

Operational Description

The EUT has the RF module, BTEZ1702xA that is a Bluetooth module, operating in 2400 to 2483.5 MHz band and employing 79 hopping channels. The nominal hop rate is 1600 hops/s.

POWER SOURCE

The EUT uses a 4.2V Li-Ion battery re-chargeable via the Cigar lighter jack or AC/DC adapter (DC output: 5.2V). The DC/DC Converter (XC9207A25/30) converts the input voltage from the battery into DC 2.5V and 3.0V. The converted DC 2.5 voltages are supplied to CODEC (SEECODEC V232). The DC 3.0 voltages are supplied to Microcontroller (PIC16F676), BT module (BTEZ1702xA), and Audio AMP (TDA2005D1).

ANTENNA

The EUT uses an integral SMD chip antenna (AEC-IJS-003). No external ground is required.

Co-ordination of the hopping sequence in data mode to avoid simultaneous occupancy by multiple transmitters: Bluetooth units which want to communicate with other units must be organized in a structure called piconet. This piconet consists of maximum 8 Bluetooth units. One unit is the master, the others seven are the slaves. The master co-ordinates frequency occupation in this piconet for all units. As the master hop sequence is derived from its BD address which is unique for every Bluetooth device, additional masters intending to establish new piconets will always use different hop sequences.

Example of a 79 hopping sequence in data mode:

40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67, 56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59, 72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75, 09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06, 01, 51, 03, 55, 05, 04

Equally average use of frequencies: The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection.
2. Internal master clock: The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24 MSB's of the 48 BD_ADDRESS. The internal clock of a Bluetooth unit is derived from a free running clock, which is never adjusted and is never

turned off. For synchronization with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5 μ s. The clock has a cycle of about one day (23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire LAP (24 bits), 4 LSB's (4 bits) (Input 1) and the 27 MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the sequence. This will be done at the beginning of every new transmission.

Receiver input bandwidth and behaviors for repeated single or multiple packets:

The input bandwidth of the receiver is 1 MHz.

In every connection one Bluetooth device is the master and the other one is the slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection (e.g. single or multislots packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.