TEST REPORT

Dt&C

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

- 1. Report No: DRTFCC1703-0025
- 2. Customer
 - Name : SD Biosensor, Inc.
 - Address : C-4th&5th, 16, Deogyeong-daero, 1556beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do South Korea 443-813
- 3. Use of Report : FCC Original Grant
- 4. Product Name / Model Name : SD BT DONGLE / FA-DG FCC ID : RPJFA-DG
- 5. Test Method Used : ANSI C63.10-2013

Test Specification : FCC Part 15 Subpart C.247

- 6. Date of Test : 2016.11.29 ~ 2016.12.21, 2017.02.27
- 7. Testing Environment : See appended test report.
- 8. Test Result : Refer to the attached test result.

Affirmation	Tested by	T	Technical Manager	
	Name : JaeJin Lee	(Signature)	Name : WonJung Lee	(Signature)

The test results presented in this test report are limited only to the sample supplied by applicant and the use of this test report is inhibited other than its purpose. This test report shall not be reproduced except in full, without the written approval of DT&C Co., Ltd.

2017.03.06.

DT&C Co., Ltd.

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1703-0025	Mar. 06, 2017	Initial issue

Table of Contents

1. General Information	
1.1 Testing Laboratory	
1.2 Details of Applicant	
1.3 EUT information	
1.3.1 Description of EUT	5
1.3.2. Support equipment	
1.3.3. Declaration by the applicant / manufacturer	5
1.4 Information about the FHSS characteristics	6
1.5 Test conditions	6
1.6 Measurement Uncertainty	6
1.7 Test Equipment List	7
1.8 Summary of Test Results	8
1.9 Conclusion of worst-case and operation mode	9
2. Maximum Peak Output Power Measurement	. 10
2.1 Test Setup	
2.2 Limit	
2.3 Test Procedure	10
2.4 Test Results	
3. 20 dB BW	
3.1 Test Setup	
3.2 Limit	
3.3 Test Procedure	
3.4 Test Results	
4. Carrier Frequency Separation	
4.1 Test Setup	
4.2 Limit	
4.3 Procedure	
4.4 Test Results	
5. Number of Hopping Frequencies	
5.1 Test Setup	
5.2 Limit	
5.3 Procedure	
5.4 Test Results	
6. Time of Occupancy (Dwell Time)	. 34
6.1 Test Setup	
6.2 Limit	34
6.3 Test Procedure	34
6.4 Test Results	34
7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	. 39
7.1 Test Setup	39
7.2 Limit	39
7.3. Test Procedures	40
7.3.1. Test Procedures for Radiated Spurious Emissions	40
7.3.2. Test Procedures for Conducted Spurious Emissions	41
7.4. Test Results	42
7.4.1. Radiated Emissions	42
8. Transmitter AC Power Line Conducted Emission	. 46
8.1 Test Setup	46
8.2 Limit	46
8.3 Test Procedures	46
8.4. Test Results	
9. Antenna Requirement	
10. Occupied Bandwidth (99 %)	
10.1 Test Setup	
10.2 Limit	
10.3 Test Procedure	50
10.4 Test Results	50
APPENDIX I	
APPENDIX II	. 52

1. General Information

1.1 Testing Laboratory

DT&C	Co., I	Ltd.	
Standa	ard	Site num	ber Address
	\square	16578	42, Yurim-ro 154 beon-gil, Cheoin -gu, Yongin-si, Gyeonggi -do, South Korea 449-935
FCC		80448	42, Yurim-ro 154 beon-gil, Cheoin -gu, Yongin-si, Gyeonggi -do, South Korea 449-935
FUU		59674	42, Yurim-ro 154 beon-gil, Cheoin -gu, Yongin-si, Gyeonggi -do, South Korea 449-935
		67874	683-3, Yubang-dong, Cheoin-gu, Yongin-si, Kyeonggi-do, Korea, 449-080
10		5740A-	3 42, Yurim-ro 154 beon-gil, Cheoin -gu, Yongin-si, Gyeonggi -do, South Korea 449-935
IC		5740A-	2 683-3, Yubang-dong, Cheoin-gu, Yongin-si, Kyeonggi-do, Korea, 449-080
www.d	tnc.ne	<u>et</u>	
Telephone : +82-31-321-2664		+ 82-31-321-2664	
FAX : + 82		:	+ 82-31-321-1664

1.2 Details of Applicant

Applicant	:	SD Biosensor, Inc.
Address	:	C-4th&5th, 16, Deogyeong-daero, 1556beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do South Korea 443-813
Contact person	:	Kim Jae Young

1.3 EUT information

1.3.1 Description of EUT

EUT	SD BT DONGLE
Model Name	FA-DG
Add Model Name	NA
Serial Number	Identical prototype
Hardware version	1.0.0
Software version	1.0.0
Power Supply	DC 3.7 V
Frequency Range	2402 MHz ~ 2480 MHz
Modulation Technique	GFSK, π/4DQPSK, 8DPSK
Number of Channels	79
Antenna Type	Chip Antenna
Antenna Gain	PK : 0.00 dBi

1.3.2. Support equipment

Equipment	Model No.	Serial No.	Manufacturer	Note.
Analyzer	SD F100	FA10A02AA0050	SD Biosensor, Inc.	-
-	-	-	-	-

1.3.3. Declaration by the applicant / manufacturer

1.4 Information about the FHSS characteristics

- This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following :
 - A) The hopping sequence is pseudorandom
 - B) All channels are used equally on average
 - C) The receiver input bandwidth equals the transmit bandwidth
 - D) The receiver hops in sequence with the transmit signal
- 15.247(g) : In accordance with the Bluetooth Industry Standard, the system is designed to comply with all
 of the regulations in Section 15.247 when the transmitter is presented with a continuous data
 (or information) system.
- 15.247(h) : In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection / hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.
- 15.247(h): The EUT employs Adaptive Frequency Hopping (AFH) which identifies sources of interference namely devices operating in 802.11 WLAN and excludes them from the list of available channels. The process of re-mapping reduces the number of test channels from 79 channels to a minimum number of 20 channels.

1.5 Test conditions

Ambient Condition			
Temperature	+22 °C ~ +26 °C		
Relative Humidity	42 % ~ 46 %		

1.6 Measurement Uncertainty

Test items	Measurement uncertainty		
Transmitter Output Power	0.90 dB (The confidence level is about 95 %, $k = 2$)		
Conducted spurious emission	1.0 dB (The confidence level is about 95 %, $k = 2$)		
AC conducted emission	2.4 dB (The confidence level is about 95 %, $k = 2$)		
Radiated spurious emission (1 GHz Below)	5.1 dB (The confidence level is about 95 %, k = 2)		
Radiated spurious emission (1 GHz ~ 18 GHz)	5.4 dB (The confidence level is about 95 %, k = 2)		
Radiated spurious emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, $k = 2$)		

1.7 Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N	
MXA Signal Analyzer	Agilent Technologies	N9020A	16/03/11	17/03/11	MY50200828	
MXA Signal Analyzer	Agilent Technologies	N9020A	16/10/11	17/10/11	MY46471251	
Dynamic Measurement DC Source	Agilent Technologies	66332A	16/09/08	17/09/08	GB42110550	
Thermohygrometer	BODYCOM	BJ5478	16/04/22	17/04/22	120612-2	
Vector Signal Generator	Rohde Schwarz	SMBV100A	16/01/05 17/01/04	17/01/05 18/01/04	255571	
Signal Generator	Rohde Schwarz	SMF100A	16/06/23	17/06/23	102341	
Multimeter	HP	34401A	16/02/25 17/01/11	17/02/25 18/01/11	- 3146A13475	
Loop Antenna	Schwarzbeck	FMZB1513	16/04/22	18/04/22	1513-128	
Bilog Antenna	Schwarzbeck	VMLB9160	16/05/13	18/05/13	3358	
Horn Antenna	ETS-LINDGREN	3117	16/05/03	18/05/03	00140394	
Horn Antenna	A.H.Systems Inc.	SAS-574	15/04/30	17/04/30	154	
Highpass Filter	Wainwright Instruments	WHKX12- 2580-3000- 18000-80SS	16/09/09	17/09/09	3	
Highpass Filter	Wainwright Instruments	WHNX6-6320- 8000-26500- 40CC	16/09/13	17/09/13	1	
Due Alexa lifi e a	Arilant	8449B	16/02/24	17/02/24	2000 4 00270	
PreAmplifier	Agilent		17/01/11	18/01/11	- 3008A00370	
PreAmplifier	TSJ	MLA-010K01- B01-27	16/03/10	17/03/10	1844539	
	Dahda Cahurara	F0D7	16/02/25	17/02/25	101061	
EMI Test Receiver	Rohde Schwarz	ESR7	17/02/16	18/02/16	101061	
	Dahala Qaharan	5001	16/02/25	17/02/25	400004	
EMI Test Receiver	Rohde Schwarz	ESCI	17/02/16	18/02/16	100364	
Single-Phase Master	NF	4420	16/09/08	17/09/08	3049354420023	
LISN	тті	LISN1600	16/06/22	17/06/22	197204	
Artificial Mains Network	Narda S.T.S / PMM	da S.T.S / PMM PMM L2-16B 16/06/22 17/06/22 000WX		000WX20305		
Power Meter & Wide Bandwidth Sensor	Anritsu	ML2495A MA2490A	16/10/19	17/10/19	1338003 1249304	

1.8 Summary of Test Results

FCC Part RSS Std.	Parameter	Limit (Using in 2400~ 2483.5 MHz)	Test Condition	Status Note 1
	Carrier Frequency Separation	>= 25 kHz or >= Two thirds of the 20 dB BW, whichever is greater.		С
15.247(a) RSS-247(5.1)	Number of Hopping Frequencies	>= 15 hops		С
100 247(0.1)	20 dB Bandwidth	N/A		С
	Dwell Time	=< 0.4 seconds		С
15.247(b) RSS-247(5.4)	Transmitter Output Power	For FCC =< 1 Watt, if CHs >= 75 Others =< 0.125 W For IC if CHs >= 75 =< 1 Watt For Conducted Power =< 4 Watt For e.i.r.p, Others =< 0.125 W For Conducted Power. =< 0.5 Watt For e.i.r.p	Conducted	С
15.247(d) RSS-247(5.5)	Conducted Spurious Emissions	The radiated emission to any 100 kHz of out-band shall be at least 20 dB below the highest in-band spectral density.		С
RSS Gen(6.6)	Occupied Bandwidth (99 %)	N/A		NA
15.247(d) 15.205 & 209 RSS-247(5.5) RSS-Gen (8.9 & 8.10)	Radiated Spurious Emissions	FCC 15.209 Limits RSS-Gen 8.9	Radiated	C Note2
15.207 RSS-Gen(8.8)	AC Conducted Emissions	FCC 15.207 Limits	AC Line Conducted	С
15.203 RSS-Gen(8.3)	Antenna Requirements	FCC 15.203	-	С
Note 3 : The samp	NC = Not Comply NT = Not T tem was performed in each axis and t ble was tested according to the followin 63.10-2013	he worst case data was reported.		

1.9 Conclusion of worst-case and operation mode

The EUT has three type of modulation (GFSK, π /4DQPSK and 8DPSK).

Therefore all applicable requirements were tested with all the modulations.

And packet type was tested at the worst case(DH5).

The field strength of spurious emission was measured in three orthogonal EUT positions (X-axis, Y-axis and Z-axis).

Tested frequency information,

- Hopping Function : Enable

	TX Frequency (MHz)	RX Frequency (MHz)	
Hopping Band	2402 ~ 2480	2402 ~ 2480	

- Hopping Function : Disable

	TX Frequency (MHz)	RX Frequency (MHz)
Lowest Channel	2402	2402
Middle Channel	2441	2441
Highest Channel	2480	2480

2. Maximum Peak Output Power Measurement

2.1 Test Setup

Refer to the APPENDIX I.

2.2 Limit

FCC Requirements

The maximum peak output power of the intentional radiator shall not exceed the following :

- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- §15.247(b)(1), For frequency hopping systems operating in the 2400 2483.5 MHz employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725 5805 MHz band : 1 Watt.

IC Requirements

1. RSS-247(5.4), For FHSS operating in the band 2400 - 2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels the maximum peak conducted output power shall not exceed 0.125 W and the e.i.r.p. shall not exceed 0.5 W if the hopset uses less than 75 hopping channels

2.3 Test Procedure

- 1. The RF output power was measured with a spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using ;

```
Span = approximately 5 times of the 20 dB bandwidth, centered on a hopping channel
```

RBW ≥ 20 dB BW VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold

2.4 Test Results

Modulation	Tested Channel		Average t Power	Peak Output Power		
Modulation	Testeu Ghannei	dBm	mW	dBm	mW	
	Lowest	-5.45	0.285	-4.37	0.366	
<u>GFSK</u>	Middle	-2.30	0.589	-1.02	0.791	
	Highest	1.17	1.309	2.43	1.750	
	Lowest	-8.45	0.143	-5.42	0.287	
<u>π/4DQPSK</u>	Middle	-4.18	0.382	-1.51	0.706	
	Highest	-0.74	0.843	1.95	1.567	
	Lowest	-8.36	0.146	-5.18	0.303	
<u>8DPSK</u>	Middle	-4.16	0.384	-1.44	0.718	
	Highest	-0.73	0.845	2.00	1.585	

Note 1 : The frame average output power was tested using an average power meter for reference only. Note 2 : See next pages for actual measured spectrum plots.

Lowest Channel & Modulation : GFSK

Peak Output Power

Middle Channel & Modulation : GFSK

Highest Channel & Modulation : GFSK

Peak Output Power

Lowest Channel & Modulation : π/4DQPSK

Middle Channel & Modulation : π/4DQPSK


Peak Output Power

<u>Highest Channel & Modulation : π/4DQPSK</u>

Lowest Channel & Modulation : 8DPSK

Peak Output Power

Middle Channel & Modulation : 8DPSK

Highest Channel & Modulation : 8DPSK

3. 20 dB BW

3.1 Test Setup

Refer to the APPENDIX I.

3.2 Limit

Limit : Not Applicable

3.3 Test Procedure

- 1. The 20 dB bandwidth were measured with a spectrum analyzer connected to RF antenna Connector (conducted measurement) while EUT was operating in transmit mode. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using below setting: RBW shall be in the range of 1% to 5% of the 20 dB bandwidth and VBW ≥ 3 × RBW, Span = between two times and five times the 20 dB bandwidth.

Modulation	Tested Channel	20 dB BW (MHz)		
	Lowest	0.714		
<u>GFSK</u>	Middle	0.720		
	Highest	0.711		
	Lowest	1.140		
<u>π/4DQPSK</u>	Middle	1.140		
	Highest	1.143		
	Lowest	1.107		
<u>8DPSK</u>	Middle	1.107		
	Highest	1.113		

3.4 Test Results

Note 1 : See next pages for actual measured spectrum plots.

Lowest Channel & Modulation : GFSK

20 dB Bandwidth

Middle Channel & Modulation : GFSK

Highest Channel & Modulation : GFSK

20 dB Bandwidth

Lowest Channel & Modulation : π/4DQPSK

Middle Channel & Modulation : π/4DQPSK

20 dB Bandwidth

Highest Channel & Modulation : π/4DQPSK

Lowest Channel & Modulation : 8DPSK

20 dB Bandwidth

Middle Channel & Modulation : 8DPSK

Highest Channel & Modulation : 8DPSK

4. Carrier Frequency Separation

4.1 Test Setup

Refer to the APPENDIX I.

4.2 Limit

Limit : \geq 25 kHz or \geq Two-Thirds of the 20 dB BW whichever is greater.

4.3 Procedure

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the markerdelta function was recorded as the measurement results.

The spectrum analyzer is set to :

Span = wide enough to capture the peaks of two adjacent channels

RBW = Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW	Sweep = auto
Detector function = peak	Trace = max hold

4.4 Test Results

FH mode

Hopping Mode	Modulation	Peak of center channel (MHz)	Peak of adjacent Channel (MHz)	Test Result (MHz)
	GFSK	2411.003	2412.003	1.000
Enable	π/4DQPSK	2411.006	2412.006	1.000
	8DPSK	2411.003	2412.003	1.000

AFH mode

Hopping Mode	Modulation	Peak of center channel (MHz)	Peak of adjacent Channel (MHz)	Test Result (MHz)
	GFSK	2411.000	2412.000	1.000
Enable	π/4DQPSK	2411.003	2412.003	1.000
	8DPSK	2411.003	2412.003	1.000

Note 1 : See next pages for actual measured spectrum plots.

- Minimum Standard :

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400 - 2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

Carrier Frequency Separation (FH)

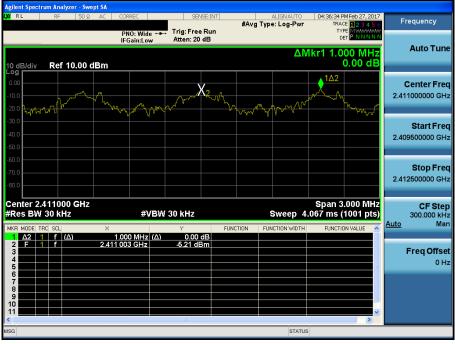
Carrier Frequency Separation (FH)

<u>Hopping mode : Enable & π/4DQPSK</u>

Carrier Frequency Separation (FH)

Carrier Frequency Separation (AFH) Hor

Carrier Frequency Separation (AFH)


Hopping mode : Enable & π/4DQPSK

Carrier Frequency Separation (AFH)

5. Number of Hopping Frequencies

5.1 Test Setup

Refer to the APPENDIX I.

5.2 Limit

Limit : >= 15 hops

5.3 Procedure

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, two frequency ranges for FH mode within the 2400 ~ 2483.5 MHz were examined.

The spectrum analyzer is set to :

Span for FH mode = 50 MHz	Start Frequency = 2391.5 MHz,	Stop Frequency = 2441.5 MHz
	Start Frequency = 2441.5 MHz,	Stop Frequency = 2491.5 MHz
Span for AFH mode = 50 MHz	Start Frequency = 2396.0 MHz,	Stop Frequency = 2426.0 MHz
RBW = To identify clearly the ind or the 20 dB bandwidth, w		less than 30% of the channel spacing
VBW ≥ RBW	Sweep = auto	
Detector function = peak	Trace = max hold	

5.4 Test Results

FH mode

Hopping mode	Modulation	Test Result (Total Hops)
	GFSK	79
Enable	π/4DQPSK	79
	8DPSK	79

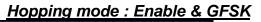
AFH mode

Hopping mode	Modulation	Test Result (Total Hops)
	GFSK	20
Enable	π/4DQPSK	20
	8DPSK	20

Note 1 : See next pages for actual measured spectrum plots.

- Minimum Standard :

At least 15 hopes

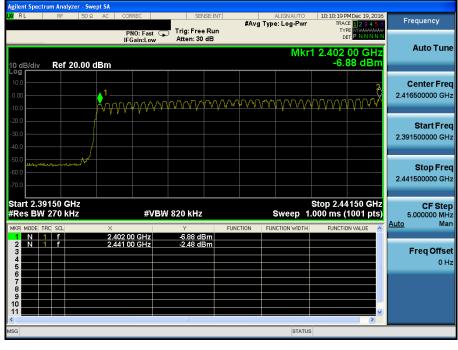


Number of Hopping Frequencies 1(FH)

Hopping mode : Enable & GFSK

Agrient Spectrum Analyzer - Swept SA LXI RL RF 50Ω AC CC	DRREC SEN			4Dec 19, 2016	Frequency
F	NO: Fast 😱 Trig: Free		TYP	123456 MWWWWWW PNNNNN	requercy
IF	Gain:Low Atten: 30	dB			Auto Tune
10 dB/div Ref 20.00 dBm			Mkr2 2.441 (-1.2	27 dBm	
Log					
10.0				~ 2	Center Freq
	ากกกกกกกกก	กกกกกกกกก	ากกกกกกกก		2.416500000 GHz
-20.0	*****		1 7 7 7 7 7 7 7 7 7	YYYI	
-30.0					Start Freq 2.391500000 GHz
-40.0					2.391500000 GHz
-50.0					
-60.0					Stop Freq 2.441500000 GHz
-70.0				_	2.441300000 GHz
Start 2.39150 GHz			Stop 2.44		CF Step
#Res BW 270 kHz	#VBW 820 kHz	S	weep 1.000 ms (1		5.000000 MHz
MKR MODE TRC SCL X	00 GHz -4.95 dE		TION WIDTH FUNCTIO	N VALUE	<u>Auto</u> Man
	00 GHz -1.27 dE				Freq Offset
4					0 Hz
6					
7 8 					
9					
11 <				→	
MSG			STATUS		

Number of Hopping Frequencies 2(FH)



Number of Hopping Frequencies 1(FH)

Hopping mode : Enable & π/4DQPSK

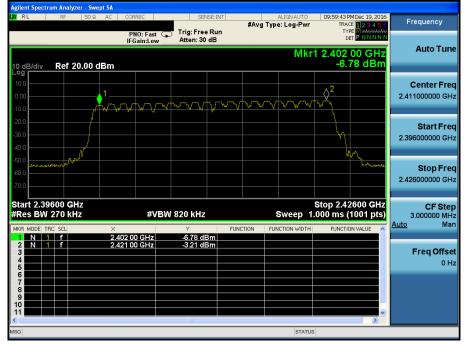
Number of Hopping Frequencies 2(FH)

Hopping mode : Enable & π/4DQPSK

Number of Hopping Frequencies 1(FH)

Agilent Spec												
L <mark>XI</mark> RL	RF	50 Ω	AC	CORREC		SENS	E:INT	#0	ALIGNAUTO vpe: Log-Pwr		PMDec 19, 2016	Frequency
				PNO: Fast	Trig	: Free F	Run	#Avg i	ype: Log-Pwr	Th	PE MWWWWW	
				IFGain:Low	Atte	en: 30 d	В				P N N N N N	
									Mki	r2 2.441	00 GHz	Auto Tune
10 dB/div	Ref	20.00	dBm							-2.	11 dBm	
Log												
10.0											2	Center Freq
0.00			1				0000	0000			n n n n n	2.416500000 GHz
-10.0			Anr.	$\gamma\gamma\gamma\gamma\gamma\gamma\gamma$	VVVV	A & A	ራቢላሽ	VVVЧ	AAANAM	$\gamma \gamma \gamma \gamma \gamma \gamma \gamma$	A A A A A A	
-20.0			1									
-30.0												Start Freq
-40.0												2.391500000 GHz
		, I										
-50.0	manerod	mall										Stop Freq
-60.0												2.441500000 GHz
-70.0												2.441500000 GH2
Start 2.3 #Res BW				41.1	BW 820				Current (4150 GHz (1001 pts)	CF Step
_		лZ		#V	DVV 820	КПZ			Sweep			5.000000 MHz Auto Man
MKR MODE			×		Y			TION	FUNCTION WIDTH	FUNCTI	ON VALUE	Adto Mari
1 N 2 N	1 f 1 f		2.4	102 00 GHz 141 00 GHz	-6.	.79 dBr .11 dBr	n n					
3												Freq Offset
4 5											_	0 Hz
6												
7 8	$\rightarrow \rightarrow$											
9												
10											~	
<						Ш					>	
MSG									STATU	IS		

Number of Hopping Frequencies 2(FH)


Number of Hopping Frequencies 1(AFH)

Hopping mode : Enable & GFSK

Number of Hopping Frequencies 1(AFH)

Number of Hopping Frequencies 1(AFH)

6. Time of Occupancy (Dwell Time)

6.1 Test Setup

Refer to the APPENDIX I.

6.2 Limit

The maximum permissible time of occupancy is 400 ms within a period of 400 ms multiplied by the number of hopping channels employed.

6.3 Test Procedure

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to :

Center frequency for FH mode = 2441 MHz

Center frequency for A FH mode = 2411 MHz

RBW = 1 MHz (RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel)

VBW ≥ RBW	Span = zero
Detector function = peak	Trace = max hold

6.4 Test Results

FH mode

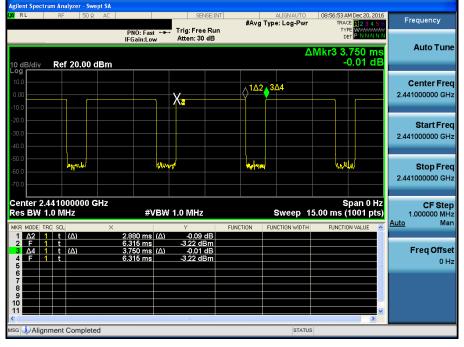
Hopping mode	Packet Type	Number of hopping Channels	Burst On Time (ms)	Period (ms)	Test Result (sec)
Enable	DH 5	79	2.880	3.750	0.307
	2 DH 5	79	2.880	3.750	0.307
	3 DH 5	79	2.880	3.750	0.307

AFH mode

Hopping mode	Packet Type	Number of hopping Channels	Burst On Time (ms)	Period (ms)	Test Result (sec)
Enable	DH 5	20	2.880	3.750	0.154
	2 DH 5	20	2.880	3.750	0.154
	3 DH 5	20	2.880	3.750	0.154

Note 1 : Dwell Time = 0.4 × Hopping channel × Burst ON time × ((Hopping rate ÷ Time slots) ÷ Hopping channel)

- Time slots for DH5 = 6 slots (TX = 5 slot / RX = 1 slot)


- Hopping Rate = 1600 for FH mode & 800 for AFH mode

Note 2 : See next pages for actual measured spectrum plots.

Hopping mode : Enable & DH 5

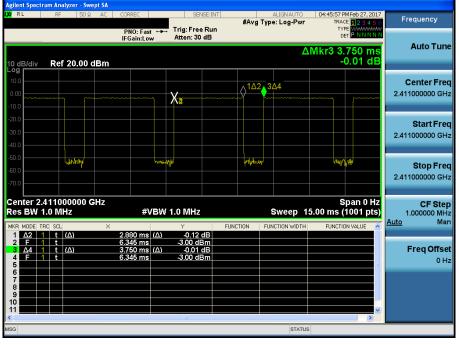
Time of Occupancy (FH)

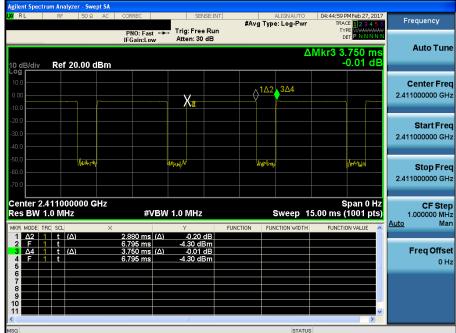
Time of Occupancy (FH)

Hopping mode : Enable & 2 DH 5

Hopping mode : Enable & 3 DH 5

Time of Occupancy (FH)




Hopping mode : Enable & DH 5

Time of Occupancy (AFH)

Time of Occupancy (AFH)

<u>Hopping mode : Enable & 2 DH 5</u>

Hopping mode : Enable & 3 DH 5

Time of Occupancy (AFH)

7. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission

7.1 Test Setup

Refer to the APPENDIX I.

7.2 Limit

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval , as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.209(a) (see section §15.205(c))

According to § 15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table

Frequency (MHz)	Limit (uV/m)	Measurement Distance (meter)
0.009 ~ 0.490	2400/F (kHz)	300
0.490 ~ 1705	24000/F (kHz)	30
1705 ~ 30.0	30	30
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54 - 72 MHz, 76 - 88 MHz, 174 - 216 MHz or 470 - 806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below :

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	1300 ~ 1427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1435 ~ 1626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.1735 ~ 2.1905	12.51975 ~ 12.52025	149.9 ~ 150.05	1645.5 ~ 1646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.57675 ~ 12.57725	156.52475 ~ 156.52525	1660 ~ 1710	8.025 ~ 8.5	22.01 ~ 23.12
4.17725 ~ 4.17775	13.36 ~ 13.41	156.7 ~ 156.9	1718.8 ~ 1722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.20725 ~ 4.20775	16.42 ~ 16.423	162.0125 ~ 167.17	2200 ~ 2300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	167.72 ~ 173.2	2310 ~ 2390	10.6 ~ 12.7	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	240 ~ 285	2483.5 ~ 2500	13.25 ~ 13.4	Above 38.6
6.31175 ~ 6.31225	25.5 ~ 25.67	322 ~ 335.4	2655 ~ 2900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3260 ~ 3267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3332 ~ 3339		
8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1240	3345.8 ~ 3358		
			3600 ~ 4400		

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

7.3. Test Procedures

7.3.1. Test Procedures for Radiated Spurious Emissions

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 1 or 3 meter away from the interference-receiving antenna.
- 3. For measurements above 1GHz absorbers are placed on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1 GHz, the absorbers are removed.
- 4. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 5. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 6. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- NOTE 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- NOTE 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.
- NOTE 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1 kHz for Average detection (AV) at frequency above 1 GHz.

7.3.2. Test Procedures for Conducted Spurious Emissions

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. The **reference level** of the fundamental frequency was measured with the spectrum analyzer using RBW = 100 kHz, VBW = 300 kHz.
- 3. The conducted spurious emission was tested each ranges were set as below.

Frequency range : 9 kHz ~ 30 MHz RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

Frequency range : 30 MHz ~ 10 GHz, 10 GHz ~ 25 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

7.4. Test Results

7.4.1. Radiated Emissions

9 kHz ~ 25 GHz Data (Modulation : GFSK)

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2388.28	Н	Х	PK	45.66	0.77	N/A	N/A	46.43	74.00	27.57
2388.28	Н	Х	AV	35.53	0.77	-24.79	N/A	11.51	54.00	42.49
4803.90	Н	Y	PK	51.86	7.63	N/A	N/A	59.49	74.00	14.51
4804.01	Н	Y	AV	47.64	7.63	-24.79	N/A	30.48	54.00	23.52

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4882.04	Н	Y	PK	51.45	7.30	N/A	N/A	58.75	74.00	15.25
4882.07	Н	Y	AV	48.17	7.30	-24.79	N/A	30.68	54.00	23.32

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.71	V	Y	PK	52.79	1.10	N/A	N/A	53.89	74.00	20.11
2483.71	V	Y	AV	42.20	1.10	-24.79	N/A	18.51	54.00	35.49
4959.96	V	Y	PK	50.56	7.48	N/A	N/A	58.04	74.00	15.96
4960.07	V	Y	AV	46.25	7.48	-24.79	N/A	28.94	54.00	25.06

<u>Note.</u>

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)

- Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = 2.88 ms

- 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.7 = 2

- The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms

- D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB

4. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain.

9 kHz ~ 25 GHz Data (Modulation : π /4DQPSK)

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2389.45	Н	Х	PK	45.36	0.78	N/A	N/A	46.14	74.00	27.86
2389.45	Н	Х	AV	35.32	0.78	-24.79	N/A	11.31	54.00	42.69
4804.01	Н	Х	PK	50.74	7.63	N/A	N/A	58.37	74.00	15.63
4803.88	Н	Х	AV	44.03	7.63	-24.79	N/A	26.87	54.00	27.13

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4882.21	Н	Х	PK	50.36	7.30	N/A	N/A	57.66	74.00	16.34
4882.04	Н	Х	AV	43.93	7.30	-24.79	N/A	26.44	54.00	27.56

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.64	V	Y	PK	53.49	1.10	N/A	N/A	54.59	74.00	19.41
2483.64	V	Y	AV	40.97	1.10	-24.79	N/A	17.28	54.00	36.72
4959.79	Н	Y	PK	50.80	7.48	N/A	N/A	58.28	74.00	15.72
4960.03	Н	Y	AV	43.82	7.48	-24.79	N/A	26.51	54.00	27.49

<u>Note.</u>

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)

- Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = 2.88 ms

- 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.7 \approx 2

- The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms

- D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB

4. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain.

9 kHz ~ 25 GHz Data (Modulation : <u>8DPSK</u>)

Lowest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2388.94	Н	Х	PK	46.18	0.77	N/A	N/A	46.95	74.00	27.05
2388.94	Н	Х	AV	35.15	0.77	-24.79	N/A	11.13	54.00	42.87
4803.85	Н	Y	PK	50.69	7.63	N/A	N/A	58.32	74.00	15.68
4804.04	Н	Y	AV	43.37	7.63	-24.79	N/A	26.21	54.00	27.79

Middle Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
4881.80	Н	Y	PK	51.89	7.31	N/A	N/A	59.20	74.00	14.80
4882.00	Н	Y	AV	46.00	7.30	-24.79	N/A	28.51	54.00	25.49

Highest Channel

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2483.62	V	Y	PK	50.21	1.10	N/A	N/A	51.31	74.00	22.69
2483.62	V	Y	AV	39.34	1.10	-24.79	N/A	15.65	54.00	38.35
4960.03	Н	Y	PK	50.14	7.48	N/A	N/A	57.62	74.00	16.38
4960.05	Н	Y	AV	45.11	7.48	-24.79	N/A	27.80	54.00	26.20

<u>Note.</u>

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)

- Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = **2.88 ms**

- 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.7 \approx 2

- The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms

- D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB

4. Sample Calculation.

Margin = Limit - Result / Result = Reading + T.F + D.C.F / T.F = AF + CL - AG

Where, T.F = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain.

9 kHz ~ 25 GHz Data (Hopping mode)

Modulation : GFSK

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2387.88	Н	Х	PK	46.46	0.76	N/A	N/A	47.22	74.00	26.78
2387.88	Н	Х	AV	35.45	0.76	-24.79	N/A	11.42	54.00	42.58
2483.64	V	Y	PK	50.91	1.10	N/A	N/A	52.01	74.00	21.99
2483.64	V	Y	AV	42.31	1.10	-24.79	N/A	18.62	54.00	35.38

Modulation : π/4DQPSK

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2389.02	Н	Х	PK	46.41	0.77	N/A	N/A	47.18	74.00	26.82
2389.02	Н	Х	AV	35.43	0.77	-24.79	N/A	11.41	54.00	42.59
2484.37	V	Y	PK	51.40	1.11	N/A	N/A	52.51	74.00	21.49
2484.37	V	Y	AV	38.79	1.11	-24.79	N/A	15.11	54.00	38.89

Modulation : 8DPSK

Frequency (MHz)	ANT Pol	The worst case EUT Position (Axis)	Detector Mode	Reading (dBuV)	T.F (dB/m)	D.C.F (dB)	Distance Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)
2388.30	Н	Х	PK	46.10	0.77	N/A	N/A	46.87	74.00	27.13
2388.30	Н	Х	AV	35.34	0.77	-24.79	N/A	11.32	54.00	42.68
2483.83	V	Y	PK	50.08	1.10	N/A	N/A	51.18	74.00	22.82
2483.83	V	Y	AV	39.94	1.10	-24.79	N/A	16.25	54.00	37.75

Note.

1. No other spurious and harmonic emissions were found greater than listed emissions on above table.

2. Information of Distance Factor

For finding emissions, the test distance might be reduced from 3m to 1m. In this case, the distance factor(-9.54dB) is applied to the result.

- Calculation of distance factor = 20 log(applied distance / required distance) = 20 log(1 m / 3 m) = -9.54 dB

When distance factor is "N/A", the distance is 3 m and distance factor is not applied.

3. D.C.F Calculation. (D.C.F = Duty Cycle Correction Factor)

- Time to cycle through all channels = Δt = T [ms] X 20 minimum hopping channels , where T = pulse width = 2.88 ms

- 100 ms / Δt [ms] = H -> Round up to next highest integer, to account for worst case, H' = 100 / (2.88 X 20) = 1.7 \approx 2

- The Worst Case Dwell Time = T [ms] x H' = 2.88 ms X 2 = 5.76 ms

- D.C.F = 20 Log(The Worst Case Dwell Time / 100 ms) dB = 20 log(5.76 / 100) = -24.79 dB

4. Sample Calculation.

 $\begin{aligned} \text{Margin} = \text{Limit} - \text{Result} & / \text{Result} = \text{Reading} + \text{T.F} + \text{D.C.F} & / \text{T.F} = \text{AF} + \text{CL} - \text{AG} \\ \text{Where, T.F} = \text{Total Factor, } \text{AF} = \text{Antenna Factor, } \text{CL} = \text{Cable Loss, } \text{AG} = \text{Amplifier Gain.} \end{aligned}$

8. Transmitter AC Power Line Conducted Emission

8.1 Test Setup

See test photographs for the actual connections between EUT and support equipment.

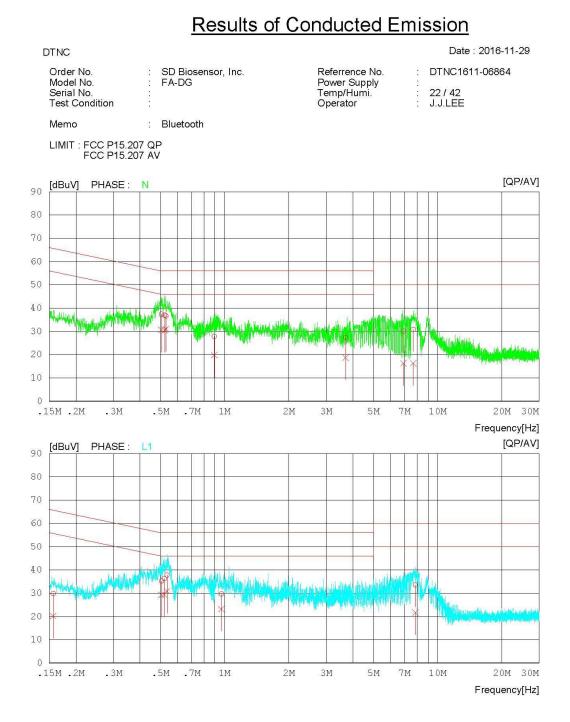
8.2 Limit

According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

Frequency Range (MHz)	Conducted Limit (dBuV)						
Frequency Range (Minz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5 ~ 30	60	50					

* Decreases with the logarithm of the frequency


8.3 Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

8.4. Test Results

AC Line Conducted Emissions (Graph) & Modulation: <u>GFSK</u>

AC Line Conducted Emissions (List) & Modulation: GFSK

Results of Conducted Emission

DTNC			Date : 2016-11-29
Order No. Model No. Serial No. Test Condition	SD Biosensor, Inc. FA-DG	Referrence No. Power Supply Temp/Humi. Operator	DTNC1611-06864 22 / 42 J.J.LEE
Memo	: Bluetooth		
LIMIT : FCC P15 FCC P15			
NO FREQ [MHz]	READING C.FACTOR QP AV [dBuV][dBuV] [dB]	RESULT LIMIT QP AV QP AV [dBuV][dBuV][dBuV]	MARGIN PHASE QP AV [dBuV][dBuV]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccc} 27.3 & 20.5 & 10.1 \\ 26.9 & 20.4 & 10.1 \\ 26.5 & 20.9 & 10.1 \\ 17.6 & 9.6 & 10.2 \\ 17.1 & 8.4 & 10.3 \\ 19.6 & 5.8 & 10.5 \\ 20.3 & 5.8 & 10.5 \\ 20.3 & 5.8 & 10.5 \\ 19.7 & 10.1 & 10.0 \\ 25.1 & 19.1 & 10.1 \\ 26.1 & 19.3 & 10.1 \\ 27.5 & 20.8 & 10.1 \\ 19.4 & 12.9 & 10.2 \\ 22.9 & 11.1 & 10.6 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.6 15.4 N 19.0 15.5 N 19.4 15.0 N 28.2 26.2 N 28.6 27.3 N 29.9 33.7 N 29.2 33.7 N 20.8 16.8 L1 19.8 16.6 L1 18.4 15.1 L1 26.4 22.9 L1

9. Antenna Requirement

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

Conclusion: Comply

The antenna is attached on the PCB.

- Minimum Standard :

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

10. Occupied Bandwidth (99 %)

10.1 Test Setup

Refer to the APPENDIX I.

10.2 Limit

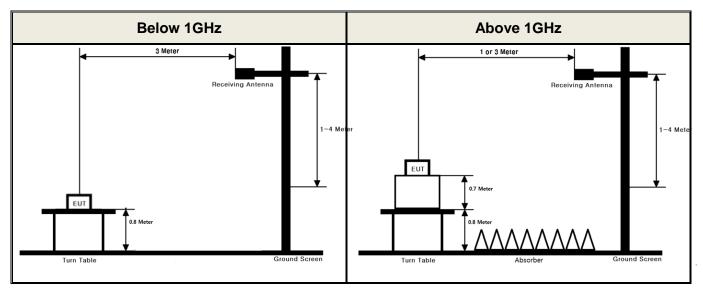
Limit : Not Applicable

10.3 Test Procedure

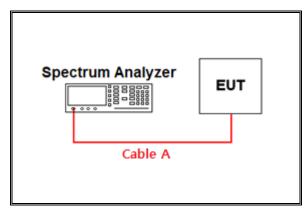
The 99 % power bandwidth was measured with a calibrated spectrum analyzer.

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately $3 \times RBW$.

Spectrum analyzer plots are included on the following pages.


10.4 Test Results

Not Applicable


APPENDIX I

Test set up diagrams

Radiated Measurement

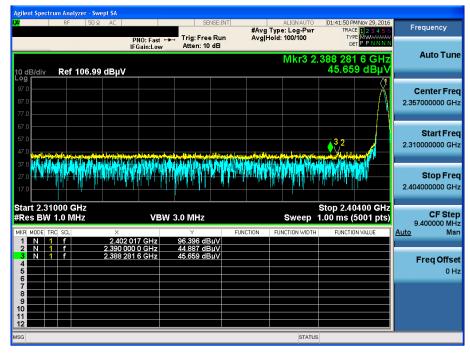
Conducted Measurement

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	0.63	15	5.10
1	1.52	20	5.59
2.402 & 2.441 & 2.480	2.10	25	6.34
5	2.83	-	-
10	3.89	-	-

Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.

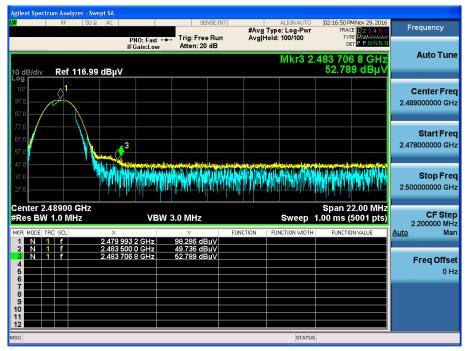
Path loss (S/A's Correction factor) = Cable A + Power splitter



APPENDIX II

Unwanted Emissions (Radiated) Test Plot

GFSK & Lowest & X & Hor



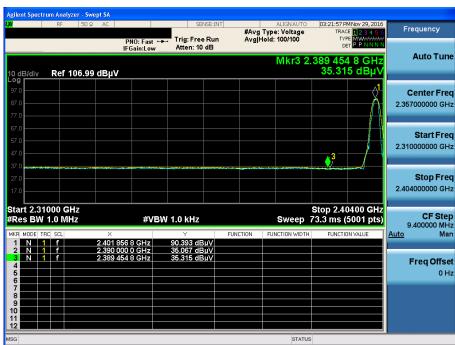
GFSK & Lowest & X & Hor

Spectrum Analyzer - Swept SA Frequency #Avg Type: Voltage Avg|Hold: 100/100 Trig: Free Run Atten: 10 dB TYPE DET PNO: Fast 🔸 Auto Tune Mkr3 2.388 281 6 GH: 35.530 dBµ\ Ref 106.99 dBµV **Center Freq** 2.357000000 GHz Start Freq 2.310000000 GHz <mark>♦</mark>32 Stop Freq 2.404000000 GHz Stop 2.40400 GHz 73.3 ms (5001 pts) Start 2.31000 GHz #Res BW 1.0 MHz CF Step 9.400000 MHz Man #VBW 1.0 kHz Sweep FUNCTION Auto Bµ\ Freq Offset 0 Hz STATUS

GFSK & Highest & Y & Ver

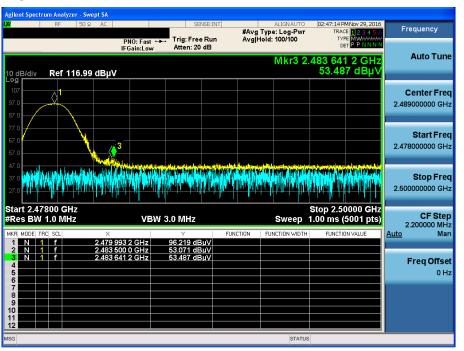
Detector Mode : AV

GFSK & Highest & Y & Ver



$\pi/4DQPSK$ & Lowest & X & Hor

Detector Mode : PK


Agilent Spectrum Analyzer - Swept SA				
LXV RF 50Ω AC	RNO: East	#Avg Type: Log-Pwr	03:20:59 PMNov 29, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
	IFGain:Low Atten: 10 dB		оет Р Р N N N 389 454 8 GHz 45.356 dBµV	Auto Tune
97.0 87.0 77.0				Center Freq 2.357000000 GHz
67.0 57.0 47.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	- III IIII IIII	sets discussion of the design	3	Start Freq 2.310000000 GHz
37.0 44.0 10.	de la constant de la La constant de la cons			Stop Fred 2.404000000 GHz
Start 2.31000 GHz #Res BW 1.0 MHz	VBW 3.0 MHz		Stop 2.40400 GHz 1.00 ms (5001 pts) FUNCTION VALUE	CF Step 9.400000 MHz Auto Man
1 N 1 f 2.4018 2 N 1 f 2.3900	56 8 GHz 91.868 dBµV 00 0 GHz 44.541 dBµV 54 8 GHz 45.356 dBµV		TONCHON VALUE	Freq Offset
7 8 9 9 10 11 11 12				
MSG		STATUS		

π/4DQPSK & Lowest & X & Hor

π/4DQPSK & Highest & Y & Ver

Detector Mode : AV

$\pi/4DQPSK$ & Highest & Y & Ver

8DPSK & Lowest & X & Hor

Detector Mode : PK

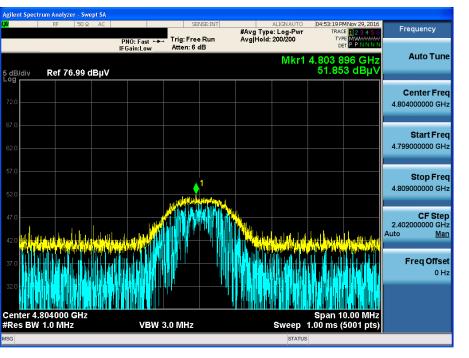
Agilent Spectrum A									
<mark>LXI</mark> F	RF 50 Ω	AC	SEN		ALIGNAUTO	TRAC	MNov 29, 2016	Freq	uency
		PNO: Fa: IFGain:Lo			Hold: 100/100	DE		A	uto Tun
10 dB/div R	ef 106.99	dBµV			WINTS 2.		2 8 GH2 1 dBµV		
97.0 97.0 87.0 77.0							Å		nter Fre 00000 GH
67.0 57.0 47.0					ter transfer al set of definitions	3 <u>2</u>			Start Free
37.0 44444 27.0 44444 17.0									Stop Fre 00000 GH
Start 2.31000 #Res BW 1.0		v	BW 3.0 MHz				0400 GHz 5001 pts)	9.40	CF Stej
MKR MODE TRC SI		× 2.401 856 8 GHz	Y 94,293 dBi	FUNCTION	FUNCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u>	Ma
2 N 1 f 3 N 1 f 4 5 6	7	2.390 000 0 GHz 2.388 942 6 GHz	43.628 dBj	iV				Fr	e q Offse 0 H
7 8 9 10 11									
12 MSG					STATUS	; ;			

Detector Mode : AV

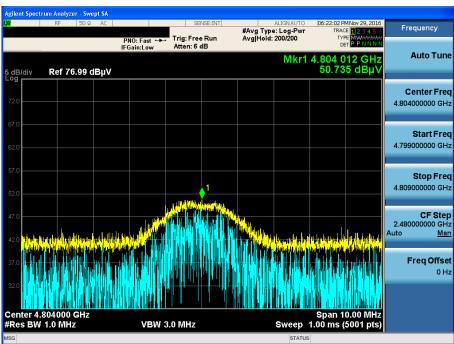
8DPSK & Lowest & X & Hor

	RF 50 :	Ω AC	PNO: Fast ←	▶ Trig: Free	Run A	ALIGN AUTO Avg Type: Voltage vg Hold: 100/100	TRAC	MNov 29, 2016 CE 1 2 3 4 5 6 PE MWWWWWWW ET P P N N N N	Frequency
) dB/div R	ef 106.9		Gain:Low	Atten: 10 c	18	Mkr3 2	2.388 94		Auto Tu
37.0 37.0								Å	Center Fr 2.357000000 G
57.0 57.0 17.0 37.0							32		Start Fr 2.310000000 G
17.0									Stop Fr 2.404000000 G
tart 2.3100 Res BW 1.0	MHz		#VB	W 1.0 kHz			73.3 ms (CF St 9.400000 M
KR MODE TRC S 1 N 1 1 2 N 1 1 3 N 1 1 4		× 2.401 856 2.390 000 2.388 942	0 GHz	93.218 dBµ 35.177 dBµ 35.142 dBµ	IV .			DN VALUE	Auto M Freq Offs 0
9									

8DPSK & Highest & Y & Ver

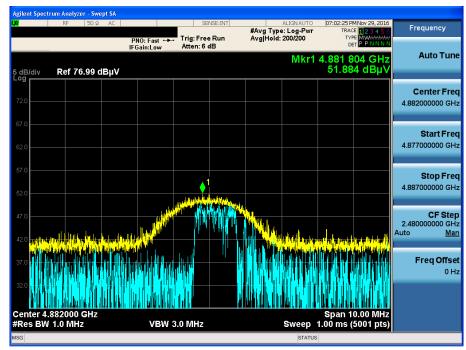

Detector Mode : AV

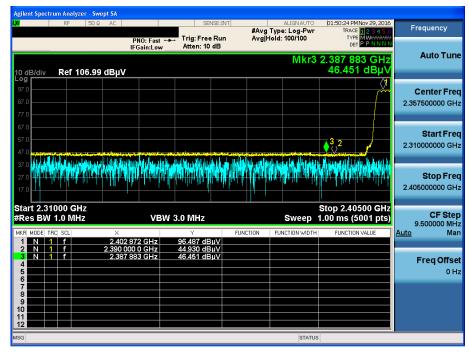
8DPSK & Highest & Y & Ver



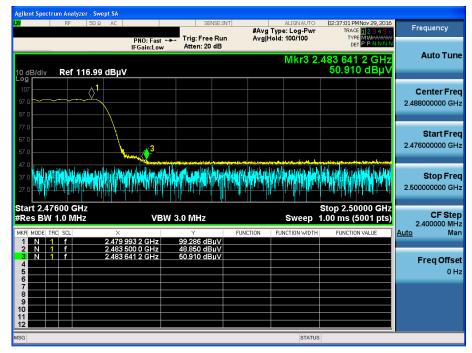
GFSK & Lowest & Y & Hor

π/4DQPSK & Lowest & X & Hor


Detector Mode : PK


8DPSK & Middle & Y & Hor

GFSK & Hopping mode & X & Hor

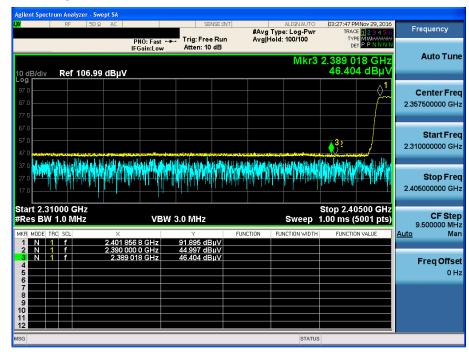


GFSK & Hopping mode & X & Hor

d RF	50Ω AC		SEN	SE:INT		ALIGN AUTO		MNov 29, 2016	Ereguener
		PNO: Fast IFGain:Low				pe: Voltage 1: 100/100	TY	CE 123456 PE MW MMMM ET P P N N N N	Frequency
10 dB/div Ref 10	6.99 dBµV					Mkr3		83 GHz 4 dBµV	Auto Tur
-og 97.0 87.0 77.0									Center Fre 2.357500000 GH
67.0 57.0 47.0							3 ,2		Start Fre 2.310000000 GH
27.0									Stop Fre 2.405000000 GH
Start 2.31000 GHz Res BW 1.0 MHz		#VE	3W 1.0 kHz			Sweep	Stop 2.4 74.3 ms (0500 GHz 5001 pts)	CF Ste 9.500000 MH
MKR MODE TRC SCL	× 2.402	872 GHz	96.084 dBi		TION FL	UNCTION WIDTH	FUNCTI	DN VALUE	<u>Auto</u> Ma
2 N 1 f 3 N 1 f 4 5 6	2.390 0	00 0 GHz 883 GHz	35.489 dB) 35.444 dB)						Freq Offs 0 H
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9									
12						STATUS			

GFSK & Hopping mode & Y & Ver

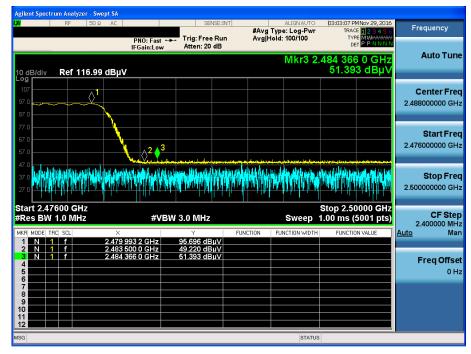
Detector Mode : AV


GFSK & Hopping mode & Y & Ver

		NO: Fast ↔ Gain:Low	 Trig: Free Run Atten: 20 dB 		lold: 100/100	DE	E MWWWWWWW T P P N N N N	Auto Tun
10 dB/div Ref 116.9	99 dBµV				Mkr3 2.		2 GHz 9 dBµV	Auto Tun
107 97.0 87.0	1							Center Fre 2.488000000 GH
77.0 67.0 57.0		∕ <u>∧</u> 3						Start Free 2.476000000 GH
47.0								Stop Free 2.500000000 GH
		#\/B)	№ 1.0 kHz			Stop 2.50 19.0 ms (000 GHz 5001 pts)	CF Ster 2.400000 MH
Start 2.47600 GHz #Res BW 1.0 MHz		<i>"</i> • D •						
#Res BW 1.0 MHz MKR MODE TRC SCL 1 N 1	× 2.479 993 :	2 GHz	γ 99.285 dBμV	FUNCTION	FUNCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> Mai
KRes BW 1.0 MHz		2 GHz 0 GHz	Y	FUNCTION	FUNCTION WIDTH	FUNCTIO	N VALUE	
#Res BW 1.0 MHz MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 5 5 5	2.479 993	2 GHz 0 GHz	γ 99.285 dBμV 43.833 dBμV	FUNCTION	FUNCTION WIDTH	Functio	N VALUE	<u>Auto</u> Ma Freq Offse

π/4DQPSK & Hopping mode & X & Hor

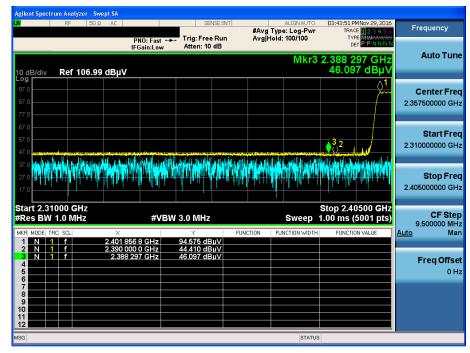
Detector Mode : PK


π /4DQPSK & Hopping mode & X & Hor

	n Analyzer - S	-		SEI	JSE:INT		ALIGN AUTO	03:32:02 P	MNov 29, 2016	
			PNO: Fast • IFGain:Low		Run		Type: Voltage Iold: 100/100	TRAC	E 123456 MW	Frequenc
0 dB/div	Ref 106.9		Guineow				Mkr3		18 GHz 7 dBµV	Auto 1
97.0 97.0 87.0 77.0										Center 2.357500000
67.0 57.0 47.0								32		Start 2.310000000
37.0 27.0 17.0										Stop 2.40500000
tart 2.310 Res BW 1			#VE	W 1.0 kHz			Sweep	Stop 2.4 74.3 ms (0500 GHz 5001 pts)	CF 9.500000
IKR MODE TRC	SCL f		6 8 GHz	Y 90.335 dB 35.453 dB	μV	INCTION	FUNCTION WIDTH	FUNCTIO	ON VALUE	<u>Auto</u>
3 N 1 4 5 6	f		018 GHz	35.427 dB						Freq O
7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9										
2										

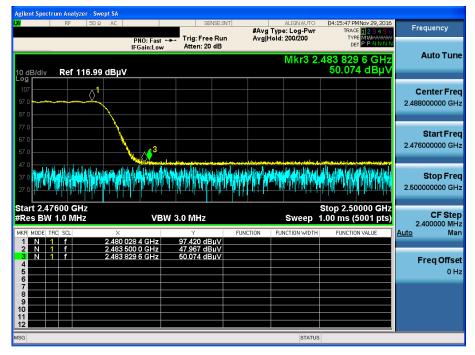
$\pi/4DQPSK$ & Hopping mode & Y & Ver

Detector Mode : PK


π /4DQPSK & Hopping mode & Y & Ver

8DPSK & Hopping mode & X & Hor

Detector Mode : PK



8DPSK & Hopping mode & X & Hor

RF	50Ω AC		SENS		ALIGN AUTO		MNov 29, 2016	Frequency
		PNO: Fast IFGain:Low	↔ Trig: Free F Atten: 10 d	lun Av	/g Type: Voltage g Hold: 100/100	TY	CE 123456 PE MW AJAMA ET P P N N N N	
0 dB/div Ref 10	6.99 dBµV				Mkr3		297 GHz 88 dBµV	Auto Tun
og 97.0 37.0 77.0							2 ¹	Center Fre 2.357500000 G⊦
57.0 57.0 47.0						32 32		Start Fre 2.310000000 G⊦
27.0 27.0 17.0								Stop Fre 2.405000000 G⊢
tart 2.31000 GHz Res BW 1.0 MHz		#VE	3W 1.0 kHz		Sweep	Stop 2.4 74.3 ms	0500 GHz (5001 pts)	CF Ste 9.500000 MH
IKR MODE TRC SCL		68 GHz	ү 93.385 dBµ'	FUNCTION	FUNCTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u> Ma
2 N 1 f 3 N 1 f 4 5 6	2.390 00	00 0 GHz 297 GHz	35.329 dBµ' 35.338 dBµ'	v V				FreqOffse 0 ⊢
7 8 9 10 2								
2 1					STATUS			

8DPSK & Hopping mode & Y & Ver

Detector Mode : AV

8DPSK & Hopping mode & Y & Ver

	AC	SENSE:INT		ALIGN AUTO		1Nov 29, 2016	Frequency
	PNO: Fast • IFGain:Low	Trig: Free Run Atten: 20 dB		#Avg Type: Voltage Avg Hold: 200/200		123456 MWWWWWW PPNNNN	
0 dB/div Ref 116.99 dl	BμV			Mkr3 2.483 829 6 0 39.931 dF			Auto Tur
og 107 37.0							Center Fre 2.488000000 GH
77.0 37.0 57.0	A23						Start Fre 2.476000000 GH
47.0 97.0 27.0			<u>- 100,</u>				Stop Fre 2.50000000 GH
art 2.47600 GHz Stop 2.50000 GHz Res BW 1.0 MHz #VBW 1.0 kHz Sweep 19.0 ms (5001 pts)						000 GHz 5001 pts)	CF Stej 2.400000 MH
	× 480 028 4 GHz 483 500 0 GHz	Y 95.411 dBµV 41.089 dBµV	FUNCTION FL	JNCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> Ma
	483 829 6 GHz	39.931 dBµV					Freq Offse 0 H
4 5 6							
4 5							