

TEST REPORT

Report Reference No.....:: MWR1409002907 FCC ID.....:: **RQQHLT-E415**

Compiled by

(position+printed name+signature)...:

File administrators Martin Ao

Supervised by

(position+printed name+signature)...

Test Engineer Martin Ao

Morris

Approved by

(position+printed name+signature)...

Manager Dixon Hao

Date of issue..... Sep 20, 2014

Representative Laboratory Name .: Maxwell International Co., Ltd.

Room 509, Hongfa center building, Baoan District, Shenzhen, Address.....:

Guangdong, China

The Testing and Technology Center for Industrial Testing Laboratory Name

Products of Shenzhen Entry-Exit Inspection and

Quarantine Bureau

Address.....: No.289, 8th Industry Road, NanshanDistrict, Shenzhen, Guangdong

Applicant's name..... **HYUNDAI CORPORATION**

Test specification::

Standard ANSI C95.1–1999

47CFR §2.1093

TRF Originator...... Maxwell International Co., Ltd.

Master TRF.....: Dated 2011-05

Maxwell International Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Maxwell International Co., Ltd. as copyright owner and source of the material.

Maxwell International Co., Ltd. takess no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Mobile Phone Trade Mark HYUNDAI

Manufacturer...... WASAM TECHNOLOGY (SHEN ZHEN) CO.,LTD.

Model/Type reference..... E415

Listed Models /

GSM 850MHz/PCS1900MHz/WiFi2450/BT/WCDMA Band Operation Frequency.....

II/WCDMA Band V

GSM(GMSK), Bluetooth(GFSK,8DPSK,Π/4DQPSK),

Modulation Type DSSS(CCK,DQPSK,DBPSK),OFDM(64QAM,16QAM,QPSK,

BPSK);QPSK(WCDMA)

Hardware version: HYUNDAI W407 V1.0

Software version: HYUNDAI_W407_V1.0

Rating: DC 3.70V

Result..... PASS

Page 2 of 96 Report No.: MWR1409002907

TEST REPORT

Test Report No. :	MWR1409002907	Sep 20, 2014
rest Report No	WWK 1409002907	Date of issue

Equipment under Test Mobile Phone

Model /Type E415

/ Listed Models

Applicant HYUNDAI CORPORATION

Address 140-2, Kye-dong, Chongro-ku, Seoul, South Korea

Manufacturer WASAM TECHNOLOGY (SHEN ZHEN) CO.,LTD.

B,F Building, (Hengqiang Industrial Park), Bogang Taifeng Industrial Zone, Shajing Town, Bao'an District, Shenzhen, Address

China.

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: MWR1409002907

Contents

<u>1 .</u>	TEST STANDARDS	5
<u>2.</u>	SUMMARY	6
2.1.	General Remarks	6
2.2.	Product Description	6
2.3.	Statement of Compliance	6
2.4.	Equipment under Test	7
2.5.	Short description of the Equipment under Test (EUT)	7
2.6.	EUT configuration	8
2.7.	Internal Identification of AE used during the test	8
2.8.	Note	8
<u>3.</u>	TEST ENVIRONMENT	9
3.1.	Address of the test laboratory	9
3.2.	Test Facility	9
3.3.	Environmental conditions	9
3.4.	SAR Limits	9
3.5.	Equipments Used during the Test	10
<u>4.</u>	SAR MEASUREMENTS SYSTEM CONFIGURATION	11
4.1.	SAR Measurement Set-up	11
4.2.	DASY5 E-field Probe System	12
4.3.	Phantoms	12
4.4.	Device Holder	13
4.5.	Scanning Procedure	13
4.6.	Data Storage and Evaluation	14
4.7.	Tissue Dielectric Parameters for Head and Body Phantoms	15
4.8.	Tissue equivalent liquid properties	16
4.9.	System Check	16
4.10.	SAR measurement procedure	18
<u>5.</u>	TEST CONDITIONS AND RESULTS	22
5.1.	Conducted Power Results	22
5.2.	Simultaneous TX SAR Considerations	26
5.3.	SAR Measurement Results	29
5.4.	SAR Measurement Variability	33
5.5.	Measurement Uncertainty (300MHz-3GHz)	33
5.6.	System Check Results	35
5.7.	SAR Test Graph Results	41
<u>6.</u>	CALIBRATION CERTIFICATE	51
6.1.	Probe Calibration Ceriticate	51
6.2.	D835V2 Dipole Calibration Ceriticate	62
6.3.	D1900V2 Dipole Calibration Ceriticate	70
1.1.	D2450V2 Dipole Calibration Ceriticate	78
6.4.	DAE4 Calibration Ceriticate	86
<u>7.</u>	TEST SETUP PHOTOS	89

<u>8.</u>

Report No.: MWR1409002907 EXTERNAL PHOTOS OF THE EUT

<u>95</u>

1. TEST STANDARDS

The tests were performed according to following standards:

<u>IEEE Std C95.1, 1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

Report No.: MWR1409002907

<u>IEEE Std 1528TM-2003:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB 447498 D01 Mobile Portable RF Exposure v05r01: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB 616217 D04 SAR for laptop and tablets v01: SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers

KDB865664 D01 SAR measurement 100 MHz to 6 GHz v02: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 SAR Reporting v01: RF Exposure Compliance Reporting and Documentation Considerations

KDB248227: SAR measurement procedures for 802.112abg transmitters

FCC Part 2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D06 Hot Spot SAR v01: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

<u>KDB941225 D03 Test Reduction GSM GPRS EDGE V01</u>: Recommended SAR Test Reduction Procedures for GSM/GPRS/EDGE

Report No.: MWR1409002907

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Sep 10, 2014
Testing commenced on	:	Sep 12, 2014
Testing concluded on	:	Sep 16, 2014

2.2. Product Description

The **HYUNDAI CORPORATION**'s Model: E415 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Mobile Phone
Model Number	E415
FCC ID	RQQHLT-E415
Modilation Type	GMSK for GSM/GPRS;QPSK for WCDMA
Antenna Type	Internal
Supported Hotspot	Yes, when hot spots opened, WCDMA band II/V power will not
Supported Hotspot	reduced
GSM/EDGE/GPRS	Supported GPRS
Extreme temp. Tolerance	-30°C to +50°C
Extreme vol. Limits	3.40VDC to 4.20VDC (nominal: 3.70VDC)
GSM Operation Frequency Band	GSM 850MHz/ PCS 1900MHz
GSM Release Version	R99
GPRS operation mode	Class B
GPRS Multislot Class	12
EGPRS Multislot Class	Only support downlink mode
Exposure category	General population/uncontrolled environment
EUT Type	Production Unit

2.3. Statement of Compliance

The maximum of results of SAR found during testing for E415 are follows:

Exposure Configuration	Technolohy Band	Technolohy Band Highest Reported SAR 1g(W/Kg)		
	GSM850	0.564		
Llood	PCS1900	0.420	PCE	
Head (Separation Distance 0mm)	WCDMA Band V	0.516	PCE	
(Separation distance offin)	WCDMA Band II	0.486		
	WLAN2450	0.612	DTS	
	GSM850	0.867		
Body-worn (Separation Distance 10mm)	PCS1900	0.676	PCE	
	WCDMA Band V	0.499	FCE	
	WCDMA Band II	0.734		
	WLAN2450	0.668	DTS	

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6W/Kg as averaged over any 1g tissue accordintg to the ANSI C95.1-1999.

For body worn operation, this devices has been tested and meets FCC RF exposure guidelines when used with any accessory that conrtains no metal and which provides a minimum separation distance of 10mm between this devices and the body of the user. User of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain iniform power output.

Page 7 of 96 Report No.: MWR1409002907

GSM/WCDMA & WLAN Mode

Test Position	GSM850 Reported SAR1g (W/Kg)	GSM1900 Reported SAR1g (W/Kg)	WCDMA Band II Reported SAR1g (W/Kg)	WCDMA Band V Reported SAR1g (W/Kg)	WLAN Reported SAR1g (W/Kg)	Summation Reported SAR(1g) (W/kg)	SAR -to- peak- location Separation Ratio	Simultaneous Measurement Required?
Left Hand Touch	0.564	0.287	0.314	0.475	0.612	1.176	N/A	No
Left Hand Title	0.262	0.084	0.091	0.190	0.362	0.624	N/A	No
Right Hand Touch	0.547	0.420	0.486	0.516	0.513	1.060	N/A	No
Right Hand Title	0.283	0.066	0.064	0.212	0.268	0.551	N/A	No
Body-Front Side	0.606	0.604	0.643	0.418	0.471	1.114	N/A	No
Body-Rear Side	0.867	0.676	0.734	0.499	0.668	1.535	N/A	No
Body-Left Side	0.714	0.431	0.390	0.358	0.389	1.103	N/A	No
Body-Right Side	0.443	0.336	0.140	0.323	0.233	0.676	N/A	No
Body-Top Side	N/A	N/A	N/A	N/A	0.385	N/A	N/A	No
Body-Bottom Side	0.759	0.631	0.264	0.352	N/A	N/A	N/A	No

GSM/WCDMA & BT Mode

Test Position	GSM850 Reported SAR1g (W/Kg)	GSM1900 Reported SAR1g (W/Kg)	WCDMA Band II Reported SAR1g (W/Kg)	WCDMA Band V Reported SAR1g (W/Kg)	Bluetooth Estimated SAR (W/Kg)	Summation Reported SAR(1g) (W/kg)	SAR -to- peak- location Separation Ratio	Simultaneous Measurement Required?
Left Hand Touch	0.564	0.287	0.314	0.475	0.265	0.829	N/A	No
Left Hand Title	0.262	0.084	0.091	0.190	0.265	0.527	N/A	No
Right Hand Touch	0.547	0.420	0.486	0.516	0.265	0.812	N/A	No
Right Hand Title	0.283	0.066	0.064	0.212	0.265	0.548	N/A	No
Body-Front Side	0.606	0.604	0.643	0.418	0.133	0.739	N/A	No
Body-Rear Side	0.867	0.676	0.734	0.499	0.133	1.000	N/A	No
Body-Left Side	0.714	0.431	0.390	0.358	0.133	0.847	N/A	No
Body-Right Side	0.443	0.336	0.140	0.323	0.133	0.576	N/A	No
Body-Top Side	N/A	N/A	N/A	N/A	0.133	N/A	N/A	No
Body-Bottom Side	0.759	0.631	0.264	0.352	N/A	N/A	N/A	No

Note:1. The value with green color is the maximum values of standalone

2.4. Equipment under Test

Power supply system utilised

Power supply voltage	0	120V / 60 Hz	0	115V / 60Hz
	0	12 V DC	0	24 V DC
	•	Other (specified in blank bel	ow)

DC 3.70 V

2.5. Short description of the Equipment under Test (EUT)

2.5.1 General Description

E415 is subscriber equipment in the WCDMA/GSM system. The HSPA/UMTS frequency band is Band II, Band IV; The GSM/GPRS/EDGE (EDGE downlink only) frequency band includes GSM850 and GSM900 and DCS1800 and PCS1900, but only Band II and Band V and GSM850 and PCS1900 bands test data included in this report. The Mobile Phone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS/EDGE protocol processing, voice, video MMS service, GPS, AGPS and WIFI etc. Externally it provides micro SD card interface, earphone port (to provide voice service) and SIM card interface. It also provides Bluetooth module to synchronize data between a PC and the phone, or to use the built-in modem of the phone to access the Internet with a PC, or to exchange data with other Bluetooth devices.

^{2.} The value with blue color is the maximum values of ΣSAR_{1g} Accordint to the above tables,the highest sum of reported SAR values is 1.176W/Kg for Head and 1.535W/Kg for Body.

Page 8 of 96 Report No.: MWR1409002907

2.5.2 EUT Identity

IMEI No.					
SIM 1	135790246811220				
SIM 2	135790246811228				

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.6. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

0	Power Cable	Length (m):	/
		Shield :	/
		Detachable :	/
0	Multimeter	Manufacturer:	/
		Model No.:	/

2.7. Internal Identification of AE used during the test

AE ID*	Description
AE1	Battery
AE2	Charger

AE1

Model: E415

Capacitance: 1400mAh Nominal Voltage: 3.70V

AE2:

Model: E415

2.8. Note

1. The EUT is a Mobile Phone with WCDMA/GSM/GPRS,WiFi and Bluetooth fuction,The functions of the EUT listed as below:

	Test Standards	Reference Report
GSM/GPRS	FCC Part 22/FCC Part 24	MWR1409002901
WCDMA	FCC Part 22/FCC Part 24	MWR1409002902
Bluetooth	FCC Part 15 C 15.247	MWR1409002903
BLE	FCC Part 15 C 15.247	MWR1409002904
WiFi	FCC Part 15 C 15.247	MWR1409002905
USB Port	FCC Part 15 B	MWR1409002906
SAR	FCC Part 2 §2.1093	MWR1409002907

^{*}AE ID: is used to identify the test sample in the lab internally.

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau

Report No.: MWR1409002907

No.289, 8th Industry Road, Nanshan District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L2872

The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: May 11, 2014. Valid time is until May 12, 2017.

Environmental conditions

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.4. SAR Limits

FCC Limit (1g Tissue)

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

3.5. Equipments Used during the Test

Toot Fauinment	Manufacturar	Type/Model	Carial Number	Cali	bration
Test Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	2013/11/25	1
E-field Probe	SPEAG	ES3DV3	3109	2013/11/29	1
System Validation Dipole D835V2	SPEAG	D835V2	4d134	2013/12/13	3
System Validation Dipole 1900V2	SPEAG	D1900V2	5d150	2013/12/12	3
System Validation Dipole 2450V2	SPEAG	D2450V2	884	2013/12/11	3
Network analyzer	Agilent	8753E	US37390562	2014/03/18	1
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	112012	2013/10/26	1
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/
Power meter	Agilent	E4417A	GB41292254	2013/10/26	1
Power sensor	Agilent	8481H	MY41095360	2013/10/26	1
Signal generator	IFR	2032	203002/100	2013/10/26	1
Amplifier	AR	75A250	302205	2013/10/26	1

Report No.: MWR1409002907

4. SAR Measurements System configuration

4.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

Report No.: MWR1409002907

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

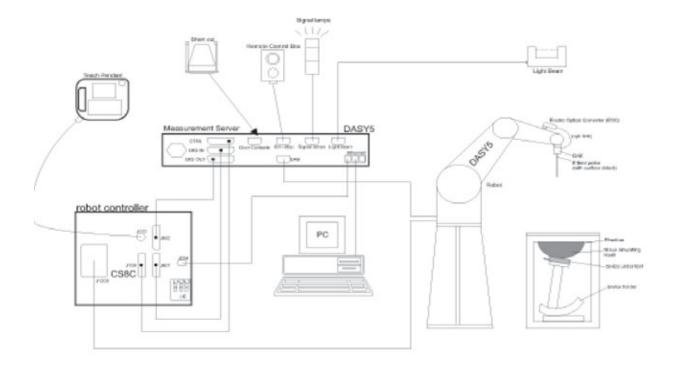
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld mobile phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

4.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

Frequency 10 MHz to 4 GHz;

Linearity: ± 0.2 dB (30 MHz to 4 GHz)

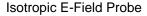
Directivity $\pm 0.2 \text{ dB}$ in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g;

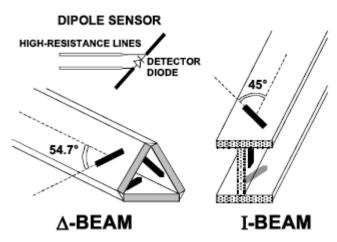
Linearity: ± 0.2 dB

Dimensions Overall length: 337 mm (Tip: 20 mm)


Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz


Dosimetry in strong gradient fields Compliance tests of mobile phones

Compatibility DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

Report No.: MWR1409002907

Report No.: MWR1409002907

SAM Twin Phantom

4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

Page 14 of 96 Report No.: MWR1409002907

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above \pm 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within \pm 30°.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

4.6. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Page 15 of 96

	- Conversion factor	ConvFi
	 Diode compression point 	Dcpi
Device parameters	: - Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

Report No.: MWR1409002907

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)Ui = input signal of channel i (i = x, y, z)cf = crest factor of exciting field (DASY parameter) dcpi = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – field
probes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H- ext{fieldprobes}: \qquad H_i = \sqrt{V_i} \cdot rac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$
 gnal of channel i $\qquad \qquad (\mathbf{i} = \mathbf{x}, \, \mathbf{y}, \, \mathbf{z})$ y of channel i $\qquad \qquad (\mathbf{i} = \mathbf{x}, \, \mathbf{y}, \, \mathbf{z})$

With Vi = compensated signal of channel i Normi = sensor sensitivity of channel i

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

= sensor sensitivity factors for H-field probes

= carrier frequency [GHz] f

= electric field strength of channel i in V/m Εi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units. σ

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with SAR = local specific absorption rate in mW/g

> Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m] σ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4.7. Tissue Dielectric Parameters for Head and Body Phantoms

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Target Frequency	He	ad	Body			
(MHz)	$\epsilon_{ m r}$	σ(S/m)	$\mathbf{\epsilon}_{\mathrm{r}}$	σ(S/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		

Page 16 of 96

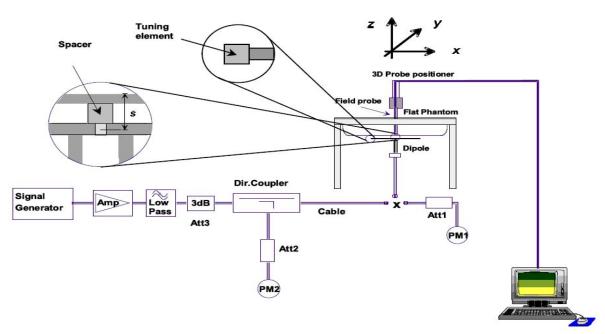
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

Report No.: MWR1409002907

4.8. Tissue equivalent liquid properties

Dielectric performance of Head and Body tissue simulating liquid

Tissue	Measured	Target ⁻	Tissue		Measure	ed Tissue		Liquid	
Type	Frequency (MHz)	$\epsilon_{ m r}$	σ	$\epsilon_{\rm r}$	Dev. %	σ	Dev. %	Liquid Temp.	Test Data
	824	41.56	0.90	41.90	0.8%	0.92	2.4%		
850H	835	41.50	0.90	41.70	0.5%	0.93	3.5%	22	2014-09-12
03011	837	41.50	0.90	41.70	0.5%	0.93	3.4%	degree	2014-09-12
	849	41.50	0.92	41.50	0.1%	0.94	3.0%		
	1850	40.00	1.40	39.90	-0.2%	1.34	-4.5%		
1900H	1880	40.00	1.40	39.90	-0.2%	1.37	-2.2%	22	2014-09-13
190011	1900	40.00	1.40	39.80	-0.6%	1.39	-0.7%	degree	2014-09-13
	1910	40.00	1.40	39.70	-0.7%	1.40	0.0%		
	2412	39.27	1.77	39.40	0.3%	1.77	0.4%		
2450H	2437	39.22	1.79	39.20	0.0%	1.81	1.0%	22 degree	2014-09-14
2430П	2450	39.20	1.80	39.20	0.0%	1.82	1.1%		
	2462	39.18	1.81	39.20	0.1%	1.84	1.4%		
	824	55.24	0.97	53.60	-3.0%	0.95	-1.5%		
850B	835	55.20	0.97	53.40	-3.2%	0.97	-0.4%	22	2014-09-15
0000	837	55.19	0.97	53.40	-3.3%	0.97	-0.6%	degree	2014-09-13
	849	55.16	0.99	53.30	-3.4%	0.98	-0.6%		
	1850	53.30	1.52	53.20	-0.2%	1.47	-3.5%		
1900B	1880	53.30	1.52	52.90	-0.7%	1.49	-2.0%	22	2014-09-16
19006	1900	53.30	1.52	52.90	-0.8%	1.51	-0.5%	degree	2014-09-10
	1910	53.30	1.52	52.80	-0.9%	1.52	0.3%		
	2412	52.75	1.91	52.70	0.1%	1.98	3.6%	_	
2450B	2437	52.72	1.94	52.60	-0.2%	2.01	3.7%	22	2014-09-14
24000	2450	52.70	1.95	52.60	-0.2%	2.03	3.9%	degree	2014-09-14
	2462	52.68	1.97	52.60	-0.2%	2.04	3.9%		


4.9. System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10 \%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

Page 17 of 96 Report No.: MWR1409002907

The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected.

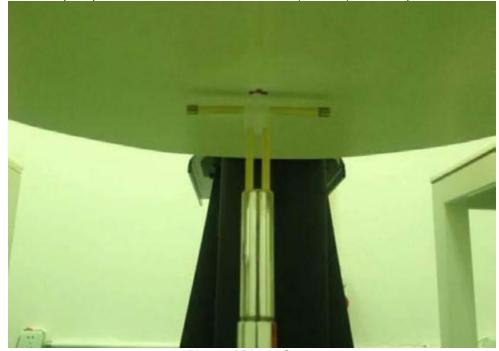


Photo of Dipole Setup

System Validation of Head

			Cystem vana	ation of Fload						
Measurement is made at temperature 22.0 $^{\circ}$ C and relative humidity 55%.										
Liquid tempe	Liquid temperature during the test: 22.0°C									
Measurement Date: 835MHz Sep 12 th , 2014;1900MHz Sep 13 th ;2014, 2450MHz Sep 14 th ;2014										
	Frequency (MHz)	Target value (W/kg)			Measured value (W/kg)		Deviation			
Verification		10 g	1 g	10 g	1 g	10 g	1 g			
results		Average	Average	Average	Average	Average	Average			
resuits	835	1.55	2.38	1.60	2.44	3.23%	2.52%			
	1900	5.08	9.71	4.90	9.48	-3.54%	-2.34%			
	2450	6.05	13.0	6.22	13.7	2.81%	5.39%			

Page 18 of 96 Report No.: MWR1409002907

System Validation of Body

Measurement is made at temperature 22.0 $^{\circ}\mathrm{C}$ and relative humidity 55%.									
Liquid tempe	Liquid temperature during the test: 22.0℃								
Measurement Date: 835MHz Sep 15 th , 2014;1900MHz Sep 16 th ;2014, 2450MHz Sep 14 th ;2014									
	Frequency (MHz)		t value Measured value (W/kg) (W/kg)			Deviation			
Verification		10 g	1 g	10 g	1 g	10 g	1 g		
results		Average	Average	Average	Average	Average	Average		
resuits	835	1.54	2.32	1.60	2.41	3.90%	3.88%		
	1900	5.26	9.98	5.25	9.93	-0.19%	-0.50%		
	2450	5.98	12.90	6.20	12.5	3.68%	-3.10%		

4.10. SAR measurement procedure

4.10.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- a). all device positions (cheek and tilt, for both left and right sides of the SAM phantom;
- b). all configurations for each device position in a), e.g., antenna extended and retracted, and
- c). all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Report No.: MWR1409002907

Preparation of System Measurement 11, 2 Operational Mode Reference Measurement (Step a) Configuration Area Scan (Steps b - c) Zoom Scan (Steps d - e) Reference Measurement (Step f) Left Right Cheek 15° tilted Peak in cube? NO Shift YES cube center Measurement 11.2 All primary and at center frequency secondary peaks tested? NO Select YES peak All tests of Step 1 done? NO YES Additional peaks shall be measured Determination of the worstonly when the primary peak is within 2 dB of the SAR limit. case configuration AND all configurations with less than -3dB of applicable limits All other test frequencies (lower, upper, etc.) Measurement 11.2 NO Worst-case configuration AND all configurations of less than -3dB of applicable limit tested? Determination of maximum

Picture 10.1 Block diagram of the tests to be performed

4.10.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing

Report No.: MWR1409002907

algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements. according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			≤3 GHz	> 3 GHz	
Maximum distance from (geometric center of pro			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm	
Maximum probe angle to normal at the measurem		axis to phantom surface	mantom surface $30^{\circ}\pm1^{\circ}$ $20^{\circ}\pm0^{\circ}$ in (2) o phantom surface $30^{\circ}\pm1^{\circ}$ $20^{\circ}\pm0^{\circ}$ $20^{\circ}\pm0^$		
			_	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan sp	patial resolu	tion: Δx _{Zoom} , Δy _{Zoom}		3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	3 - 4 GHz: ≤ 4 mm 4 - 5 GHz: ≤ 3 mm 5 - 6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 - 4 GHz: ≤ 3 mm 4 - 5 GHz: ≤ 2.5 mm 5 - 6 GHz: ≤ 2 mm	
surface	grid $\Delta z_{Z_{2000}}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan	Y V 7		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

4.10.3 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

4.10.4 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test

When zoom scan is required and the reported SAR from the area scan based I-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page 21 of 96 Report No.: MWR1409002907

position. These drift values can be found in Table 14.1 to Table 14.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

4.10.4 Area Scan Based 1-g SAR

4.10.4.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

4.10.4.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Power Results

Max Conducted power measurement results and power drift from tune-up tolerance provide by manufacturer:

Report No.: MWR1409002907

		Burst Co	nducted pov	ver (dBm)		Avera	age power (dBm)
GM	850	Channel	Channel	Channel		Channel	Channel	Channel
		128	190	251		128	190	251
GSM		32.45	32.52	32.67	-9.03dB	23.42	23.49	23.64
	1TX slot	32.32	32.45	32.61	-9.03dB	23.29	23.42	23.58
GPRS	2TX slot	30.08	30.26	30.41	-6.02dB	24.06	23.42	24.39
(GMSK)	3TX slot	28.45	28.57	28.76	-4.26dB	24.19	24.24	24.50
	4TX slot	27.03	27.15	27.28	-3.01dB	24.02	24.31	24.27
	1TX slot	32.29	32.41	32.54	-9.03dB	23.26	23.38	23.51
EGPRS	2TX slot	30.01	30.20	30.38	-6.02dB	23.99	24.18	24.36
(GMSK)	3TX slot	28.42	28.55	28.76	-4.26dB	24.16	24.29	24.50
	4TX slot	26.98	27.12	27.22	-3.01dB	23.97	24.11	24.21
		Burst Conducted power (dBm)				Average power (dBm)		
GM	1900	Channel	Channel	Channel		Channel	Channel	Channel
		512	661	810		512	661	810
GS	SM	29.90	29.58	29.14	-9.03dB	20.87	20.55	20.11
	1TX slot	29.81	29.49	29.12	-9.03dB	20.78	20.46	20.09
GPRS	2TX slot	28.33	28.29	28.04	-6.02dB	22.31	22.27	22.02
(GMSK)	3TX slot	27.22	27.16	27.02	-4.26dB	22.96	22.90	22.76
	4TX slot	25.03	24.94	24.78	-3.01dB	22.02	21.93	21.77
	1TX slot	29.77	29.44	29.12	-9.03dB	20.74	20.41	20.09
EGPRS	2TX slot	28.28	28.23	28.01	-6.02dB	22.26	22.21	21.99
(GMSK)	3TX slot	27.16	27.11	26.94	-4.26dB	22.90	22.85	22.68
	4TX slot	25.00	24.81	24.72	-3.01dB	21.99	21.80	21.71

NOTES:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 3Txslots for GPRS850 and GPRS1900.

Note: According to the KDB941225 D03, "when SAR tests for EDGE or EGPRS mode is necessary, GMSK modulation should be used".

Conducted power measurement WCDMA FDD Band II (1900MHz)

	Output power WCDMA FDD Band II/dBm				
Mode	Channel/Frequency				
Wode	9262/1852.4MHz	9400/1880.0MHz	9538/1907.6MHz		
RMC 12.2kbps	23.67	23.89	23.41		
RMC 64kbps	23.55	23.85	23.37		
RMC 144kbps	23.51	23.85	23.33		
RMC 384kbps	23.51	23.85	23.32		
HSDPA Sub test 1	23.22	23.41	23.05		
HSDPA Sub test 2	23.14	23.28	22.97		
HSDPA Sub test 3	22.85	22.94	22.68		
HSDPA Sub test 4	22.63	22.76	22.44		
HSUPA Sub test 1	23.20	23.34	23.00		
HSUPA Sub test 2	21.04	21.26	21.01		
HSUPA Sub test 3	22.46	22.67	22.24		
HSUPA Sub test 4	21.04	21.22	21.01		
HSUPA Sub test 5	23.20	23.30	23.00		

Page 23 of 96 Report No.: MWR1409002907

	Output power WCDMA FDD Band V/dBm				
Mode	Channel/Frequency				
Wode	4132/826.4MHz	4182/836.6MHz	4233/846.6MHz		
RMC 12.2kbps	23.78	23.45	23.23		
RMC 64kbps	23.74	23.45	23.23		
RMC 144kbps	23.74	23.45	23.23		
RMC 384kbps	23.74	23.45	23.23		
HSDPA Sub test 1	23.13	23.32	23.06		
HSDPA Sub test 2	22.44	22.56	22.02		
HSDPA Sub test 3	21.21	21.41	21.11		
HSDPA Sub test 4	20.96	21.23	20.84		
HSUPA Sub test 1	23.43	23.80	23.40		
HSUPA Sub test 2	21.42	21.71	21.25		
HSUPA Sub test 3	22.36	22.54	22.29		
HSUPA Sub test 4	21.42	21.69	21.20		
HSUPA Sub test 5	23.40	23.74	23.40		

Note: HSUPA body SAR are not required, because maximum average output power of each RF channel with HSDPA active is not 1/4 dB higher than that measured without HSUPA and the maximum SAR for WCDMA Band II and WCDMA Band V are not above 75% of the SAR limit.

WLAN

Mode	Channel Frequency	Frequency (MHz)	Worst case Data rate of	Conducted Output Power (dBm)	
		(IVITIZ)	worst case	Peak	Average
	1	2412	1Mbps	22.51	18.11
802.11b	6	2437	1Mbps	22.16	17.85
	11	2462	1Mbps	22.72	18.24
	1	2412	6Mbps	21.70	16.22
802.11g	6	2437	6Mbps	21.32	16.16
	11	2462	6Mbps	21.95	16.27
	1	2412	6.5 Mbps	21.81	15.31
802.11n(20MHz)	6	2437	6.5 Mbps	22.00	15.39
, , ,	11	2462	6.5 Mbps	22.22	15.42
802.11n(40MHz)	3	2422	13.5 Mbps	20.61	13.37
	6	2437	13.5 Mbps	20.43	13.32
ĺ	9	2452	13.5 Mbps	20.76	13.43

Note: SAR is not required for 802.11b/g/n channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should not be tested for "802.11b/g/n".

Bluetooth

Bidetootii					
Mode	Channel	Frequency (MHz)	Conducted Peak Output Power (dBm)		
	00	2402	1.33		
BLE-GFSK	19	2440	1.17		
	39	2480	1.20		
	00	2402	6.65		
GFSK	39	2441	7.54		
	78	2480	7.98		
	00	2402	6.48		
8DPSK	39	2441	7.41		
	78	2480	7.75		
	00	2402	6.91		
π/4DQPSK	39	2441	7.74		
	78	2480	7.56		

Manufacturing tolerance

GSM Speech

Report No.: MWR1409002907

GSM 850 (Peak)						
Channel	Channel Channel 251 Channel 190 Channel 190					
Target (dBm)	32.00	32.00	32.00			
Tolerance ±(dB)	1	1	1			
	GSM 1900 (Peak)					
Channel	Channel 810	Channel 661	Channel 512			
Target (dBm)	29.00	29.00	29.00			
Tolerance ±(dB)	1	1	1			

GPRS (GMSK Modulation)

		PRS (GMSK Modulati		
		SSM 850 GPRS (Peal		
CI	nannel	251	190	128
1 Txslot	Target (dBm)	32.0	32.0	32.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tolerance ±(dB)	1	1	1
2 Txslot	Target (dBm)	30.0	30.0	30.0
2 1 1 1 1 1 1 1	Tolerance ±(dB)	1	1	1
3 Txslot	Target (dBm)	28.0	28.0	28.0
3 1 1 1 1 1 1 1	Tolerance ±(dB)	1	1	1
4 Txslot	Target (dBm)	27.0	27.0	27.0
4 1 XSIOL	Tolerance ±(dB)	1	1	1
		SSM 850 EDGE (Peak	k)	
CI	nannel	251	190	128
1 Txslot	Target (dBm)	32.0	32.0	32.0
1 1 XSIOt	Tolerance ±(dB)	1	1	1
O Tyrolot	Target (dBm)	30.0	30.0	30.0
2 Txslot	Tolerance ±(dB)	1	1	1
O Tuelet	Target (dBm)	28.0	28.0	28.0
3 Txslot	Tolerance ±(dB)	1	1	1
4 Tuelet	Target (dBm)	27.0	27.0	27.0
4 Txslot	Tolerance ±(dB)	1	1	1
	G	SM 1900 GPRS (Pea	k)	
Channel		810	661	512
4 Tuelet	Target (dBm)	29.0	29.0	29.0
1 Txslot	Tolerance ±(dB)	1	1	1
O Tuelet	Target (dBm)	28.0	28.0	28.0
2 Txslot	Tolerance ±(dB)	1	1	1
O Tuelet	Target (dBm)	27.0	27.0	27.0
3 Txslot	Tolerance ±(dB)	1	1	1
4 Tuelet	Target (dBm)	25.0	25.0	25.0
4 Txslot	Tolerance ±(dB)	1	1	1
	G	SM 1900 EDGE (Pea	k)	
CI	nannel	810	661	512
4 Tyelet	Target (dBm)	29.0	29.0	29.0
1 Txslot	Tolerance ±(dB)	1	1	1
0. T I - 1	Target (dBm)	28.0	28.0	28.0
2 Txslot	Tolerance ±(dB)	1	1	1
0.T. ! :	Target (dBm)	27.0	27.0	27.0
3 Txslot	Tolerance ±(dB)	1	1	1
4.7	Target (dBm)	25.0	25.0	25.0
4 Txslot	Tolerance ±(dB)	1	1	1

WCDMA

WODIIA						
	WCDMA Band V					
Channel	Channel 4132	Channel 4182	Channel 4233			
Target (dBm)	23.0	23.0	23.0			
Tolerance ±(dB) 1 1						
WCDMA Band V HSDPA(sub-test 1)						
Channel						

Page 25 of 96

Report No.: MWR1409002907

	J	·			
Target (dBm)	23.0	23.0	23.0		
Tolerance ±(dB)	1	1	1		
	WCDMA Band V H				
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1	1	1		
	WCDMA Band V H	SDPA(sub-test 3)			
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
	WCDMA Band V H				
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
	WCDMA Band V H				
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	23.0	23.0	23.0		
Tolerance ±(dB)	1	1	1		
	WCDMA Band V H		<u></u>		
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
	WCDMA Band V H		T		
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1	1	1		
	WCDMA Band V H	, , , , , , , , , , , , , , , , , , , ,			
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	21.0	21.0	21.0		
Tolerance ±(dB)	1	1	1		
	WCDMA Band V H	, , , , , , , , , , , , , , , , , , , ,			
Channel	Channel 4132	Channel 4182	Channel 4233		
Target (dBm)	23.0	23.0	23.0		
Tolerance ±(dB)	1	1] 1		
	WCDMA		0		
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	23.0	23.0	23.0		
Tolerance ±(dB)	1	1	1		
	WCDMA Band II H	, ,	01 10500		
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	23.0	23.0	23.0		
Tolerance ±(dB)	1 WODMA Donal II II	(CDDA/===================================	1		
Channel	WCDMA Band II H	•	Channel 0520		
Channel Target (dPm)	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	23.0	23.0	23.0		
Tolerance ±(dB)	1 WCDMA Dond II II	CDDA(aub toat 2)	1		
Channal	WCDMA Band II H		Channel 0529		
Channel Target (dBm)	Channel 9262 22.0	Channel 9400 22.0	Channel 9538		
• ` '		22.0	22.0		
Tolerance ±(dB)	1 WCDMA Band II U	SDBA(sub test 4)	!		
Channel	WCDMA Band II H Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	22.0	22.0	22.0		
Tolerance ±(dB)	1	1	1		
Tolorance ±(ab)	WCDMA Band II H	SUPA/sub-tost 1)	1		
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	23.0	23.0	23.0		
Tolerance ±(dB)	1	1	1		
Totolarioc ±(ab)	WCDMA Band II HSUPA(sub-test 2)				
Channel	Channel 9262	Channel 9400	Channel 9538		
Target (dBm)	21.0	21.0	21.0		
raiget (ubiii)	۷۱.0	۷۱.0	21.0		

Page 26 of 96 Report No.: MWR1409002907

Tolerance ±(dB)	1	1	1			
	WCDMA Band II F	ISUPA(sub-test 3)				
Channel	Channel 9262	Channel 9400	Channel 9538			
Target (dBm)	22.0	22.0	22.0			
Tolerance ±(dB)	1	1	1			
	WCDMA Band II F	ISUPA(sub-test 4)				
Channel	Channel 9262	Channel 9400	Channel 9538			
Target (dBm)	21.0	21.0	21.0			
Tolerance ±(dB)	1	1	1			
	WCDMA Band II HSUPA(sub-test 5)					
Channel	Channel 9262	Channel 9400	Channel 9538			
Target (dBm)	23.0	23.0	23.0			
Tolerance ±(dB)	1	1	1			

WLAN

TI EAN					
802.11b (Average)					
Channel 1	Channel 6	Channel 11			
17.5	17.5	17.5			
1	1	1			
802.11g (Average)				
Channel 1	Channel 6	Channel 11			
15.5	15.5	15.5			
1	1	1			
802.11n(20Ml	Hz) (Average)				
Channel 1	Channel 6	Channel 11			
15.0	15.0	15.0			
1	1	1			
802.11n(40MHz) (Average)					
Channel 3	Channel 6	Channel 9			
13.0	13.0	13.0			
1	1	1			
	802.11b (Channel 1 17.5 1 802.11g (Channel 1 15.5 1 802.11n(20M) Channel 1 15.0 1 802.11n(40M) Channel 3	Roz.11b (Average) Channel 1			

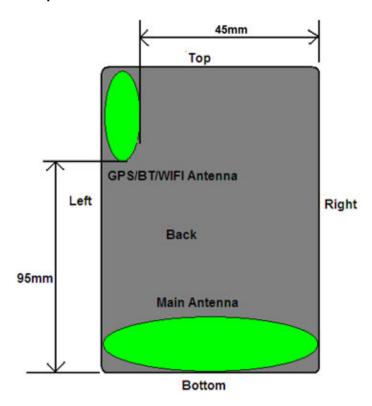
Bluetooth

Biactootii					
BLE-GFSK (Peak)					
Channel	Channel 00	Channel 19	Channel 39		
Target (dBm)	1.00	1.00	1.00		
Tolerance ±(dB)	1	1	1		
	GFSK	(Peak)			
Channel	Channel 00	Channel 39	Channel 78		
Target (dBm)	7.00	7.00	7.00		
Tolerance ±(dB)	1	1	1		
	8DPSK	(Peak)			
Channel	Channel 00	Channel 39	Channel 78		
Target (dBm)	7.00	7.00	7.00		
Tolerance ±(dB)	1	1	1		
π/4DQPSK (Peak)					
Channel	Channel 00	Channel 39	Channel 78		
Target (dBm)	7.00	7.00	7.00		
Tolerance ±(dB)	1	1	1		

5.2. Simultaneous TX SAR Considerations

5.2.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.


For the DUT, the BT and WiFi modules sharing same antenna, GSM and WCDMA module sharing a single antenna, So we can get following combination that can transmit signal simultaneously.

Page 27 of 96 Report No.: MWR1409002907

Air-Interface	Band (MHz)	Туре	Simultaneous Transmissions	Voice over Digital Transport(Data)
	850	VO	Voc MI AN or BT	N/A
GSM	1900	VO	Yes,WLAN or BT	IN/A
	GPRS/EDGE	DT	Yes,WLAN or BT	N/A
WCDMA	Band II/Band V	DT	Yes,WLAN or BT	N/A
WLAN	2450	DT	Yes,GSM,GPRS,EDGE,WCDMA	Yes
BT	2441	DT	Yes,GSM,GPRS,EDGE,WCDMA	N/A
Note: VO-Voice S	Service only:DT-Digit	al Transport		

5.2.2 Transmit Antenna Separation Distances

5.2.2 SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR measurement positions												
Mode	Front	Rear	Left edge	Right edge	Top edge	Bottom edge						
Main antenna(GSM/WCDMA)	Yes	Yes	Yes	Yes	No	Yes						
WLAN Yes Yes Yes Yes No												

5.2.3 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied.

The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Page 28 of 96 Report No.: MWR1409002907

Appendix A

SAR Test Exclusion Thresholds for 100 MHz - 6 GHz and ≤ 50 mm

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz 5 10 15 20 25 150 39 77 116 155 194	mm
150 39 77 116 155 194	
300 27 55 82 110 137	
450 22 45 67 89 112	
835 16 33 49 66 82	
900 16 32 47 63 79	
1500 12 24 3/ 49 01	SAR Test
1000 11 22 22 44 54	Exclusion breshold (mW)
2450 10 19 29 38 48	a control (in 117)
3600 8 16 24 32 40	
5200 7 13 20 26 33	
5400 6 13 19 26 32	
5800 6 12 19 25 31	

Picture 12.2 Power Thresholds

5.2.4 Standalone SAR Test Exclusion Considerations and Estimated SAR

Per KDB447498 D01, the SAR exclusion threshold for distance <50mm is defined by the following equation:

Based on the above equation, Bluetooth SAR was required: Head Evaluation= $[10^{(8/10)}/5]*(2.480^{1/2})=2.0<3.0$ Body Evaluation= $[10^{(8/10)}/10]*(2.480^{1/2})=1.0<3.0$

For conditions where the estimated SAR is overly conservative for certain conditios, the test lab may choose to perform standalone SAR measurements and use the measured SAR to determine simultaneous transmission SAR test exclusion.

Based on the above equation, WiFi SAR was required:

Head Evaluation= $[10^{(18.5/10)}/5]*(2.462^{1/2})=21.0>3.0$ Body Evaluation= $[10^{(18/10)}/10]*(2.462^{1/2})=11.0>3.0$

When standalone SAR is not required to be measured per FCC KDB 447498 D01, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

Estimated SAR=
$$\frac{\text{(max.power of channel,including tune-up tolerance,mW)}}{\text{(min.test separation distance,mm)}} * \frac{\sqrt{f(GHz)}}{7.5}$$

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

For Bluetooth, the Estimated SAR for Head at 5mm for estimate and 10mm to Estimated Body SAR (Hotspot open and Hotspot closed)

Estimated SAR_{Head}=((6.3096mW)/5mm)*(1.5748/7.5)=0.265W/Kg

Estimated SAR_{Body}=((6.3096mW)/10mm)*(1.5748/7.5)=0.133W/Kg

5.2.5 Evaluation of Simultaneous SAR

GSM/WCDMA & WLAN Mode

Test Position	GSM850 Reported SAR1g (W/Kg)	GSM1900 Reported SAR1g (W/Kg)	WCDMA Band II Reported SAR1g (W/Kg)	WCDMA Band V Reported SAR1g (W/Kg)	WLAN Reported SAR1g (W/Kg)	Summation Reported SAR(1g) (W/kg)	SAR -to- peak- location Separation Ratio	Simultaneous Measurement Required?
Left Hand Touch	0.564	0.287	0.314	0.475	0.612	1.176	N/A	No
Left Hand Title	0.262	0.084	0.091	0.190	0.362	0.624	N/A	No
Right Hand Touch	0.547	0.420	0.486	0.516	0.513	1.060	N/A	No
Right Hand Title	0.283	0.066	0.064	0.212	0.268	0.551	N/A	No
Body-Front Side	0.606	0.604	0.643	0.418	0.471	1.114	N/A	No
Body-Rear Side	0.867	0.676	0.734	0.499	0.668	1.535	N/A	No
Body-Left Side	0.714	0.431	0.390	0.358	0.389	1.103	N/A	No
Body-Right Side	0.443	0.336	0.140	0.323	0.233	0.676	N/A	No
Body-Top Side	N/A	N/A	N/A	N/A	0.385	N/A	N/A	No
Body-Bottom Side	0.759	0.631	0.264	0.352	N/A	N/A	N/A	No

Report No.: MWR1409002907

GSM/WCDMA & BT Mode

Test Position	GSM850 Reported SAR1g (W/Kg)	GSM1900 Reported SAR1g (W/Kg)	WCDMA Band II Reported SAR1g (W/Kg)	WCDMA Band V Reported SAR1g (W/Kg)	Bluetooth Estimated SAR (W/Kg)	Summation Reported SAR(1g) (W/kg)	SAR -to- peak- location Separation Ratio	Simultaneous Measurement Required?
Left Hand Touch	0.564	0.287	0.314	0.475	0.265	0.829	N/A	No
Left Hand Title	0.262	0.084	0.091	0.190	0.265	0.527	N/A	No
Right Hand Touch	0.547	0.420	0.486	0.516	0.265	0.812	N/A	No
Right Hand Title	0.283	0.066	0.064	0.212	0.265	0.548	N/A	No
Body-Front Side	0.606	0.604	0.643	0.418	0.133	0.739	N/A	No
Body-Rear Side	0.867	0.676	0.734	0.499	0.133	1.000	N/A	No
Body-Left Side	0.714	0.431	0.390	0.358	0.133	0.847	N/A	No
Body-Right Side	0.443	0.336	0.140	0.323	0.133	0.576	N/A	No
Body-Top Side	N/A	N/A	N/A	N/A	0.133	N/A	N/A	No
Body-Bottom Side	0.759	0.631	0.264	0.352	N/A	N/A	N/A	No

Note:1. The value with green color is the maximum values of standalone

2. The value with blue color is the maximum values of ∑SAR_{1a}

5.3. SAR Measurement Results

The product with 2 SIMs and 2 SIMs(SIM1 and SIM2) can not used Simultaneous, we tested 2 SIMs(SIM1 and SIM2) and recorded worst case at SIM 1

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory.

The calculated SAR is obtained by the following formula:

Reported SAR=Measured SAR*10 (Ptarget-Pmeasured))/10

Scaling factor=10(Ptarget-Pmeasured))/10

Reported SAR= Measured SAR* Scaling factor

Where P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift)

Reported SAR which including Power Drift and Scaling factor

Duty Cycle

Test Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS850/1900	1:277
WCDMA	1:1
WiFi2450	1:1

Page 30 of 96 Report No.: MWR1409002907

SAR Values (GSM850-Head)

Test Freq.		Side	Test	Maximum Allowed	Conducted Power	Measurement SAR over	Power	Scaling	Reported SAR	SAR limit	Ref. Plot
Ch	MHz		Position	(dBm) (dBm)		1g(W/kg)	drift	Factor	over 1g(W/kg)	1g (W/kg)	#
190	836.60	Left	Touch	33.00	32.52	0.504	0.10	1.12	0.564	1.60	1
190	836.60	Left	Tilt	33.00	32.52	0.234	-0.03	1.12	0.262	1.60	
190	836.60	Right	Touch	33.00	32.52	0.488	0.11	1.12	0.547	1.60	
190	836.60	Right	Tilt	33.00	32.52	0.253	0.08	1.12	0.283	1.60	

Note: 1.According to KDB447498, When the 1-g SAR for the mid-band channel, or the channel with highest output power satisfy the following conditions, testing of the other channels in the band is not required.

≤0.8W/Kg and transmission band ≤100MHz;

≤0.6W/Kg and 100MHz ≤ transmission band ≤200MHz;

SAR Values (GSM850-Body)

SAR values (GSINOSU-BOUY)											
ı	Test Freq.	Mode (number of	Test	Maximum Allowed	Conducted Power	Measurement SAR	Power	Scaling	Reported SAR over	SAR limit	Ref. Plot
Ch	MHz	timeslots)	Position	Power (dBm)	(dBm)	over 1g(W/kg)	drift	Factor	1g(W/kg)	1g (W/kg)	#
190	836.60	GPRS (3)	Front	29.00	28.57	0.546	-0.12	1.11	0.606	1.60	
190	836.60	GPRS (3)	Rear	29.00	28.57	0.781	-0.08	1.11	0.867	1.60	2
190	836.60	GPRS (3)	Left	29.00	28.57	0.643	0.10	1.11	0.714	1.60	
190	836.60	GPRS (3)	Right	29.00	28.57	0.399	0.12	1.11	0.443	1.60	
190	836.60	GPRS (3)	Bottom	29.00	28.57	0.684	-0.01	1.11	0.759	1.60	
251	848.80	GPRS (3)	Rear	29.00	28.76	0.668	-0.01	1.06	0.708	1.60	
128	824.20	GPRS (3)	Rear	29.00	28.45	0.657	0.03	1.14	0.749	1.60	
190	836.60	EDGE(3)	Rear	29.00	28.55	0.702	0.05	1.11	0.779	1.60	
190	836.60	Speech	Rear with Headset	33.00	32.52	0.681	-0.04	1.12	0.763	1.60	

Note: 1. The distance between the EUT and the phantom bottom is 10mm.

2.According to KDB447498, When the 1-g SAR for the mid-band channel, or the channel with highest output power satisfy the following conditions, testing of the other channels in the band is not required.

≤0.8W/Kg and transmission band ≤100MHz;

≤0.6W/Kg and 100MHz ≤ transmission band ≤200MHz;

≤ 0.4W/Kg and transmission band >200MHz

SAR Values (GSM1900-Head)

٠, ١, ١	CAR Values (Com 1900 Fieda)											
Test Freq.		Side	Test	Maximum Allowed	Conducted Power	Measurement SAR over	Power	Scaling	Reported SAR	SAR limit	Ref. Plot	
Ch			Position	Power (dBm) (dBm)		1g(W/kg)	drift	Factor	over 1g(W/kg)	1g (W/kg)	#	
661	1880.0	Left	Touch	30.00	29.58	0.261	0.09	1.10	0.287	1.60		
661	1880.0	Left	Tilt	30.00	29.58	0.076	0.02	1.10	0.084	1.60		
661	1880.0	Right	Touch	30.00	29.58	0.382	0.11	1.10	0.420	1.60	3	
661	1880.0	Right	Tilt	30.00	29.58	0.060	-0.01	1.10	0.066	1.60		

Note: 1.According to KDB447498, When the 1-g SAR for the mid-band channel, or the channel with highest output power satisfy the following conditions, testing of the other channels in the band is not required.

≤0.8W/Kg and transmission band ≤100MHz;

≤0.6W/Kg and 100MHz ≤ transmission band ≤200MHz;

Page 31 of 96 Report No.: MWR1409002907

SAR Values (GSM1900-Body)

	Test Freq.	Mode (number of	Test	Maximum Allowed	Conducted Power	Measurement SAR	Power	Scaling	Reported SAR over	SAR limit	Ref. Plot
Ch	MHz	timeslots)	Position	Power (dBm)		over 1g(W/kg)	drift	Factor	1g(W/kg)	1g (W/kg)	#
661	1880.0	GPRS (3)	Front	28.00	27.16	0.499	-0.10	1.21	0.604	1.60	
661	1880.0	GPRS (3)	Rear	28.00	27.16	0.559	-0.12	1.21	0.676	1.60	4
661	1880.0	GPRS (3)	Left	28.00	27.16	0.356	-0.01	1.21	0.431	1.60	
661	1880.0	GPRS (3)	Right	28.00	27.16	0.278	0.11	1.21	0.336	1.60	
661	1880.0	GPRS (3)	Bottom	28.00	27.16	0.314	-0.08	1.21	0.380	1.60	
661	1880.0	EDGE(3)	Rear	28.00	27.11	0.513	-0.06	1.23	0.631	1.60	
661	1880.0	Speech	Rear with Headset	30.00	29.58	0.522	0.03	1.10	0.574	1.60	!

Note: 1. The distance between the EUT and the phantom bottom is 10mm.

2.According to KDB447498, When the 1-g SAR for the mid-band channel, or the channel with highest output power satisfy the following conditions, testing of the other channels in the band is not required.

≤0.8W/Kg and transmission band ≤100MHz;

≤0.6W/Kg and 100MHz ≤ transmission band ≤200MHz;

≤ 0.4W/Kg and transmission band >200MHz

SAR Values (WCDMA Band V-Head)

Test F	Test Frequency			Maximum	Conducted	Measurement	_		Reported	SAR	Ref.
Ch	MHz	Side	Test Position	Allowed Power (dBm)	Power (dBm)	SAR over 1g(W/kg)	Power drift	Scaling Factor	SAR over 1g(W/kg)	limit 1g (W/kg)	Plot #
4182	836.40	Left	Touch	24.00	23.45	0.417	-0.14	1.14	0.475	1.60	5
4182	836.40	Left	Tilt	24.00	23.45	0.167	-0.12	1.14	0.190	1.60	
4182	836.40	Right	Touch	24.00	23.45	0.453	-0.05	1.14	0.516	1.60	
4182	836.40	Right	Tilt	24.00	23.45	0.186	-0.11	1.14	0.212	1.60	

Note: 1.According to KDB447498, When the 1-g SAR for the mid-band channel, or the channel with highest output power satisfy the following conditions, testing of the other channels in the band is not required.

≤0.8W/Kg and transmission band ≤100MHz;

≤0.6W/Kg and 100MHz ≤transmission band ≤200MHz;

SAR Values (WCDMABand V-Body)

Test F	requency	Mode	-	Maximum	Conducted	Measurement		Scaling	Reported	SAR	Ref.
Ch	MHz	(number of timeslots)	Test Position	Allowed Power (dBm)		SAR over 1g(W/kg)	ver drift V/kg)		SAR over 1g(W/kg)	limit 1g (W/kg)	Plot #
4182	836.40	RMC	Front	24.00	23.45	0.367	-0.12	1.14	0.418	1.60	
4182	836.40	RMC	Rear	24.00	23.45	0.438	0.14	1.14	0.499	1.60	6
4182	836.40	RMC	Left	24.00	23.45	0.314	-0.11	1.14	0.358	1.60	
4182	836.40	RMC	Right	24.00	23.45	0.283	-0.05	1.14	0.323	1.60	
4182	836.40	RMC	Bottom	24.00	23.45	0.309	-0.13	1.14	0.352	1.60	
4182	836.40	Speech	Rear with Headset	24.00	23.45	0.415	0.02	1.14	0.473	1.60	

Note: 1. The distance between the EUT and the phantom bottom is 10mm.

2.According to KDB447498, When the 1-g SAR for the mid-band channel, or the channel with highest output power satisfy the following conditions, testing of the other channels in the band is not required.

≤0.8W/Kg and transmission band ≤100MHz;

≤0.6W/Kg and 100MHz ≤transmission band ≤200MHz;

≤ 0.4W/Kg and transmission band >200MHz

Page 32 of 96 Report No.: MWR1409002907

SAR Values (WCDMA Band II -Head)

Test Frequency			Toot	Toot	Maximum	Conducted	Measurement			Reported	SAR	Ref.
Ch	MHz			Power (dBm)		SAR over 1g(W/kg)	Power drift	Scaling Factor	SAR over 1g(W/kg)	limit 1g (W/kg)	Plot #	
9400	1880.0	Left	Touch	24.00	23.89	0.305	-0.11	1.03	0.314	1.60		
9400	1880.0	Left	Tilt	24.00	23.89	0.088	-0.15	1.03	0.091	1.60		
9400	1880.0	Right	Touch	24.00	23.89	0.472	0.06	1.03	0.486	1.60	7	
9400	1880.0	Right	Tilt	24.00	23.89	0.062	-0.14	1.03	0.064	1.60		

Note: 1.According to KDB447498, When the 1-g SAR for the mid-band channel, or the channel with highest output power satisfy the following conditions, testing of the other channels in the band is not required.

≤0.8W/Kg and transmission band ≤100MHz;

≤0.6W/Kg and 100MHz ≤transmission band ≤200MHz;

SAR Values (WCDMA Band II -Body)

Test F	requency MHz	Mode (number of timeslots)	Test Position	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Measurement SAR over 1g(W/kg)	Power drift	Scaling Factor	Reported SAR over 1g(W/kg)	SAR limit 1g (W/kg)	Ref. Plot #
9400	1880.0	RMC	Front	24.00	23.89	0.624	-0.12	1.05	0.643	1.60	
9400	1880.0	RMC	Rear	24.00	23.89	0.713	-0.09	1.05	0.734	1.60	8
9400	1880.0	RMC	Left	24.00	23.89	0.379	-0.11	1.05	0.390	1.60	
9400	1880.0	RMC	Right	24.00	23.89	0.136	0.06	1.05	0.140	1.60	
9400	1880.0	RMC	Bottom	24.00	23.89	0.256	-0.14	1.05	0.264	1.60	
9400	1880.0	Speech	Rear with Headset	24.00	23.89	0.682	-0.07	1.05	0.702	1.60	

Note: 1. The distance between the EUT and the phantom bottom is 10mm.

2.According to KDB447498, When the 1-g SAR for the mid-band channel, or the channel with highest output power satisfy the following conditions, testing of the other channels in the band is not required.

≤0.8W/Kg and transmission band ≤100MHz;

≤0.6W/Kg and 100MHz ≤ transmission band ≤200MHz;

≤ 0.4W/Kg and transmission band >200MHz

SAR Values (WLAN2450-Head)

Test Fr	equency MHz	Side	Test Position	Maximum Allowed Power (dBm)	Conducted Power (dBm)	Measurement SAR over 1g(W/kg)	Power drift	Scaling Factor	Reported SAR over1g (W/kg)	SAR limit 1g (W/kg)	Ref. Plot #
6	2437	Left	Touch	18.50	17.85	0.528	0.01	1.16	0.612	1.60	9
6	2437	Left	Tilt	18.50	17.85	0.312	0.12	1.16	0.362	1.60	
6	2437	Right	Touch	18.50	17.85	0.442	-0.17	1.16	0.513	1.60	
6	2437	Right	Tilt	18.50	17.85	0.231	-0.10	1.16	0.268	1.60	

Note: 1.According to KDB447498, When the 1-g SAR for the mid-band channel, or the channel with highest output power satisfy the following conditions, testing of the other channels in the band is not required.

≤0.8W/Kg and transmission band ≤100MHz;

≤0.6W/Kg and 100MHz ≤transmission band ≤200MHz;

Page 33 of 96 Report No.: MWR1409002907

SAR Values (WLAN2450-Body)

Test Frequency			Maximum	num						
Ch	MHz	Test Position	Allowed Power (dBm)	Conducted Power (dBm)	Measurement SAR over 1g(W/kg)	Power drift	Scaling Factor	Reported SAR over1g (W/kg)	SAR limit 1g (W/kg)	Ref. Plot #
6	2437	Front	18.50	17.85	0.406	-0.12	1.16	0.471	1.60	
6	2437	Rear	18.50	17.85	0.562	-0.14	1.16	0.668	1.60	10
6	2437	Left	18.50	17.85	0.335	-0.05	1.16	0.389	1.60	
6	2437	Right	18.50	17.85	0.201	-0.09	1.16	0.233	1.60	
6	2437	Top	18.50	17.85	0.332	-0.14	1.16	0.385	1.60	

Note: 1. According to KDB447498, When the 1-g SAR for the mid-band channel, or the channel with highest output power satisfy the following conditions, testing of the other channels in the band is not required.

- ≤0.8W/Kg and transmission band ≤100MHz;
- ≤0.6W/Kg and 100MHz ≤transmission band ≤200MHz;
- ≤ 0.4W/Kg and transmission band >200MHz
- 3.Accoding to KDB 248227, Each channel should be tested at the lowest data rate in each mode.

5.4. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.5. Measurement Uncertainty (300MHz-3GHz)

			Accordii	ng to IEEE 15	28:201	13				
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measureme	ent System									
1	Probe calibration	В	5.50%	N	1	1	1	5.50%	5.50%	∞
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	8
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	∞
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	∞
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions-noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions-reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	8
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞

Page 34 of 96

Report N	ր ⋅ MWR1	1409002907	۱

1								•	•	1	
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞	
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8	
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	∞	
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞	
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8	
Test Sample	Test Sample Related										
15	Test sample positioning	Α	1.86%	N	1	1	1	1.86%	1.86%	∞	
16	Device holder uncertainty	А	1.70%	N	1	1	1	1.70%	1.70%	∞	
17	Drift of output power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8	
Phantom and	d Set-up										
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞	
19	Liquid conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	8	
20	Liquid conductivity (meas.)	Α	0.50%	N	1	0.64	0.43	0.32%	0.26%		
21	Liquid permittivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞	
22	Liquid cpermittivity (meas.)	А	0.16%	N	1	0.64	0.43	0.10%	0.07%	∞	
Combined standard uncertainty	$u_{c} = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$		/	/	/	/	/	10.20%	10.00%	∞	
Expanded uncertainty (confidence interval of 95 %)	,		/	R	K=2	/	/	20.40%	20.00%	8	

Report No.: MWR1409002907

5.6. System Check Results

System Performance Check at 835 MHz Head

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134

Date/Time: 09/12/2014 AM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.93 \text{ S/m}$; $\epsilon_r = 41.70$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 – SN3109; ConvF(6.00,6.00, 6.00); Calibrated: 11/29/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

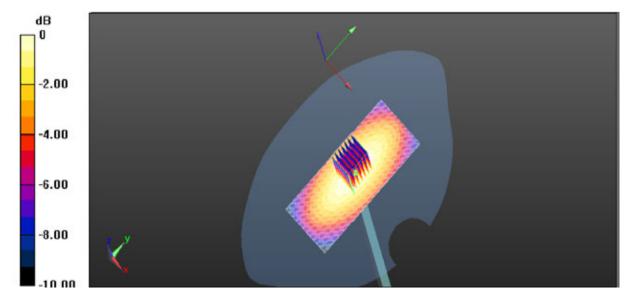
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 2.65 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.40 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.60 mW/g

Maximum value of SAR (measured) = 2.64 mW/g

0 dB = 2.64 mW/g = 4.22 dB mW/g

Page 36 of 96 Report No.: MWR1409002907

System Performance Check at 835 MHz Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134

Date/Time: 09/15/2014 AM

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.97 \text{ S/m}$; $\epsilon_r = 53.40$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 – SN3109; ConvF(5.99, 5.99, 5.99); Calibrated: 11/29/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

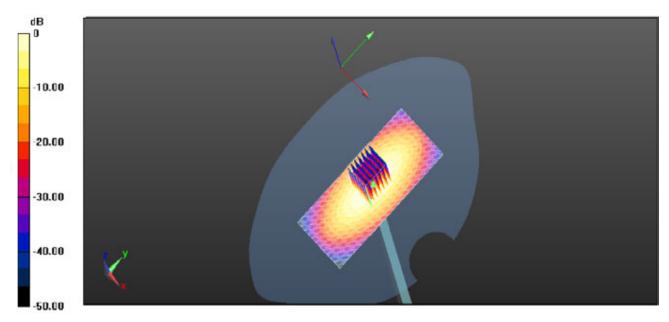
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 2.58 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.90 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 3.573 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.60 mW/g

Maximum value of SAR (measured) = 2.60 mW/g

0 dB = 2.60 mW/g = 4.15 dB mW/g

Page 37 of 96 Report No.: MWR1409002907

System Performance Check at 1900 MHz Head

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150

Date/Time: 09/13/2014 AM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\epsilon_r = 39.80$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 – SN3109; ConvF(5.07, 5.07, 5.07); Calibrated: 11/29/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 11.4 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value =85.5 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.48 W/kg; SAR(10 g) = 4.90 W/kg

Maximum value of SAR (measured) = 10.7 W/kg

0 dB = 10.7 mW/g = 10.29 dB mW/g

Page 38 of 96 Report No.: MWR1409002907

System Performance Check at 1900 MHz Body

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150

Date/Time: 09/16/2014 AM

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.51 \text{ S/m}$; $\varepsilon_r = 52.90$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 – SN3109; ConvF(4.62, 4.62, 4.62); Calibrated: 11/29/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

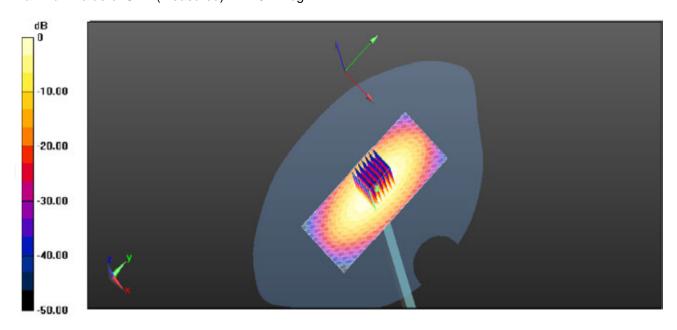
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 12.2 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.5 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.93 mW/g; SAR(10 g) = 5.25 mW/g

Maximum value of SAR (measured) = 11.3 mW/g

0 dB = 11.3 mW/g = 10.53 dB mW/g

Page 39 of 96 Report No.: MWR1409002907

System Performance Check at 2450 MHz Head

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884

Date/Time: 09/14/2014 AM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.82 \text{ S/m}$; $\epsilon_r = 39.20$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3109; ConvF(4.73, 4.73, 4.73); Calibrated: 11/29/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

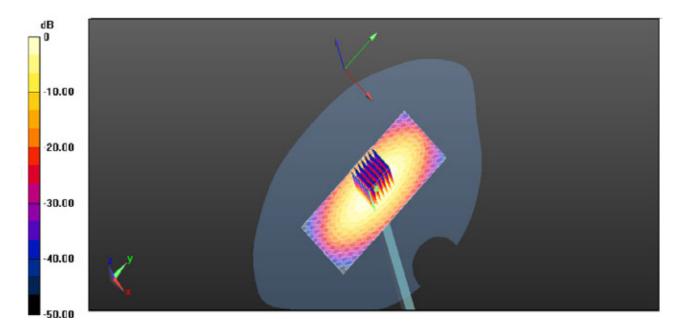
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 18.2 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.8 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 30.00 mW/g

SAR(1 g) = 13.7 mW/g; SAR(10 g) = 6.22 mW/g

Maximum value of SAR (measured) = 15.9 mW/g

0 dB = 15.9 mW/g = 12.01 dB mW/g

Page 40 of 96 Report No.: MWR1409002907

System Performance Check at 2450 MHz Body

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884

Date/Time: 09/14/2014 PM

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\epsilon_r = 52.60$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3109; ConvF(4.35, 4.35, 4.35); Calibrated: 11/29/2013;

Sensor-Surface: 3mm (Mechanical Surface Detection)

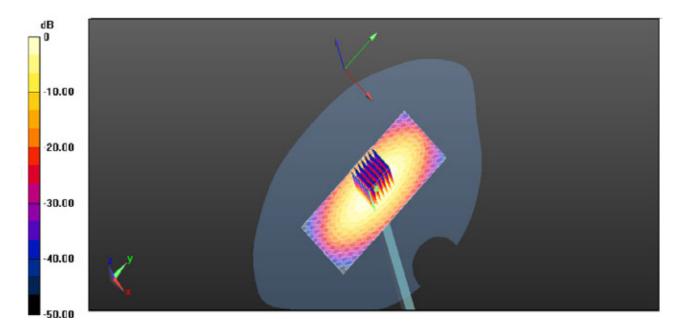
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1): Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 16 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 81.2 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 25.4 mW/g

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 6.20 mW/g

Maximum value of SAR (measured) = 14.4 mW/g

0 dB = 14.4 mW/g = 11.58 dB mW/g

5.7. SAR Test Graph Results

SAR plots for **the highest measured SAR** in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

Report No.: MWR1409002907

GSM850 Left Head Touch Middle Channel

Communication System: Customer System; Frequency: 836.6 MHz; Duty Cycle:1:8.3

Medium parameters used (interpolated): f = 836.2 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 41.70$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Probe: ES3DV3 - SN3109; ConvF(6.00, 6.00, 6.00); Calibrated: 11/29/2013;

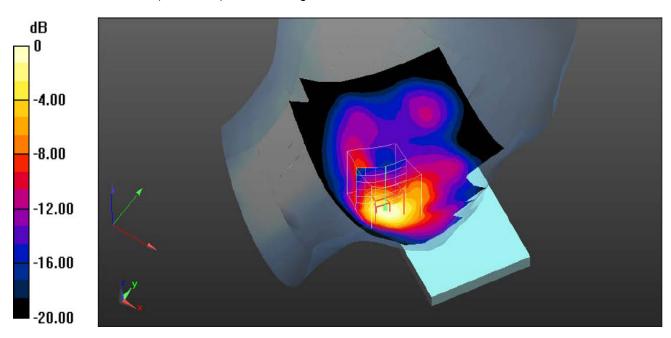
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x81x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) =0.540 W/kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.865 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.837 W/kg

SAR(1 g) = 0.504 W/Kg; SAR(10 g) = 0.328 W/Kg

Maximum value of SAR (measured) = 0.584 W/kg

0 dB = 0.584 W/kg = -2.34 dB W/kg

Plot 1:Left Head Touch (GSM850 Middle Channel)

GSM850 GPRS 3TS Body Rear Side Middle Channel

Communication System: Customer System; Frequency: 836.6 MHz; Duty Cycle:1:2.77

Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.97 \text{ S/m}$; $\varepsilon_r = 53.40$; $\rho = 1000 \text{ kg/m}^3$

Report No.: MWR1409002907

Phantom section: Body-worn

Probe: ES3DV3 - SN3109; ConvF(5.99, 5.99, 5.99); Calibrated: 11/29/2013;

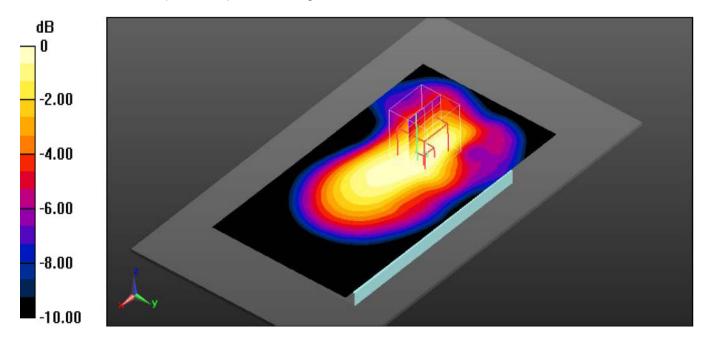
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (101x81x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.854 W/kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.238 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 1.224 W/kg

SAR(1 g) = 0.781 W/kg; SAR(10 g) = 0.535 W/kg

Maximum value of SAR (measured) = 0.835 W/kg

0dB = 0.835 W/kg = -0.783 dBW/kg

Plot 2: Body Rear Side (GSM850 GPRS 3TS Middle Channel)

Report No.: MWR1409002907

GSM1900 Right Head Touch Middle Channel

Communication System: Customer System; Frequency: 1880.0 MHz;Duty Cycle:1:8.3

Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.37 \text{ S/m}$; $\epsilon_r = 39.90$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Probe: ES3DV3 - SN3109; ConvF(5.07, 5.07, 5.07); Calibrated: 11/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x81x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.419 mW/g


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.5036 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.652 mW/g

SAR(1 g) = 0.382 mW/g; SAR(10 g) = 0.225 mW/g

Maximum value of SAR (measured) = 0.404 W/kg

0dB = 0.404 W/kg = -4.51 dB W/kg

Plot 3: Right Head Touch (GSM1900 Middle Channel)

GSM1900 GPRS 3TS Body Rear Side Middle Channel

Communication System: Customer System; Frequency: 1880.0 MHz; Duty Cycle:1:2.77

Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.49 \text{ S/m}$; $\varepsilon_r = 52.90$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Body-worn

Probe: ES3DV3 - SN3109; ConvF(4.62, 4.62, 4.62); Calibrated: 11/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

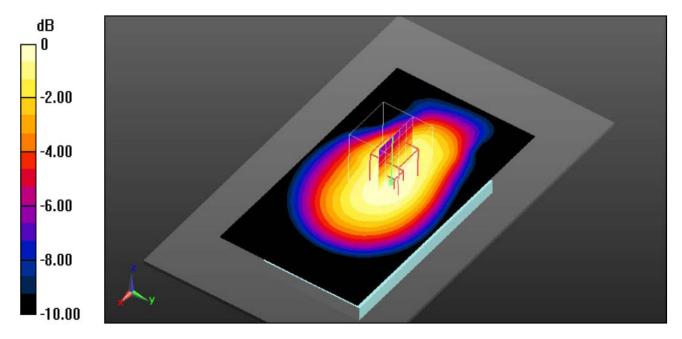
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x81x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.946 W/kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 18.439 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.964 W/kg

SAR(1 g) = 0.559 W/kg; SAR(10 g) = 0.316 W/kg

Maximum value of SAR (measured) = 0.600 W/kg

0dB = 0.600 W/kg = -2.22 dBW/kg

Plot 4: Body Rear Side (GSM1900 GPRS 3TS Middle Channel)

WCDMA Band V Right Head Touch Middle Channel

Communication System: Customer System; Frequency: 836.4 MHz; Duty Cycle:1:1

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 41.70$; $\rho = 1000$ kg/m³

Report No.: MWR1409002907

Phantom section : Flat Section

Probe: ES3DV3 - SN3109; ConvF(6.00, 6.00, 6.00); Calibrated: 11/29/2013;

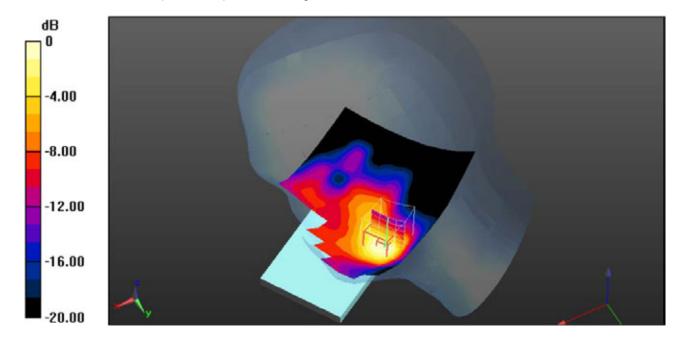
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.451 W/kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.716 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.703 W/kg

SAR(1 g) = 0.453 W/kg; SAR(10 g) = 0.287 W/kg

Maximum value of SAR (measured) = 0.490 W/kg

0dB = 0.490 W/kg = -3.10 dBW/kg

Plot 5: Right Head Touch (WCDMA Band V Middle Channel)

WCDMA Band V RMC Body Rear Side Middle Channel

Communication System: Customer System; Frequency: 836.4 MHz; Duty Cycle:1:1

Medium parameters used (interpolated): f = 836.4 MHz; $\sigma = 0.97 \text{ S/m}$; $\varepsilon_r = 53.40$; $\rho = 1000 \text{ kg/m}^3$

Report No.: MWR1409002907

Phantom section : Body- worn

Probe: ES3DV3 - SN3109; ConvF(5.99, 5.99, 5.99); Calibrated: 11/29/2013;

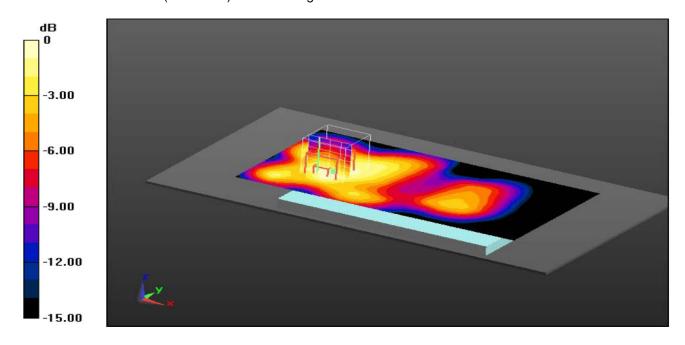
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.556 W/kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.747 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.835 W/kg

SAR(1 g) = 0.438 W/kg; SAR(10 g) = 0.231 W/kg

Maximum value of SAR (measured) = 0.556 W/kg

0dB = 0.556 W/kg = -2.55 dBW/kg

Plot 6: Body Rear Side (WCDMA Band V RMC Middle Channel)

Page 47 of 96 Report No.: MWR1409002907

WCDMA Band II Right Head Touch Middle Channel

Communication System: Customer System; Frequency: 1880.0 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.37 \text{ S/m}$; $\epsilon_r = 39.90$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Probe: ES3DV3 - SN3109; ConvF(5.07, 5.07, 5.07); Calibrated: 11/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.445 W/kg

Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.420 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.883 W/kg

SAR(1 g) = 0.472 W/kg; SAR(10 g) = 0.244 W/kg

Maximum value of SAR (measured) = 0.532 W/kg

0dB = 0.532 W/kg = -2.74 dBW/kg

Plot 7: Right Head Touch (WCDMA Band II Middle Channel)

WCDMA Band II RMC Body Rear Side Middle Channel

Communication System: Customer System; Frequency: 1880.0 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.49 \text{ S/m}$; $\varepsilon_r = 52.90$; $\rho = 1000 \text{ kg/m}^3$

Phantom section : Body- worn

Probe: ES3DV3 - SN3109; ConvF(4.62, 4.62, 4.62); Calibrated: 11/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

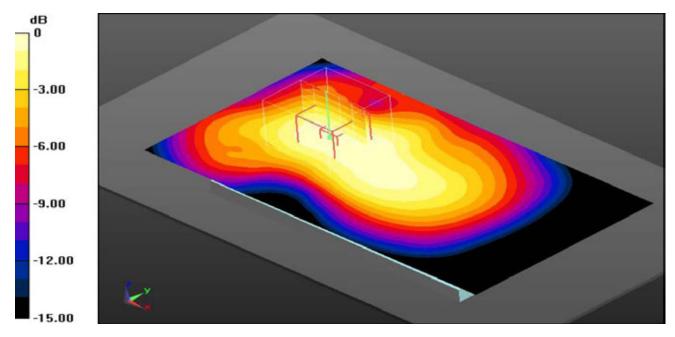
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x101x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) = 0.854 W/kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 28.238 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.124 W/kg

SAR(1 g) = 0.713 W/kg; SAR(10 g) = 0.525 W/kg

Maximum value of SAR (measured) = 0.835 W/kg

0dB = 0.835 W/kg = -0.78 dBW/kg

Plot 8: Body Rear Side (WCDMA Band II RMC Middle Channel)

Page 49 of 96 Report No.: MWR1409002907

Left Head Touch (WiFi2450 Middle Channel-Channel 6-2437MHz (1Mbps))

Communication System: Customer System; Frequency: 2437.0 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 2437.0 MHz; $\sigma = 1.81 \text{ S/m}$; $\varepsilon_r = 39.20$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Probe: ES3DV3 - SN3109; ConvF(4.73, 4.73, 4.73); Calibrated: 11/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

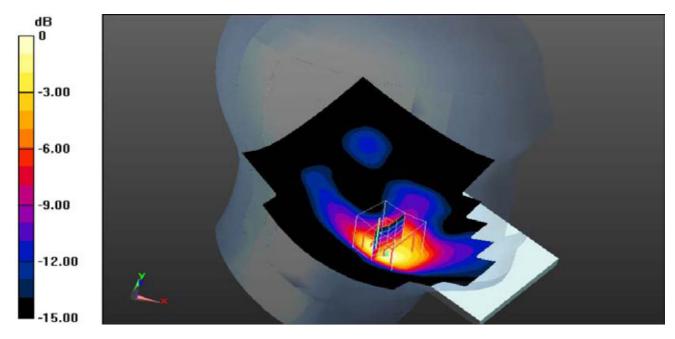
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x81x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) =0.411 W/kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.626 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.528 W/kg; SAR(10 g) = 0.231 W/kg

Maximum value of SAR (measured) = 0.599 W/kg

0 dB = 0.599 W/kg = -2.23 dB W/kg

Plot 9: Left Head Touch (WiFi2450 Middle Channel-Channel 6-2437MHz (1Mbps))

Page 50 of 96 Report No.: MWR1409002907

Body- worn Rear Side (WiFi2450 Middle Channel-Channel 6-2437MHz (1Mbps))

Communication System: Customer System; Frequency: 2437.0 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f = 2437.0 MHz; $\sigma = 2.01 \text{ S/m}$; $\varepsilon_r = 52.60$; $\rho = 1000 \text{ kg/m}^3$

Phantom section : Body- worn

Probe: ES3DV3 - SN3109; ConvF(4.35, 4.35, 4.35); Calibrated: 11/29/2013;

Sensor-Surface: 4mm (Mechanical Surface Detection)

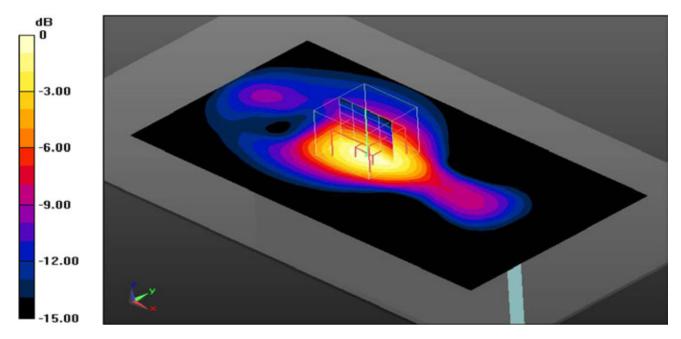
Electronics: DAE4 Sn1315; Calibrated: 11/25/2013

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x81x1): Measurement grid: dx=1.50 mm, dy=1.50 mm

Maximum value of SAR (interpolated) =0.542 W/kg


Zoom Scan (5x5x5)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.632 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.07 W/kg

SAR(1 g) = 0.562 W/kg; SAR(10 g) = 0.243 W/kg

Maximum value of SAR (measured) = 0.676 W/kg

0 dB = 0.676 W/kg = -1.70 dB W/kg

Plot 10: Body- worn Rear Side (WiFi2450 Middle Channel-Channel 6-2437MHz (1Mbps))

Page 51 of 96 Report No.: MWR1409002907

6. Calibration Certificate

6.1. Probe Calibration Ceriticate

Client SZJTT Certificate No: J13-2-3046

CALIBRATION CERTIFICATI

Object ES3DV3 - SN:3109

Calibration Procedure(s) TMC-OS-E-02-195

Calibration Procedures for Dosimetric E-field Probes

Calibration date: November 29, 2013

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101547	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101548	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Reference10dBAttenuator	BT0520	12-Dec-12(TMC,No.JZ12-867)	Dec-14
Reference20dBAttenuator	BT0267	12-Dec-12(TMC, No.JZ12-866)	Dec-14
Reference Probe EX3DV4	SN 3846	03-Sep-13(SPEAG,No.EX3-3846_Sep13)	Sep-14
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb -14
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-13 (TMC, No.JW13-045)	Jun-14
Network Analyzer E5071C	MY46110673	15-Feb-13 (TMC, No.JZ13-781)	Feb-14
	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	2H
Reviewed by:	Qi Dianyuan	SAR Project Leader	rite.
Approved by:	Lu Bingsong	Deputy Director of the laboratory	Fe wort ?
		Issued: Dec	ember 2, 2013
This calibration certificate sl	nall not be repro-	duced except in full without written approval	of the laboratory.

Page 52 of 96 Report No.: MWR1409002907

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature
 Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on
 power measurements for f >800MHz. The same setups are used for assessment of the parameters
 applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given.
 These parameters are used in DASY4 software to improve probe accuracy close to the boundary.
 The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to
 that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which
 allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Page 53 of 96 Report No.: MWR1409002907

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax; +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Probe ES3DV3

SN: 3109

Calibrated: November 29, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Page 54 of 96 Report No.: MWR1409002907

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY - Parameters of Probe: ES3DV3 - SN: 3109

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)A	1.15	1.20	1.19	±10.8%
DCP(mV) ^B	102.8	104.8	103.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	x	0.0	0.0	1.0	0.00	187.0	±2.3%	
		Y	0.0	0.0	1.0		195.4	
	Z	0.0	0.0	1.0		193.3		

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 55 of 96 Report No.: MWR1409002907

Add: No.52 Huuyuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY - Parameters of Probe: ES3DV3 - SN: 3109

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	41.5	0.92	6.00	6.00	6.00	0.46	1.47	±12%
900	41.5	0.97	6.15	6.15	6.15	0.32	1.80	±12%
1810	40.0	1.40	5.05	5.05	5.05	0.36	1.95	±12%
1900	40.0	1.40	5.07	5.07	5.07	0.34	2.23	±12%
2450	39.2	1.80	4.73	4.73	4.73	1.07	1.00	±12%

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Page 56 of 96 Report No.: MWR1409002907

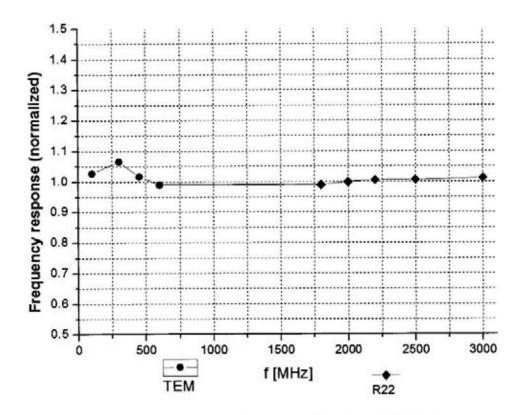
Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY - Parameters of Probe: ES3DV3 - SN: 3109

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
850	55.2	0.99	5.99	5.99	5.99	0.36	1.72	±12%
900	55.0	1.05	6.07	6.07	6.07	0.39	1.62	±12%
1810	53.3	1.52	4.71	4.71	4.71	0.32	2.57	±12%
1900	53.3	1.52	4.62	4.62	4.62	0.40	2.09	±12%
2450	52.7	1.95	4.35	4.35	4.35	0.72	1.36	±12%

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.



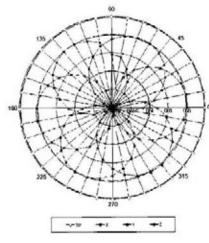
Report No.: MWR1409002907

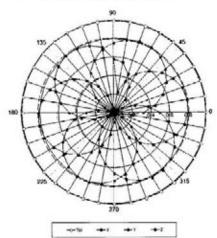
Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

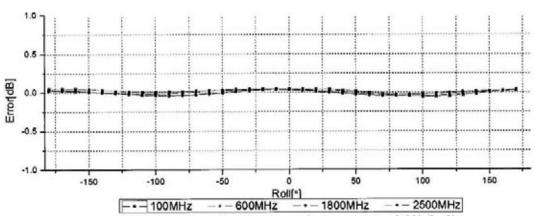
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Page 58 of 96 Report No.: MWR1409002907



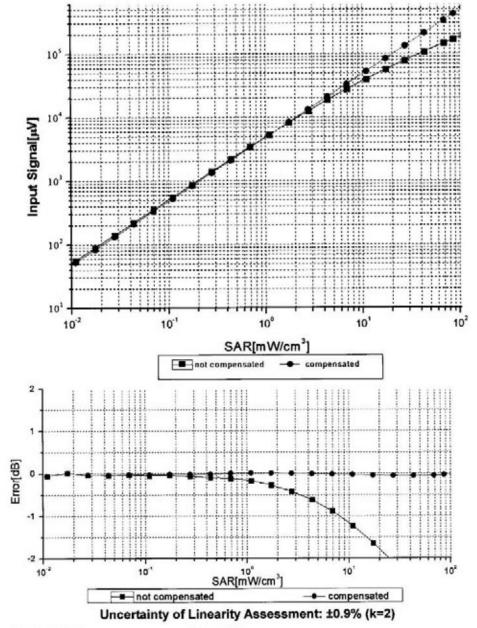

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com


Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)



Report No.: MWR1409002907

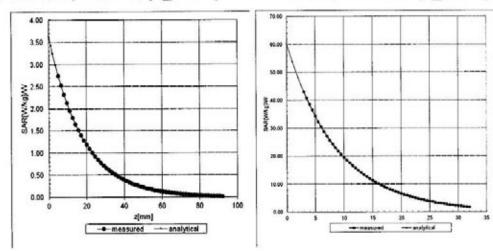
Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

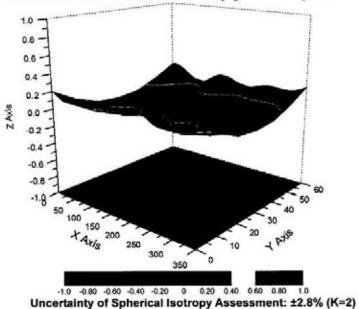
Certificate No: J13-2-3046

Page 9 of 11

Report No.: MWR1409002907



Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcitc.com Http://www.erncite.com


Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=2450 MHz, WGLS R26(H_convF)

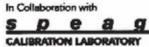
Deviation from Isotropy in Liquid

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY - Parameters of Probe: ES3DV3 - SN: 3109

Report No.: MWR1409002907

Other Probe Parameters


Sensor Arrangement	Triangular
Connector Angle (°)	161.6
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Page 62 of 96 Report No.: MWR1409002907

6.2. D835V2 Dipole Calibration Ceriticate

Client

CIQ SZ (Auden)

Certificate No: J13-2-3049

CALIBRATION CERTIFICATE

Object D835V2 - SN: 4d134

Calibration Procedure(s) TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date: December 13, 2013

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration

Power Meter NRVD	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep -14
Reference Probe ES3DV3	SN 3149	5- Sep-13 (SPEAG, No.ES3-3149_Sep13)	Sep-14
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb -14
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Name Function Signature

Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Qi Dianyuan SAR Project Leader

Approved by: Lu Bingsong Deputy Director of the laboratory

Issued: December 17, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J13-2-3049

Page 1 of 8

Page 63 of 96 Report No.: MWR1409002907

TMX

In Collaboration with

S D e a g

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the
 dipole positioned under the liquid filled phantom. The impedance stated is transformed
 from the measurement at the SMA connector to the feed point. The Return Loss
 ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Page 64 of 96 Report No.: MWR1409002907

In Collaboration with

S P E A G

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.7 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	<0.5 °C	_	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.38 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.66 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.55 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.27 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	56.3 ± 6 %	0.97 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.32 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	9.36 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.54 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.20 mW /g ± 20.4 % (k=2)

Page 65 of 96 Report No.: MWR1409002907

Add: No.52 Huayuanbel Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5Ω + 3.14jΩ	
Return Loss	- 28.1dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2Ω + 2.90jΩ	
Return Loss	- 30.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.241 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	100

Page 66 of 96 Report No.: MWR1409002907

In Collaboration with

S D C 2 G

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d134

Communication System: CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.884 \text{ mho/m}$; $\epsilon r = 41.65$; $\rho = 1000 \text{ kg/m}^3$

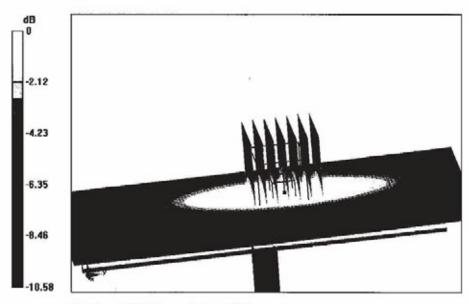
Date: 12.11.2013

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(6.21,6.21,6.21); Calibrated: 2013/9/5
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: SAM 1186;Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)


Dipole Calibration for Head Tissue/Pin=250mW, d=15mm/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

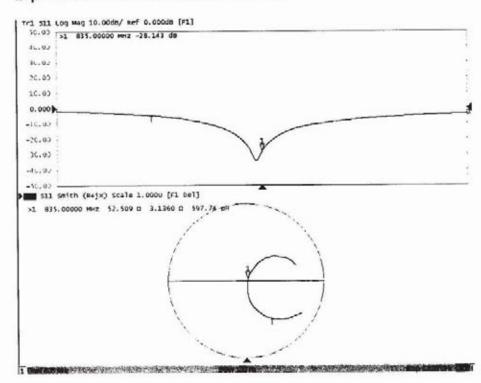
Reference Value = 48.581 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.57 W/kg

SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.55 W/kg Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg

Certificate No: J13-2-3049



Report No.: MWR1409002907

Add: No.52 Huayuanbei Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Impedance Measurement Plot for Head TSL

Page 6 of 8

Report No.: MWR1409002907

Date: 12.13.2013

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.amcite.com

DASY5 Validation Report for Body TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d134

Communication System: CW; Frequency: 835 MHz;

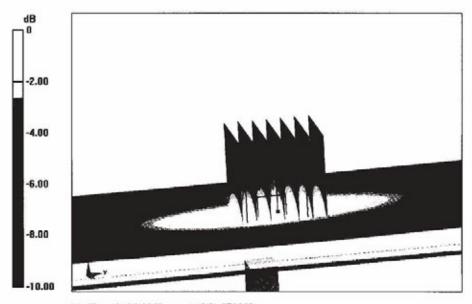
Medium parameters used: f = 835 MHz; $\sigma = 0.965$ mho/m; $\epsilon r = 56.32$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(5.98,5.98,5.98); Calibrated: 2013/9/5
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: SAM 1186; Type: QD000P40CC;
- Measurement SW: DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)


Dipole Calibration for Body Tissue/Pin=250mW, d=15mm/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

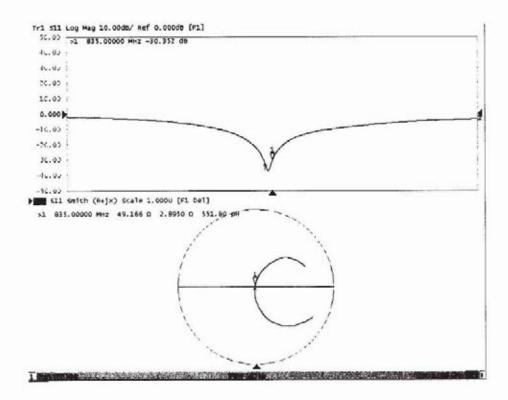
Reference Value = 52.271 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.38 W/kg

SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 2.69 W/kg

0 dB = 2.69 W/kg = 4.30 dBW/kg

Certificate No: J13-2-3049 Page 7 of 8



e CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Impedance Measurement Plot for Body TSL

Page 70 of 96 Report No.: MWR1409002907

6.3. D1900V2 Dipole Calibration Ceriticate

S D C A G

CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Client

CIQ SZ (Auden)

Certificate No: J13-2-3052

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d150

Calibration Procedure(s)

TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date:

December 12, 2013

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration

Power Meter NRVD	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep -14
Reference Probe ES3DV3	SN 3149	5- Sep-13 (SPEAG, No.ES3-3149_Sep13)	Sep-14
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb -14
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Name

Function

Signatur

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

Issued: December 17, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J13-2-3052

Page 1 of 8

Page 71 of 96 Report No.: MWR1409002907

In Collaboration with

S D C A G

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with

S D e a g

Report No.: MWR1409002907

Add: No.52 Huayuanbei Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Twin Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	- 177

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	<0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	2	
SAR measured	250 mW input power	9.71 mW/g	
SAR for nominal Head TSL parameters	normalized to 1W	38.3 mW /g ± 20.8 % (k=2	
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition		
SAR measured	250 mW input power	5.08 mW/g	
SAR for nominal Head TSL parameters	normalized to 1W	20.2 mW /g ± 20.4 % (k=2)	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.7 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.98 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	39.9 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.26 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.0 mW /g ± 20.4 % (k=2)

Page 73 of 96 Report No.: MWR1409002907

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.3Ω+ 3.17jΩ	
Return Loss	- 30.0dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.8Ω+ 3.92]Ω	
Return Loss	- 27.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.048 ns
Lieutical Delay (one direction)	1.040 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Page 74 of 96 Report No.: MWR1409002907

Date: 12.12.2013

Add: No.52 Huayuanbel Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d150

Communication System: CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.416$ mho/m; $\epsilon r = 38.91$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

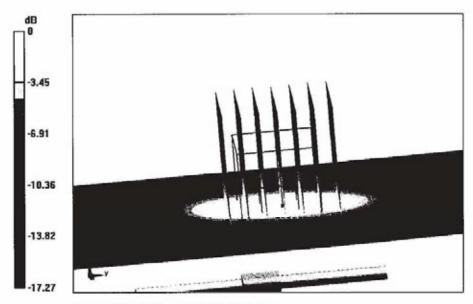
Probe: ES3DV3 - SN3149; ConvF(5.06,5.06,5.06); Calibrated: 2013/9/5

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn777; Calibrated: 22/2/2013

Phantom: SAM 1186; Type: QD000P40CC;

DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

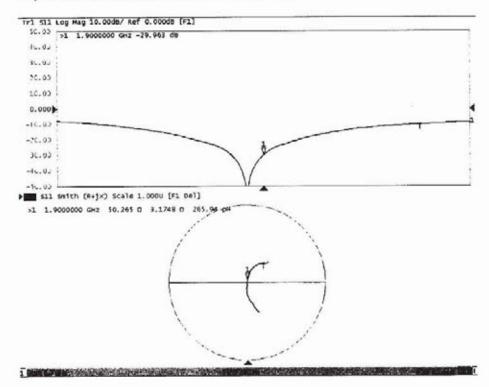

Dipole Calibration for Head Tissue/Pin=250mW, d=10mm/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 90.054 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 9.71 W/kg; SAR(10 g) = 5.08 W/kg Maximum value of SAR (measured) = 11.8 W/kg


0 dB = 11.8 W/kg = 10.72 dBW/kg

Add: No.52 Husyuanbei Road, Haidian District, Beijing, 100191, China Tel: +88-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Impedance Measurement Plot for Head TSL

Page 76 of 96 Report No.: MWR1409002907

In Collaboration with

S D e a g

Add: No.52 Huayuanbel Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY5 Validation Report for Body TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d150

Communication System: CW; Frequency: 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.528$ mho/m; $\epsilon r = 53.74$; $\rho = 1000$

Date: 12.10.2013

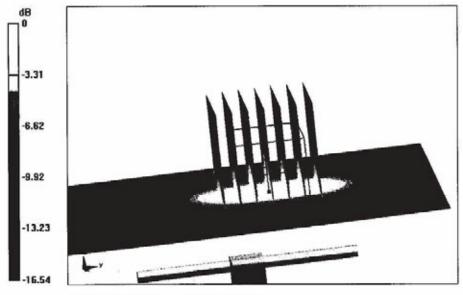
kg/m3

Phantom section: Flat Phantom

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(4.72,4.72,4.72); Calibrated: 2013/9/5
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 22/2/2013
- Phantom: SAM1186; Type: QD000P40CC;
- DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)


Dipole Calibration for Body Tissue/Pin=250mW, d=10mm/Zoom Scan

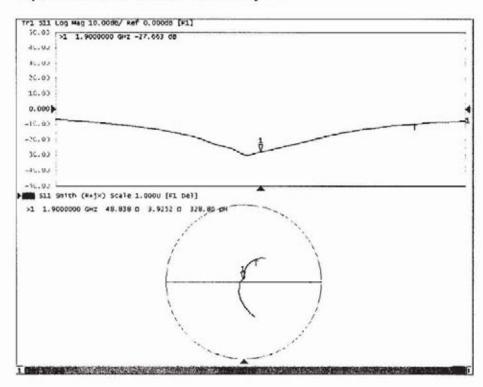
(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.606 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 17.7 W/kg

SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.26 W/kg Maximum value of SAR (measured) = 12.1 W/kg

0 dB = 12.1 W/kg = 10.83 dBW/kg



p e **CALIBRATION LABORATORY**

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Impedance Measurement Plot for Body TSL

Page 78 of 96 Report No.: MWR1409002907

1.1. D2450V2 Dipole Calibration Ceriticate

Tel: +86-10-62304633-2079 E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Client

CIQ SZ (Auden)

Certificate No: J13-2-3053

CALIBRATION CERTIFICA

Object

D2450V2 - SN: 884

Calibration Procedure(s)

TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date:

December 11, 2013

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID# Cal Date(Calibrated by, Certificate No.) **Scheduled Calibration**

Power Meter NRVD	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep -14
Reference Probe ES3DV3	SN 3149	5- Sep-13 (SPEAG, No.ES3-3149_Sep13)	Sep-14
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb -14
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Name

Function

Calibrated by:

Zhao Jing

SAR Test Engineer

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laborator

Issued: December 17, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J13-2-3053

Page 1 of 8

Page 79 of 96 Report No.: MWR1409002907

CALIBRATION LABORATORY

dd: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504

Http://www.emcite.com

Tel: +86-10-62304633-2079 E-mail: Info@emcite.com

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z not applicable or not measured N/A

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J13-2-3053

Page 80 of 96

Report No.: MWR1409002907

Add: No.52 Huayuanbel Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 E-mail: Info@emcite.com Http://www.emcite.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY52	52.8.7.1137
Advanced Extrapolation	
Twin Phantom	
10 mm	with Spacer
dx, dy, dz = 5 mm	
2450 MHz ± 1 MHz	
	Advanced Extrapolation Twin Phantom 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

5500	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	<0.5 °C	_	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	51.7 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.05 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.1 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

in the same of the	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature change during test	<0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.8 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.98 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.0 mW /g ± 20.4 % (k=2)

Page 81 of 96 Report No.: MWR1409002907

Add: No.52 Huayuanbel Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	46.8Ω+ 3.76jΩ	
Return Loss	- 25.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	55.2Ω+ 2.38jΩ	
Return Loss	- 25.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	

Certificate No: J13-2-3053

In Colleboration with

S P B B G

CALIBRATION LABORATORY

Report No.: MWR1409002907

Date: 12.10.2013

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 884

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.817$ mho/m; $\epsilon r = 38.96$; $\rho = 1000$

kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3149; ConvF(4.48,4.48,4.48); Calibrated: 2013/9/5

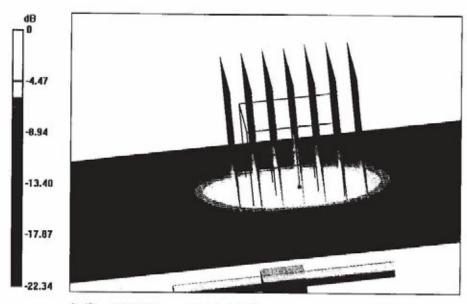
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn777; Calibrated: 22/2/2013

Phantom: SAM 1593; Type: QD000P40CC;

DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

Dipole Calibration for Head Tissue/Pin=250mW, d=10mm/Zoom Scan


(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

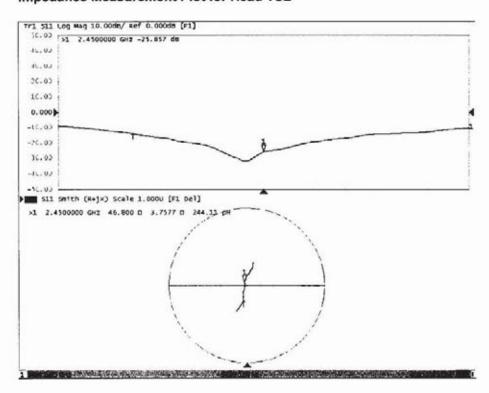
Reference Value = 86.529 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.05 W/kg

Maximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.10 dBW/kg



In Collaboration with
S D B B G
CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Impedance Measurement Plot for Head TSL

Page 84 of 96 Report No.: MWR1409002907

Date: 12.11.2013

In Collaboration with

e

E-mail: Info@emcite.com

Add: No.52 Huayuanbel Road, Haldlan District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY5 Validation Report for Body TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 884

Communication System: CW; Frequency: 2450 MHz;

Medium parameters used: f = 2450 MHz; $\sigma = 1.939$ mho/m; $\epsilon r = 52.97$; $\rho = 1000$

kg/m3

Phantom section: Flat Phantom

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

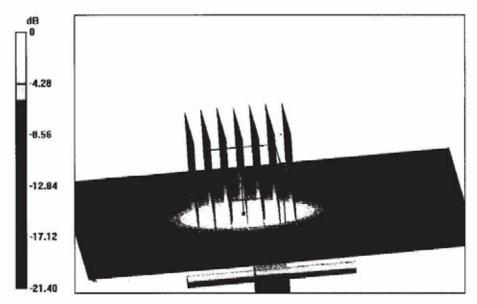
Probe: ES3DVS - SN3149; ConvF(4.21,4.21,4.21); Calibrated: 2013/9/5

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn777; Calibrated: 22/2/2013

Phantom: SAM1186; Type: QD000P40CC;

DASY52 52.8.7(1137); SEMCAD X Version 14.6.10 (7164)

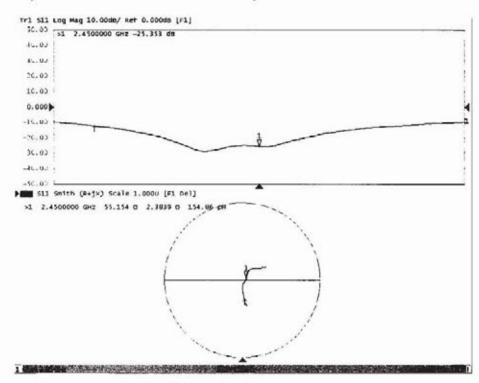

Dipole Calibration for Body Tissue/Pin=250mW, d=10mm/Zoom Scan

(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.687 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.98 W/kg Maximum value of SAR (measured) = 16.0 W/kg


0 dB = 16.0 W/kg = 12.04 dBW/kg

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Impedance Measurement Plot for Body TSL

Page 86 of 96 Report No.: MWR1409002907

6.4. DAE4 Calibration Ceriticate

In Collaboration with

Tel: +86-10-62304633-2079 E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.emcite.com

Client :

CIQ SZ (Auden)

Certificate No: J13-2-3048

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 1315

Calibration Procedure(s)

TMC-OS-E-01-198

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

November 25, 2013

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

# Cal Date(Calibr	ated by, Certificate No.)	Scheduled Calibration
01-July-13 (TMC, No:JW13-049)	July-14

Name

Function

Calibrated by:

Yu zongying

SAR Test Engineer

Reviewed by:

Qi Dianyuan

Approved by:

Lu Bingsong

Deputy Director of the laborate

Issued: November 25, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratoty.

Certificate No: J13-2-3048

Page 1 of 3

Page 87 of 96 Report No.: MWR1409002907

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Page 88 of 96 Report No.: MWR1409002907

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, full range = -100...+300 mVLow Range: 1LSB = 61nV, full range = -1......+3mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	403.915 ± 0.15% (k=2)	405.171 ± 0.15% (k=2)	404.667 ± 0.15% (k=2)
Low Range	3.98903 ± 0.7% (k=2)	3.94180 ± 0.7% (k=2)	3.93862 ± 0.7% (k=2)

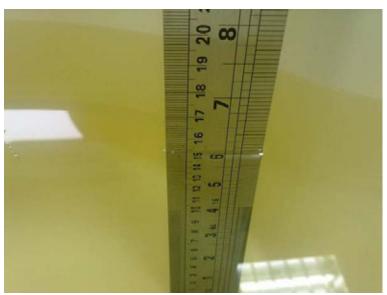
Connector Angle

Connector Angle to be used in DASY system	162.5° ± 1 °

7. Test Setup Photos

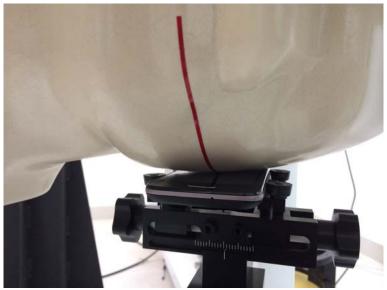
Report No.: MWR1409002907

Photograph of the depth in the Head Phantom (850MHz)


Photograph of the depth in the Body Phantom (850MHz)

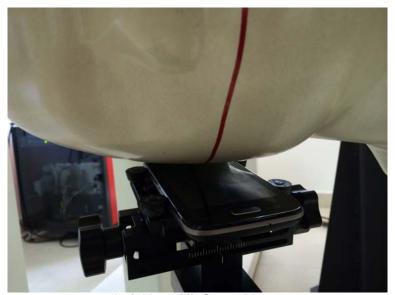
Photograph of the depth in the Head Phantom (1900MHz)

Photograph of the depth in the Body Phantom (1900MHz)

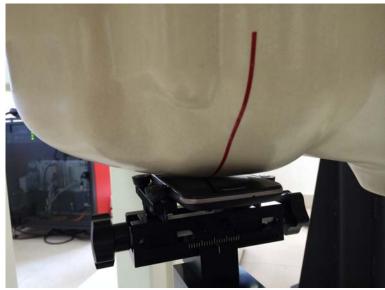


Photograph of the depth in the Head Phantom (2450MHz)

Photograph of the depth in the Body Phantom (2450MHz)



Right Head Tilt Setup Photo


Right Head Touch Setup Photo

Left Head Tilt Setup Photo

Left Head Touch Setup Photo

10mm Body-worn Rear Side Setup Photo

10mm Body-worn Front Side Setup Photo

10mm Body-worn Rear Side (With Headset)Setup Photo

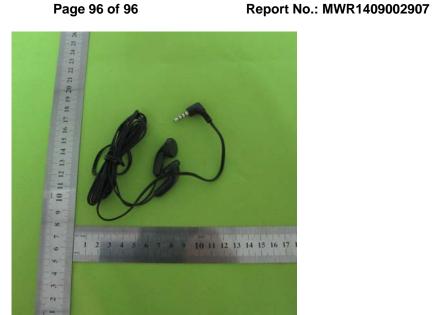
10mm Body-worn Left SideSetup Photo

10mm Body-worn Right Side Setup Photo

10mm Body-worn Top Side Setup Photo

10mm Body-worn Bottom Side Setup Photo

8. External Photos of the EUT


External Photos

.....End of Report.....