99
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
WLAN FCC Modulation Type	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
WEART OO Modulation Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
BT Modulation Type	GFSK (BT 4.0)/GFSK,8DPSK,π/4DQPSK(BT 3.0+EDR)
Hardware version	T6461 - V2.0
Software version	T6461_MUSO_V1_20150529.rar
Android version	Android 4.4.2
GPS function	Supported
WLAN	Supported 802.11b/802.11g/802.11n
Bluetooth	Supported BT 4.0/BT 3.0+EDR
GSM/EDGE/GPRS	Supported GSM/GPRS/EDGE
GSM/EDGE/GPRS Power Class	GSM850:Power Class 4/PCS1900:Power Class 1
GSM/EDGE/GPRS Operation Frequency	GSM850 :824.2MHz-848.8MHz
, , , ,	PCS1900:1852.4MHz-907.6MHz
GSM/EDGE/GPRS Operation Frequency	GSM850/PCS1900/GPRS850/
Band	GPRS1900/EDGE850/EDGE1900
GSM Release Version	R99
GPRS/EDGE Multislot Class	GPRS/EDGE: Multi-slot Class 12
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	3.50VDC to 4.35VDC (nominal: 3.80VDC)
GPRS operation mode	Class B
EGPRS operation mode	Class B

Page 6 of 56 Report No.: JTT20150500103

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 3.80V

2.4. Short description of the Equipment under Test (EUT)

E435 is subscriber equipment in the WCDMA/GSM system. The HSPA/UMTS frequency band is Band II, Band IV; The GSM/GPRS/EDGE (EDGE downlink only) frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900, but only Band II and Band V and GSM850 and PCS1900 bands test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.5. EUT operation mode

The EUT has been tested under typical operating condition. There are EDR (Enhanced Data Rate) and BDR (Basic Data Rate) mode. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out at the lowest channel, middle channel and highest channel.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	40	2442
01	2403	41	
02	2404	42	2444
03	2405	43	2445
04	2406	44	2446
05	2407	45	2447
06	2408	46	2448
07	2409	47	2449
08	2410	48	2450
09	2411	49	2451
10	2412	50	2452
11	2413	51	2453
12	2414	52	2454
13	2415	53	2455
14	2416	54	2456
15	2417	55	2457
16	2418	56	2458
17	2419	57	2459
18	2420	58	2460
19	2421	59	2461
20	2422	60	2462
21	2423	61	2463
22	2424	62	2464
23	2425	63	2465
24	2426	64	2466
25	2427	65	2467

Page 7 of 56 Report No.: JTT20150500103

26	2428	66	2468
27	2429	67	2469
28	2430	68	2470
29	2431	69	2471
30	2432	70	2472
31	2433	71	2473
32	2434	72	2474
33	2435	73	2475
34	2436	74	2476
35	2437	75	2477
36	2438	76	2478
37	2439	77	2479
38	2440	78	2480
39	2441		

2.6. Internal Identification of AE used during the test

AE ID*	Description
AE1	Charger

AE1

Model: E435

INPUT:100-240V 50/60Hz 0.15A OUTPUT: DC 5.0V,500mAh

2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: RQQHLT-E435** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8. Modifications

No modifications were implemented to meet testing criteria.

2.9. NOTE

1. The EUT is a Mobile Phone with WCDMA/GSM/GPRS/EDGE,WiFi and Bluetooth fuction,The functions of the EUT listed as below:

	Test Standards	Reference Report
GSM/GPRS/EDGE	FCC Part 22/FCC Part 24	MWR150600101
WCDMA	FCC Part 22/FCC Part 24	MWR150600102
Bluetooth	FCC Part 15 C 15.247	MWR150600103
BLE	FCC Part 15 C 15.247	MWR150600104
WiFi	FCC Part 15 C 15.247	MWR150600105
USB Port	FCC Part 15 B	MWR150600106
SAR	FCC Part 2 §2.1093	MWR150600107

^{*}AE ID: is used to identify the test sample in the lab internally.

Page 8 of 56 Report No.: JTT20150500103

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTL Testing Technology Co., Ltd.

Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2003) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, Dec 19, 2013

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

3.4. Test Conditions

Test Case	Test Conditions		
Test Case	Configuration	Description	
	Meas. Method	DA 00-705	
20dB Emission	Test Environment	NTNV	
Bandwidth (EBW)	EUT Conf.	TM1_DH5_Ch00,TM1_DH5_Ch39,TM1_DH5_Ch78, TM3_3DH5_Ch00,TM3_3DH5_Ch39,TM3_3DH5_Ch78,	
Comica Factoria	Meas. Method	DA 00-705	
Carrier Frequency	Test Environment	NTNV	
Separation	EUT Conf.	TM1 DH5 Hop, TM3 3DH5 Hop,	
Niverban of Hamming	Meas. Method	DA 00-705	
Number of Hopping	Test Environment	NTNV	
Channel	EUT Conf.	TM1_DH5_Hop ,TM3_3DH5_Hop,	
Time of Occurrence	Meas. Method	DA 00-705	
Time of Occupancy (Dwell Time)	Test Environment	NTNV	
	EUT Conf.	TM1 DH5 Ch39,TM3 3DH5 Ch39.	
	Meas. Method	DA 00-705	
Massimas page	Test Environment	NTNV	
Maximum Peak Conducted Output Power	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch39,TM1_DH3_Ch78,TM2 _2DH3_Ch00,TM2_2DH3_Ch39,TM2_2DH3_Ch78,TM3 3DH3_Ch00,TM3_3DH3_Ch39,TM3_3DH3_Ch78,	
Dan da da a a a a a a a a a a a a a a a a	Meas. Method	DA 00-705	
Bandedge spurious	Test Environment	NTNV	
emission (Conducted)	EUT Conf.	TM1_DH3_Ch00,TM1_DH3_Ch78, TM3_3DH3_Ch00,TM3_3DH3_Ch78,	
	Meas. Method	DA 00-705	
Conducted RF Spurious Emission	Test Environment	NTNV	
	EUT Conf.	TM1_DH5_Ch00, TM1_DH5_Ch39, TM1_DH5_Ch78, TM3_3DH5_Ch39, TM3_3DH5_Ch78.	
Radiated Emissions in the Restricted Bands	Meas. Method	DA 00-705 30 MHz to 1 GHz:	

Page 9 of 56 Report No.: JTT20150500103

	Pre: RBW=100kHz; VBW=300kHz; Det. = Peak. Final: RBW=120kHz; Det. = CISPR Quasi-Peak. 1 GHz to 26.5GHz: Average: RBW=1 MHz; VBW= 10Hz; Det. = Peak; Sweep-time= Auto; Trace = Single. Peak: RBW=1 MHz; VBW= 3 MHz; Det. = Peak; Sweep-time= Auto; Trace≥ MaxHold * 100.
Test Environment	NTNV
	30 MHz-1GHz TM1_DH5_Ch00 (Worst Conf.).
EUT Conf.	1-18 GHz: TM1_DH5_Ch00, TM1_DH5_Ch39,
	TM1_DH5_Ch78, (Worst Conf.).

Test Case	Test Conditions	
rest Case	Configuration	Description
AC Dower Line Conducted	Measurement Method	AC mains conducted.
AC Power Line Conducted Emissions	Test Environment	NTNV
	EUT Configuration	TM1_DH5_Ch39. (Worst Conf.).

Note:

- 1. For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.
- 2. For $\pi/4$ QPSK its same modulation type with 8-DPSK, and based exploratory test, there is no significant difference of that two types test result, so except output power, all other items final test were only performed with the worse case 8-DPSK and GFSK.

3.5. Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Pass	Fail	NA	NP	Remark
§15.247(b)(4)	Antenna gain	GFSK	 Lowest Middle Highest	GFSK	∠ Lowest∠ Middle∠ Highest					complies
§15.247(e)	Power spectral density	-/-	-/-	-/-	-/-					Not applicable for FHSS!
§15.247(a)(1)	Carrier Frequency separation	GFSK 8DPSK	 Lowest Middle Highest	GFSK 8DPSK	Middle					complies
§15.247(a)(1)	Number of Hopping channels	GFSK 8DPSK	⊠ Full	GFSK 8DPSK	⊠ Full					complies
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK 8DPSK	 Lowest Middle Highest	GFSK 8DPSK	Middle	\boxtimes				complies
§15.247(a)(1)	Spectrum bandwidth of a FHSS system 20dB bandwidth	GFSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK 8DPSK	 Lowest Middle Highest	X				complies
§15.247(b)(1)	Maximum output power	GFSK П/4DQPSK 8DPSK	 Lowest Middle Highest	GFSK П/4DQPSK 8DPSK	∠ Lowest∠ Middle∠ Highest					complies
§15.247(d)	Band edge compliance conducted	GFSK 8DPSK	☑ Lowest☑ Highest	GFSK 8DPSK	☑ Lowest☑ Highest					complies
§15.205	Band edge compliance radiated	GFSK 8DPSK	☑ Lowest☑ Highest	GFSK	☑ Lowest☑ Highest					complies
§15.247(d)	TX spurious emissions conducted	GFSK 8DPSK	 Lowest Middle Highest	GFSK 8DPSK	✓ Lowest✓ Middle✓ Highest	\boxtimes				complies
§15.247(d)	TX spurious emissions radiated	GFSK 8DPSK	 Lowest Middle Highest	GFSK	✓ Lowest✓ Middle✓ Highest					complies
§15.109	RX spurious	-/-	-/-	-/-	-/-	\boxtimes				complies

Page 10 of 56 Report No.: JTT20150500103

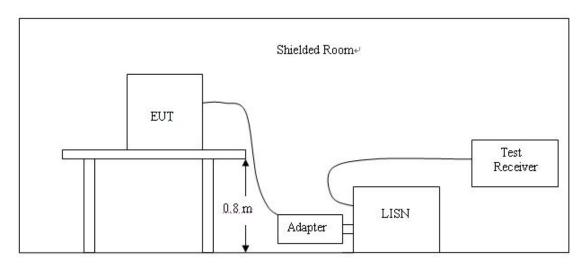
	emissions radiated							
§15.209(a)	TX spurious Emissions radiated < 30 MHz	GFSK	-/-	GFSK	-/-			complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	GFSK	-/-	GFSK	-/-			complies

Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. NA = Not Applicable; NP = Not Performed
- 3. We tested all test mode and recorded worst case in report

3.6. Equipments Used during the Test

AC Po	AC Power Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Artificial Mains	Rohde&Schwarz	ENV216	101316	2014/07/02			
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	103710	2014/07/02			
3	Pulse Limiter	Com-Power	LIT-153	53226	2014/07/01			
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A			
5	Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2014/10/19			


Radia	Radiated Emission							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Bilog Antenna	Sunol Sciences Corp.	JB1	A061713	2014/07/12			
2	EMI TEST Receivcer	Rohde&Schwarz	ESCI3	103710	2014/07/02			
3	EMI TEST Software	Audix	E3	N/A	N/A			
4	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A			
5	HORN ANTENNA	Sunol Sciences Corp.	DRH-118	A062013	2014/07/12			
6	Amplifer	HP	8447D	3113A07663	2014/10/22			
7	Preamplifier	HP	8349B	3155A00882	2014/07/03			
8	Amplifer	Compliance Direction systems	PAP1-4060	129	2014/07/03			
9	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2014/06/29			
10	TURNTABLE	MATURO	TT2.0		N/A			
11	ANTENNA MAST	MATURO	TAM-4.0-P		N/A			
12	Horn Antenna	SCHWARZBECK	BBHA9170	25849	2014/06/21			
13	Spectrum Analyzer	Rohde&Schwarz	FSU26	201148	2014/07/02			
14	Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	2014/10/19			
15	Coaxial Cables	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	2014/10/19			

	Maximum Peak Output Power / Power Spectral Density / 20dB Bandwidth / Band Edge Compliance of RF							
Emiss	sion / Spurious RF Condu	cted Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.			
1	Spectrum Analyzer	Agilent	N9020A	5644123	2014/07/02			
2	Spectrum Analyzer	Agilent	E4407B	MY45108355	2015/05/21			
3	Power meter	Rohde & Schwarz	NRVD	260540	2014/07/02			
4	Power Sensor	Rohde&Schwarz	NRR-Z81	256697	2014/07/02			
5	MXA Signal Analyzer	Agilent	N9030A	MY53420615	2014/05/12			
6	Coaxial Cables	WK CE Cable	N/A	N/A	2014/10/19			
7	The temporary antenna connector	MMCX - SMA	1547	23657478	2014/10/19			
8	Cable	MURATA	MM8430 - 2610	11548	2014/10/19			

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

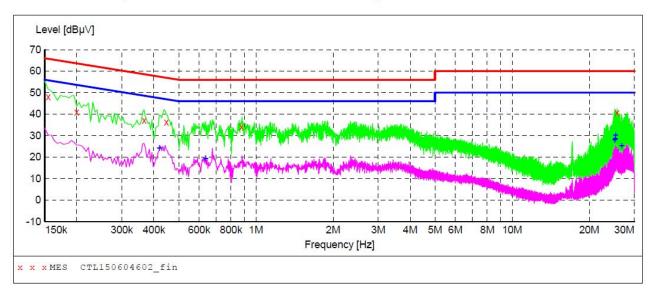
TEST CONFIGURATION

TEST PROCEDURE

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009
- 2. Support equipment, if needed, was placed as per ANSI C63.4-2009
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009
- 4. The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:


Fraguency	Maximum RF Line Voltage (dBμV)							
Frequency (MHz)	CLA	SS A	CLASS B					
(IVITIZ)	Q.P.	Ave.	Q.P.	Ave.				
0.15 - 0.50	79	66	66-56*	56-46*				
0.50 - 5.00	73	60	56	46				
5.00 - 30.0	73	60	60	50				

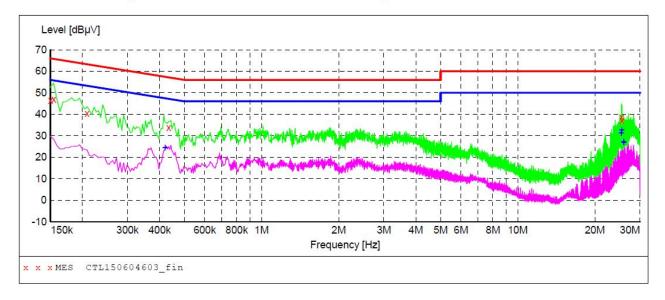
^{*} Decreasing linearly with the logarithm of the frequency

TEST RESULTS

Note: We tested Conducted Emission of GFSK, $\pi/4$ DQPSK and 8DPSK mode from 0.15 KHz to 30MHz (DH1, DH3 and DH5) and all channels (low, middle and high), recorded the worst case data at GFSK DH5 middle channel.

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "CTL150604602_fin"


6/4/2015	4:13PM							
Freque	ncy :	Level T	ransd	Limit	Margin	Detector	Line	PE
	MHz	dBuV	dB	dBuV	dB			
0.154	500	48.10	10.2	66	17.7	QP	N	GND
0.199	500	40.80	10.2	64	22.8	QP	N	GND
0.366	000	37.00	10.2	59	21.6	QP	N	GND
0.447	000	36.20	10.2	57	20.7	QP	N	GND
0.879	000	34.00	10.2	56	22.0	QP	N	GND
25.687	500	40.60	11.1	60	19.4	QP	N	GND

MEASUREMENT RESULT: "CTL150604602_fin2"

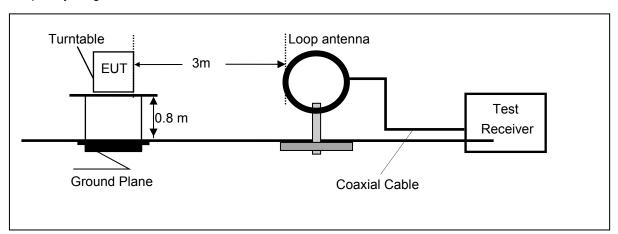
6/4/2015	4:13PM						
Freque	4	evel Tran dBµV	sd Limit dB dBµV		Detector	Line	PE
0.420	000 2	4.30 10	.2 47	23.1	AV	N	GND
0.636	0000 1	9.30 10	.2 46	26.7	AV	N	GND
25.147	500 2	7.90 11	.1 50	22.1	AV	N	GND
25.269	000 2	8.70 11	.1 50	21.3	AV	N	GND
25.327	500 3	0.30 11	.1 50	19.7	AV	N	GND
26.772	2000 2	5.40 11	.2 50	24.6	AV	N	GND

SCAN TABLE: "Voltage (9K-30M)FIN" Short Description: 150K-30M

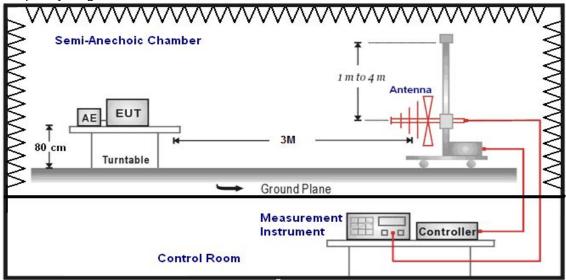
150K-30M Voltage

MEASUREMENT RESULT: "CTL150604603_fin"

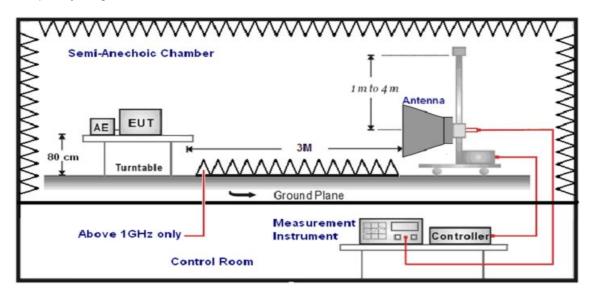
6/4/2015 4:16 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000 0.154500 0.208500 0.433500 25.390500 25.507500	46.30 46.80 40.40 33.70 38.60 37.20	10.2 10.2 10.2 10.2 11.1 11.1	66 66 63 57 60	19.7 19.0 22.9 23.5 21.4 22.8	QP QP QP QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND GND


MEASUREMENT RESULT: "CTL150604603_fin2"

6/4/2015 4:16	6PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dBµV	dB	dBµV	dB			
0.420000	24.50	10.2	47	22.9	AV	L1	GND
25.327500	31.40	11.1	50	18.6	AV	L1	GND
25.390500	31.20	11.1	50	18.8	AV	L1	GND
25.449000	32.80	11.1	50	17.2	AV	L1	GND
25.872000	27.10	11.1	50	22.9	AV	L1	GND
25.930500	27.00	11.2	50	23.0	AV	L1	GND


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 4. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Repeat above procedures until all frequency measurements have been completed.
- 6. The EUT minimum operation frequency was 32.768 KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9 KHz to 25GHz.

7. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	3

3. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	Peak
1GHz-40GHz	Sweep time=Auto	(Receiver)
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=3MHz,	Average
	Sweep time=Auto	(Receiver)

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	

Transd=AF +CL-AG

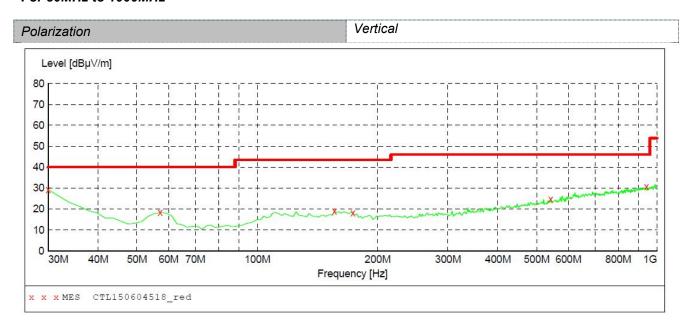
RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

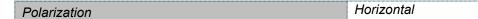
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))+80	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))+40	24000/F(KHz)
1.705-30	30	20log(30)+40	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

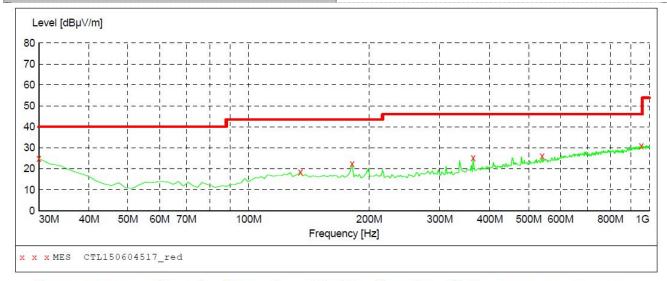
TEST RESULTS


Remark:

- 1. The radiated measurement are performed the each channel (low/mid/high) at all Packet type (DH1, DH3 and DH5) also for difference modulation type (GFSK, 8DPSK), recorded worst case at GFSK_DH5_Low channel (Channel 00) for below 1GHz and GFSK_DH5_Low channel (Channel 00), GFSK_DH5_Middle channel (Channel 39), GFSK_DH5_High channel (Channel 78) for above 1G.
- 2. ULTRA-BROADBAND ANTENNA for the radiation emission test below 1G.
- 3. HORN ANTENNA for the radiation emission test above 1G.
- 4. Test Mode: Continuously transmitting
- 5. "---" means not recorded as emission levels lower than limit.
- 6. Margin= Limit Level

For 9KHz to 30MHz


Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result
12.00	42.88	69.54	26.66	QP	PASS
24.00	40.69	69.54	28.85	QP	PASS


For 30MHz to 1000MHz

Page 17 of 56 Report No.: JTT20150500103

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det	.Polarization
30.000000	29.30	21.1	40.0	10.7	PK	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL
57.160000	18.40	8.3	40.0	21.6	PK	
156.100000	18.90	14.0	43.5	24.6	PK	
173.560000	18.10	13.3	43.5	25.4	PK	
542.160000	24.80	20.8	46.0	21.2	PK	
941.800000	30.60	26.5	46.0	15.4	PK	

Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Polarization
30.000000	24.90	21.1	40.0	15.1	PK	HORIZONTAL
134.760000	18.50	14.8	43.5	25.0	PK	HORIZONTAL
181.320000	22.40	13.3	43.5	21.1	PK	HORIZONTAL
363.680000	25.40	17.5	46.0	20.6	PK	HORIZONTAL
540.220000	26.00	20.8	46.0	20.0	PK	HORIZONTAL
955.380000	31.10	26.7	46.0	14.9	PK	HORIZONTAL

For 1GHz to 25GHz

Low Channel @ Channel 00 @ 2402 MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M														
No.	Frequency (MHz)	Emss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)		Pre- amplifi er	Correction Factor (dB/m)			
1	4804.00	54.18	PK	74.00	19.82	1.00	59	52.10	31.58	7.00	36.5	2.08			
2	4804.00	40.65	ΑV	54.00	13.35	1.00	59	38.57	31.58	7.00	36.5	2.08			
3	7206.00	56.19	PK	74.00	17.81	1.00	245	45.53	37.06	8.90	35.3	10.66			
4	7206.00	38.78	ΑV	54.00	15.22	1.00	245	28.12	37.06	8.90	35.3	10.66			

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M													
	Frequency Emssion			Limit	Margin	Antenna		Raw	Antenna	Cable	Pre-	Correction		
No.		Lev	/el	(dBuV/m)		Height	Angle	Value	Factor	Factor	amplifi	Factor		
(MHZ)	(dBu\	√/m)	(ubuv/III)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)			
1	4804.00	50.40	PK	74.00	23.60	1.00	205	48.32	31.58	7.00	36.5	2.08		
2	4804.00	37.55	ΑV	54.00	16.45	1.00	205	35.47	31.58	7.00	36.5	2.08		
3	7206.00	52.12	PK	74.00	21.88	1.00	199	41.46	37.06	8.90	35.3	10.66		
4	7206.00	37.18	ΑV	54.00	16.82	1.00	199	26.52	37.06	8.90	35.3	10.66		

Middle Channel @ Channel 40 @ 2442 MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M													
	Fraguenay	Ems	sion	Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction		
No.	Frequency (MHz)	Lev	-	(dBuV/m)		Height	Angle	Value	Factor	Factor	amplifi	Factor		
	(1011 12)	(dBu\	V/m)	(ubu v/iii)	(40)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)		
1	4884.00	55.41	PK	74.00	18.59	1.00	94	53.27	31.04	7.60	36.5	2.14		
2	4884.00	40.97	AV	54.00	13.03	1.00	94	38.83	31.04	7.60	36.5	2.14		
3	7326.00	57.19	PK	74.00	16.81	1.00	120	46.05	37.84	8.60	35.3	11.14		
4	7326.00	39.03	AV	54.00	14.97	1.00	120	27.89	37.84	8.60	35.3	11.14		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M														
	Fraguenay	Ems	sion	Limit	Morgin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction			
No.	Frequency	Lev		(dBuV/m)	Margin (dB)	Height	Angle	Value	Factor	Factor	amplifi	Factor			
(MHZ)	(1011 12)	(dBu\	//m)	(dDd V/III)	(GD)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)			
1	4884.00	50.87	PK	74.00	23.13	1.00	142	48.73	31.04	7.60	36.5	2.14			
2	4884.00	37.73	AV	54.00	16.27	1.00	142	35.59	31.04	7.60	36.5	2.14			
3	7326.00	52.19	PK	74.00	21.81	1.00	217	41.05	37.84	8.60	35.3	11.14			
4	7326.00	37.26	AV	54.00	16.74	1.00	217	26.12	37.84	8.60	35.3	11.14			

Report No.: JTT20150500103

High Channel @ Channel 78 @ 2480 MHz

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M														
	Frequency	Emssion		Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction			
No.		Lev	⁄el			Height	Angle	Value	Factor	Factor	amplifi	Factor			
	(MHz)	(dBu\	//m)	(dBuV/m)	(dB)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	(dB) er ((dB/m)			
1	4960.00	55.83	PK	74.00	18.17	1.00	119	53.40	31.63	7.00	36.2	2.43			
2	4960.00	41.20	ΑV	54.00	12.80	1.00	119	38.77	31.63	7.00	36.2	2.43			
3	7340.00	57.29	PK	74.00	16.71	1.00	56	45.69	38.40	8.50	35.3	11.60			
4	7340.00	39.08	ΑV	54.00	14.92	1.00	56	27.48	38.40	8.50	35.3	11.60			

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M												
	Frequency	Emssion		Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction	
No.	(MHz)	Lev	Level	(dBuV/m)	_	Height	Angle	Value	Factor	Factor	amplifi	Factor	
		(dBu\	//m)	(ubu v/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)	
1	4960.00	50.92	PK	74.00	23.08	1.00	311	48.49	31.63	7.00	-36.2	2.43	
2	4960.00	37.75	ΑV	54.00	16.25	1.00	311	35.32	31.63	7.00	-36.2	2.43	
3	7340.00	52.48	PK	74.00	21.52	1.00	284	40.88	38.40	8.50	-35.3	11.60	
4	7340.00	37.32	ΑV	54.00	16.68	1.00	284	25.72	38.40	8.50	-35.3	11.60	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value- Emission level.
- 5. The average measurement was not performed when the peak measured data under the limit of average detection.

Page 21 of 56 Report No.: JTT20150500103

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

According to DA 00-705 Maximum peak conducted output power: Connect antenna port into power meter and reading Peak values

Maximum conducted (Peak) output power: As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.

- 1. The EUT is configured to transmit continuously,
- 2. At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
- 3. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

LIMIT

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

TEST RESULTS

Remark: We test maximum peak output power at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5

4.3.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	0.63	30	PASS
39	2441	1.27	30	PASS
78	2480	1.51	30	PASS

Note:

1. The test results including the cable lose.

4.3.2 π/4 DQPSK Test Mode

A. Test Verdict

Channel Frequency (MHz)		Measured Output Peak Power (dBm)	Limits (dBm)	Verdict
00	2402	0.57	21	PASS
39	2441	1.16	21	PASS
78	2480	1.24	21	PASS

Note:

1. The test results including the cable lose.

4.3.3 8DPSK Test Mode

A. Test Verdict

Channel	Frequency	Measured Output Peak Power	Limits	Verdict	
Chamilei	(MHz)	(dBm)	(dBm)	Verdict	

Page 22 of 56

00	2402	0.56	21	PASS
39	2441	1.18	21	PASS
78	2480	1.35	21	PASS

Report No.: JTT20150500103

Note:

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=100KHz. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

LIMIT

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

4.4.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	0.93	Plot 4.4.1 A	1	PASS
39	2441	0.93	Plot 4.4.1 B	/	PASS
78	2480	0.93	Plot 4.4.1 C	1	PASS

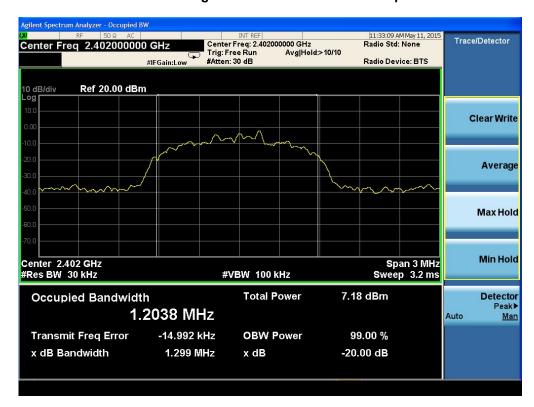
Note: 1.The test results including the cable lose.

B. Test Plots

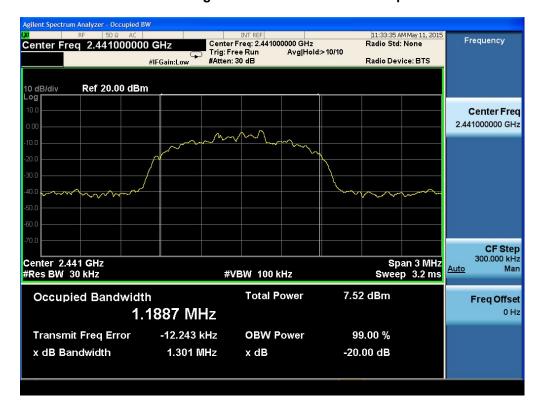
^{1.} The test results including the cable lose.

(Plot 4.4.1 B: Channel 39: 2441MHz @ GFSK)

(Plot 4.4.1 C: Channel 78: 2480MHz @ GFSK)


4.4.2 8DPSKTest Mode

A. Test Verdict


Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot	Limits (MHz)	Verdict
00	2402	1.30	Plot 4.4.2 A	1	PASS
39	2441	1.30	Plot 4.4.2 B	1	PASS
78	2480	1.29	Plot 4.4.2 C	1	PASS

Note: 1.The test results including the cable lose.

B. Test Plots

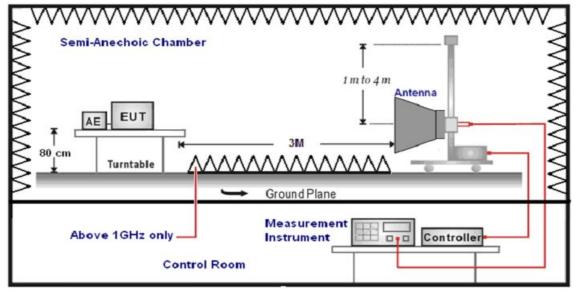
(Plot 4.4.2 A: Channel 00: 2402MHz @ 8DPSK)

(Plot 4.4.2 B: Channel 39: 2441MHz @ 8DPSK)

(Plot 4.4.2 C: Channel 78: 2480MHz @ 8DPSK)

4.5. Band Edge

Applicable Standard


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

TEST CONFIGURATION

For Radiated

For Conducted

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.

- Report No.: JTT20150500103
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed...
- 5. The distance between test antenna and EUT was 3 meter:
- 6. Setting test receiver/spectrum as following table states:

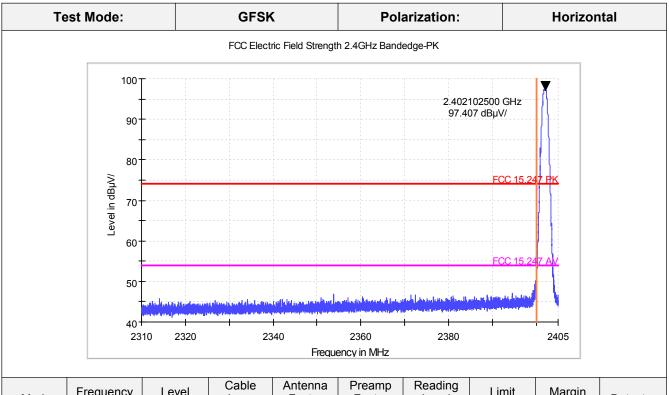
Test Frequency range	Test Receiver/Spectrum Setting	Detector
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz,	Peak
IGHZ-40GHZ	Sweep time=Auto	(Receiver)
1GHz-40GHz	Average Value: RBW=1MHz/VBW=3MHz,	Average
IGHZ-40GHZ	Sweep time=Auto	(Receiver)

LIMIT

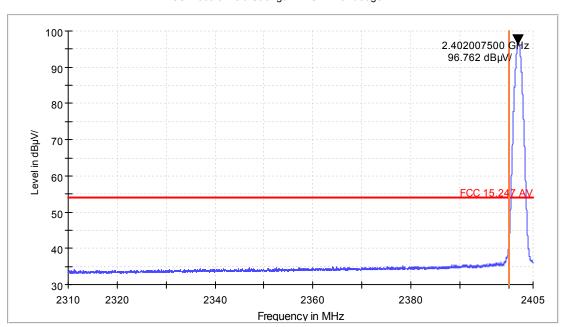
Below -20dB of the highest emission level in operating band.

Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

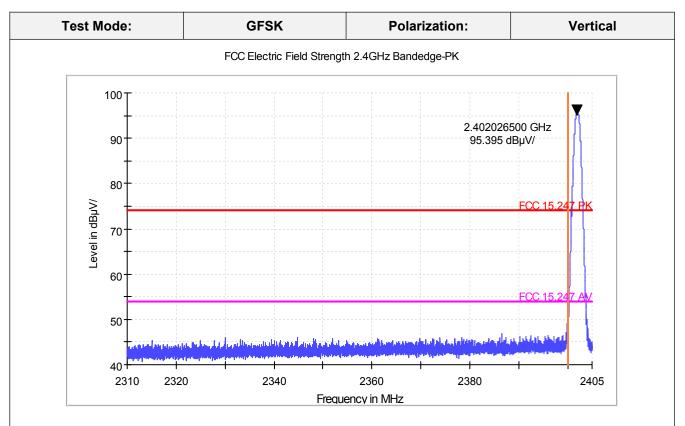
TEST RESULTS

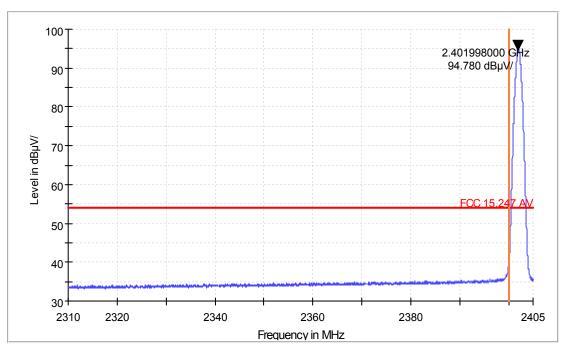

Remark:

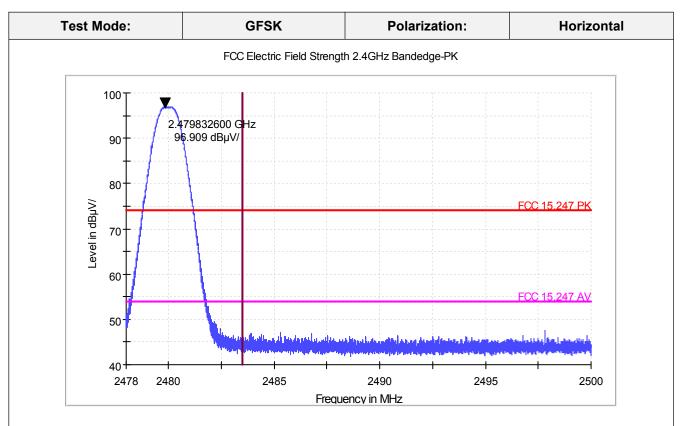
- 1. We test Band Edge at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.
- 2. "---" means not recorded as emission levels lower than limit.

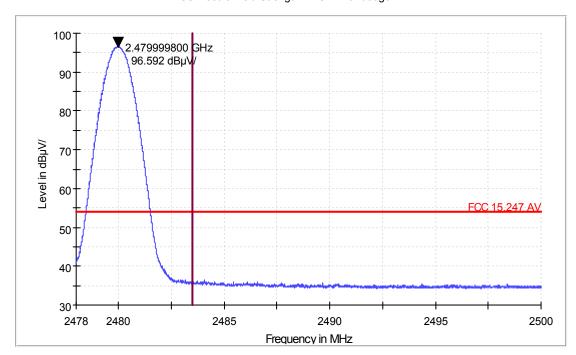

4.5.1 For Radiated Bandedge Measurement

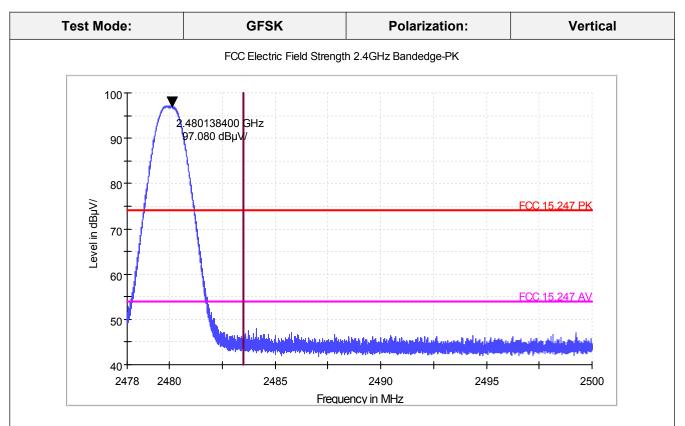
Remark: we tested radiated bandedge at both hopping and no-hopping modes, recorded worst case at no-hopping mode

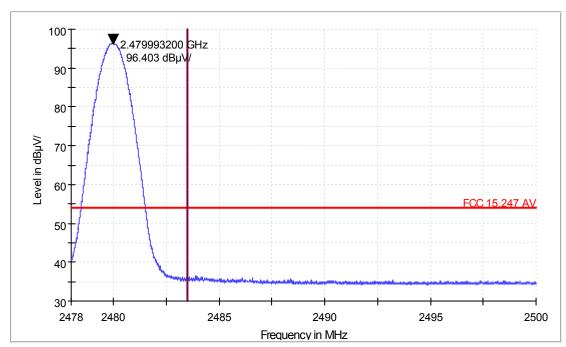

4.5.1.1 GFSK Test Mode


2	2402.10	97.41	3.32	27.49	36.12	102.72	74.00	-28.72	Peak
1	2390.00	46.06	3.32	27.49	36.12	51.37	74.00	22.63	Peak
Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector


Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.00	35.12	3.32	27.49	36.12	40.43	54.00	13.57	Average
2	2402.08	96.76	3.32	27.49	36.12	102.07	54.00	-48.07	Average

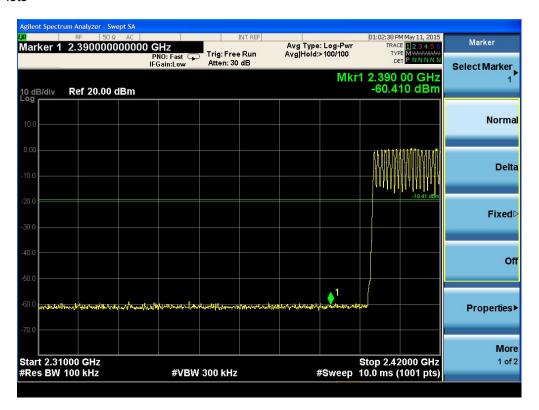

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2390.00	45.81	3.32	27.49	36.12	51.12	74.00	22.88	Peak
2	2402.03	95.39	3.32	27.49	36.12	100.7	74.00	-26.7	Peak


2	2402.00	94.78	3.32	27.49	36.12	100.09	54.00	-46.09	Average
1	2390.00	35.32	3.32	27.49	36.12	40.63	54.00	13.37	Average
Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector

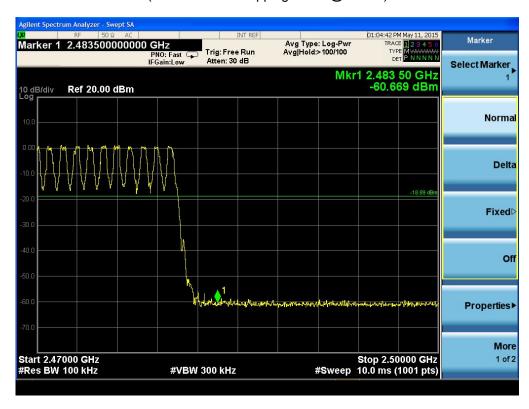

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2479.83	96.91	3.88	27.45	36.55	102.13	74.00	-28.13	Peak
2	2483.50	45.67	3.88	27.45	36.55	50.89	74.00	23.11	Peak

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2480.00	96.59	3.88	27.45	36.55	101.81	54.00	-47.81	Average
2	2483.50	35.71	3.88	27.45	36.55	40.93	54.00	13.07	Average

Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2480.14	97.08	3.88	27.45	36.55	102.3	74.00	-28.30	Peak
2	2483.50	56.87	3.88	27.45	36.55	62.09	74.00	11.91	Peak


Mark	Frequency (MHz)	Level (dBuV/m)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Reading Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	2479.99	96.40	3.88	27.45	36.55	101.62	54.00	-47.62	Average
2	2483.50	36.01	3.88	27.45	36.55	41.23	54.00	12.77	Average

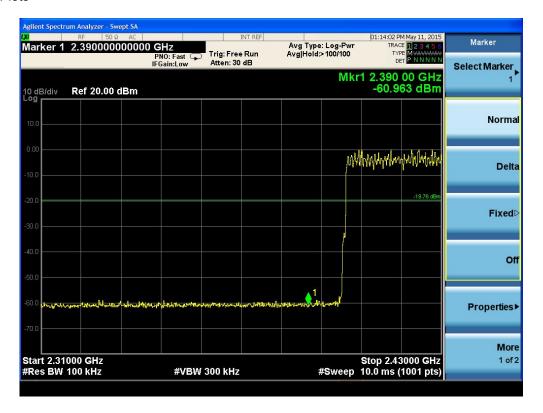
4.5.2 For Conducted Bandedge Measurement


4.5.2.1 GFSK Test Mode

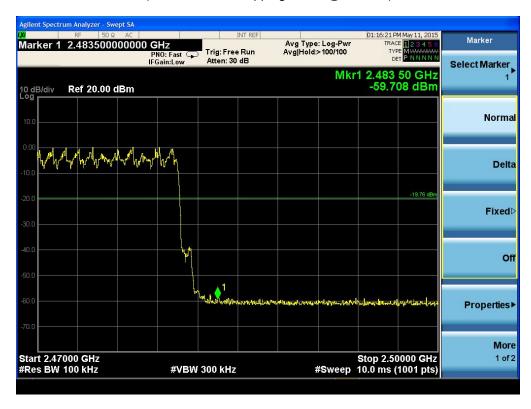
We tested hopping mode and non-hopping mode, and recorded the worst case at the hopping mode.

A. Test Plots

(Plot 4.5.2.1 A: Hopping Mode @ GFSK)



(Plot 4.5.2.1 B: Hopping Mode @ GFSK)


4.5.2.2 8DPSK Test Mode

We tested hopping mode and non-hopping mode, and recorded the worst case at the hopping mode.

A. Test Plots

(Plot 4.5.2.2 A: Hopping Mode @ 8DPSK)

(Plot 4.5.2.2 B: Hopping Mode @ 8DPSK)

4.6. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=30 KHz and VBW=30KHz.

LIMIT

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5) and all test channels, recorded worst case at DH5 and middle channel.

4.6.1 GFSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
38	2440	1.002	Plot 4.6.1 A	0.8702	PASS
39	2441	1.002	PIOL 4.0. I A	0.6702	FASS

B. Test Plots

(Plot 4.6.1 A: Channel 39: 2441MHz @ GFSK)

4.6.2 8DPSK Test Mode

A. Test Verdict

Channel	Frequency (MHz)	Channel Separation (MHz)	Refer to Plot	Limits (MHz)	Verdict
38	2440	0.999	Plot 4.6.2 A	0.84936	PASS
39	2441	0.999	F101 4.0.2 A	0.04930	FASS

B. Test Plots

(Plot 4.6.2 A: Channel 39: 2441MHz @ 8DPSK)

4.7. Number of hopping frequency

TEST CONFIGURATION

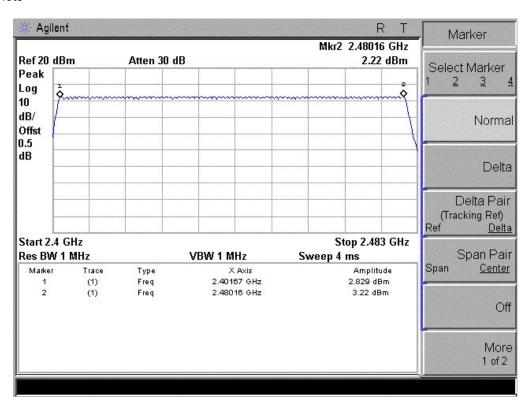
TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with RBW=1MHz and VBW=1MHz.

LIMIT

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST RESULTS

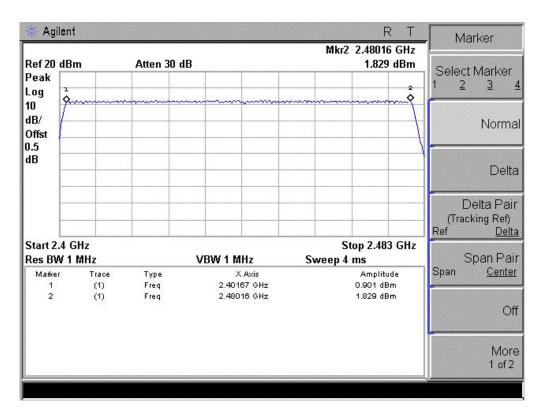

Remark: 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.

4.7.1 GFSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.1 A1	≥15	PASS

B. Test Plots


(Plot 4.7.1 A1: @ GFSK)

4.7.2 8DPSK Test Mode

A. Test Verdict

Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Refer to Plot	Limit	Verdict
2400-2483.5	79	Plot 4.7.2 A1	≥15	PASS

B. Test Plots

(Plot 4.7.2 A1: @ 8DPSK)

Page 39 of 56 Report No.: JTT20150500103

4.8. Time of Occupancy (Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with RBW=1MHz and VBW=3MHz, Span=0Hz.

LIMIT

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

The Dwell Time=Burst Width*Total Hops. The detailed calculations are showed as follows:

The duration for dwell time calculation: 0.4[s]*hopping number=0.4[s]*79[ch]=31.6[s*ch];

The burst width [ms/hop/ch], which is directly measured, refers to the duration on one channel hop.

The hops per second for all channels: The selected EUT Conf uses a slot type of 5-Tx&1-Rx and a hopping rate of 1600 [ch*hop/s] for all channels. So the final hopping rate for all channels is 1600/6=266.67 [ch*hop/s] The hops per second on one channel: 266.67 [ch*hops/s]/79 [ch]=3.38 [hop/s];

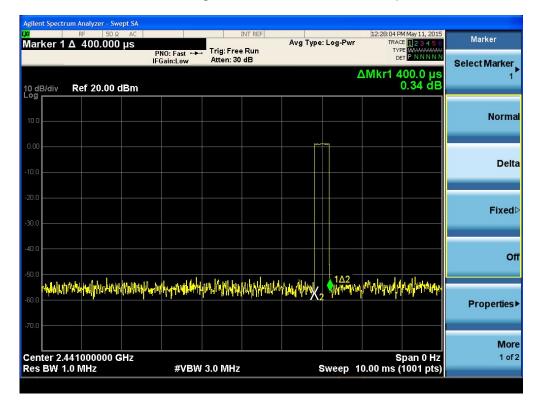
The total hops for all channels within the dwell time calculation duration: 3.38 [hop/s]*31.6[s*ch]=106.67 [hop*ch];

The dwell time for all channels hopping: 106.67 [hop*ch]*Burst Width [ms/hop/ch].

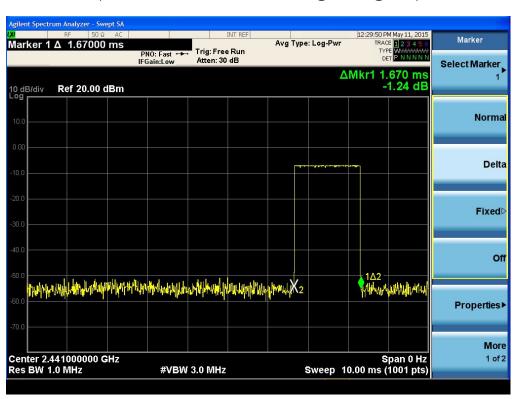
Remark: 1. We test Frequency Separation at all test channels, recorded worst case at middle channel.

4.8.1 GFSK Test Mode

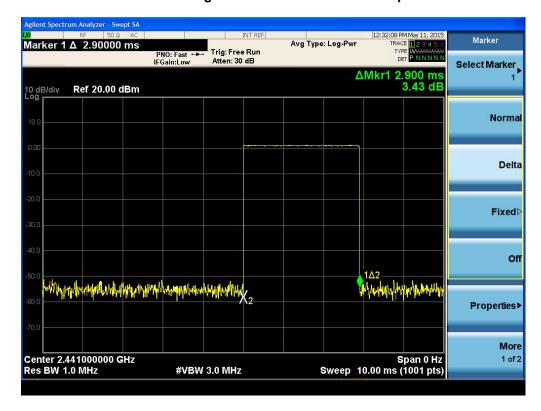
A. Test Verdict

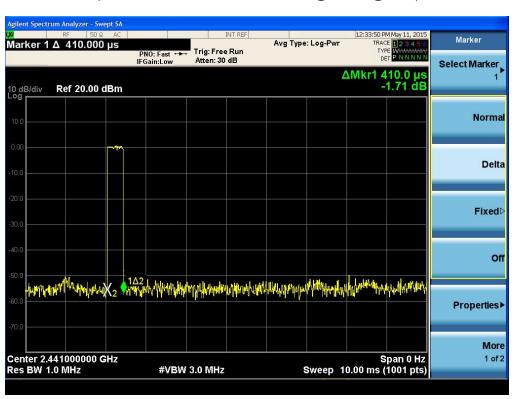

GFSK:

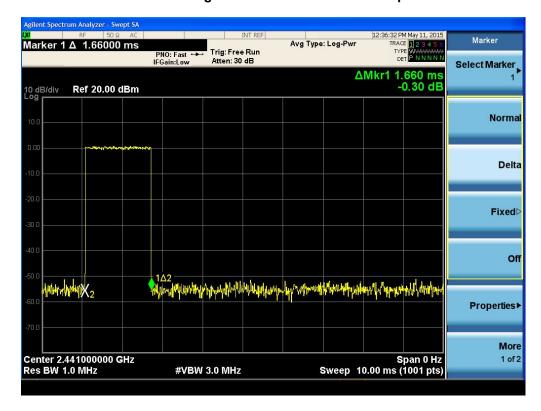
Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict		
DH1	2441	0.400	0.128	0.4	Plot 4.8.1 A	PASS		
וחט	Note: Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second							
DHS	2441	1.670	0.267	0.4	Plot 4.8.1 B	PASS		
סחט	Note: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second							
DH5	2441	2.900	0.309	0.4	Plot 4.8.1 C	PASS		
סחט	Note: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second							

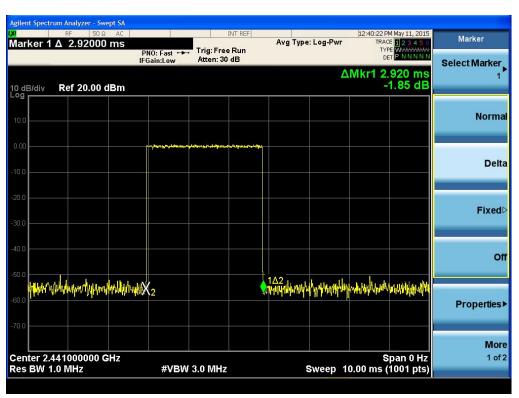

4.8.2 8DPSK Test Mode

Mode	Frequency (MHz)	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Refer to Plot	Verdict		
DH1	2441	0.410	0.131	0.4	Plot 4.8.2 A	PASS		
υпі	Note: Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second							
DH3	2441	1.660	0.266	0.4	Plot 4.8.2 B	PASS		
рпз	Note: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second							
DH5	2441	2.920	0.311	0.4	Plot 4.8.2 C	PASS		
סחט	Note: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second							


B. Test Plots


(Plot 4.8.1.A: Channel 39: 2441MHz @ GFSK @ DH1)


(Plot 4.8.1.B: Channel 39: 2441MHz @ GFSK @ DH3)


(Plot 4.8.1.C: Channel 39: 2441MHz @ GFSK @ DH1)

(Plot 4.8.2.A: Channel 39: 2441MHz @ 8DPSK @ DH1)

(Plot 4.8.2.B: Channel 39: 2441MHz @ 8DPSK @ DH3)

(Plot 4.8.2.C: Channel 39: 2441MHz @ 8DPSK @ DH5)

4.9. Spurious RF Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.4-2009 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBM= 300KHz to measure the peak field strength, and measurement frequency range from 9KHz to 26.5GHz.

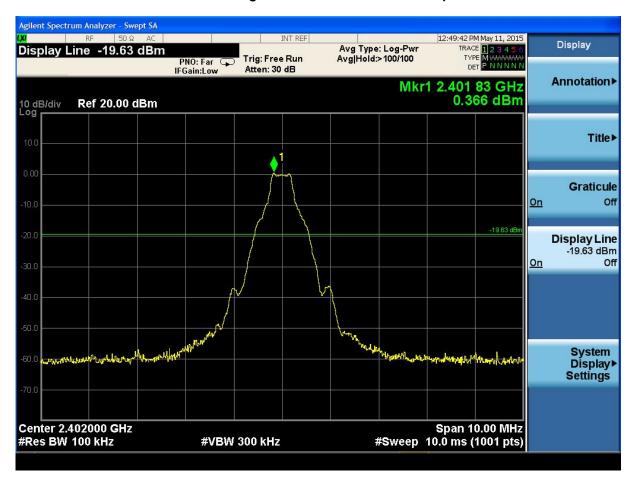
LIMIT

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

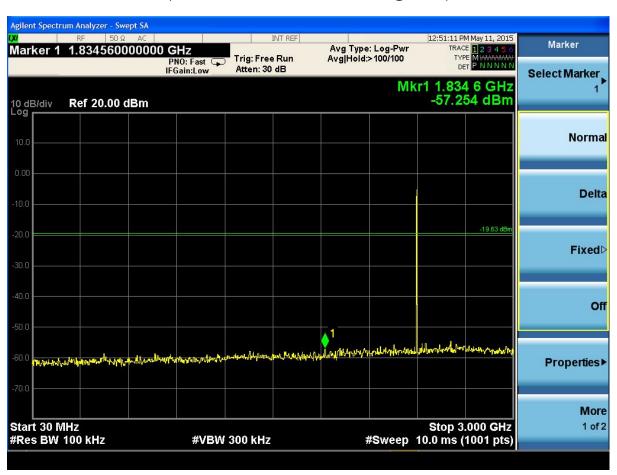
TEST RESULTS

Remark:

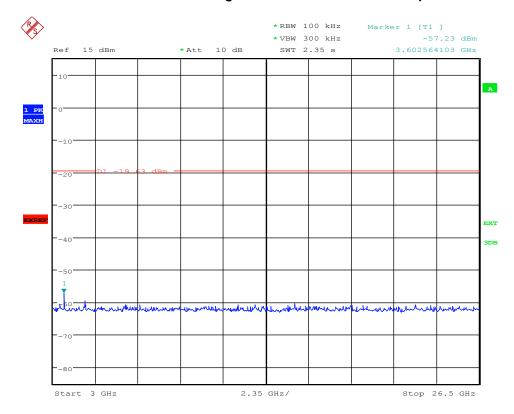
- 1. We test Frequency Separation at difference Packet Type (DH1, DH3 and DH5), recorded worst case at DH5.
- 2.For 9KHz -30MHz, Because there was only background, So We did not recorded data.


4.9.1 GFSK Test Mode

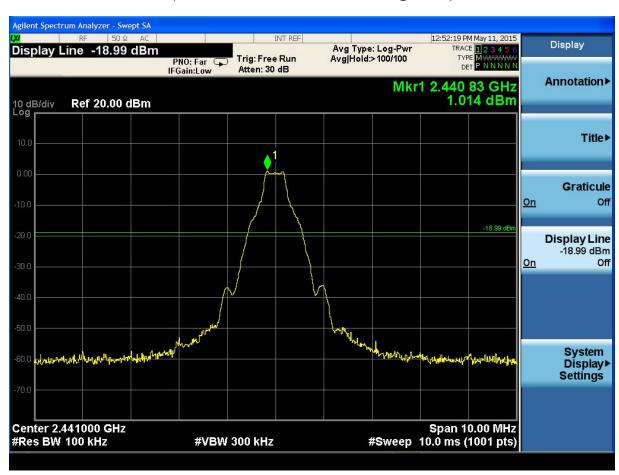
A. Test Verdict


Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
		2.402 GHz	Plot 4.9.1 A1		PASS
00	2402	30MHz-3GHz	Plot 4.9.1 A2	-20	PASS
		3GHz-26.5GHz	Plot 4.9.1 A3	-20	PASS
39 2441		2.441 GHz	Plot 4.9.1 B1		PASS
	2441	30MHz-3GHz	Plot 4.9.1 B2	-20	PASS
		3GHz-26.5GHz	Plot 4.9.1 B3	-20	PASS
78	2480	2.480 GHz	Plot 4.9.1 C1		PASS
		30MHz-3GHz	Plot 4.9.1 C2	-20	PASS
		3GHz-26.5GHz	Plot 4.9.1 C3	-20	PASS

Note:

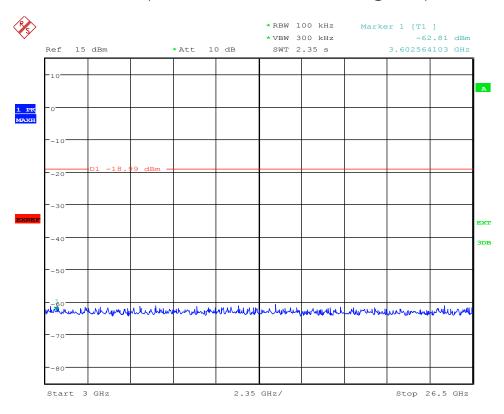

- 1. The test results including the cable lose.
- B. Test Plots

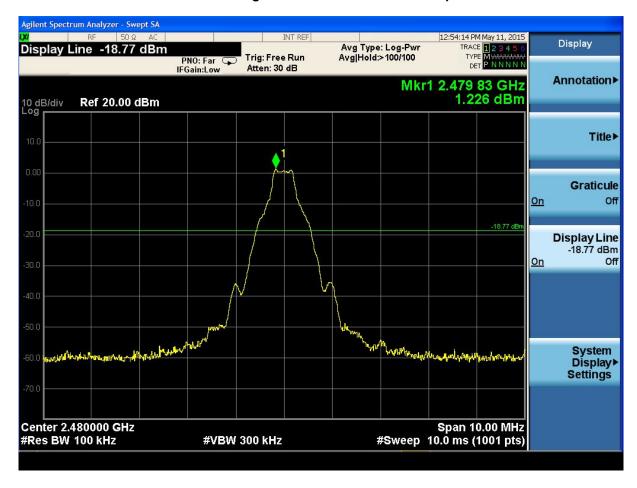
(Plot 4.9.1 A1: Channel 00: 2402MHz @ GFSK)

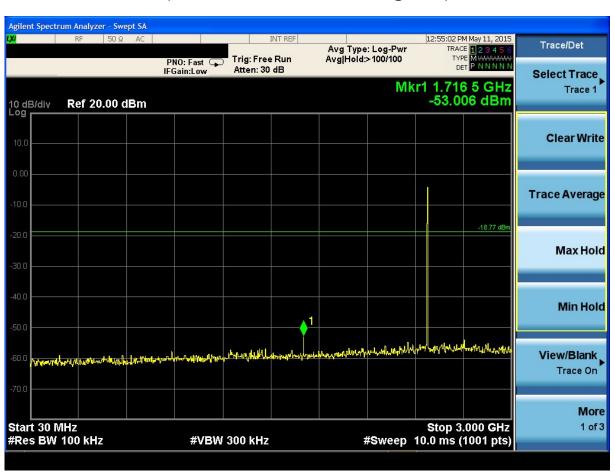


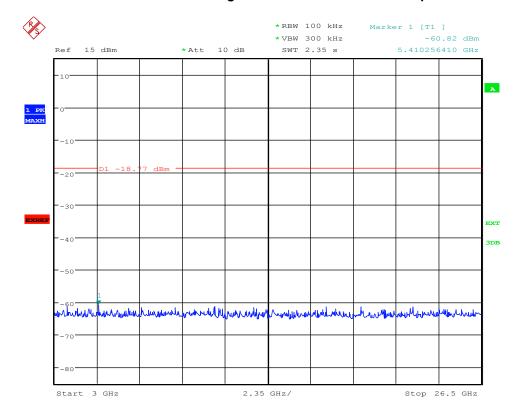
(Plot 4.9.1 A2: Channel 00: 2402MHz @ GFSK)

Date: 11.MAY.2015 10:48:15


(Plot 4.9.1 A3: Channel 00: 2402MHz @ GFSK)


(Plot 4.9.1 B1: Channel 39: 2441MHz @ GFSK)


(Plot 4.9.1 B2: Channel 39: 2441MHz @ GFSK)


Date: 11.MAY.2015 10:49:09

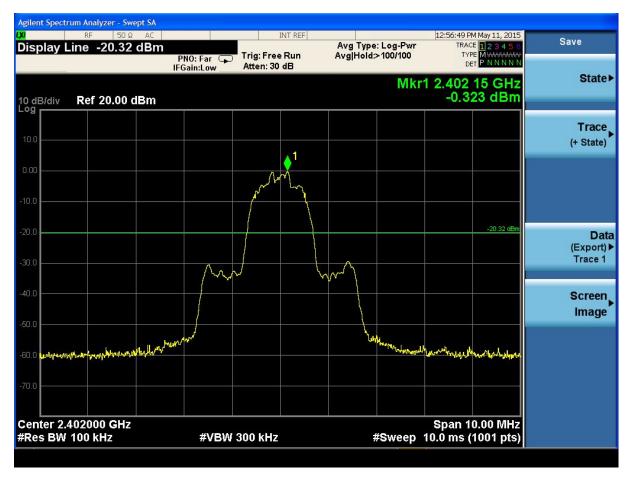
(Plot 4.9.1 C1: Channel 78: 2480MHz @ GFSK)

(Plot 4.9.1 C2: Channel 78: 2480MHz @ GFSK)

Date: 11.MAY.2015 11:46:14

(Plot 4.9.1 C2: Channel 78: 2480MHz @ GFSK)

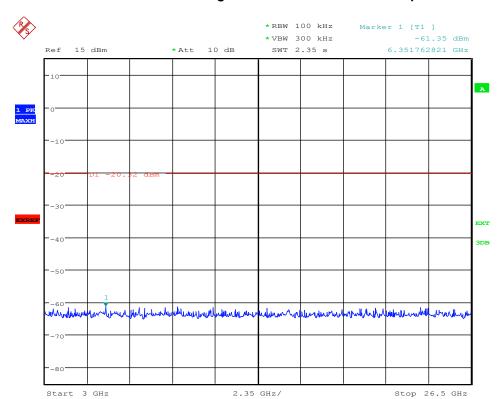
4.9.2 8DPSK Test Mode


A. Test Verdict

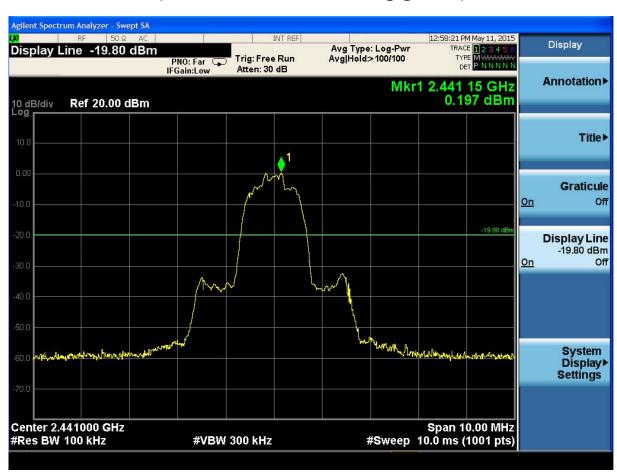
Channel	Frequency (MHz)	Frequency Range	Refer to Plot	Limit (dBc)	Verdict
		2.402 GHz	Plot 4.9.2 A1		PASS
00	2402	30MHz-3GHz	Plot 4.9.2 A2	-20	PASS
		3GHz-26.5GHz	Plot 4.9.2 A3	-20	PASS
39		2.402 GHz	Plot 4.9.2 B1		PASS
	2441	30MHz-3GHz	MHz-3GHz Plot 4.9.2 B2 -20	PASS	
		3GHz-26.5GHz	Plot 4.9.2 B3	-20	PASS
78		2.402 GHz	Plot 4.9.2 C1		PASS
	2480	30MHz-3GHz	Plot 4.9.2 C2	-20	PASS
		3GHz-26.5GHz	Plot 4.9.2 C3	-20	PASS

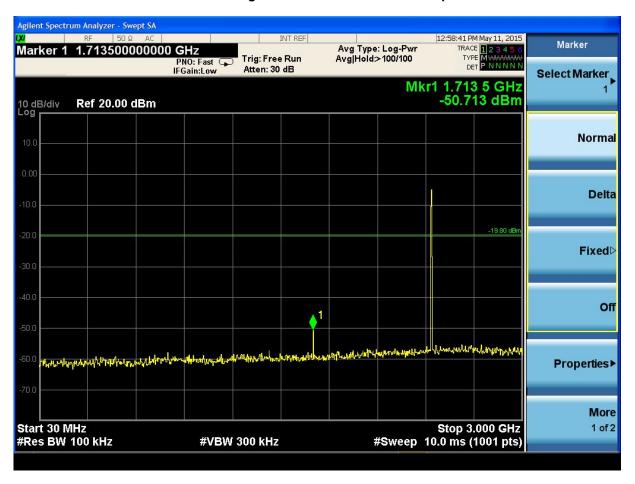

Note:

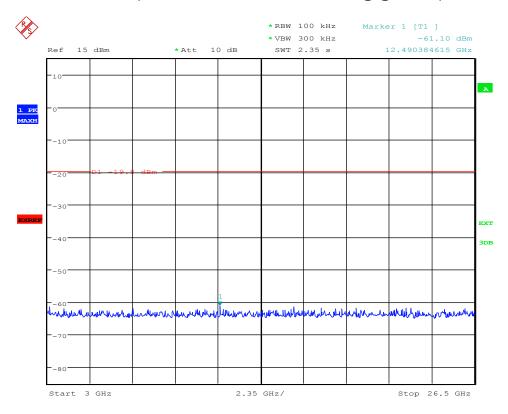
- 1. The test results including the cable lose.
- B. Test Plots



(Plot 4.9.2 A1: Channel 00: 2402MHz @ 8DPSK)




(Plot 4.9.2 A2: Channel 00: 2402MHz @ @ 8DPSK)


Date: 11.MAY.2015 12:26:12

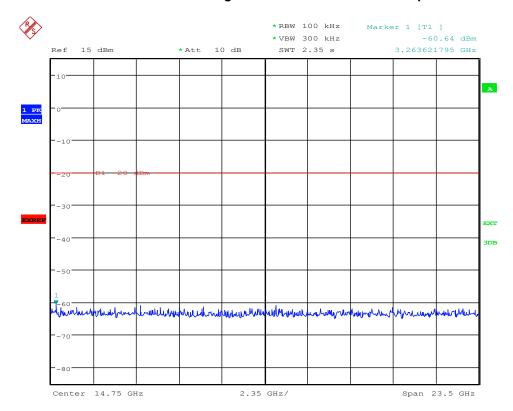
(Plot 4.9.2 A3: Channel 00: 2402MHz @ @ 8DPSK)

(Plot 4.9.2 B2: Channel 39: 2441MHz @ @ 8DPSK)

System
Display
Settings

Span 10.00 MHz

#Sweep 10.0 ms (1001 pts)


(Plot 4.9.2 C1: Channel 78: 2480MHz @ @ 8DPSK)

#VBW 300 kHz

Center 2.480000 GHz #Res BW 100 kHz

(Plot 4.9.2 C2: Channel 78: 2480MHz @ @ 8DPSK)

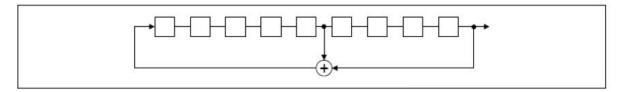
Date: 11.MAY.2015 10:51:44

(Plot 4.9.2 C3: Channel 78: 2480MHz @ @ 8DPSK)

Report No.: JTT20150500103

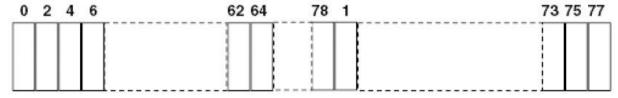
4.10. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

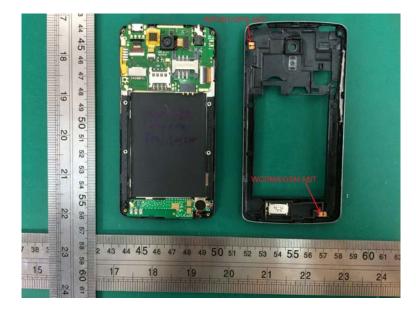
Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.11. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of Bluetooth antenna was -1.12dBi and it is a FPC ANT.

5. Test Setup Photos of the EUT

.....End of Report.....