

TEST REPORT

Report Number: 3102753MIN-001
Project Number: 3102753

**Application
For Class II Permissive Changes
SmarTire TPMT
FCC ID: RP3-3833**

**to
FCC Part 2
FCC Part 15, Subpart C, Section 15.209**

**For
SPX Corporation**

Test Performed by:
Intertek Testing Services, Inc.
7250 Hudson Blvd. Suite 100
Oakdale, MN 55128

Test Authorized by:
SPX Corporation
2300 Park Drive
Owatonna, MN 55060

Prepared by: Norman Shpilsher
Norman Shpilsher

Date: December 9, 2006

Reviewed by: Uri Spector
Uri Spector

Date: December 9, 2006

CONTENTS

1.0	GENERAL DESCRIPTION	3
1.1	Related Submittals Grants.....	3
1.2	Product Description	3
1.3	Test Methodology	3
1.4	Test Facility	3
2.0	SYSTEM TEST CONFIGURATION	4
2.1	Justification.....	4
2.2	EUT Setup.....	4
2.3	EUT Exercising Software	4
2.4	Special Accessories.....	4
2.5	Equipment Modification	4
2.6	Support Equipment List and Description.....	4
2.7	Test Configuration Block Diagrams	5
3.0	TEST RESULTS	6
3.1	Field Strength of Fundamental, FCC 15.209	7
3.2	Field Strength Spurious Radiated Emissions, FCC 15.209	8
3.3	Radiated Emissions, FCC 15.109, Class B	12
3.4	Test Procedure	14
3.5	Field Strength Calculation	15
3.6	Measurement Uncertainty	15
4.0	TEST EQUIPMENT	16

1.0 GENERAL DESCRIPTION

1.1 Related Submittals Grants

This is a class II Permissive Change application of the SPX *SmarTire TPMT Transmitter* for Certification under FCC Part 15, Subpart C.

There are no other simultaneous applications.

1.2 Product Description

SmarTire TPMT Transmitter is a RF remote control transmitter operating in 126kHz. The intended use of the *SmarTire TPMT Transmitter* is to generate and transmit a RF signal to verify tire sensor functionality. The *SmarTire TPMT Transmitter* is powered at 4.5VDC with three "C" cell Alkaline Batteries.

Antenna Description:

Integrated antenna

Sample Submitted:	November 22, 2006
Test Work Started:	November 27, 2006
Test Work Completed:	December 1, 2006

1.3 Test Methodology

Emission measurements were performed according to the procedures in ANSI C63.4-2003. All field strength radiated emissions measurements were performed in the semi-anechoic chamber, and for each scan, the procedure for maximizing emissions in Appendices D and E were followed. All field strength radiated tests were performed at an antenna to EUT distance of 3 and 10 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The test site facility used to collect the radiated and conducted measurement data is located at 7250 Hudson Blvd., Suite 100, Oakdale, Minnesota. This test facility has been fully described in a report dated on December 2005 submitted to FCC. Please reference the site registration number: 90706, dated December 6, 2005.

2.0 SYSTEM TEST CONFIGURATION

2.1 Justification

The manufacturer on the *SmartTire TPMT* made the following changes from the initial application:

1. The new receiver board is used for the device.

Based on modifications made by the *SmartTire TPMT* manufacturer the following measurements and calculations were made during Class II Permissive Change Certification:

1. Verification of the field strength level at fundamental
2. Transmitter Spurious Radiated Emissions
3. Verification of the Radiated Emissions in receiving/standby mode.

2.2 EUT Setup

For simplicity of testing, the transmitter was run in test mode to transmit continuously.

2.3 EUT Exercising Software

N/A

2.4 Special Accessories

There are no special accessories necessary for compliance of these products.

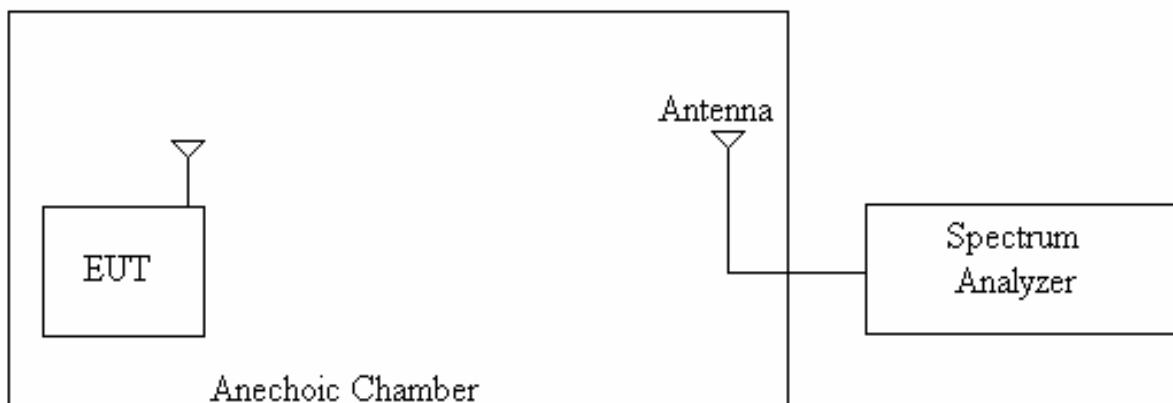
2.5 Equipment Modification

No modifications were installed during the testing.

2.6 Support Equipment List and Description

N/A

2.7 Test Configuration Block Diagrams


The EUT was setup as tabletop equipment.

Measurements below 30MHz were performed at 10-m measurement distance with Loop Antenna.

Measurements from 30MHz to 1GHz were performed at 3-m measurement distance with Bicono-Log Antenna.

The EUT was powered at 4.5VDC from new alkaline batteries.

Field Strength Measurements

3.0 TEST RESULTS

Data is included for the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs, data tables and graphical representations of the emissions are included.

The EUT is intended for operation under the requirements of Part 15 Subpart C. Specific test requirements include the following:

47 CFR 15.209	Field Strength of Fundamental
47 CFR 15.209	Field Strength of Spurious Emissions
47 CFR 15.109	Radiated Emissions

3.1 Field Strength of Fundamental, FCC 15.209

Field Strength of Fundamental and Spurious Emissions measurements were made at Fundamental frequency of 127 KHz.

The Table 3-1-1 shows the Field Strength of Fundamental for the *SmarTire TPMT* Transmitter. Graph 3.2.1 shows emissions below 30MHz including emissions at fundamental frequency.

The maximum emissions were measured with margin 13.3dB below limits.

Radiated Emissions from at Fundamental

Date: 11-27-2006

Company: SPX Corp.
Model: SmarTireSmarTire TPMT
Test Engineer: Norman Shpilsher
Special Info: Continuous transmission
Standard: FCC Part15, Subpart C, 15.209
Note: Measurement distance 10m with Loop antenna SAS 200/562B
 Distance Factor 40dB per decade below 30MHz
 The table shows the worst case radiated emissions.
 Measurements were taken with RBW 200Hz and VBW 300Hz

Table # 3-1-1

Frequency MHz	Reading dB μ V	E Ant. Factor dB/m	Pre-Amp Gain (dB)	Net at 10m dB μ V/m	Distance Factor dB	15.209 Limit dB μ V/m	Margin dB	Antenna pos.
0.12780	43.0	57.0	28.7	71.3	59.1	25.5	-13.3	Front
0.12780	33.9	57.0	28.8	62.1	59.1	25.5	-22.5	Side

3.2 Field Strength Spurious Radiated Emissions, FCC 15.209

Field Strength of Spurious Radiated Emissions measurements were made in frequency range from 9kHz to 1GHz.

The maximum emissions were measured with margin 4.8dB below limits.

The Tables 3-2-1 and 3-2-2 and Graphs 3-2-1 and 3-2-2 show the Field Strength of Spurious Radiated Emissions.

Radiated Emissions from 9kHz to 30MHz

Date: 11-27-2006

Company: SPX Corp.
Model: SmarTireSmarTire TPMT
Test Engineer: Norman Shpilsher
Special Info: Continuous transmission
Standard: FCC Part15, Subpart C, 15.209
Note:
 Measurement distance 10m with Loop antenna SAS 200/562B
 Distance Factor 40dB per decade below 30MHz
 The table shows the worst case radiated emissions.
 Measurements below 150kHz were taken with RBW 200Hz and VBW 300Hz
 Measurements above 150kHz were taken with RBW 9kHz and VBW 30kHz

Table # 3-2-1

Frequency MHz	Reading dB μ V	E Ant. Factor dB/m	Pre-Amp Gain (dB)	Net at 10m dB μ V/m	Distance Factor dB	15.209 Limit dB μ V/m	Margin dB	Antenna pos.
0.0185	10.9	73.4	28.6	55.7	59.1	42.3	-45.6	Front
0.0235	16.8	71.3	28.7	59.4	59.1	40.2	-39.8	Front
0.0235	16.3	71.3	28.8	58.8	59.1	40.2	-40.4	Side
0.0262	12.6	70.5	28.8	54.3	59.1	39.2	-44.1	Side
0.0379	14.0	67.5	28.8	52.7	59.1	36.0	-42.4	Front
0.0379	12.6	67.5	28.8	51.3	59.1	36.0	-43.8	Side
0.0436	12.8	66.3	28.8	50.3	59.1	34.8	-43.6	Side
0.068	13.6	62.3	28.8	47.1	59.1	31.0	-43.0	Front
0.153	16.6	55.5	28.7	43.4	59.1	23.9	-39.6	Front
0.172	17.3	54.3	28.7	42.9	59.1	22.9	-39.1	Side
0.225	12.8	51.7	28.7	35.8	59.1	20.6	-43.8	Front
0.239	12.3	51.2	28.7	34.8	59.1	20.1	-44.3	Side

Radiated Emissions from 30MHz to 1GHz
Date: 11-27-2006

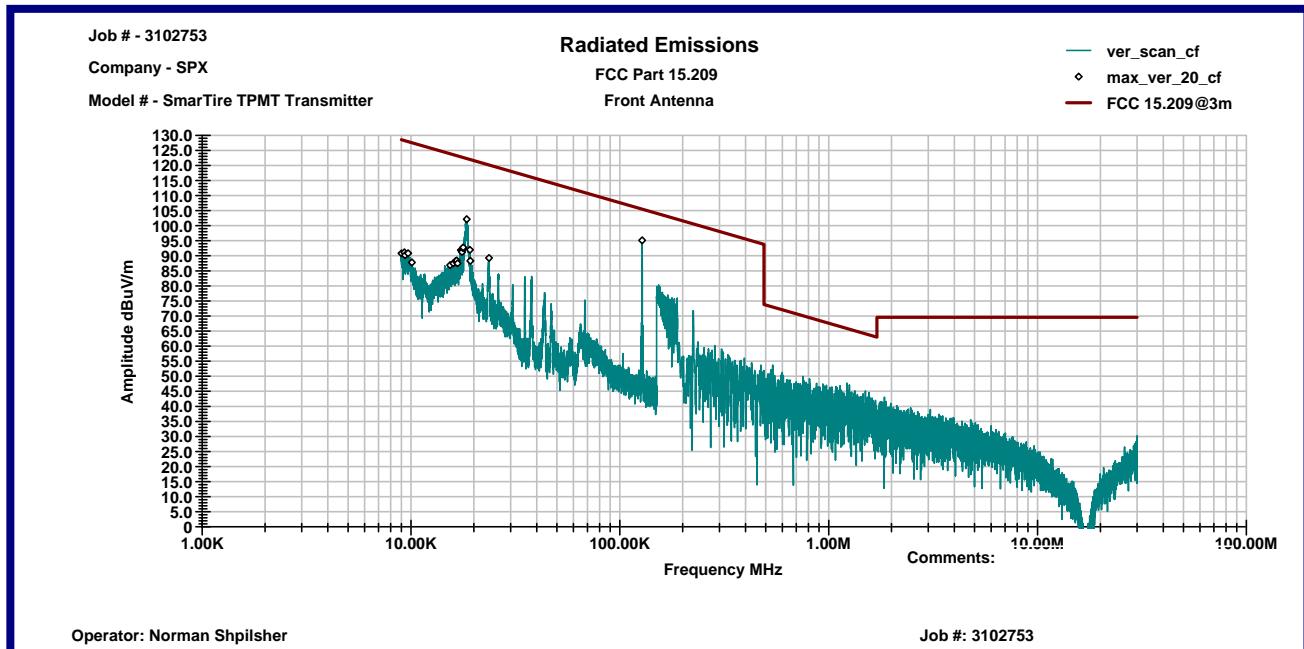
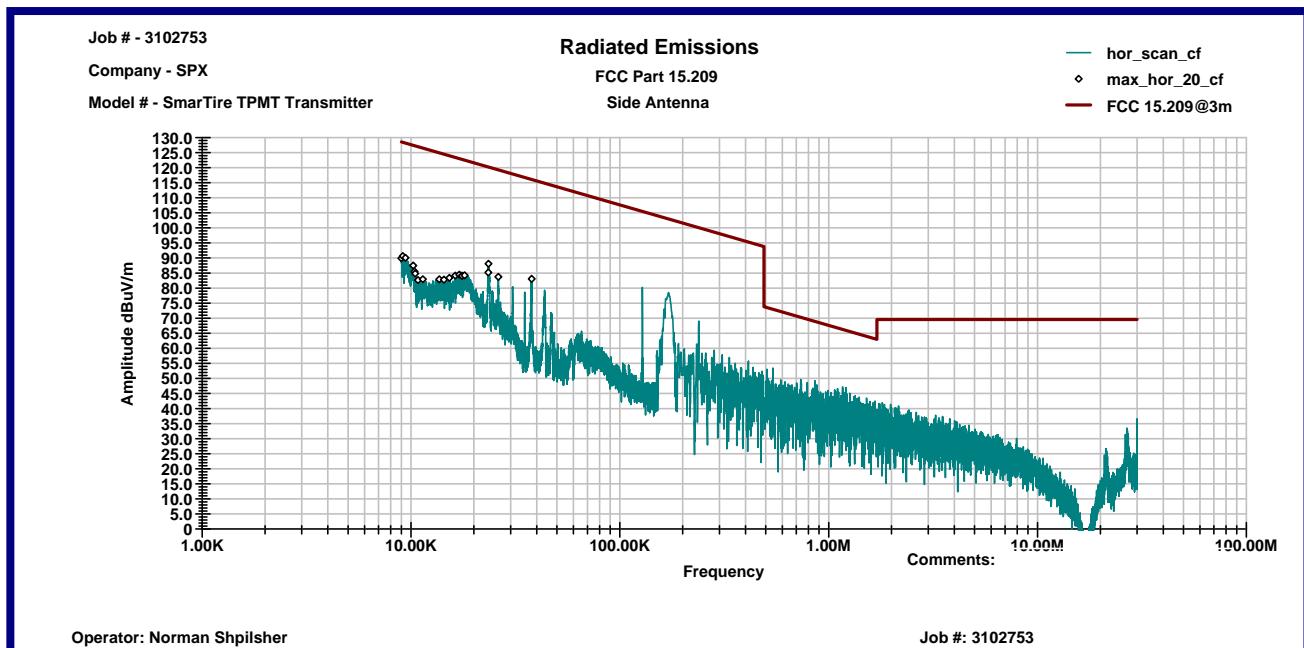
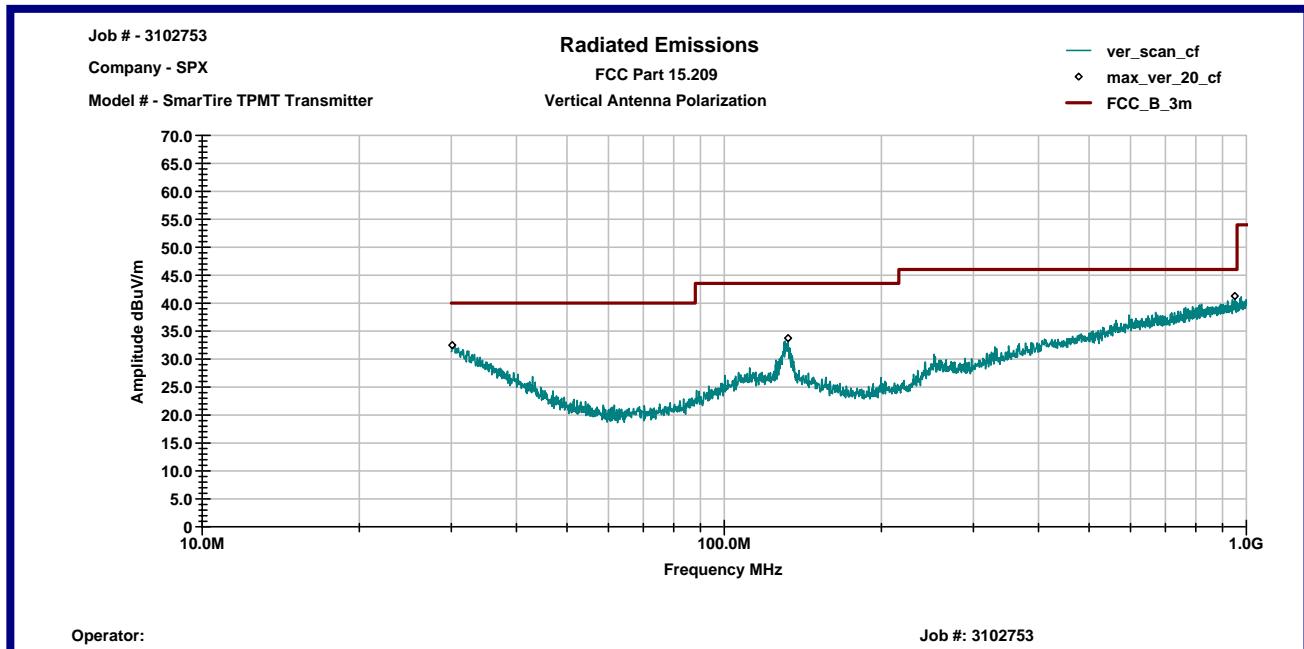

Company: SPX Corp.
Model: SmarTireSmarTire TPMT
Test Engineer: Norman Shpilsher
Special Info:
Standard: FCC Part 15.209
Test Site: 3m Anechoic Chamber, 3m measurement distance
Note: The table shows the worst case radiated emissions
 All measurements were taken using a Peak detector

Table # 3-2-2

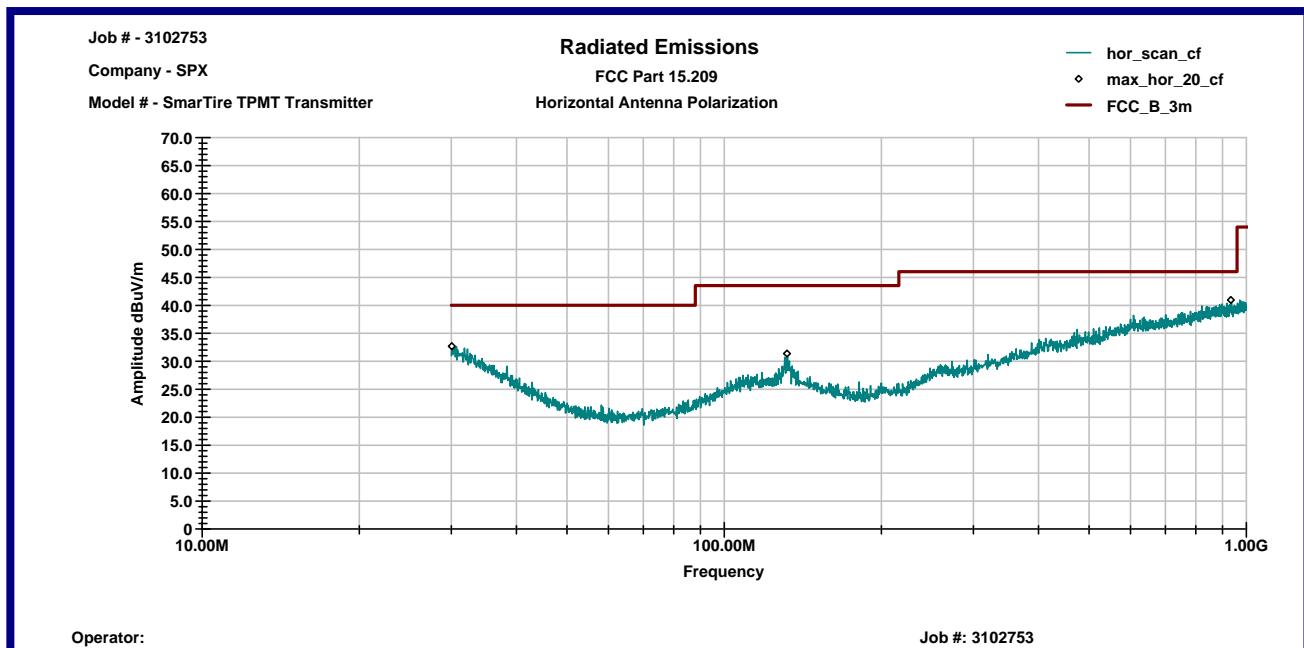

Frequency	Ant. Polarity	Peak Reading dB μ V	Ant.Factor dB1/m	Total at 3m dB μ V/m	QP Limit dB μ V/m	Margin dB
30.139 MHz	V	13.6	18.9	32.5	40.0	-7.5
132.53 MHz	V	20.5	13.3	33.7	43.5	-9.8
950.49 MHz	V	15.6	25.6	41.3	46.0	-4.8
30.069 MHz	H	13.7	19.0	32.7	40.0	-7.3
131.94 MHz	H	18.1	13.3	31.4	43.5	-12.2
934.22 MHz	H	15.5	25.5	41.0	46.0	-5.1

Graph # 3-2-1
Radiated Emissions from 9kHz to 30MHz

Vertical Antenna Polarization



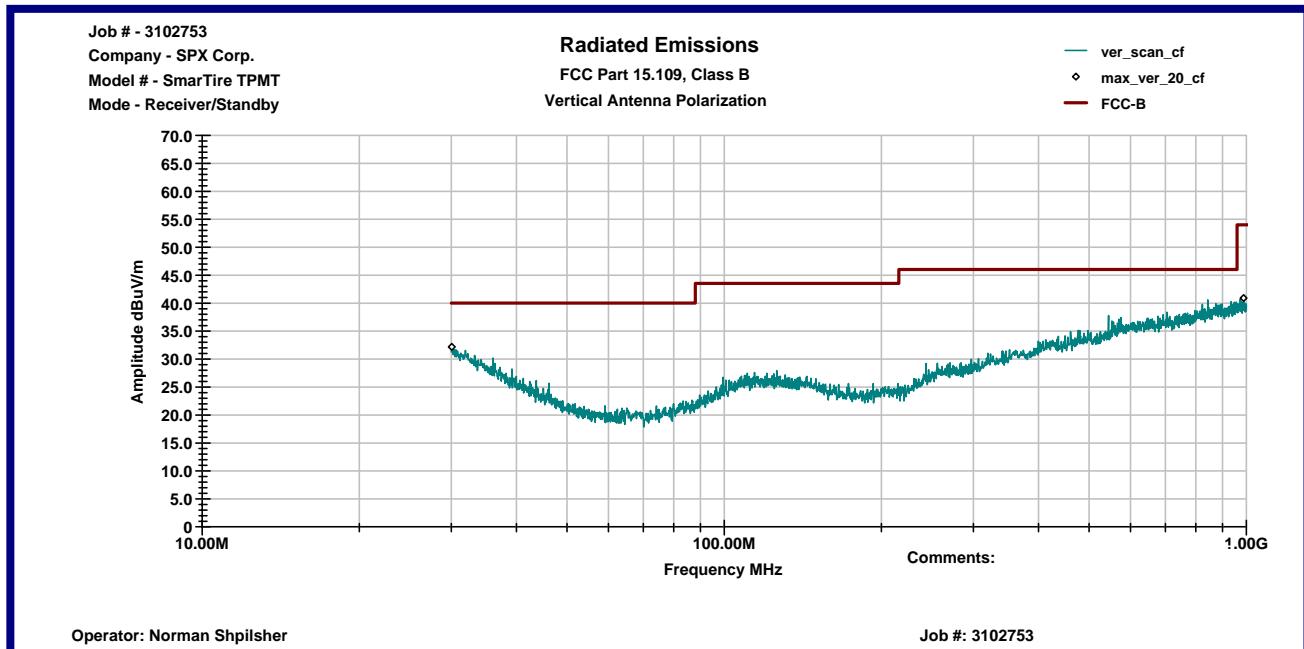
Horizontal Antenna Polarization



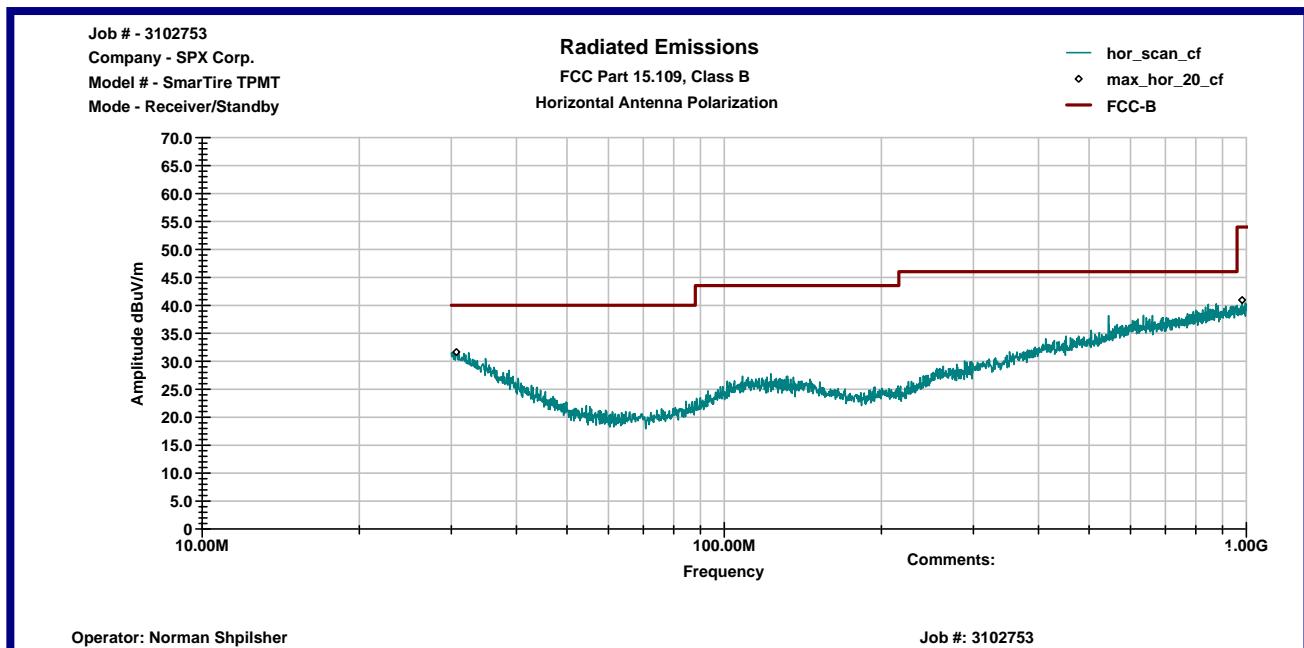
Graph # 3-2-2
Radiated Emissions from 30MHz to 1GHz

Vertical Antenna Polarization

Horizontal Antenna Polarization


3.3 Radiated Emissions, FCC 15.109, Class B

The *SmarTire TPMT* was tested according to FCC Part 15.109, Class B in frequency range from 30MHz to 1GHz in standby/receiver mode.


Graph 3-3-1 demonstrates compliance with the FCC Part 15.109, Class B limits.

Graph # 3-3-1
Radiated Emissions from 30MHz to 1GHz

Vertical Antenna Polarization

Horizontal Antenna Polarization

3.4 Test Procedure

Field Strength Measurements

For emissions greater than 30 MHz; the EUT was placed on a non-conductive table 0.8m above the ground plane inside the Anechoic Chamber. The table was centered on a motorized turntable, which allows 360-degree rotation. The measurement antenna was positioned at 3m distance. The Bicono-Log antenna was used in frequency range from 30MHz to 1GHz. The radiated emissions were maximized by configuring the EUT through its placement in three orthogonal axes, by rotating the EUT, by changing antenna polarization, and by changing antenna height from 1 to 4m. Method of the direct Field Strength Calculation is shown in Section 3.6.

For emissions below 30 MHz measurements were performed with a loop antenna at a 10 meter distance at both antenna polarities (front antenna oriented to the EUT and side antenna oriented to the EUT) at an antenna height of 1 meter.

3.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured emissions reading on the EMI Receiver.

The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where: FS = Field Strength in dB(μ V/m)

RA = Receiver Amplitude in dB(μ V)

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB(m^{-1})

AG = Amplifier Gain in dB

Assume a receiver reading of 48.1 dB(μ V) is obtained. The antenna factor of 7.4 dB(m^{-1}) and cable factor of 1.6 dB is added and amplifier gain of 16.0 dB is subtracted giving field strength of 41.1 dB(μ V/m).

$$RA = 48.1 \text{ dB}(\mu\text{V})$$

$$AF = 7.4 \text{ dB}(m^{-1})$$

$$CF = 1.6 \text{ dB}$$

$$AG = 16.0 \text{ dB}$$

$$FS = RA + AF + CF - AG$$

$$FS = 48.1 + 7.4 + 1.6 - 16.0$$

$$FS = 41.1 \text{ dB}(\mu\text{V/m})$$

In the tables the Cable correction factors are included to the Antenna Factors.

3.6 Measurement Uncertainty

The expanded uncertainty ($k = 2$) for radiated emissions from 30 to 1000 MHz has been determined to be:
 $\pm 4 \text{ dB}$ at 10m $\pm 5.4 \text{ dB}$ at 3m

The expanded uncertainty ($k = 2$) for emissions from 150 kHz to 30 MHz has been determined to be:
 $\pm 2.6 \text{ dB}$

Tested by:

Norman Shpilsher
EMC Staff Engineer
Intertek ETL SEMKO

Signature

December 9, 2006

4.0 TEST EQUIPMENT

Receivers/Spectrum Analyzers and Test Software

DESCRIPTION	SERIAL NO.	LAST CAL	CAL DUE	USED
HP85462A Receiver RF Section	3325A00106	04/06	04/07	
HP85460A RF Filter Section	3330A00109	04/06	04/07	
HP85462A Receiver RF Section	3549A00306	02/06	02/07	X
HP85460A RF Filter Section	3448A00276	02/06	02/07	X
Rohde & Schwarz FSP 40 Spectrum Analyzer	100024	07/06	07/07	
Rohde & Schwarz ESCI Spectrum Analyzer	100358	04/06	04/07	X
Advantest R3271A Spectrum Analyzer	55050084	10/06	10/07	
Agilent E7402A Spectrum Analyzer	MY44212200	10/06	10/07	
TILE! Instrument Control System	Ver. 3.4 K.15	N/A	N/A	X

Antennas

DESCRIPTION	SERIAL NO.	LAST CAL	CAL DUE	USED
Schaffner-Chase Bicono-Log Antenna	2468	01/06	01/07	X
Schaffner-Chase Bicono-Log Antenna	2630	08/06	08/07	
EMCO Horn Antenna 3115	9507-4513	01/06	01/07	
A.H. System Loop Antenna SAS-200/562	215	05/06	05/07	X
MITEQ AMF-5D Pre-Amplifier	1122951	02/06	02/07	
HP 8447F Pre-Amplifier	3113A04974	02/06	02/07	X

