Compliance Certification Services Inc. Report No: C140224R02-SF

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

ANSI/IEEE Std. C95.1-1992 In accordance with the requirements of FCC Report and Order: ET Docket 93-62 ; FCC 47 CFR Part 2 (2.1093)

FCC SAR TEST REPORT

For

Product Name: Mobile Phone Brand Name: HYUNDAI Model No.: D205 Series Model: N/A

Test Report Number: C140224R02-SF

Issued for

HYUNDAI CORPORATION

140-2, GYE-DONG, JONGNO-GU, SEOUL, 110-793, KOREA

Issued by

Compliance Certification Services Inc.

Kun shan Laboratory No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China TEL: 86-512-57355888

FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

Page 1 of 83

Date of Issue :March 7, 2014

Revision History

Revision	REPORT NO.	Date	Page Revised	Contents
Original	C140224R02-SF	March 7, 2014	N/A	N/A

Date of Issue :March 7, 2014

TABLE OF CONTENTS

1.	CERTIFICATE OF COMPLIANCE (SAR EVALUATION)	4				
2.	EUT DESCRIPTION	5				
3.	REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC	6				
4.	TEST METHODOLOGY	6				
5.	TEST CONFIGURATION	6				
6.	DOSIMETRIC ASSESSMENT SETUP	7				
	6.1 MEASUREMENT SYSTEM DIAGRAM	8				
	6.2 SYSTEM COMPONENTS	9				
7.	EVALUATION PROCEDURES	12				
8.	MEASUREMENT UNCERTAINTY	17				
9.	EXPOSURE LIMIT					
10.	EUT ARRANGEMENT	19				
	10.1 ANTHROPOMORPHIC HEAD PHANTOM	19				
	10.2 DEFINITION OF THE "CHEEK/TOUCH" POSITION	20				
	10.3 DEFINITION OF THE "TILTED" POSITION	21				
11.	MEASUREMENT RESULTS	22				
	11.1 TEST LIQUIDS CONFIRMATION	22				
	11.2 LIQUID MEASUREMENT RESULTS	23				
	11.3 SYSTEM PERFORMANCE CHECK	24				
	11.4 EUT TUNE-UP PROCEDURES AND TEST MODE	26				
	11.5 SAR TEST CONFIGURATIONS	29				
	11.6 EUT SETUP PHOTOS	31				
	11.7 SAR MEASUREMENT RESULTS	32				
	11.8 SAR HANDSETS MULTI XMITER ASSESSMENT	34				
12.	ЕИТ РНОТО					
13.	EQUIPMENT LIST & CALIBRATION STATUS	41				
14.	FACILITIES	42				
15.	REFERENCES					
16.	ATTACHMENTS	43				
Арр	pendix A: Plots of Performance Check	44				
Арр	pendix B: DASY Calibration Certificate					
Арр	Appendix C: Plots of SAR Test Result83					

Date of Issue :March 7, 2014

1. CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

Product Name:	Mobile Phone	Mobile Phone				
Brand Name:	HYUNDAI					
Model Name.:	D205	D205				
Series Model:	N/A					
Devices supporting GPRS:	N/A					
Description Test Modes(worst case):	The product has two SIM, SIM 1 and SIM 2 sharing a chipset does not support simultaneous work, only supports a single transmitter SIM1 or SIM 2, using SIM 1, SIM 2 will be suspended until select SIM 2, stop using the SIM 1, SIM 2 only would working.					
Device Category:	PORTABLE DEVICES					
Exposure Category:	GENERAL POPULATION/UNCONTROLLED EXPOSURE					
Date of Test:	February 25, 2014& February 26, 2014					
Applicant:	HYUNDAI CORPORATION 140-2, GYE-DONG, JONGNO-GU, SEOUL, 110-793, KOREA					
Manufacturer:		(SHEN ZHEN) CO.,LTD. g Industrial Park), Bogang Taifeng Industrial an District, Shenzhen, China				
Application Type:	Certification					
API	PLICABLE STANDARDS A	ND TEST PROCEDURES				
STANDARDS AND	TEST PROCEDURES	TEST RESULT				
ANSI/IEEE	ANSI/IEEE C95.1-1992 No non-compliance noted					
	Deviation from Appl	icable Standard				
	None	2				
The device was tested by Compliance Certification Services Inc. in accordance with the						

measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

eff fang

Jeff Fang **RF** Manager Compliance Certification Services Inc.

Tested by:

Kevin. Hua

Kevin.hua Test Engineer Compliance Certification Services Inc.

Page 4 of 83

Date of Issue :March 7, 2014

2. EUT DESCRIPTION

Decident Manage	Makila Dharas				
Product Name:	Mobile Phone				
Brand Name:	HYUNDAI				
Model Name.:	D205				
Series Model:	N/A				
Model Discrepancy:	N/A				
FCC ID:	RQQHLT-D205				
Power reduction:	NO				
DTM Description:	N/A				
Device Category:	Production unit				
Frequency Range:	GSM 850: 824.2 ~ 848.8 MHz GSM1900: 1850.2 ~ 1909.8 MHz Bluetooth: 2402 ~ 2480 MHz				
Transmit Power(Average):	GSM 850:32.54 dBm				
Max. Reported SAR(1g):	Head: GSM 850:0.177 W/kg PCS 1900:0.678 W/kg				
Modulation Technique:	GSM: GMSK Bluetooth : GFSK + π/4DQPSK+8DPS	ξK			
Accessories:	Power supply and ADP (rating) : Brand: HYUNDAI Model: D205 INPUT: 100-300V 50/60Hz 0.15A OUTPUT: DC5.0V, 500mA	Battery (rating) : Brand: HYUNDAI Model: D205 Capacitance: 1000 mAh Rated Voltage:3.7V			
Antenna Specification:	GSM: PIFA antenna Bluetooth : Dipole antenna				
Operating Mode:	Maximum continuous output				

FCC ID: RQQHLT-D205

3. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED **BY THE FCC**

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation". ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 W/Kg for an uncontrolled environment and 8.0 W/Kg for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992.

4. TEST METHODOLOGY

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

General RF Exposure Guidance

FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

KDB 447498 D01v05r02

KDB 648474 D04v01r02 Handset SAR

🛛 KDB 865664 D01v01r03 Measurement 100 MHz to 6 GHz

KDB 865664 D02v01r01 **RF Exposure Reporting**

KDB 941225 D03v01 SAR Test Reduction Procedures GSM/GPRS/EDGE

5. TEST CONFIGURATION

For WWAN SAR testing The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT. The DUT was set from the emulator to radiate maximum output power during all tests.

FCC ID: RQQHLT-D205

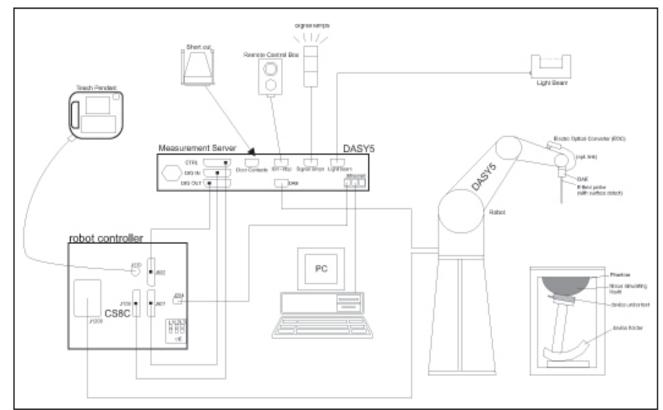
Date of Issue :March 7, 2014

6. DOSIMETRIC ASSESSMENT SETUP

These measurements were performed with the automated near-field scanning system DASY 5 from ATTENNESSA. The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the E-field PROBE EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [7] with accuracy of better than ±10%. The spherical isotropy was evaluated with the procedure described in [8] and found to be better than ±0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEE P1528 and CENELEC EN 62209.

Ingredients	Frequency (MHz)									
(% by weight)	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

The following table gives the recipes for tissue simulating liquids.


Compliance Certification Services Inc.

Report No: C140224R02-SF

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

6.1 MEASUREMENT SYSTEM DIAGRAM

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (St[°]aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 8 of 83

Date of Issue :March 7, 2014

6.2 SYSTEM COMPONENTS

DASY5	The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV celeron, 128MB chip-disk and 128 MB RAM. The necessary circuits for communication with either the DAE4(or DAE3) electronic box as well as the 16-bit AD- converter system for optical detection and digital I/O interface are contained on the DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.				
DASY5	The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required.				
Data Acquisition Electronics	(DAE)				
	The data acquisition electronics (DAE4) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.				
EX3DV4 Isotropic E-Field Pro	be for Dosime	etric Measurements			
	Construction: Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)				
11	Calibration:	Basic Broad Band Calibration in air: 10-3000 MHz. Conversion Factors (CF) for HSL 900 and HSL 1800 CF-Calibration for other liquids and frequencies upon request.			
	Frequency:	10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to			
	Directivity:	3 GHz) ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in HSL (rotation normal to probe axis)			
•	Dynamic Rar	nge: 10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g)			

Compliance Certification Services Inc.

Report No: C140224R02-SF

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

Dimensions: Overall length: 337 mm (Tip: 9 mm) Tip diameter: 2.5 mm (Body: 10 mm) Distance from probe tip to dipole centers: 1 mm

Application: High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

Interior of probe

SAM Twin Phantom

Construction:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50360 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness: 2 ±0.2 mm

Filling Volume: Approx. 25 liters

Dimensions: Height: 850mm; Length: 1000mm; Width: 750mm

SAM Phantom (ELI4 v4.0)

Description Construction:

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4/DASY5.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles

Shell Thickness:2.0 ± 0.2 mm (sagging: <1%)</th>Filling Volume:Approx. 25 litersDimensions:Major ellipse axis: 600 mm

Page 10 of 83

À	Compliance	Certification Ser	vices Inc.
71	Depart No. C140224D02 SE		Data of Jacua March 7, 20

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

Minor axis: 400 mm 500mm

Construction	In combination with the Twin SAM Phantom,	
construction.	the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE,	
	CENELEC, FCC or other specifications. The	
	device holder can be locked at different	
	phantom locations (left head, right head, and flat phantom).	
System Valida	tion Kits for SAM Twin Phantom	
Construction:	Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.	
Frequency:	900,1800,2450,5800 MHz	
ReTune loss:	> 20 dB at specified validation position	
Power capabil	ity: > 100 W (f < 1GHz); > 40 W (f > 1GHz)	E. C.
mm D1800	/2: dipole length: 161 mm; overall height: 340	
300 m D1900 300 m	V2: dipole length: 67.7 mm; overall height:	
	V2: dipole length: 51.5 mm; overall height:	
	zV2: dipole length: 20.6 mm; overall height:	
System Valida	tion Kits for ELI4 phantom	
Construction:	Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.	
Frequency:	900, 1800, 2450, 5800 MHz	
ReTune loss:	> 20 dB at specified validation position	
Power capabil	i ty: > 100 W (f < 1GHz); > 40 W (f > 1GHz)	
Dimensions:	<u> </u>	
	/2: dipole length: 161 mm; overall height: 340 mm	
D1800	V2: dipole length: 72.5 mm; overall height: 300 mm	

D1900V2: dipole length: 67.7 mm; overall height:

Page 11 of 83

Compliance Certification Services Inc. Report No: C140224R02-SF

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm D5GHzV2: dipole length: 20.6 mm; overall height: 300 mm

7. EVALUATION PROCEDURES

DATA EVALUATION

The DASY 5 post processing software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvFi
	- Diode compression point	dcp _i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY 5 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i

= Compensated signal of channel i(i = x, y, z)= Input signal of channel i

(i = x, y, z)

= Crest factor of exciting field

(DASY 5 parameter) (DASY 5 parameter)

 dcp_i = Diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

Ui

cf

$$E_i = \sqrt{\frac{V_i}{Norm_i \bullet ConvF}}$$

Page 12 of 83

 Compliance Certification Services Inc.

 Report No: C140224R02-SF
 FCC ID: RQQHLT-D205
 Date of Issue :M

Date of Issue :March 7, 2014

H-field probes:

$$H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f}{f}$$

= Compensated signal of channel i(i = x, y, z) with V_i

 $Norm_i$ = Sensor sensitivity of channel i (i = x, y, z)

 μ V/(V/m)² for E0field Probes

ConvF

= Sensitivity enhancement in solution

= Sensor sensitivity factors for H-field probes aij

f = Carrier frequency (GHz)

Ei = Electric field strength of channel i in V/m

Hi = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_{x}^{2} + E_{y}^{2} + E_{z}^{2}}$$

Date of Issue :March 7, 2014

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m] σ

= equivalent tissue density in g/cm^3 ρ

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm²

= total electric field strength in V/m E_{tot}

= total magnetic field strength in A/m H_{tot}

FCC ID: RQQHLT-D205

SAR EVALUATION PROCEDURES

The procedure for assessing the peak spatial-average SAR value consists of the following steps:

• Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

• Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY 5 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

• Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY 5 software stop the measurements if this limit is exceeded.

• Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Z-axis of the anchor location establishes the Z-axis of the grid.

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

SPATIAL PEAK SAR EVALUATION

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1 g and 10 g.

The DASY 5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

Boundary effect

For measurements in the immediate vicinity of a phantom surface, the field coupling effects between the probe and the boundary influence the probe characteristics. Boundary effect errors of different dosimetric probe types have been analyzed by measurements and using a numerical probe model. As expected, both methods showed an enhanced sensitivity in the immediate vicinity of the boundary. The effect strongly depends on the probe dimensions and disappears with increasing distance from the boundary. The sensitivity can be approximately given as:

$$S \approx S_o + S_b exp(-\frac{z}{a})cos(\pi \frac{z}{\lambda})$$

Since the decay of the boundary effect dominates for small probes ($a <<\lambda$), the cos-term can be omitted. Factors *Sb* (parameter Alpha in the DASY 5 software) and *a* (parameter Delta in the DASY 5 software) are assessed during probe calibration and used for numerical compensation of the boundary effect. Several simulations and measurements have confirmed that the compensation is valid for different field and boundary configurations.

This simple compensation procedure can largely reduce the probe uncertainty near boundaries. It works well as long as:

- the boundary curvature is small
- the probe axis is angled less than 30_ to the boundary normal
- the distance between probe and boundary is larger than 25% of the probe diameter
- the probe is symmetric (all sensors have the same offset from the probe tip)

Since all of these requirements are fulfilled in a DASY 5 system, the correction of the probe boundary effect in the vicinity of the phantom surface is performed in a fully automated manner via the measurement data extraction during post processing.

Date of Issue :March 7, 2014

8. MEASUREMENT UNCERTAINTY

UNCERTAINT	Y BUDGE AG	CORDING 1		1528	-2003	
Error Description	Uncertainty Value ±%	Probability distribution	Divisor	C₁ 1g	Standard unc.(1g) ±%	∕₀V₁ or V _{eff}
Measurement System						
Probe calibration	±5.5	normal	1	1	±5.5	ø
Axial isotropy of probe	±4.7	rectangular	√3	0.7	±1.9	×
Hemispherical Isotropy of probe	±9.6	rectangular	√3	0.7	±3.9	×
Probe linearity	±4.7	rectangular	√3	1	±2.7	×
Detection Limit	±1.0	rectangular	√3	1	±0.6	ø
Boundary effects	±1.0	rectangular	√3	1	±0.6	∞
Readout electronics	±0.3	normal	1	1	±0.3	×
Response time	±0.8	rectangular	√3	1	±0.5	×
Integration time	±2.6	rectangular	√3	1	±1.5	×
Probe positioning	±2.9	rectangular	√3	1	±1.7	×
Probe positioner	±0.4	rectangular	√3	1	±0.2	×
RF ambient Noise	±3.0	rectangular	√3	1	±1.7	×
RF ambient Reflections	±3.0	rectangular	√3	1	±1.7	∞
Max.SAR Eval	±1.0	rectangular	√3	1	±0.6	×
Test Sample Related						
Device positioning	±2.9	normal	1	1	±2.9	145
Device holder uncertainty	±3.6	normal	1	1	±3.6	5
Power drift	±5.0	rectangular	√3	1	±2.9	×
Phantom and Set up						
Phantom uncertainty	±4.0	rectangular	√3	1	±2.3	×
Liquid conductivity(target)	±5.0	rectangular	√3	0.64	±1.8	∞
Liquid conductivity(meas.)	±2.5	rectangular	1	0.64	±1.6	×
Liquid permittivity(target)	±5.0	rectangular	√3	0.6	±1.7	∞
Liquid permittivity(meas.)	±2.5	rectangular	1	0.6	±1.5	∞
Combined Standard Uncertainty					±10.7	387
Coverage Factor for 95%		kp=2				
Expanded Standard Uncertainty					±21.4	

Table: Worst-case uncertainty for DASY5 assessed according to IEEE1528-2003. The budge is valid for the frequency range 300 MHz to 6G Hz and represents a worst-case analysis.

Date of Issue :March 7, 2014

9. EXPOSURE LIMIT

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, any feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

> NOTE **GENERAL POPULATION/UNCONTROLLED EXPOSURE** PARTIAL BODY LIMIT 1.6 W/kg

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

10. EUT ARRANGEMENT

Please refer to IEEE1528-2003 illustration below.

10.1 ANTHROPOMORPHIC HEAD PHANTOM

Figure 7-1a shows the front, back and side views of SAM. The point "M" is the reference point for the center of mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 7-1b. The plane passing through the two ear reference points and M is defined as the Reference Plane. The line N-F (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 7-1c). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines should be marked on the external phantom shell to facilitate handset positioning. Posterior to the N-F line, the thickness of the phantom shell with the shape of an ear is a flat surface 6 mm thick at the ERPs. Anterior to the N-F line, the ear is truncated as illustrated in Figure 7-1b. The ear truncation is introduced to avoid the handset from touching the ear lobe, which can cause unstable handset positioning at the cheek.

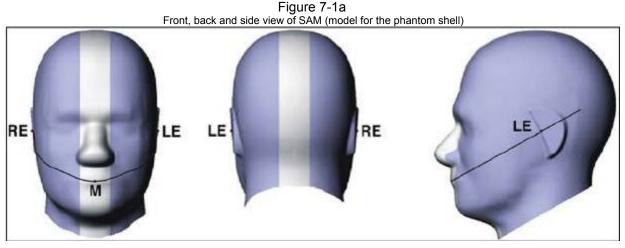
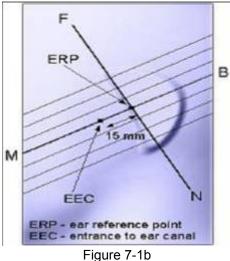



Figure 7-1b Close up side view of phantom showing the ear region

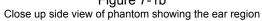
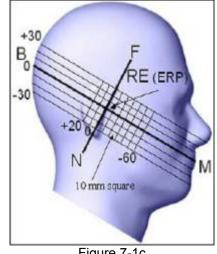
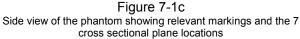




Figure 7-1c Side view of the phantom showing relevant markings and the 7 cross sectional plane locations

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

10.2 DEFINITION OF THE "CHEEK/TOUCH" POSITION

The "cheek" or "touch" position is defined as follows:

- a. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover. (If the handset can also be used with the cover closed both configurations must be tested.)
- b. Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 7-2a and 7-2b), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 7-2a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 7-2b), especially for clamshell handsets, handsets with flip pieces, and other irregularlyshaped handsets.
- c. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7-2c). such that the plane defined by the vertical center line and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- d. Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the pinna.
- e. e) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- f. Rotate the handset around the vertical centerline until the handset (horizontal line) is symmetrical with respect to the line NF.
- g. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the handset contact with the pinna, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the pinna (cheek). See Figure 7-2c. The physical angles of rotation should be noted.

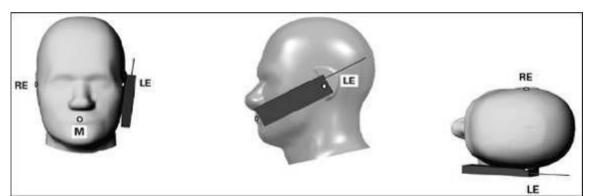


Figure 7.2c

Phone "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for handset positioning, are indicated.

Compliance Certification Services Inc. FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

vertical vertical enter line center line horizontal line horizontal line acoustic output acoustic bottom of output handset bottom of handset Figure 7.2a Figure 7.2b

10.3 DEFINITION OF THE "TILTED" POSITION

The "tilted" position is defined as follows:

Report No: C140224R02-SF

- a. Repeat steps (a) (g) of 7.2 to place the device in the "cheek position."
- b. While maintaining the orientation of the handset move the handset away from the pinna along the line passing through RE and LE in order to enable a rotation of the handset by 15 degrees.
- c. Rotate the handset around the horizontal line by 15 degrees.
- d. While maintaining the orientation of the handset, move the handset towards the phantom on a line passing through RE and LE until any part of the handset touches the ear. The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna (e.g., the antenna with the back of the phantom head), the angle of the handset should be reduced. In this case, the tilted position is obtained if any part of the handset is in contact with the pinna as well as a second part of the handset is contact with the phantom (e.g., the antenna with the back of the head).

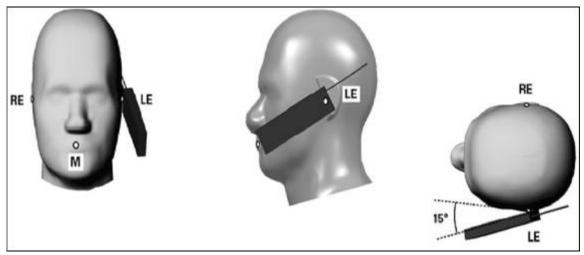


Figure 7-3

Phone "tilted" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for handset positioning, are indicated.

MEASUREMENT RESULTS 11.

11.1 **TEST LIQUIDS CONFIRMATION**

SIMULATED TISSUE LIQUID PARAMETER CONFIRMATION

The dielectric parameters were checked prior to assessment using the HP85070C dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

KDB 865664 D01 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head and Body tissue dielectric parameters recommended by the KDB865664D01 have been incorporated in the following table.

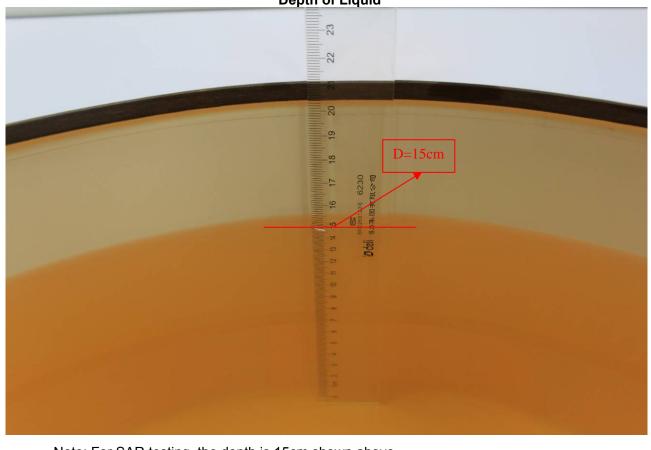
Target Frequency	Не	ad	Body		
(MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.5	5.27	48.2	6.00	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Date of Issue :March 7, 2014

11.2 LIQUID MEASUREMENT RESULTS

The following table show the measuring results for simulating liquid:


Liquid Type	Liquid Temp. (°C)	Parameters	Target	Measured	Deviation (%)	Limited (%)	Measured Date	
Head835	21.5	Permitivity(ε)	41.50	42.103	1.45	± 5	2014-2-25	
Tieadooo	21.5	Conductivity(σ)	0.90	0.912	1.33	± 5	2014-2-23	
Body835	Body835 21.5	Permitivity(ε)	55.20	54.171	-1.86	± 5	2014-2-25	
BOUY855	21.5	Conductivity(σ)	0.97	0.968	-0.21	± 5	2014-2-25	
Head1900	21.5	Permitivity(ε)	40.00	39.256	-1.86	± 5	2014-2-26	
Tieau 1900	21.5	Conductivity(σ)	1.40	1.412	0.86	± 5	2014-2-20	
Body1900	21.5	Permitivity(ε)	53.30	54.122	1.54	± 5	2014-2-26	
Body1900	21.0	Conductivity(o)	1.52	1.531	0.72	± 5	2014-2-20	

11.3 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

SYSTEM PERFORMANCE CHECK MEASUREMENT CONDITIONS

- The measurements were performed in the flat section of the SAM twin phantom filled with • head and body simulating liquid of the following parameters.
- The DASY5 system withan E-fileld probe EX3DV4 SN: 3798 was used for the • measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned . below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15 mm (below 1 GHz) and 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 10mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube integration (dx= 5 mm, dy= 5 mm, dz= 5 mm). •
- Distance between probe sensors and phantom surface was set to 2 mm. •
- The dipole input power was 250mW±3%.
- The results are normalized to 1 W input power.

Note: For SAR testing, the depth is 15cm shown above

Page 24 of 83
This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Depth of Liquid

Date of Issue :March 7, 2014

SYSTEM PERFORMANCE CHECK RESULTS

Liquid Type	Ambient Temp. (° C)	Liquid Temp. (°C)	Input Power (W)	Measured SAR1g (W/Kg)	1W Target SAR _{1g} (W/Kg)	1W Normalized SAR _{1g} (W/Kg)	Deviation (%)	Limited (%)	Date
Head835	22	21.5	0.25	2.45	9.50	9.8	3.16	± 10	2014-2-25
Body835	22	21.5	0.25	2.34	9.53	9.36	-1.78	± 10	2014-2-25
Head1900	22	21.5	0.25	9.75	40.40	39.00	-3.47	± 10	2014-2-26
Body1900	22	21.5	0.25	9.87	40.50	39.48	-2.52	± 10	2014-2-26

11.4 EUT TUNE-UP PROCEDURES AND TEST MODE

The following procedure had been used to prepare the EUT for the SAR test.

To setup the desire channel frequency and the maximum output power. A Radio Communication Tester "CMU200 " was used to program the EUT.

General Note:

- 1. Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 2. For head SAR testing, the EUT was set in GSM Voice for GSM850 and GSM1900 due to its highest frameaverage

power.

3. For body worn SAR testing, the EUT was set in GSM Voice for GSM850 and GSM1900 due to its highest frame-average power.

GSM Conducted output power(dBm):

Band		GSM 850		GSM 1900					
Channel	128	190	251	512	661	810			
Frequency(MHz)	824.2	836.6	848.8	1850.2	1880	1909.8			
Maxi	Maximum Burst-Averaged Output Power								
GSM(GMSK,1Uplink)	32.49	32.54	32.48	30.51	29.74	29.28			
Maximum Frame-Averaged Output Power									
GSM(GMSK,1Uplink)	23.47	23.52	23.46	21.49	20.72	20.26			

Remark: The frame-averaged power is linearly scaled the maximum burst-averaged power based on time slots. The calculated methods are shown as below:

Frame-averaged power = Burst-averaged power (1 Uplink) – 9.03 dBm

Frame-averaged power = Burst averaged power (2 Uplink) – 6.02 dBm

Frame-averaged power = Burst-averaged power (3 Uplink) – 4.26 dBm

Frame-averaged power = Burst averaged power (4 Uplink) – 3.01 dBm

Note: Per KDB 447498 D01v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.

Date of Issue :March 7, 2014

Bluetooth Conducted output power(dBm):

		Average power(dBm) Date Rate					
CH F	Frequency						
		1Mbps	3Mbps				
CH00	2402MHZ	6.60	5.74				
CH39	2441MHZ	6.64	5.84				
CH78	2480MHZ	6.41	5.57				

According to KDB447498 D01: The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

- *mm*)] $\cdot \left[\sqrt{f_{(GHz)}}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR,24 where
 - f(GHz) is the RF channel transmit frequency in GHz
 - Power and distance are rounded to the nearest mW and mm before calculation25
 - The result is rounded to one decimal place for comparison
 - 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below
 - If the test separation distance (antenna-user) is < 5mm, 5mm is used for excluded SAR calculation

	Wireless Interface	Bluetooth
-	Tune-up Maximum power (dBm)	7
Tu	ne-up Maximum rated power (mW)	5.012
	Antenna to user (mm)	5
Head	Frequency(GHz)	2.441
	SAR exclusion threshold	1.562
	Antenna to user (mm)	15
Body	Frequency(GHz)	2.441
	SAR exclusion threshold	0.522

Per KDB 447498 D01v05r02 exclusion thresholds is 1.562< 3, Bluetooth RF exposure evaluation is not required.

G

 Compliance Certification Services Inc.

 Report No: C140224R02-SF
 FCC ID: RQQHLT-D205

 Date of Issue :March 7, 2014

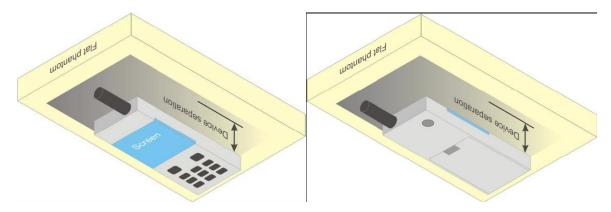
Measured Conduct The Tune-up Maximum Mode Range Maximum Power(Customer Declared)(dBm) Power(dBm) GSM 850 32+/-1 31~33 32.54 30+/-1 GSM 1900 29~31 30.51 Bluetooth2.1+EDR 6+/-1 5~7 6.64 1M Bluetooth2.1+EDR 5+/-1 4~6 5.84 3M

So, they are in tune-up range and complied.

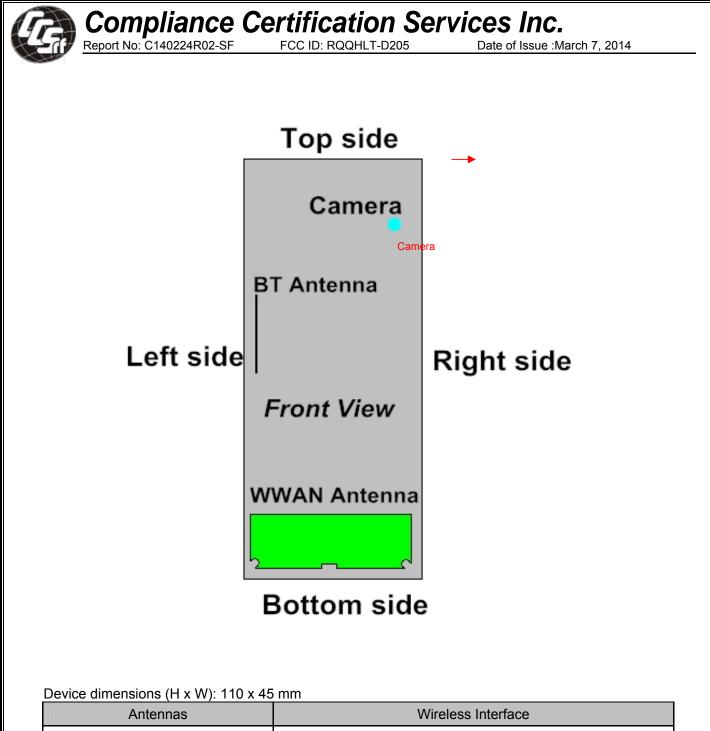
FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

11.5 SAR TEST CONFIGURATIONS


Body-Worn Accessory Exposure Conditions

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB 447498 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.


Body-worn accessories that do not contain metallic or conductive components may be tested according to worst-case exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.

Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a bodyworn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required.

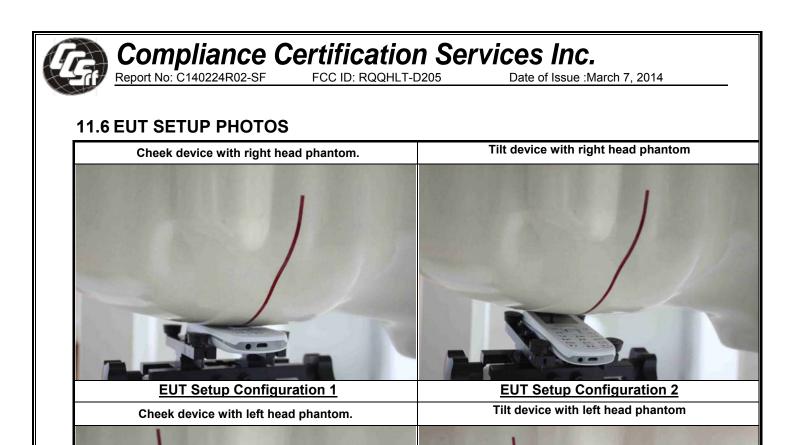

A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance.

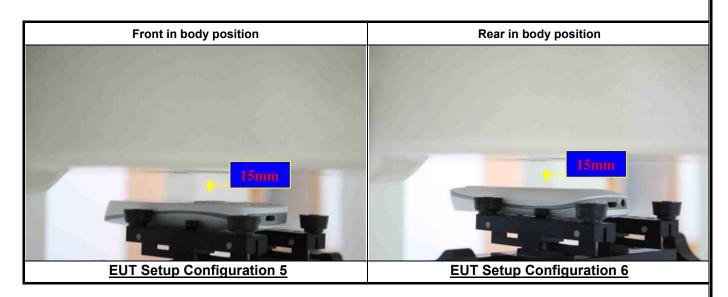
Illustration for Body Worn Position

Antennas	Wireless Interface		
WWAN Antenna	GSM850 PCS1900		
Bluetooth Antenna	Bluetooth		
Test Mode			
GSM 850/PCS1900	Voice mode(GSM)		

EUT Setup Configuration 4

EUT Setup Configuration 3

Date of Issue :March 7, 2014


11.7 SAR MEASUREMENT RESULTS

Head SAR Test Records

GSM SAR

Band	Mode	Test Position	Ch.	Freq. (MHZ)	max Power (dBm)	Tune- Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR1g (mW/g)	Scaled SAR1g (mW/g)
GSM850	Voice	Right Cheek	190	836.6	32.54	33	1.112	0.01	0.151	0.168
GSM850	Voice	Right Tilted	190	836.6	32.54	33	1.112	0.04	0.085	0.094
GSM850	Voice	Left Cheek	190	836.6	32.54	33	1.112	0.11	0.159	0.177
GSM850	Voice	Left Tilted	190	836.6	32.54	33	1.112	0.00	0.085	0.094
GSM1900	Voice	Right Cheek	512	1850.2	30.51	31	1.119	0.19	0.606	0.678
GSM1900	Voice	Right Tilted	512	1850.2	30.51	31	1.119	-0.03	0.081	0.091
GSM1900	Voice	Left Cheek	512	1850.2	30.51	31	1.119	0.07	0.418	0.468
GSM1900	Voice	Left Tilted	512	1850.2	30.51	31	1.119	-0.02	0.072	0.081

Date of Issue :March 7, 2014

SAR Results for Body-Worn Test Records

Band	Mode	Test Position	Dist. (mm)	Ch.	Freq. (MHZ)	max Power (dBm)	Tune- Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR1g (mW/g)	Scaled SAR1g (mW/g)
GSM850	Voice	Front	15	190	836.6	32.54	33	1.112	-0.14	0.175	0.195
GSM850	Voice	Rear	15	190	836.6	32.54	33	1.112	-0.13	0.310	0.345
GSM1900	Voice	Front	15	512	1850.2	30.51	31	1.119	-0.07	0.165	0.185
GSM1900	Voice	Rear	15	512	1850.2	30.51	31	1.119	0.02	0.387	0.433

FCC ID: RQQHLT-D205

11.8 SAR HANDSETS MULTI XMITER ASSESSMENT

	Position	Applicable Combination		
Simultaneous	Head	WWAN (voice) + BT		
Transmission	Body-worn	WWAN (voice) + BT		

Note:

- 2.4GHz WLAN and BT share the same antenna, and cannot transmit simultaneously. 1.
- The reported SAR summation is calculated based on the same configuration and test position. 2.
- 3. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05 based on the formula below.

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Bluetooth:

	Max power	Head (5mm distance)	Body (15mm distance)		
Estimated SAR (W/kg)	7dBm	0.209 W/kg	0.070 W/kg		

4. Per KDB 447498 D01v05, simultaneous transmission SAR is compliant if,

1) Scalar SAR summation < 1.6W/kg.

2) SPLSR = (SAR1 + SAR2)1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan If SPLSR \leq 0.04, simultaneously transmission SAR is compliant

3) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg

Date of Issue :March 7, 2014

Result of SUM ∑SAR1g of Head

SUM ∑SAR1g (GSM850+ Bluetooth)					
Position	Distance [mm]	Stand alone SAR(1g) [W/kg]		SUM SAR(1g)[W/kg]	
		Voice	Bluetooth	WWAN + Bluetooth	
Right Cheek	0	0.168	0.209	0.377	
Right Tilted	0	0.094	0.209	0.303	
Left Cheek	0	0.177	0.209	0.386	
Left Tilted	0	0.094	0.209	0.303	

SUM ∑SAR1g (GSM1900+ Bluetooth)					
Position	Distance [mm]	Stand alone SAR(1g) [W/kg]		SUM SAR(1g)[W/kg]	
		Voice	Bluetooth	WWAN + Bluetooth	
Right Cheek	0	0.678	0.209	0.887	
Right Tilted	0	0.091	0.209	0.300	
Left Cheek	0	0.468	0.209	0.677	
Left Tilted	0	0.081	0.209	0.290	

Date of Issue :March 7, 2014

Result of SUM ∑SAR1g for Body worn

SUM ∑SAR1g (GSM850+ Bluetooth)						
Position	Distance [mm]	Stand alone SAR(1g) [W/kg]		SUM SAR(1g)[W/kg]		
		GSM850	Bluetooth	WWAN + Bluetooth		
Front	15	0.195	0.070	0.265		
Rear	15	0.345	0.070	0.415		

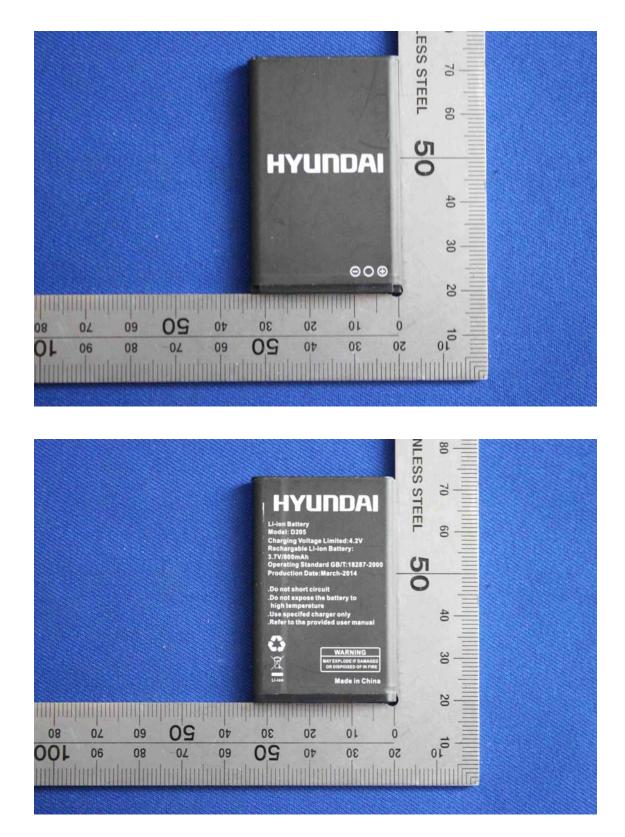
SUM ∑SAR1g (GSM1900+ Bluetooth)						
Position	Distance [mm]	Stand alone SAR(1g) [W/kg]		SUM SAR(1g)[W/kg]		
		GSM1900	Bluetooth	WWAN + Bluetooth		
Front	15	0.185	0.070	0.255		
Rear	15	0.433	0.070	0.503		

Compliance Certification Services Inc. Report No: C140224R02-SF FCC ID: RQQHLT-D205 Date of Issue :M

Date of Issue :March 7, 2014

12. **EUT PHOTO**

Date of Issue :March 7, 2014



Page 39 of 83 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Date of Issue :March 7, 2014

Date of Issue :March 7, 2014

EQUIPMENT LIST & CALIBRATION STATUS 13.

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Due
PC	HP	Core(rm)3.16G	CZCO48171H	N/A	N/A
Signal Generator	Agilent	E8257C	MY43321570	05/13/2013	05/12/2014
S-Parameter Network Analyzer	Agilent	E5071B	MY42301382	03/11/2013	03/10/2014
Wireless Communication Test Set	R&S	CMU200	SN:109525	01/24/2014	01/23/2015
Power Meter	Agilent	E4416A	GB41292714	03/16/2013	03/15/2014
Peak & Average sensor	Agilent	E9327A	CF0001	03/16/2013	03/15/2014
E-field PROBE	SPEAG	EX3DV4	3798	07/26/2013	07/25/2014
DAE	SPEAG	DEA4	1245	07/25/2013	07/24/2014
DIPOLE 835MHZ ANTENNA	SPEAG	D835V2	4d114	07/30/2013	07/29/2014
DIPOLE 1900MHZ ANTENNA	SPEAG	D1900V2	5d136	07/22/2013	07/21/2014
DUMMY PROBE	SPEAG	DP_2	SPDP2001AA	N/A	N/A
SAM PHANTOM (ELI4 v4.0)	SPEAG	QDOVA001BB	1102	N/A	N/A
Twin SAM Phantom	SPEAG	QD000P40CD	1609	N/A	N/A
ROBOT	SPEAG	TX60	F10/5E6AA1/A101	N/A	N/A
ROBOT KRC	SPEAG	CS8C	F10/5E6AA1/C101	N/A	N/A
LIQUID CALIBRATION KIT	ANTENNESSA	41/05 OCP9	00425167	N/A	N/A

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

14. FACILITIES

All measurement facilities used to collect the measurement data are located at

🔀 No.10, Weiye Rd., Innovation Park, Eco & Tec. Development Part, Kunshan City, Jiangsu Province, China.

REFERENCES 15.

- [1] Federal Communications Commission, Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC [2] guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commision, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E- eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile [4] communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.
- CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields [5] (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz - 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI. ANSI/IEEE C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of [7] E-_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120{124.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E- eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172{175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz". IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Receptes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992...Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS. \The treatment of uncertainity in EMC measurement". Tech. Rep.. NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

Page 42 of 83

Date of Issue :March 7, 2014

ATTACHMENTS 16.

Exhibit

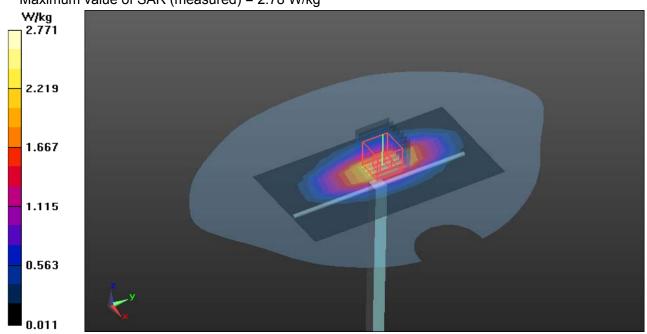
Content

- 1 System Performance Check Plots
- 2 Dipole calibration report D835V2 SN:4d114
- 3 Dipole calibration report D1900V2-SN:5d136
- Probe calibration report EX3DV4 SN3798 4
- 5 DAE calibration report DEA4 SD000D04BJ SN:1245
- SAR Test Plots 6

APPENDIX A: PLOTS OF PERFORMANCE CHECK

The plots are showing as followings.

Report No: C140224R02-SF


FCC ID: RQQHLT-D205

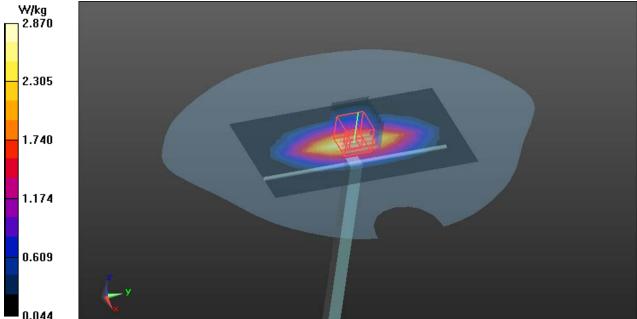
Date of Issue :March 7, 2014

Test Laboratory: Compliance Certification Services Inc. Date: 2/25/2014 System Performance Check-Head D835 DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN4d114 Communication System: CW; Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.912 S/m; ε_r = 42.103; ρ = 1000 kg/m³ Room Ambient Temperature: 22°C; Liguid Temperature: 21.5°C Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3798; ConvF(9.16, 9.16, 9.16); Calibrated: 7/26/2013; Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1245; Calibrated: 7/25/2013 • Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609 • DASY52 52.8.5(1059); • SEMCAD X Version 14.6.8 (7028) System Performance Check at Frequencies Low 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (EX-Probe)/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.77 W/kg

System Performance Check at Frequencies Low 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.997 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 3.49 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 2.78 W/kg

Report No: C140224R02-SF


FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

Test Laboratory: Compliance Certification Services Inc. Date: 2/25/2014 System Performance Check-Body D835 DUT: Dipole 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN4d114 Communication System: CW; Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.968 S/m; ϵ_r = 54.171; ρ = 1000 kg/m³ Room Ambient Temperature: 22°C; Liguid Temperature: 21.5°C Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3798; ConvF(9.27, 9.27, 9.27); Calibrated: 7/26/2013; Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1245; Calibrated: 7/25/2013 • Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609 • DASY52 52.8.5(1059); • SEMCAD X Version 14.6.8 (7028) System Performance Check at Frequencies Low 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.85 W/kg System Performance Check at Frequencies Low 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.913 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.47 W/kg

SAR(2 cxtrapolated) = 3.47 W/kgSAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.51 W/kg

Maximum value of SAR (measured) = 2.87 W/kg

DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d136

Report No: C140224R02-SF

System Performance Check-D1900

Test Laboratory: Compliance Certification Services Inc.

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

Date: 2/26/2014

Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.412 S/m; ϵ_r = 39.256; ρ = 1000 kg/m³ Room Ambient Temperature: 22°C; Liguid Temperature: 21.5°C Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3798; ConvF(7.73, 7.73, 7.73); Calibrated: 7/26/2013; Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1245; Calibrated: 7/25/2013 • Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609 • DASY52 52.8.5(1059); • SEMCAD X Version 14.6.8 (7028) System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 13.6 W/kg System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.6 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 9.75 W/kg; SAR(10 g) = 5.05 W/kg Maximum value of SAR (measured) = 14.3 W/kg W/kg 13.600 10.883 8.166 5.448 2.731 0.014

Report No: C140224R02-SF

Test Laboratory: Compliance Certification Services Inc.

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

Date: 2/26/2014

System Performance Check-D1900 DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d136 Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.531 S/m; ϵ_r = 54.122; ρ = 1000 kg/m³ Room Ambient Temperature: 22°C; Liguid Temperature: 21.5°C Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3798; ConvF(7.32, 7.32, 7.32); Calibrated: 7/26/2013; Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1245; Calibrated: 7/25/2013 • Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609 • DASY52 52.8.5(1059); • SEMCAD X Version 14.6.8 (7028) System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 13.8 W/kg System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.49 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) =17.7 W/kg SAR(1 g) = 9.87 W/kg; SAR(10 g) = 4.98 W/kg Maximum value of SAR (measured) = 13.7 W/kg W/kg 13.700 10.963 8.226

8.226 5.489 2.752 0.015

APPENDIX B: DASY CALIBRATION CERTIFICATE

The DASY Calibration Certificates are showing as followings .

Schmi Engi	ration Laboratory id & Partner ineering AG usstrasse 43, 8004 Zurich		BIC MRA	S Schweizerischer Kalibrierdi Service suisee d'étaionnage Servizio svizzero di taratura S Swiss Calibration Service
The Swi	ed by the Swiss Accreditat iss Accreditation Service eral Agreement for the re	is one of the signatories	s to the EA	editation No.: SCS 108
Client	CCS-CN (Auder	n)	Certil	ficate No: D835V2-4d114_Jul1
CAL	IBRATION C	ERTIFICATE		
Object		D835V2 - SN: 4d	114	
Calibrat	tion procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation k	cits above 700 MHz
This ca			onal standards, which realize the ph robability are given on the following	nysical units of measurements (SI). pages and are part of the certificate.
This ca The me All callb	dibration certificate docume assurements and the uncer brations have been conduct	enta the traceability to nati italnties with confidence p ited in the closed laborator		pages and are part of the certificate.
This cal The me All calib Calibra	dibration certificate docume assurements and the uncer brations have been conduc tion Equipment used (M&T	ents the traceability to nati itainties with confidence p ited in the closed laborator TE critical for calibration)	robability are given on the following y facility: environment temperature	pages and are part of the certificate. (22 ± 3) °C and humidity < 70%.
This cal The me All calib Calibra Priman	dibration certificate docume assurements and the uncer brations have been conduc tion Equipment used (M&T y Standards	ents the traceability to nati itainties with confidence p ted in the closed laborator TE critical for calibration)	obability are given on the following y facility: environment temperature Cal Date (Certificate No.)	pages and are part of the certificate. (22 ± 3)*C and humidity < 70%. Scheduled Calibration
This cal The me All calib Calibra Priman Power	dibration certificate docume assurements and the uncer brations have been conduc tion Equipment used (M&T	ents the traceability to nati itainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640)	pages and are part of the certificate. (22 ± 3) °C and humidity < 70%.
This cal The me All calib Calibra Priman Power Power	dibration certificate docume assurements and the uncel brations have been conduc tion Equipment used (M&T y Standards meter EPM-442A	ents the traceability to nati itainties with confidence p ted in the closed laborator TE critical for calibration)	obability are given on the following y facility: environment temperature Cal Date (Certificate No.)	pages and are part of the certificate. (22 ± 3)*C and humidity < 70%. Scheduled Calibration Oct-13
This cal The me All calib Calibra Priman Power Power Referen Type-N	dibration certificate docume assurements and the uncel brations have been conduc tion Equipment used (M&T y Standards meter EPM-442A sensor HP 8481A nce 20 dB Attenuator i mismatch combination	ents the traceability to nati itainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5056 (20k) SN: 5047.3 / 06327	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	pages and are part of the certificate. (22 ± 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14
This cal The me All calib Calibra Priman Power Power Referen Type-N Referen	dibration certificate docume assurements and the uncert brations have been conduc tion Equipment used (M&T y Standards meter EPN-442A sensor HP 8481A nce 20 dB Attenuator	ents the traceability to nati itainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292785 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec13	(22 ± 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 2) Dec-13
This cal The me All calib Calibra Priman Power Power Referen Type-N	dibration certificate docume assurements and the uncel brations have been conduc tion Equipment used (M&T y Standards meter EPM-442A sensor HP 8481A nce 20 dB Attenuator i mismatch combination	ents the traceability to nati itainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5056 (20k) SN: 5047.3 / 06327	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	(22 ± 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 2) Dec-13
This cal The me All calib Calibrat Priman Power Power Referen Type-N Referen DAE4 Second	dibration certificate docume assurements and the uncert brations have been conduct tion Equipment used (M&T y Standards meter EPN-442A sensor HP 8481A noce 20 dB Attenuator I mismatch combination noce Probe ES3DV3 dary Standards	ents the traceability to nati itainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292785 SN: 5058 (20k) SN: 5058 (20k) SN: 50547.3 / 06327 SN: 3205 SN: 601 ID #	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec11 25-Apr-13 (No. DAE4-601_Apr13 Check Date (in house)	(22 ± 3)*C and humidity < 70%. (22 ± 3)*C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 2) Dec-13 3) Apr-14 Scheduled Check
This cal The me All calib Calibra Priman Power Power Referen DAE4 Second RF gen	dibration certificate docume assumements and the uncert brations have been conduct tion Equipment used (M&T <u>y Standards</u> meter EPN-442A sensor HP 8481A not 20 dB Attenuator it mismatch combination not Probe ES3DV3 dary Standards sensor HP 8481A herator R&S SMT-06	enta the traceability to nati itainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292785 SN: 5056 (20k) SN: 5057 (20k) SN: 5058 (20k)	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12 25-Apr-13 (No. DAE4-601_Apr13 Check Date (in house) 18-Oct-02 (in house check Oct-1 04-Aug-99 (in house check Oct-1	(22 ± 3)*C and humidity < 70%. (22 ± 3)*C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 2) Dec-13 3) Apr-14 2) Dec-13 3) Apr-14 1) In house check: Oct-13 11) In house check: Oct-13
This cal The me All calib Calibra Priman Power Power Referen DAE4 Second RF gen	dibration certificate docume assurements and the uncert brations have been conduct tion Equipment used (M&T y Standards meter EPN-442A sensor HP 8481A noce 20 dB Attenuator I mismatch combination noce Probe ES3DV3 dary Standards sensor HP 8481A	enta the traceability to nati itainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292785 SN: 5056 (20k) SN: 5056 (20k) SN: 5056 (20k) SN: 5056 (20k) SN: 5056 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12 25-Apr-13 (No. DAE4-601_Apr13 Check Date (in house) 18-Oct-02 (in house check Oct-1	(22 ± 3)*C and humidity < 70%. (22 ± 3)*C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 2) Dec-13 3) Apr-14 2) Dec-13 3) Apr-14 1) In house check: Oct-13 11) In house check: Oct-13
This cal The me All calib Calibra Priman Power Power Referen DAE4 Second RF gen	dibration certificate docume assumements and the uncert brations have been conduct tion Equipment used (M&T <u>y Standards</u> meter EPN-442A sensor HP 8481A not 20 dB Attenuator it mismatch combination not Probe ES3DV3 dary Standards sensor HP 8481A herator R&S SMT-06	enta the traceability to nati itainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292785 SN: 5056 (20k) SN: 5057 (20k) SN: 5058 (20k)	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12 25-Apr-13 (No. DAE4-601_Apr13 Check Date (in house) 18-Oct-02 (in house check Oct-1 04-Aug-99 (in house check Oct-1	(22 ± 3)*C and humidity < 70%. (22 ± 3)*C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 2) Dec-13 3) Apr-14 2) Dec-13 3) Apr-14 1) In house check: Oct-13 11) In house check: Oct-13
This cal The me All calib Calibra Priman Power Power Referen DAE4 Second Power RF gen Networ	dibration certificate docume assumements and the uncert brations have been conduct tion Equipment used (M&T <u>y Standards</u> meter EPN-442A sensor HP 8481A not 20 dB Attenuator it mismatch combination not Probe ES3DV3 dary Standards sensor HP 8481A herator R&S SMT-06	enta the traceability to nati tainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37292785 SN: 5056 (20k) SN: 5056 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12 25-Apr-13 (No. DAE4-601_Apr13 Check Date (in house) 18-Oct-02 (in house check Oct-1 04-Aug-99 (in house check Oct-1 18-Oct-01 (in house check Oct-1	(22 ± 3)*C and humidity < 70%. (22 ± 3)*C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 2) Dec-13 3) Apr-14 2) Dec-13 3) Apr-14 10 In house check: Oct-13 11) In house check: Oct-13 11) In house check: Oct-13 12) In house check: Oct-13 13) Signature
This cal The me All calibra Calibra Priman Power 1 Power 1 Referen DAE4 Second Power 2 RF gen Networ	dibration certificate docume easurements and the uncert brations have been conduc- tion Equipment used (M&T <u>y Standards</u> meter EPN-442A sensor HP 8481A noe 20 dB Attenuator I mismatch combination noe Probe ES3DV3 dary Standards sensor HP 8481A sensor HP 8481A sensor HP 8481A sensor HP 8481A sensor HP 8481A sensor HP 8481A	enta the traceability to nati italinties with confidence p ated in the closed laborator FE critical for calibration) ID # GB37480704 US37292785 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 2205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12 25-Apr-13 (No. DAE4-601_Apr13 Check Date (in house) 18-Oct-02 (in house check Oct-1 04-Aug-99 (in house check Oct-1 18-Oct-01 (in house check Oct-1	(22 ± 3)*C and humidity < 70%. (22 ± 3)*C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 2) Dec-13 3) Apr-14 2) Dec-13 3) Apr-14 10 In house check: Oct-13 11) In house check: Oct-13 11) In house check: Oct-13 12) In house check: Oct-13 13) Signature

Report No: C140224R02-SF FCC

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

s

C

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GNISS CRIVERATE

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d114_Jul13

Page 2 of 8

Page 51 01 03

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.8 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.50 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.58 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.32 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d114_Jul13

Page 3 of 8

rage o∠ or oo

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 1.3 jΩ
Return Loss	- 32.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.2 Ω - 3.0 jΩ	
Return Loss	- 29,1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.399 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 29, 2010

Page 4 of 8

Compliance Certification Services Inc. Report No: C140224R02-SF

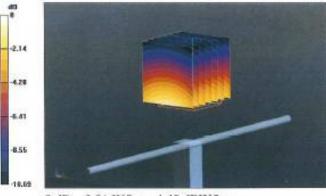
FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

DASY5 Validation Report for Head TSL

Date: 30.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

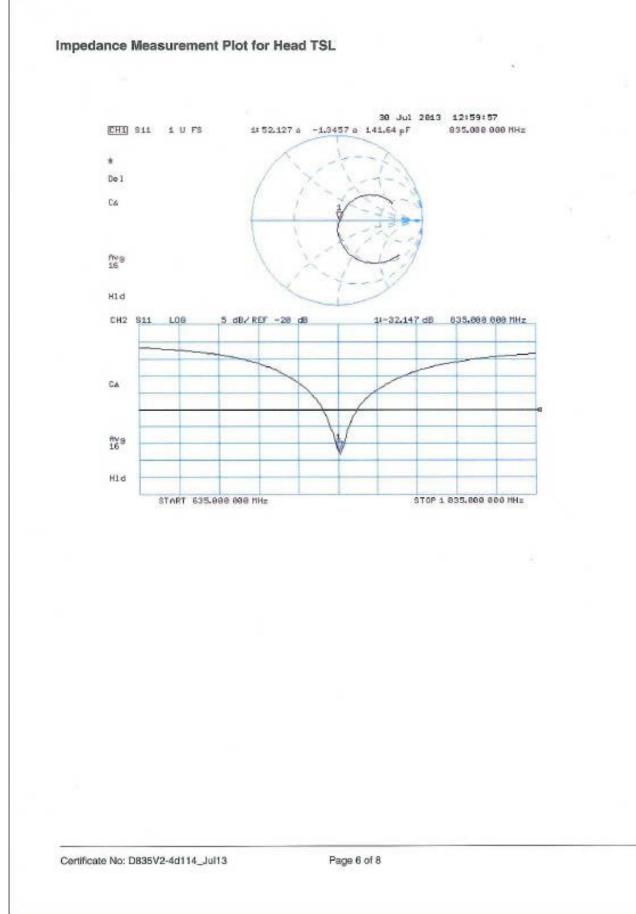

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d114

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013 .
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 .
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.702 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 2.81 W/kg


0 dB = 2.81 W/kg = 4.49 dBW/kg

Certificate No: D835V2-4d114_Jul13

Page 5 of 8

Page 54 OT 83

Compliance Certification Services Inc. Report No: C140224R02-SF FCC ID: RQQHLT-D205 Date of Issue :March 7, 2014

Раде 55 от 83

Compliance Certification Services Inc. Report No: C140224R02-SF

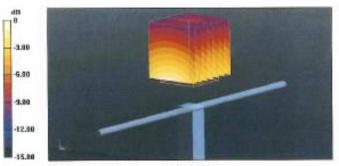
FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

DASY5 Validation Report for Body TSL

Date: 22.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d114

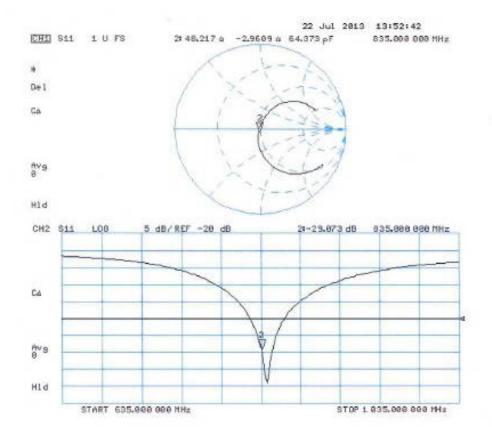
Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.853 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 2.83 W/kg

0 dB = 2.83 W/kg = 4.52 dBW/kg


Certificate No: D835V2-4d114_Jul13

Page 7 of 8

Page 50 01 83

Date of Issue :March 7, 2014

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d114_Jul13

Page 8 of 8

Calibration Laborator Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich		Hac MRA (SWISS) S	Service suisse d'étalonnage Servizio svizzero di taratura
Accredited by the Swiss Accredita The Swiss Accreditation Service Multilateral Agreement for the re	is one of the signatorie	s to the EA	n No.: SCS 108
Client CCS-CN (Aude	n)	Certificate N	lo: D1900V2-5d136_Jul
CALIBRATION C	ERTIFICATE		
Object	D1900V2 - SN: 5	d136	
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits ab	ove 700 MHz
Calibration date:	h.h. 00, 0040		
This will will waite and the second	July 22, 2013		
The measurements and the unce All calibrations have been conduc	ents the traceability to nati rtainties with confidence p ted in the closed laborato	onal standards, which realize the physical us robability are given on the following pages a ry facility: environment temperature (22 ± 3) ⁴	ind are part of the certificate.
The measurements and the unce	ents the traceability to nati rtainties with confidence p ted in the closed laborato	robability are given on the following pages a	ind are part of the certificate.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8461A Reference 20 dB Attenuator	ants the traceability to nati rtainties with confidence p ted in the closed laborato "E critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k)	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736)	C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8461A	ants the traceability to nati rtainties with confidence p sted in the closed laborato "E critical for calibration) ID # GB37480704 US37292783	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640)	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 84B1A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ants the traceability to nati rtainties with confidence p ted in the closed laborato "E critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	robability are given on the following pages a ry facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ants the traceability to nati rtainties with confidence p ted in the closed laborator "E critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	robability are given on the following pages a ty facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	nd are part of the certificate. *C and humidity < 70%. *C and humidity < 70%. Cot-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Dec-13 Dec-1
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ants the traceability to nati rtainties with confidence p ted in the closed laborator TE critical for calibration) ID # GB37480704 US37282783 SN: 5056 (20k) SN: 5047.3 / 06327 SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	robability are given on the following pages a ty facility: environment temperature (22 ± 3) ⁴ Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) Function	nd are part of the certificate. *C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13

G

Report No: C140224R02-SF FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

s

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GNISS OF ZOZ

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d136_Jul13

Page 2 of 8

наде рэгогоз

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d136_Jul13

Date of Issue :March 7, 2014

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 7.2 jΩ	
Return Loss	- 22.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω + 7.3 jΩ
Return Loss	- 22.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 14, 2010

Compliance Certification Services Inc. Report No: C140224R02-SF

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

DASY5 Validation Report for Head TSL

Date: 22.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d136

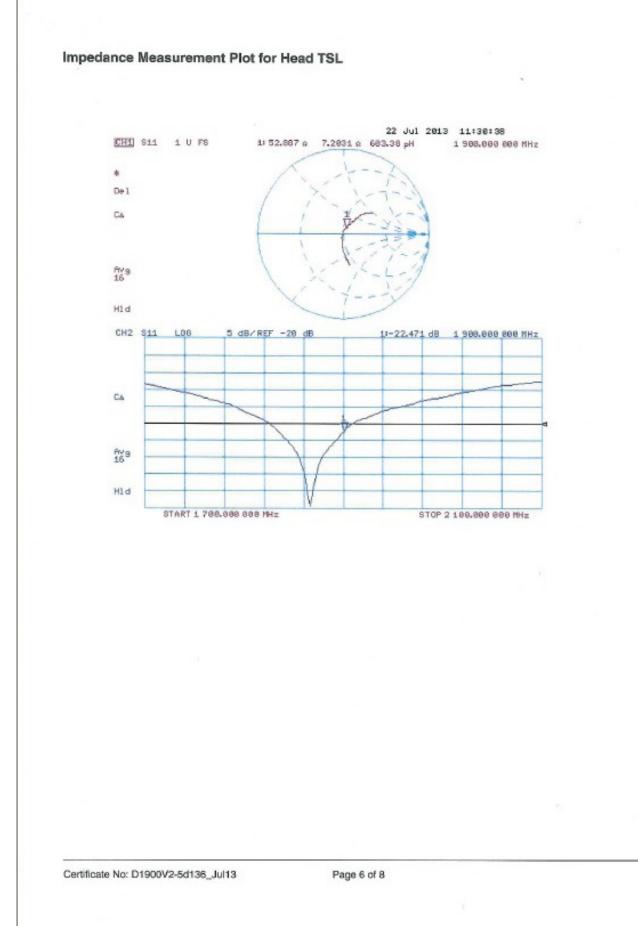
Communication System: UID 0 - CW ; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0; Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.803 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.29 W/kg Maximum value of SAR (measured) = 12.4 W/kg



Certificate No: D1900V2-5d136_Jul13

Page 5 of 8

Page oz or os

Date of Issue :March 7, 2014

rage os or os

Compliance Certification Services Inc. Report No: C140224R02-SF

FCC ID: RQQHLT-D205

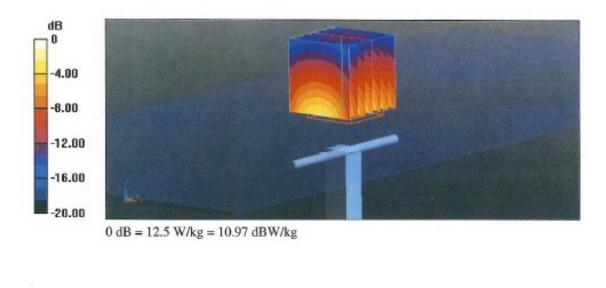
Date of Issue :March 7, 2014

Date: 22.07.2013

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

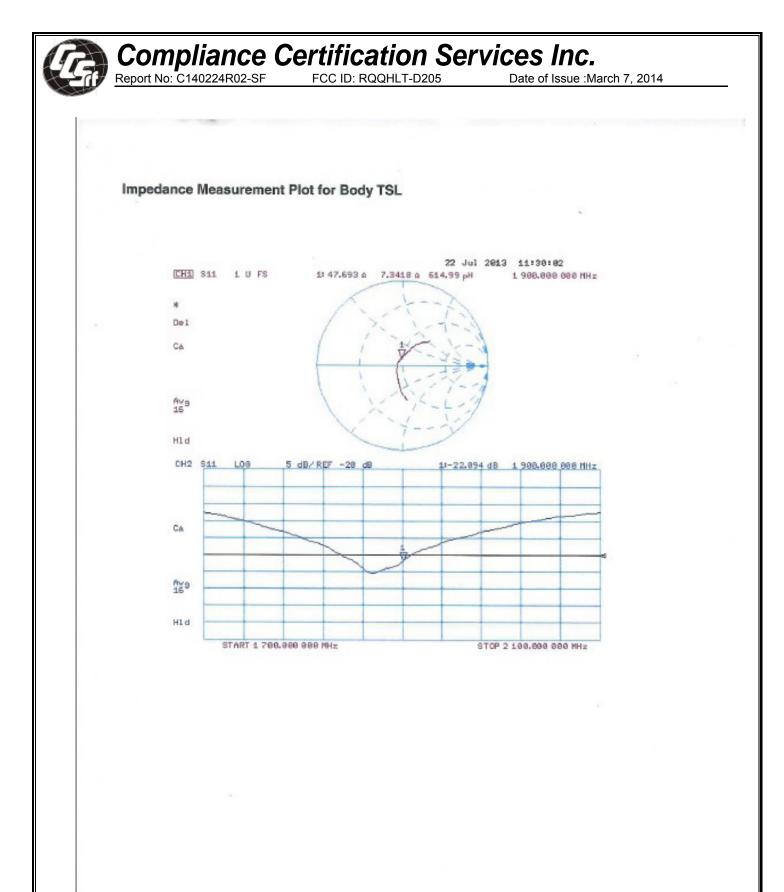
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d136


Communication System: UID 0 - CW ; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.49 \text{ S/m}$; $\varepsilon_r = 53.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012; ٠
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 ٠
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 95.803 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.37 W/kg Maximum value of SAR (measured) = 12.5 W/kg

Certificate No: D1900V2-5d136_Jul13

Page 7 of 8

Page 64 01 83

Certificate No: D1900V2-5d136_Jul13

Page 8 of 8

Раде 65 от 83

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

Schmid & Partner Engineering AG

Report No: C140224R02-SF

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

IMPORTANT NOTICE

s

е

а

a

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Раде оо от оз

Calibration Laborator Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurio		NAC MRA (C C Z) C	Schweizerischer Kalibrierdier Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredit The Swiss Accreditation Servic Multilateral Agreement for the a	e is one of the signatories	to the EA	o.: SCS 108
Client CCS-CN (Aude	en)	Certificate No:	DAE4-1245_Jul13
CALIBRATION O	CERTIFICATE		
Object	DAE4 - SD 000 D	04 BM - SN: 1245	
Calibration procedure(s)	QA CAL-06.v26 Calibration proceed	lure for the data acquisition electr	onics (DAE)
Calibration date:	July 25, 2013		
	nents the traceability to natio	nal standards, which realize the physical units obability are given on the following pages and	
The measurements and the unc	nents the traceability to natio entainties with confidence pro acted in the closed laboratory		are part of the certificate.
The measurements and the unc	nents the traceability to natio entainties with confidence pro acted in the closed laboratory	obability are given on the following pages and	are part of the certificate.
The measurements and the unc All calibrations have been condu Calibration Equipment used (Ma	nents the traceability to natio entainties with confidence pro acted in the closed laboratory TE critical for calibration)	obability are given on the following pages and r facility: environment temperature (22 \pm 3)°C :	are part of the certificate. and humidity < 70%.
The measurements and the unc All calibrations have been condu Calibration Equipment used (Ma Primary Standards	nents the traceability to natio ertainties with confidence pro acted in the closed laboratory TE critical for calibration)	obability are given on the following pages and r facility: environment temperature (22 ± 3)°C = Cal Date (Certificate No.)	are part of the certificate. and humidity < 70%. Scheduled Calibration
The measurements and the unc All calibrations have been condu Calibration Equipment used (Ma Primary Standards Keithley Multimeter Type 2001	ents the traceability to natio entainties with confidence pro acted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	obability are given on the following pages and r facility: environment temperature (22 ± 3)°C = Cal Date (Certificate No.) 02-Oct-12 (No:12728)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-13
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ents the traceability to natio entainties with confidence pro acted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	obability are given on the following pages and r facility: environment temperature (22 ± 3)°C = Cal Date (Certificate No.) 02-Oct-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14
The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ents the traceability to natio entainties with confidence pro acted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	obability are given on the following pages and r facility: environment temperature (22 ± 3)°C = Cal Date (Certificate No.) 02-Oct-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	nents the traceability to natio entainties with confidence pro- acted in the closed laboratory ATE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	bability are given on the following pages and facility: environment temperature (22 ± 3)°C : Cal Date (Certificate No.) D2-Oct-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check) 07-Jan-13 (in house check) 07-Jan-13 (in house check)	are part of the certificate, and humidity < 70%. Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14 In house check: Jan-14 Signature
The measurements and the uno All calibrations have been condu Calibration Equipment used (M8 Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 Calibrated by: Approved by:	Anteria the traceability to natio entainties with confidence pro- acted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 Name Dominique Steffen Fin Bomholt	Cal Date (Certificate No.) Cal Date (Certificate No.) D2-Oct-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check) 07-Jan-13 (in house check) 07-Jan-13 (in house check) T-Jan-13 (in house check)	are part of the certificate. and humidity < 70%. Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14 In house check: Jan-14

G

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

s

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Report No: C140224R02-SF

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a
 result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1245_Jul13

Page 2 of 5

наде ро от оз

Date of Issue :March 7, 2014

DC Voltage	Measurement
------------	-------------

A/D - Converter Resolution nominal

High Range:	1LSB =	6.1µV.	full range =	-100+300 mV	×
Low Range:	1LSB =	61nV ,	full range =	-1+3mV	
DASY measurement	parameters: Aut	to Zero Time: 3	sec; Measuring	time: 3 sec	

Calibration Factors	X	Y	z
High Range	405.940 ± 0.02% (k=2)	404.664 ± 0.02% (k=2)	405.801 ± 0.02% (k=2)
Low Range	4.00386 ± 1.50% (k=2)	3.98278 ± 1.50% (k=2)	4.02487 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	30.5°±1°

Certificate No: DAE4-1245_Jul13

Page 3 of 5

Раде оу ог оз

Date of Issue :March 7, 2014

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199992.97	-4.47	-0.00
Channel X + Input	20001.91	0.89	0.00
Channel X - Input	-19999.11	1.66	-0.01
Channel Y + Input	199994.30	-3.32	-0.00
Channel Y + Input	20001.64	0.75	0.00
Channel Y - Input	-20000.51	0.28	-0.00
Channel Z + Input	199995.90	-1.30	-0.00
Channel Z + Input	20000.30	-0.60	-0.00
Channel Z - Input	-19999.90	0.89	-0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.51	0.38	0.02
Channel X + Input	201.72	0.21	0.11
Channel X - Input	-198.76	-0.28	0.14
Channel Y + Input	2000.72	-0.41	-0.02
Channel Y + Input	199.98	-1.50	-0.74
Channel Y - Input	-198.85	-0.28	0.14
Channel Z + Input	2000.21	-0.84	-0.04
Channel Z + Input	200.77	-0.56	-0.28
Channel Z - Input	-199.95	-1.29	0.65

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-8.24	-10.01
3	- 200	10.27	8.63
Channel Y	200	-7.32	-7.74
	- 200	6.53	6.34
Channel Z	200	-5.94	-6.42
	- 200	- 5.13	4.65

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	4.16	-2.61
Channel Y	200	8.79	-	3.99
Channel Z	200	9.96	7.22	-

Certificate No: DAE4-1245_Jul13

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15874	16183
Channel Y	16451	15694
Channel Z	15932	15717

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MQ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.94	-0.24	2.04	0.48
Channel Y	-0.42	-1.91	0.54	0.47
Channel Z	-0.83	-2.62	0.57	0.60

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)		
Channel X	200	200		
Channel Y	200	200		
Channel Z	200	200		

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Page 5 of 5

Calit	pration Laborato	ory of	MUT allo	Schweizerischer Kalibrierdienst
	nid & Partner		HACHIRA () () - C	Service suisse d'étalonnage
	gineering AG ausstrasse 43, 8004 Zur	ich, Switzerland	South S	Servizio svizzero di taratura Swiss Calibration Service
			"odalaba"	
	ited by the Swiss Accredit vise Accreditation Servi	tation Service (SAS) ce is one of the signatorie		No.: SCS 108
		recognition of calibration		
Client	CCS-CN (Aud	en)	Certificate No:	EX3-3798_Jul13
CAL	IDDATION	CERTIFICATI	-	
CA	LIBRATION	GERTIFICATI		
Object	t.	EX3DV4 - SN:37	98	
Calibri	ation procedure(s)		QA CAL-14.v3, QA CAL-23.v4, QA edure for dosimetric E-field probes	CAL-25.v4
		ounormon produ		
1000				
Calibr	ation date:	July 26, 2013		
This c	alibration certificate docur	nents the traceability to net	onal standards, which realize the physical units	of measurements (SI)
The m	easurements and the unit	anamoes with contidence p	robability are given on the following pages and	are part of the certificate.
13:51:05				
Al cal	ibrations have been cond	ucted in the closed laborator	ry facility: environment temperature (22 ± 3)*C a	
100.000			A recently environment demograticity (SE I 2) 2 1	and humidity < 70%.
Callbr			y raceny, environment compensione (22 ± 3) 0 i	and humidity < 70%.
	ation Equipment used (MI	TE oritinal for an Deption	y many, environment comparatore (zz ± 3) 🤆 i	and humidity < 70%.
	ation Equipment used (M	TE critical for calibration)	y monty, environment demperature (22 ± 0) C i	and humidity < 70%.
	ation Equipment used (Mi	TE critical for calibration)	y monty, enveronment demperature (22 ± 0) C i	and humidity < 70%.
Prima	iry Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Prima Powe	rry Standards r meter E4419B	ID GB41293874	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733)	Scheduled Calibration Apr-14
Prima Powe Powe	rry Standards r meter E4419B r sensor E4412A	ID GB41283874 MY41498087	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733)	Scheduled Calibration Apr-14 Apr-14
Prima Powe Powe Refer	rry Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator	ID GB41283874 MY41498087 SN: 55054 (3c)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737)	Scheduled Calibration Apr-14 Apr-14 Apr-14
Prims Powe Powe Refer Refer	rry Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator	ID GB41283874 MY41498087 SN: 55054 (3c) SN: 55277 (20x)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
Prima Powe Powe Refer Refer Refer	rry Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator	ID GB41283874 MY41498087 SN: 55054 (3c)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737)	Scheduled Calibration Apr-14 Apr-14 Apr-14
Prima Powe Powe Refer Refer Refer	rry Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 30 dB Attenuator ence 90 dB Attenuator ence Probe ES3DV2	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
Prima Powe Powe Refer Refer Refer DAE4	iny Standards ir meter E4419B ir sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 30 dB Attenuator ence 90 dB Attenuator ence Probe ES3DV2	ID GB41283874 MY41498087 SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 3013 SN: 660	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14
Prima Powe Powe Refer Refer Refer DAE4 Seco	rry Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 30 dB Attenuator ence Probe ES3DV2 i ndary Standards	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 3013 SN: 660 ID	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check
Prima Powe Powe Refer Refer Refer DAE4 Seco RF ge	iny Standards ir meter E4419B ir sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 30 dB Attenuator ence 90 dB Attenuator ence Probe ES3DV2	ID GB41283874 MY41498087 SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 3013 SN: 660	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14
Prima Powe Powe Refer Refer Refer DAE4 Seco RF ge	ary Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence Probe ES3DV2 i ndary Standards enerator HP 8648C ork Analyzer HP 8753E	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Prims Powe Powe Refer Refer Refer DAE4 Seco RF ge Netw	ary Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence Probe ES3DV2 andary Standards enerator HP 8648C ork Anelyzer HP 8753E	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 680 ID US3642U01700 US37390585 Name	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-59 (in house check Apr-13) 18-Oct-01 (in house check Apr-12) Function	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15
Prims Powe Powe Refer Refer Refer DAE4 Seco RF ge Netw	ary Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence Probe ES3DV2 i ndary Standards enerator HP 8648C ork Analyzer HP 8753E	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Prims Powe Refer Refer Refer DAE4 Seco RF gr Netw	any Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence Probe ES3DV2 andary Standards enerator HP 8648C ork Anelyzer HP 8753E ated by:	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US3642U01700 US37390585 Name Dimce Iliev	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) 	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Prims Powe Refer Refer Refer DAE4 Seco RF gr Netw	ary Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence Probe ES3DV2 andary Standards enerator HP 8648C ork Anelyzer HP 8753E	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 680 ID US3642U01700 US37390585 Name	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-59 (in house check Apr-13) 18-Oct-01 (in house check Apr-12) Function	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Prims Powe Refer Refer Refer DAE4 Seco RF gr Netw	any Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence Probe ES3DV2 andary Standards enerator HP 8648C ork Anelyzer HP 8753E ated by:	ID GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID US3642U01700 US3642U01700 US37390585 Name Dimce Iliev	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) 	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature D-WWW
Prims Powe Refer Refer Refer DAE4 Seco RF ge Netw	any Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence 30 dB Attenuator ence Probe ES3DV2 i indary Standards enerator HP 8648C ork Analyzer HP 8753E ated by: wed by:	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Dimce Iliev Katja Pokovic	Cel Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01736) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Eunction Laboratory Technician Technical Manager	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Prims Powe Refer Refer Refer DAE4 Seco RF ge Netw	any Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence 30 dB Attenuator ence Probe ES3DV2 i indary Standards enerator HP 8648C ork Analyzer HP 8753E ated by: wed by:	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Dimce Iliev Katja Pokovic	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) 	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature D-WWW
Prims Powe Refer Refer Refer DAE4 Seco RF ge Netw	any Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence 30 dB Attenuator ence Probe ES3DV2 i indary Standards enerator HP 8648C ork Analyzer HP 8753E ated by: wed by:	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Dimce Iliev Katja Pokovic	Cel Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01736) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Eunction Laboratory Technician Technical Manager	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature D-WWW
Prims Powe Refer Refer Refer DAE4 Seco RF ge Netw	any Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence 30 dB Attenuator ence Probe ES3DV2 i indary Standards enerator HP 8648C ork Analyzer HP 8753E ated by: wed by:	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Dimce Iliev Katja Pokovic	Cel Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01736) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Eunction Laboratory Technician Technical Manager	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature D-WWW
Prims Powe Refer Refer Refer DAE4 Seco RF ge Netw	any Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence 30 dB Attenuator ence Probe ES3DV2 i indary Standards enerator HP 8648C ork Analyzer HP 8753E ated by: wed by:	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 3013 SN: 660 ID US3642U01700 US37390585 Name Dimce Iliev Katja Pokovic	Cel Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01736) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Eunction Laboratory Technician Technical Manager	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature D-WWW
Prims Powe Refer Refer Refer Refer Seco RF ge Netw Calibr Appro	any Standards r meter E4419B r sensor E4412A ence 3 dB Attenuator ence 20 dB Attenuator ence 20 dB Attenuator ence 30 dB Attenuator ence Probe ES3DV2 i indary Standards enerator HP 8648C ork Analyzer HP 8753E ated by: wed by:	ID GB41293874 MY41498087 SN: \$5054 (3c) SN: \$5054 (3c) SN: \$5129 (30b) SN: \$5129 (30b) SN: \$60 ID U\$3642U01700 U\$37390585 Name Dimce lliev Katja Pokovic	Cel Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01736) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Eunction Laboratory Technician Technical Manager	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature D-WWW

Compliance Certification Services Inc. Report No: C140224R02-SF

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

NIS.

GRP

S

C

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization &	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3798 Jul13

Page 2 of 11

Page 73 01 83

Date of Issue :March 7, 2014

EX3DV4 - SN:3798

July 26, 2013

Probe EX3DV4

SN:3798

Manufactured: April 5, 2011

Calibrated: July 26, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3798_Jul13

Page 3 of 11

FCC ID: RQQHLT-D205

Date of Issue :March 7, 2014

EX3DV4-SN:3798

July 26, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m)2) ^A	0.54	0.51	0.59	± 10.1 %
DCP (mV) ⁸	95.9	98.8	98.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	164.4	±3.0 %
		Y	0.0	0.0	1.0		168.1	2
		Z	0.0	0.0	1.0		130.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^a Numerical linearization parameter: uncertainty not required, ^c Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3798_Jul13

Page 4 of 11

Page 75 01 83

Date of Issue :March 7, 2014

EX3DV4-SN:3798

July 26, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	41.5	0.90	9.16	9.16	9.16	0.35	0.94	± 12.0 %
900	41.5	0.97	9.01	9.01	9.01	0.35	0.93	± 12.0 %
1810	40.0	1.40	7.79	7.79	7.79	0.73	0.59	± 12.0 %
1900	40.0	1.40	7.73	7.73	7.73	0.68	0.62	± 12.0 %
2000	40.0	1.40	7.73	7.73	7.73	0.80	0.58	± 12.0 %
2450	39.2	1.80	7.08	7.08	7.08	0.66	0.62	± 12.0 %
5200	36.0	4.66	4.85	4.85	4.85	0.37	1.80	± 13.1 %
5300	35.9	4.76	4.71	4.71	4.71	0.38	1.80	± 13.1 %
5500	35.6	4.96	4.76	4.76	4.76	0.36	1.80	± 13.1 %
5600	35.5	5.07	4.51	4.51	4.51	0.42	1.80	± 13.1 %
5800	35.3	5.27	4.48	4.48	4.48	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

⁶ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ⁴ At frequencies below 3 GHz, the validity of tissue parameters (s and s) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and s) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3798_Jul13

2

Page 5 of 11

Page 70 01 03

Date of Issue :March 7, 2014

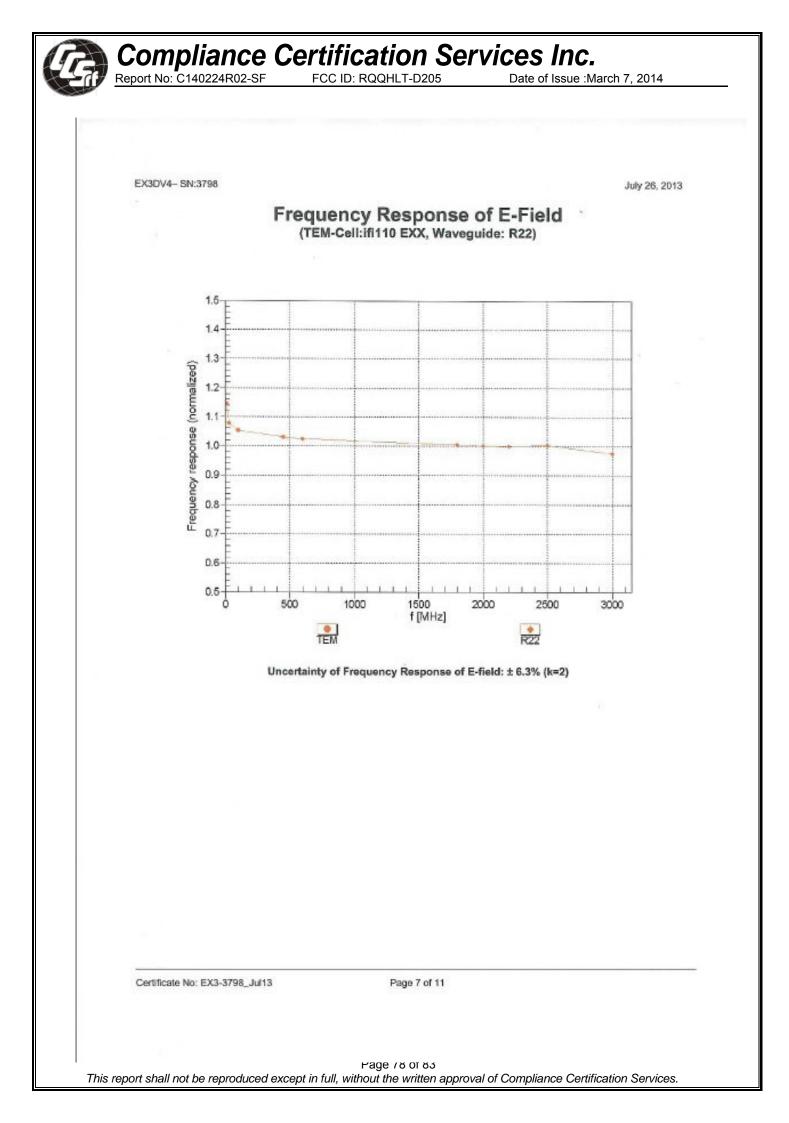
EX3DV4-SN:3798

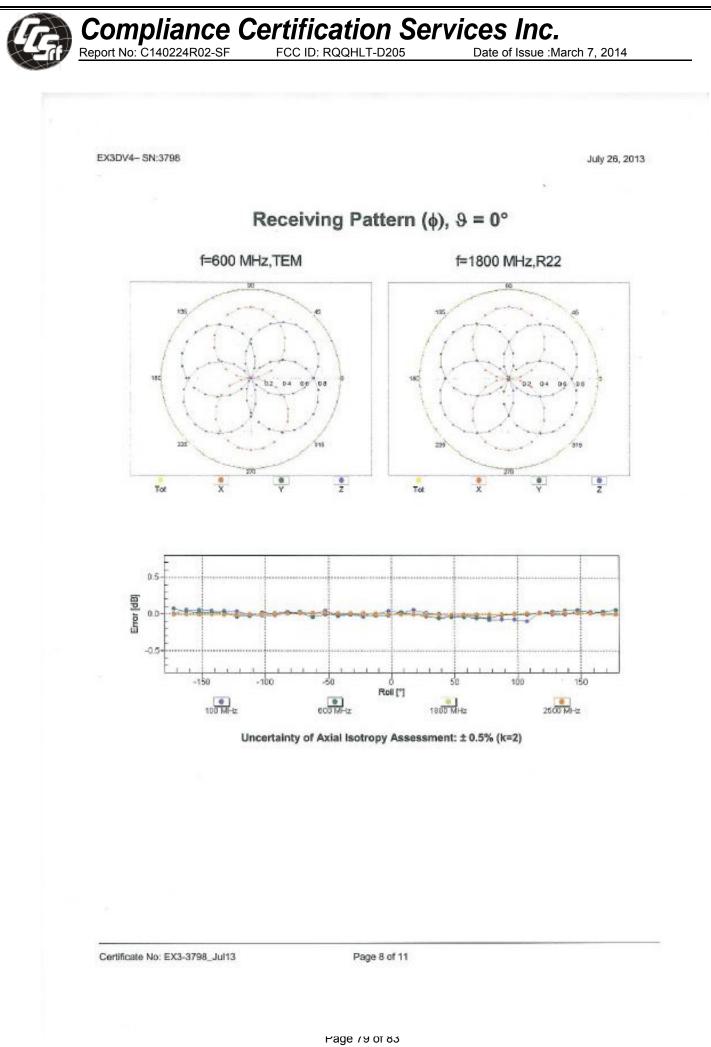
July 26, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

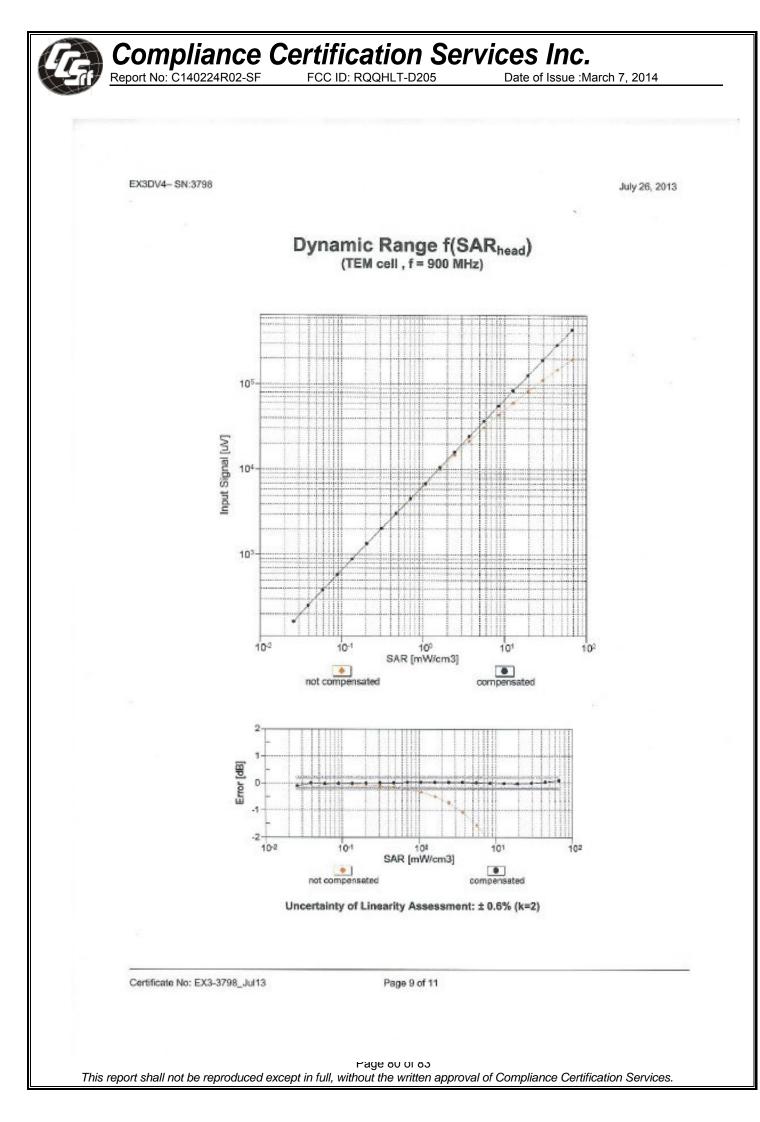
f (MHz) ^C	Relative Permittivity ^r	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	55.2	0.97	9.27	9.27	9.27	0.49	0.84	± 12.0 %
900	55.0	1.05	9.11	9.11	9.11	0.80	0.62	± 12.0 %
1810	53.3	1.52	7.45	7.45	7.45	0.37	88.0	± 12.0 %
1900	53.3	1.52	7.32	7.32	7.32	0.37	0.86	± 12.0 %
2000	53.3	1.52	7.54	7.54	7.54	0.29	1.01	± 12.0 %
2450	52.7	1.95	7.08	7.08	7.08	0.80	0.57	± 12.0 %
5200	49.0	5.30	4.38	4.38	4.38	0.41	1.90	± 13.1 %
5300	48.9	5.42	4.22	4.22	4.22	0.41	1.90	± 13.1 %
5500	48.6	5.65	3.93	3.93	3.93	0.46	1.90	± 13.1 %
5600	48.5	5.77	3.92	3.92	3.92	0.38	1.90	± 13.1 %
5800	48.2	6.00	4.24	4.24	4.24	0.46	1.90	± 13.1 %

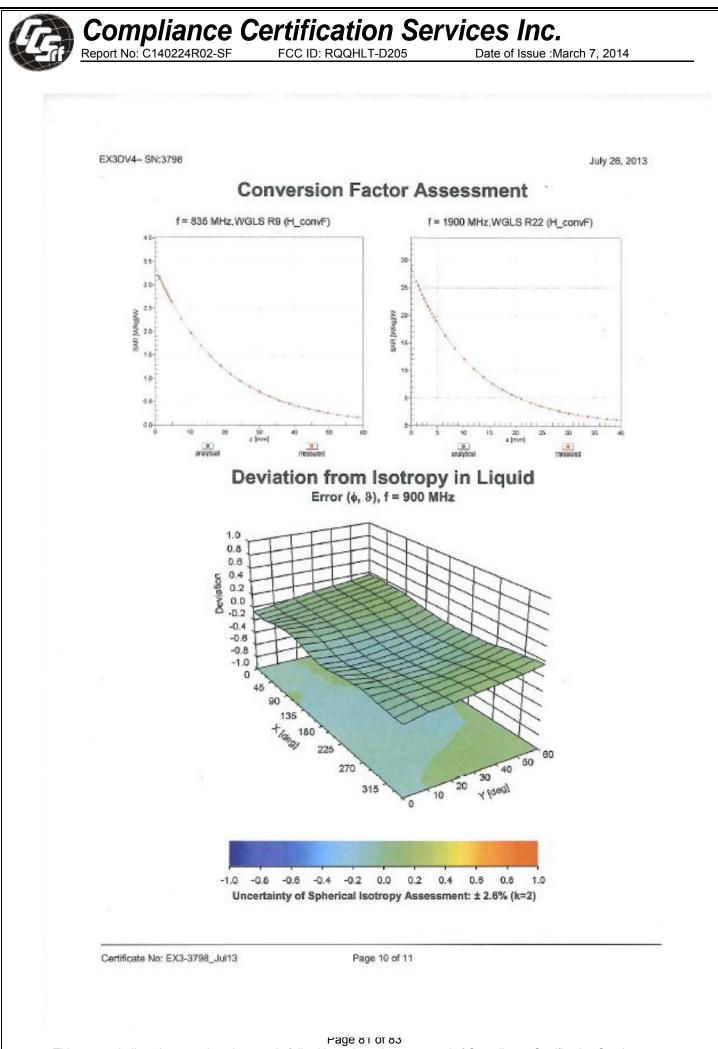
Calibration Parameter Determined in Body Tissue Simulating Media


^o Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS.


of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3798_Jul13


Page 6 of 11


Page 11 OL 83

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Date of Issue :March 7, 2014

EX3DV4-SN:3798

July 26, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-42.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3798_Jul13

Page 11 of 11

Раде 82 от 83

APPENDIX C: PLOTS OF SAR TEST RESULT

The plots are showing in the file named Appendix C Plots of SAR Test Result

END REPORT