

SAR TEST REPORT

Test report No:	EMC-FCC-A0008

Type of Equipment: Wireless Transceiver System

Model Name: ARB-HT3G TX

Applicant: Trinus Systems Inc. FCC ID: ROY3101PNATR

FCC Rule Part: CFR §2.1093

Test standards FCC OET Bulletin 65 supplement C

IEEE 1528, 2003

ANSI/IEEE C95.1, C95.3

Max. SAR(1g) 0.553 W/kg

Test result: Complied

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of EMC Compliance Ltd. or testing done by EMC compliance Ltd. in connection with distribution or use of the product described in this report must be approved by EMC Compliance Ltd. in writing.

_					
Date:	of red	eint.	2014	()1	()9

<u>Date of testing: 2014. 01. 13 ~ 02. 25</u> <u>Issued date: 2014. 04.16</u>

Tested by: Approved by:

Min Kyoung-hoo Choi Cheon-sig

Contents

1. Applicant information	
2. Laboratory information	4
3. Identification of Sample	5
4.Test Result Summary	6
5. Report Overview	6
6. Test Lab Declaration or Comments	6
7. Applicant Declaration or Comments	6
8. Measurement Uncertainty	7
9. The SAR Measurement System	9
9.1 Isotropic E-field Probe EX3DV4	10
9.2 Phantom	11
9.3 Device Holder for Transmitters	12
10. System Verification	13
10.1 Tissue Verification	
10.2 Test System Verification	15
10.3 Justification for Extended SAR Dipole Calibrations	16
11. Operation Configurations	
12. SAR Measurement Procedures	17
13. Test Equipment Information	19
14. RF Output Power	20
15. SAR Test Results	
16. Test System Verification Results	21
17. Test Results	23
Annex A. Photographs	31
Annex B. Calibration certificate	42

Page: 3 of 65

1. Applicant information

Applicant: Trinus Systems Inc.

Address: #801, Ilsan-Ro 142, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, Korea

Telephone No.: +82-31-904-5588 **Facsimile No.:** +82-31-904-5696

Contact Person: Kichul Seong / seong@trinus.co.kr

Manufacturer: Trinus Systems Inc.

Address: #801, Ilsan-Ro 142, Ilsandong-Gu, Goyang-Si, Gyeonggi-Do, Korea

2. Laboratory information

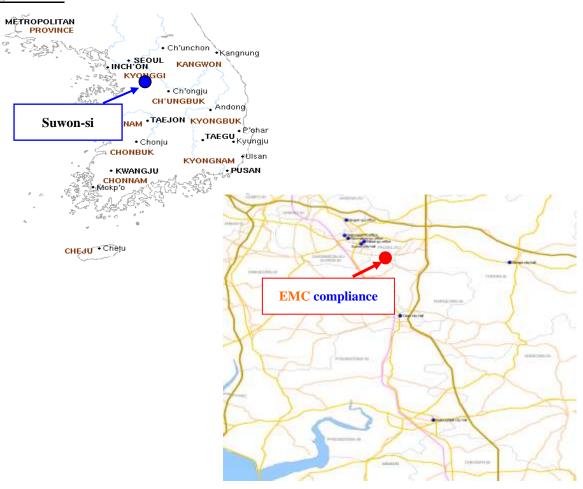
Address

EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-390, Korea

Telephone No.: 82-31-336-9919 Facsimile No.: 82-505-299-8311

Certificate

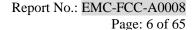

KOLAS No.: 231

FCC Site Registration No.: 687132

VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849

IC Site Registration No.: 8035A-2

SITE MAP



3. Identification of Sample

Mode of Operation	Wireless Transceiver System
Model Number	ARB-HT3G TX
Serial Number	N/A
Sample Version	N/A
Tx Freq.Range	902.5 MHz ~ 927.5 MHz
Rx Freq.Range	902.5 MHz ~ 927.5 MHz
RF Output Power	21 dBm (125.89 mW)
Antenna Type	F-PCB Type
Antenna Gain	-0.698 dBi
Normal Voltae	DC 3.7 V (Li-Polymer Battery)

4.Test Result Summary

Head

Frequ	iency	RF Output Power	Max. tune	Scaling EUT Distance		Measured 1 g SAR	Scaled 1 g SAR	
MHz	Ch.	(dBm)	up power (dBm)	Factor	Position	(mm)	(W/kg)	(W/kg)
927.5	51	19.27	21	1.49	Front	25	0.371	0.553

Body

Frequ	iency	RF Output Power	Max. tune	Scaling	EUT	Distance	Measured 1 g SAR	Scaled 1 g SAR
MHz	Ch.	(dBm)	up power (dBm)	Factor	Position	(mm)	(W/kg)	(W/kg)
914.5	25	19.54	21	1.40	Back -Pouch	0	0.0976	0.137

5. Report Overview

This report details the results of testing carried out on the samples listed in section 3, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of EMC Compliance Ltd Wireless lab or testing done by EMC Compliance Ltd Wireless lab made in connection with the distribution or use of the tested product must be approved in writing by EMC compliance Ltd Wireless lab.

6. Test Lab Declaration or Comments

None

7. Applicant Declaration or Comments

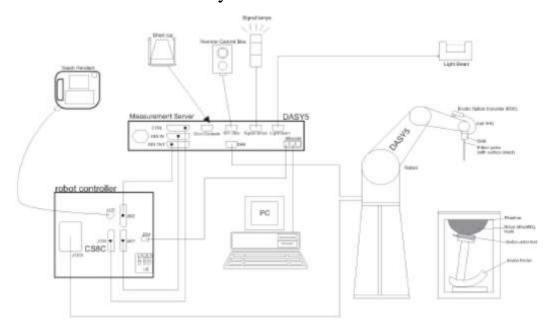
None

8. Measurement Uncertainty

All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass / fail criteria.

Uncertainty of SAR equipments for measurement Head 300 MHz to 3GHz

A	Ь	с	D	e = f(d, k)	g	i = c x g/e	k				
Source of Uncertainty	Description IEEE P1528	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff				
	(0.3 ~ 3 GHz)	± %			(1 g)	±%, (1 g)					
Measurement System											
Probe calibration(k=1)	E.2.1	6.30	N	1	1	6.30	00				
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	00				
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	00				
Linearity	E.2.4	0.60	R	1.73	1	0.35	00				
Boundary effect	E.2.3	1.00	R	1.73	1	0.58	00				
System detection limits	E.2.5	1.00	R	1.73	1	0.58	00				
Readout electronics	E.2.6	0.30	N	1	1	0.30	00				
Response time	E.2.7	0.80	R	1.73	1	0.46	00				
Integration time	E.2.8	2.60	R	1.73	1	1.50	00				
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	00				
RF ambient conditions-reflections	E.6.1	3.00	R	1.73	1	1.73	00				
Probe positioner mechanical tolerance	E.6.2	0.40	R	1.73	1	0.23	00				
Probe positioning with respect to phantom shell	E.6.3	2.90	R	1.73	1	1.67	00				
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	2.00	R	1.73	1	1.15	00				
Test Sample Related											
Test sample positioning	E.4.2	4.71	N	1	1	4.71	9				
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	5				
Output power variation—SAR drift measurement	6.6.2	5.00	R	1.73	1	2.89	00				
Phantom and Tissue Par	ameters										
Phantom uncertainty (shape and thickness tolerances)	E.3.1	6.10	R	1.73	1	3.52	00				
Liquid conductivity-measurement uncertainty	E.3.3	1.53	N	1	0.64	0.98	5				
Liquid permittivity-measurement uncertainty	E.3.3	3.07	N	1	0.6	1.84	5				
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1.73	0.64	1.85	00				
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	00				
Combined standard uncertainty				RSS		11.00	165				
Expanded uncertainty											
(95% CONFIDENCE INTERVAL)				K=2		22.00					



Uncertainty of SAR equipments for measurement Body 300 MHz to 3GHz

A	Ь	с	D	e = f(d, k)	g	i = c xg/e	k					
Source of Uncertainty	Description IEEE P1528	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff					
	(0.3 ~ 3 GHz)	± %			(1 g)	± %, (1 g)						
Measurement System												
Probe calibration(k=1)	E.2.1	6.30	N	1	1	6.30	00					
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	00					
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	00					
Linearity	E.2.4	0.60	R	1.73	1	0.35	00					
Boundary effect	E.2.3	1.00	R	1.73	1	0.58	00					
System detection limits	E.2.5	1.00	R	1.73	1	0.58	00					
Readout electronics	E.2.6	0.30	N	1	1	0.30	00					
Response time	E.2.7	0.80	R	1.73	1	0.46	00					
Integration time	E.2.8	2.60	R	1.73	1	1.50	00					
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	00					
KF ambient conditions—	E.6.1	3.00	R	1.73	1	1.73	00					
Probe positioner mechanical tolerance	E.6.2	0.40	R	1.73	1	0.23	00					
Probe positioning with respect to phantom shell	E.6.3	2.90	R	1.73	1	1.67	00					
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	2.00	R	1.73	1	1.15	∞					
Test Sample Related												
Test sample positioning	E.4.2	4.71	N	1	1	4.71	9					
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	5					
Output power variation—SAR drift measurement	6.6.2	5.00	R	1.73	1	2.89	00					
Phantom and Tissue Par	ameters											
Phantom uncertainty (shape and thickness tolerances)	E.3.1	7.50	R	1.73	1	4.33	00					
Liquid conductivity-measurement uncertainty	E.3.3	1.53	N	1	0.64	0.98	5					
Liquid permittivity-measurement uncertainty	E.3.3	3.07	N	1	0.6	1.84	5					
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1.73	0.64	1.85	00					
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	00					
Combined standard uncertainty				RSS		11.29	183					
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		22.57						

9. The SAR Measurement System

<SAR System Configuration>

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe
 positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

http://www.emc2000.co.kr

Report No.: EMC-FCC-A0008

Page: 10 of 65

9.1 Isotropic E-field Probe EX3DV4

EX3DV4 Smallest Isotropic E-Field Probe for Dosimetric Measurements (Preliminary Specifications)

/	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Page: 11 of 65

9.2 Phantom

Twin SAM

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Material

Vinylester, glass fiber reinforced (VE-GF)

Liquid Compatibility

Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)

Shell Thickness

2 ± 0.2 mm (6 ± 0.2 mm at ear point)

Dimensions

Length: 1000 mm Width: 500 mm

(incl. Wooden Support)

Height: adjustable feet

Filling Volume

approx. 25 liters

Wooden Support

SPEAG standard phantom table

Accessories

Mounting Device and Adaptors

ELI

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

Material

Vinylester, glass fiber reinforced (VE-GF)

Liquid Compatibility

Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)

Shell Thickness

2.0 ± 0.2 mm (bottom plate)

Dimensions

Major axis: 600 mm Minor axis: 400 mm

Filling Volume

approx. 30 liters

Wooden Support

SPEAG standard phantom table

Accessories

Mounting Device and Adaptors

Page: 12 of 65

9.3 Device Holder for Transmitters

Mounting Devices and Adaptors

Mounting Device for Hand-Held Transmitters

MD4HHTV5 - Mounting Device for Hand-Held Transmitters

In combination with the Twin SAM V5.0/V5.0c or ELI Phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).

Material: Polyoxymethylene (POM)

Page: 13 of 65

10. System Verification

10.1 Tissue Verification

The dielectric properties for this Tissue Simulant Liquids were measured by using the Speag DAK-3.5 in conjunction with Agilent E5071B Network Analyzer. The Conductivity (σ) and Permittivity (ρ) are listed in Table 1. For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was (21 ± 2) °C.

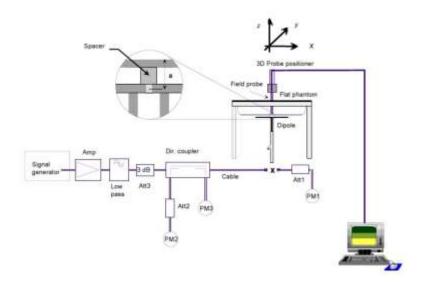
Freq. (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Temp (℃)
900	Head	Recommended Limit	$41.5 \pm 5 \%$ (39.425 ~ 43.575)	$0.97 \pm 5 \%$ (0.9215 ~ 1.0185)	21 ± 2
		Measured, 2014-01-13	40.31	0.97	19.93
902.5	Head	Recommended Limit	41.5 ± 5 % (39.425 ~ 43.575)	0.97 ± 5 % (0.9215 ~ 1.0185)	21 ± 2
		Measured, 2014-01-13	40.29	0.98	19.93
914.5	914.5 Head	Recommended Limit	41.5 ± 5 % (39.425 ~ 43.575)	$0.98 \pm 5 \%$ (0.9304 ~ 1.0283)	21 ± 2
		Measured, 2014-01-13	40.10	0.99	19.93
927.5	927.5 Head	Recommended Limit	41.48 ± 5 % (39.404 ~ 43.552)	$0.99 \pm 5 \%$ (0.9358 ~ 1.0343)	21 ± 2
7 - 7 - 7		Measured, 2014-01-13	39.94	1.00	19.93
900	Body	Recommended Limit	55.0 ± 5 % (52.25 ~ 57.75)	$1.05 \pm 5 \%$ $(0.9975 \sim 1.1025)$	21 ± 2
		Measured, 2014-02-25	56.32	1.08	21.0
902.5	Body	Recommended Limit	$55.0 \pm 5 \%$ (52.25 ~ 57.75)	$1.05 \pm 5 \%$ (0.9975 ~ 1.1025)	21 ± 2
	J	Measured, 2014-02-25	56.28	1.08	21.0
914.5	Body	Recommended Limit	55.0 ± 5 % (52.25 ~ 57.75)	$1.06 \pm 5 \%$ (1.0064 ~ 1.1123)	21 ± 2
		Measured, 2014-02-25	56.09	1.09	21.0
927.5	Body	Recommended Limit	54.98 ± 5 % (52.229 ~ 57.727)	$1.07 \pm 5 \%$ (1.0122 ~ 1.1187)	21 ± 2
	,	Measured, 2014-02-25	55.94	1.11	21.0

<Table 1. Measurement result of Tissue electric parameters>

Page: 14 of 65

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)										
(% by weight)	4:	50	835		915		1900		2450		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	


Salt: 99 $^+$ % Pure Sodium Chloride Sugar: 98 $^+$ % Pure Sucrose Water: De-ionized, 16 M $_{\Omega}^+$ resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 $^+$ % Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

10.2 Test System Verification

The microwave circuit arrangement for system verification is sketched below picture. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within \pm 10 % from the target SAR values. These tests were done at 900 MHz. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table Table 2 (A power level of 250 mW was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range (21 ± 2) °C, the relative humidity was in the range (50 ± 20) % and the liquid depth above the ear/grid reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Validation	Dipole Ant.	Frequency	Tissue	Limit/Measurement (Normalized to 1 W)				
Kit	S/N	(MHz)	Type		1 g	10 g		
				Recommended Limit	10.6 ± 10 %	6.82 ± 10 %		
D900V2	1d138	900	Head	(Normalized)	(9.54 ~ 11.66)	$(6.138 \sim 7.502)$		
				Measured, 2014-01-13	11.08	7.08		
				Recommended Limit	10.9 ± 10 %	7.00 ± 10 %		
D900V2	1d138	900	Body	(Normalized)	(9.81 ~ 11.99)	$(6.3 \sim 7.7)$		
				Measured, 2014-02-25	11.2	7.36		

<Table 2. Test System Verification Result>

Page: 16 of 65

10.3 Justification for Extended SAR Dipole Calibrations

Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements

KDB 865664 requirements

a) return loss: < - 20 dB, within 20 % of previous measurement

b) impedance : within 5Ω from previous measurement.

Dipole Antenna	Head/Body	Date of Measurement	Return Loss (dB)	Δ %	Impedance (Ω)	$\Delta\Omega$
D900V2	TT1	August 07, 2012	- 33.5	-	52.2	-
SN 1d138	Head	August 05, 2013	- 32.1	4.2	52.1	0.1
D900V2	Dody	August 07, 2012	- 31.2	-	48.3	-
SN 1d138	Body	August 05, 2013	- 29.8	4.5	48.0	0.3

11. Operation Configurations

For the Wireless Transceiver SAR tests, a communication link is set up with the operating mode for can be controlled by EUT. The Absolute Radio Frequency Channel Number is allocated to 1, 25 and 51 respectively in the case of 902.5 ~ 927.5 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode.

Page: 17 of 65

12. SAR Measurement Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measument 100 MHz to 6 GHz v01r02.

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Page: 18 of 65

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures 5x5x7 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measument 100 MHz to 6 GHz v01r02.

			\leq 3 GHz	> 3 GHz	
Maximum zoom scan s	spatial reso	olution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: Δz _{Zoom} (n)		≤ 5 mm	$3-4~GHz : \leq 4~mm$ $4-5~GHz : \leq 3~mm$ $5-6~GHz : \leq 2~mm$	
	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	$\leq 4 \; mm$	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm	
	grid $\Delta z_{Z_{\text{coun}}}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Z_{Cons}}(n\text{-}1)$		
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one dimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

* Z Scan Report on Liquid Measure the height Annex A.4 Liquid Depth photo to replace

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page: 19 of 65

13. Test Equipment Information

Test Platform	SPEAG DASY5 System							
Description	SAR Test System (Frequency range 300MHz-6GHz)							
Software Reference	DASY5: V52.8.4.1052, SEMCAD: V14.6.8 (7028)							
Hardware Reference								
Equipment	Model	Varial Number Data at Calibration		Due date of next Calibration				
DASY5 Robot	TX90XL Speag	F12/5L7FA1/A/01	N/A	N/A				
DASY5 Controller	TX90XL Speag	F12/5L7FA1/C/01	N/A	N/A				
Phantom	TwinSAM Phantom	1724	N/A	N/A				
Phantom	TwinSAM Phantom	1728	N/A	N/A				
Phantom	2mm Oval Phantom ELI 5	1178	N/A	N/A				
Mounting Device	Mounting Device	None	N/A	N/A				
DAE	DAE4	1342	2013-07-29	2014-07-29				
Probe	EX3DV4	3865	2013-08-27	2014-08-27				
Dipole Validation Kits	D900V2	1d138	2012-08-07	2014-08-07				
Network Analyzer	E5071B	MY42403524	2013-07-10	2014-07-10				
Dielectric Assessment Kit	DAK-3.5	1078	2013-08-24	2014-08-24				
Dual Directional Coupler	778D	16059	2013-09-25	2014-09-25				
Signal Generator	E4438C	MY42080486	2014-02-11	2015-02-11				
Power Amplifier	GRF5039	1062	2013-07-20	2014-07-20				
Dual Power Meter	E4419B	GB39290551	2013-05-13	2014-05-13				
Power Sensor	8481H	3318A19377	2013-10-15	2014-10-15				
Power Sensor	8481H	331BA19379	2013-10-15	2014-10-15				
LP Filter	LA-15N	36543	2013-09-25	2014-09-25				
Humidity/Data Recorder	MHB-382SD	73871	2013-09-25	2014-09-25				

Page: 20 of 65

14. RF Average Conducted Output Power

Frequency (MHz)	RF Output Power (dBm)	Max. tune up power (dBm)	Scaling Factor
902.5	19.03	21	1.57
914.5	19.54	21	1.40
927.5	19.27	21	1.49

15. SAR Test Results

Head

Frequ	ency	RF Output Power	Max. tune	Scaling	EUT	Distance	Measured 1 g SAR	Scaled 1 g SAR
MHz	Ch.	(dBm)	up power (dBm)	Factor	Position	(mm)	(W/kg)	(W/kg)
914.5	25	19.54	21	1.40	Front	25	0.337	0.472
902.5	1	19.03	21	1.57	Front	25	0.234	0.367
927.5	51	19.27	21	1.49	Front	25	0.371	0.553
927.5	51	19.27	21	1.49	Front - Pouch	25	0.216	0.322

<Note>

SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05r02.

Per FCC KDB Publication 447498 D01v05r02 section 6.1: A *test separation distance* of 25 mm must be applied for in-front-of the face SAR test exclusion and SAR measurements.

Per FCC KDB Publication 447498 D01v05r02 section 4.2.1: in front of the face, should be tested using a flat phantom according to the required *published RF exposure KDB procedures*.

Body

Frequ	ency	RF Output Power	Max. tune up power	Scaling	EUT	Distance	Measured 1 g SAR	Scaled 1 g SAR
MHz	Ch.	(dBm)	(dBm)	Factor	Position	(mm)	(W/kg)	(W/kg)
914.5	25	19.54	21	1.40	Back -Pouch	0	0.0976	0.137
902.5	1	19.03	21	1.57	Back -Pouch	0	0.0796	0.125
927.5	51	19.27	21	1.49	Back -Pouch	0	0.0830	0.124
914.5	25	19.54	21	1.40	Back -Pouch (Ear-Mic)	0	0.0653	0.091

<Note>

SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05r02.

Body SAR was tested according to KDB Publication 447498 D01v05r02 section 4.2.2. Body-worn accessory exposure conditions.

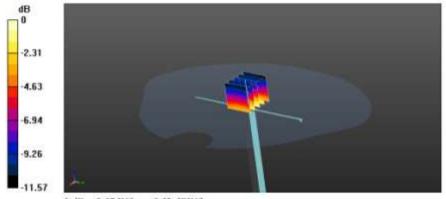
Report No.: EMC-FCC-A0008 Page: 21 of 65

16. Test System Verification Results

System check for 900 MHz - Head(2014-01-13)

DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN:xxx Procedure Name: D900V2 Validation

Communication System: cw1; Frequency: 900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 900 MHz, $\sigma = 0.969$ S/m; $\epsilon_r = 40.299$; $\rho = 1000$ kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN3865; ConvF(9.77, 9.77, 9.77); Calibrated: 2013-08-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Snl 342; Calibrated: 2013-07-29 Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4), SEMCAD X Version 14.6.8 (7028)

Configuration/D906V2 Validation/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm Reference Value = 62.165 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 4.24 W/kg SAR(1 g) = 2.77 W/kg; SAR(10 g) = 1.77 W/kg

Maximum value of SAR (measured) = 3.57 W/kg

0 dB = 3.57 W/kg = 5.53 dBW/kg

System check for 900 MHz - Body(2014-02-25)

DUT: Dipole 900 MHz D900V2; Type: D900V2; Serial: D900V2 - SN:1d138 Procedure Name: D900V2 Validation

Communication System: cw1; Frequency: 900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 900 MHz; $\sigma = 1.077 \text{ S/m}$; $\epsilon_r = 56.318$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

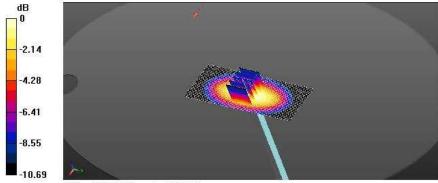
DASY5 Configuration:

- Probe: EX3DV4 SN3865; ConvF(9.64, 9.64, 9.64); Calibrated: 2013-08-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated 2013-07-29 Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

Configuration/D900V2 Validation/Area Scan (41x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.51 W/kg

Configuration/D900V2 Validation/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 58.141 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 4.11 W/kg

SAR(1 g) = 2.8 W/kg; SAR(10 g) = 1.84 W/kg

Maximum value of SAR (measured) = 3.53 W/kg

0 dB = 3.53 W/kg = 5.48 dBW/kg

17. Test Results

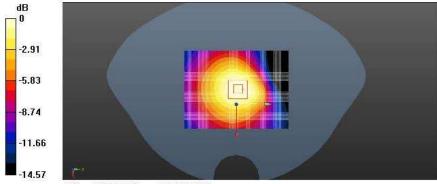
Head_914.5 MHz_Front_Gap 25mm

DUT: ARB-HT3G; Type: GFSK MODULATION; Serial: N/A Procedure Name: ARB-HT3G_Ch25_f.914.5_Front_Gap 25mm

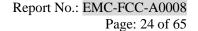
Communication System: FHSS; Frequency: 914.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 914.5 MHz; $\sigma = 0.989$ S/m; $\epsilon_r = 40.103$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3865; ConvF(9.77, 9.77, 9.77); Calibrated: 2013-08-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2013-07-29
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)


ARB-HT3G/ARB-HT3G_Ch25_f.914.5_Front_Gap 25mm/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.431 W/kg


$ARB-HT3G/ARB-HT3G_Ch25_f.914.5_Front_G~ap~25m\,m/Z~oo\,m~Scan~(5x5x7)/Cub\,e~0:$

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.121 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.510 W/kg

SAR(1 g) = 0.337 W/kg; SAR(10 g) = 0.218 W/kg Maximum value of SAR (measured) = 0.422 W/kg

0 dB = 0.422 W/kg = -3.75 dBW/kg

Head_902.5 MHz_Front_Gap 25mm

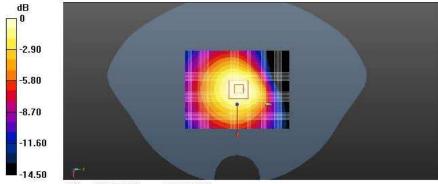
DUT: ARB-HT3G; Type: GFSK MODULATION; Serial: N/A Procedure Name: ARB-HT3G_Chl_f.902.5_Front_Gap 25mm

Communication System: FHSS; Frequency: 902.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 902.5 MHz; $\sigma = 0.975$ S/m; $\epsilon_r = 40.286$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

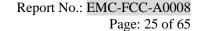
DASY5 Configuration:

- Probe: EX3DV4 SN3865; ConvF(9.77, 9.77, 9.77); Calibrated: 2013-08-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2013-07-29
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

ARB-HT3G/ARB-HT3G_Ch1_f.902.5_Front_Gap 25mm/Area Scan (61x81x1):


Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.298 W/kg

ARB-HT3G/ARB-HT3G_Ch1_f.902.5_Front_Gap 25mm/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.797 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 0.351 W/kg

SAR(1 g) = 0.234 W/kg; SAR(10 g) = 0.152 W/kg

Maximum value of SAR (measured) = 0.293 W/kg

0 dB = 0.293 W/kg = -5.33 dB W/kg

Head_927.5 MHz_Front_Gap 25mm

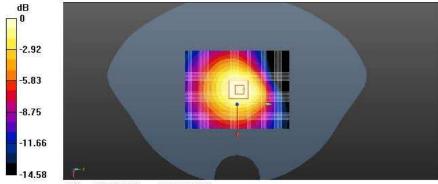
DUT: ARB-HT3G; Type: GFSK MODULATION; Serial: N/A Procedure Name: ARB-HT3G_Ch51_f.927.5_Front_Gap 25mm

Communication System: FHSS; Frequency: 927.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 927.5 MHz; $\sigma = 1.003$ S/m; $\epsilon_r = 39.939$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3865; ConvF(9.77, 9.77, 9.77); Calibrated: 2013-08-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2013-07-29
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

ARB-HT3G/ARB-HT3G_Ch51_f.927.5_Front_Gap 25mm/Area Scan (61x81x1):


Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.467 W/kg

ARB-HT3G/ARB-HT3G_Ch51_f.927.5_Front_Gap 25mm/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.951 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.560 W/kg

SAR(1 g) = 0.371 W/kg; SAR(10 g) = 0.239 W/kg

Maximum value of SAR (measured) = 0.464 W/kg

0 dB = 0.464 W/kg = -3.33 dBW/kg

Head_927.5 MHz_Front_Pouch_Gap 25mm

DUT: ARB-HT3G; Type: GFSK MODULATION; Serial: N/A Procedure Name: ARB-HT3G_Ch51_f.927.5_Front_clip_Gap 25mm

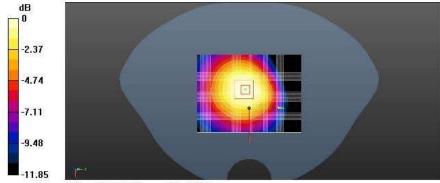
Communication System: FHSS; Frequency: 927.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 927.5 MHz; $\sigma = 1.003 \text{ S/m}$; $\epsilon_r = 39.939$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3865; ConvF(9.77, 9.77, 9.77); Calibrated: 2013-08-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2013-07-29
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP: 1724
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

ARB-HT3G/ARB-HT3G_Ch51_f.927.5_Front_clip_Gap 25mm/Area Scan (61x81x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.271 W/kg


ARB-HT3G/ARB-HT3G_Ch51_f.927.5_Front_clip_Gap 25mm/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.384 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.310 W/kg

SAR(1 g) = 0.216 W/kg; SAR(10 g) = 0.146 W/kg Maximum value of SAR (measured) = 0.268 W/kg

0 dB = 0.268 W/kg = -5.72 dB W/kg

Body_914.5 MHz_Back_Pouch_Gap 0mm

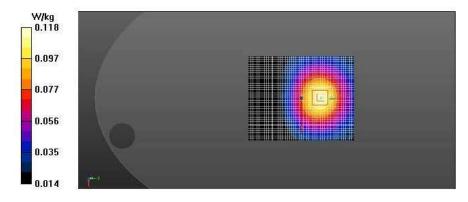
DUT: ARB-HT3G; Type: GFSK MODULATION; Serial: $\ensuremath{\mathrm{N/A}}$ Procedure Name: ARB-HT3G_Ch25_f.914.5_Back_clip_Gap 0mm

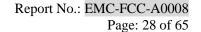
Communication System: FHSS; Frequency: 914.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 914.5 MHz; $\sigma = 1.09 \text{ S/m}$; $\epsilon_r = 56.087$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3865; ConvF(9.64, 9.64, 9.64); Calibrated: 2013-08-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2013-07-29
 Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

ARB-HT3G/ARB-HT3G_Ch25_f.914.5_Back_clip_Gap 0mm/Area Scan (81x101x1):


Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.118 W/kg


ARB-HT3G/ARB-HT3G_Ch25_f.914.5_Back_clip_Gap 0mm/Zoom Scan (5x5x7)/Cube

0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.674 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.132 W/kg

SAR(1 g) = 0.098 W/kg; SAR(10 g) = 0.070 W/kg

Maximum value of SAR (measured) = 0.118 W/kg

Body_902.5 MHz_Back_Pouch_Gap 0mm

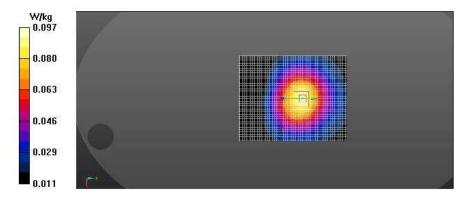
DUT: ARB-HT3G; Type: GFSK MODULATION; Serial: $\ensuremath{\mathrm{N/A}}$ Procedure Name: ARB-HT3G_Ch1_f.902.5_Back_clip_Gap 0mm

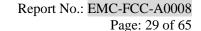
Communication System: FHSS; Frequency: 902.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 902.5 MHz; $\sigma = 1.082 \text{ S/m}$; $\epsilon_r = 56.28$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3865; ConvF(9.64, 9.64, 9.64); Calibrated: 2013-08-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated 2013-07-29 Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

ARB-HT3G/ARB-HT3G_Chl_f.902.5_Back_clip_Gap 0mm/Area Scan (81x101x1):


Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0958 W/kg


ARB-HT3G/ARB-HT3G_Ch1_f.902.5_Back_clip_Gap 0mm/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.756 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.108 W/kg

SAR(1 g) = 0.080 W/kg; SAR(10 g) = 0.057 W/kg

Maximum value of SAR (measured) = 0.0971 W/kg

Body_927.5 MHz_Back_Pouch_Gap 0mm

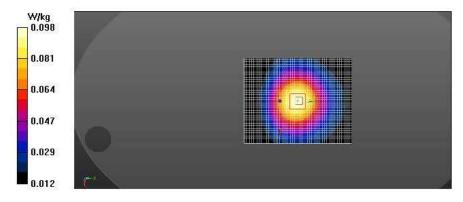
DUT: ARB-HT3G; Type: GFSK MODULATION; Serial: $\ensuremath{\mathrm{N/A}}$ Procedure Name: ARB-HT3G_Ch51_f.927.5_Back_clip_Gap 0mm

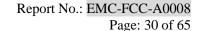
Communication System: FHSS; Frequency: 927.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 927.5 MHz; $\sigma = 1.107 \text{ S/m}$; $\epsilon_r = 55.94$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3865; ConvF(9.64, 9.64, 9.64); Calibrated: 2013-08-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated 2013-07-29 Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

ARB-HT3G/ARB-HT3G_Ch51_f.927.5_Back_clip_Gap 0mm/Area Scan (81x101x1):


Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0977 W/kg


ARB-HT3G/ARB-HT3G_Ch51_f.927.5_Back_clip_Gap 0mm/Zoom Scan (5x5x7)/Cube

0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.057 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.110 W/kg

SAR(1 g) = 0.083 W/kg; SAR(10 g) = 0.060 W/kg

Maximum value of SAR (measured) = 0.0984 W/kg

Body_914.5 MHz_Back_Pouch_Ear_Mic_Gap 0mm

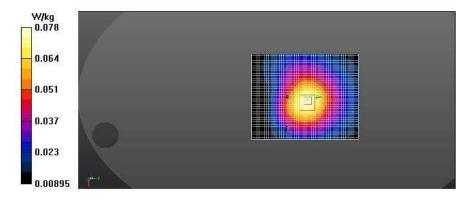
DUT: ARB-HT3G; Type: GFSK MODULATION; Serial: $\rm N/A$ Procedure Name: ARB-HT3G_Ch25_f.914.5_Back_clip_Gap 0mm

Communication System: FHSS; Frequency: 914.5 MHz; Duty Cycle: 1:1 Medium parameters used: f = 914.5 MHz; $\sigma = 1.09 \text{ S/m}$; $\epsilon_r = 56.087$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3865; ConvF(9.64, 9.64, 9.64); Calibrated: 2013-08-27;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated 2013-07-29 Phantom: ELI v5.0 sn1178; Type: QDOVA002AA; Serial: TP:1178
- Measurement SW: DASY52, Version 52.8 (4); SEMCAD X Version 14.6.8 (7028)

ARB-HT3G/ARB-HT3G_Ch25_f.914.5_Back_clip_Gap 0mm/Area Scan (81x101x1):


Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0776 W/kg

ARB-HT3G/ARB-HT3G_Ch25_f.914.5_Back_clip_Gap 0mm/Zoom Scan (5x5x7)/Cube

0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.565 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.0880 W/kg

SAR(1 g) = 0.065 W/kg; SAR(10 g) = 0.047 W/kg

Maximum value of SAR (measured) = 0.0783 W/kg

Annex A. Photographs

Annex A.1 EUT

Front View

Back View

Right side View

Left side View

Top side View

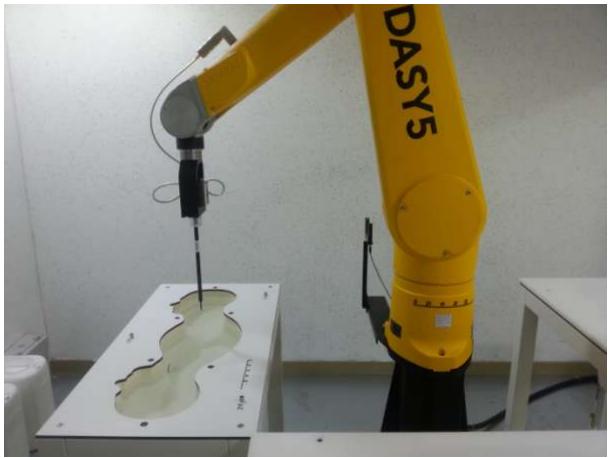
Bottom side View

Front_Pouch

Back_Pouch

Right_Pouch

Left_Pouch


Top_Pouch

 $Bottom_Pouch$

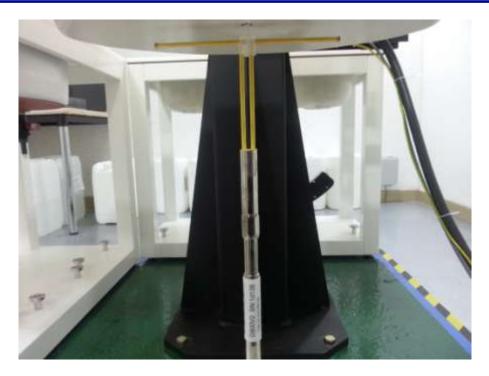
Annex A.2 Photographs of Test Setup

Photograph of the SAR measurement System

Annex A.3 Test Position

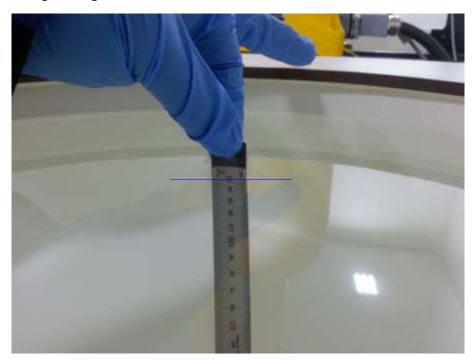
(a) Head_Front(25 mm)

(b) Head_Front_Pouch(25 mm)



(c) Body_Back_Pouch

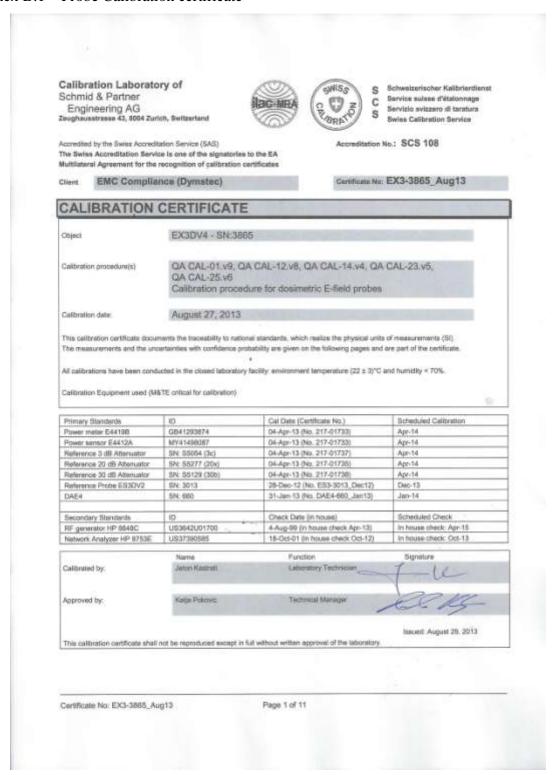
(d) Body_ Back_Pouch_Mic


(e) Head Validation 900 MHz

(f) Body Validation 900 MHz

Annex A.4 Liquid Depth

Head 900 MHz


Body 900 MHz

Annex B. Calibration certificate

Annex B.1 Probe Calibration certificate

Page: 43 of 65

Calibration Laboratory of Schmid & Partner

Engineering AG sughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSŁ NORMx,y,z DCP

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z

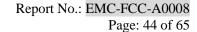
diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A. B, C, D Polarization e o rotation around probe axis

Polarization 8 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

- Calibration is Performed According to the Following Standards:


 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, December 2003
 IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close
 - proximity to the ear (frequency range of 300 MHz to 3 GHz)*, February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 8 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field. uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,x = NORMx,y,x "frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y.z; Bx,y.z; Dx,y.z; Dx,y.z; VRx,y.z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3865 Aug 13

Page 2 of 11

EX3DV4 - SN:3865

August 27, 2013

Probe EX3DV4

SN:3865

Manufactured: Calibrated:

February 2, 2012

August 27, 2013

Calibrated for DASY/EASY Systems (Note: non-competible with DASY2 system!)

Certificate No: EX3-3865_Aug13

Page 3 of 11

Page: 45 of 65

EX3DV4- SN:3865

August 27, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3865

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.42	0.37	0.41	± 10.1 %
DCP (mV) ^R	96.6	94.4	95.2	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B d8õV	G	D dB	VR mV	Uno ¹ (k=2)
0	CW	X	0.0	0.0	1.0	0.00	153.6	±2.7 %
		Y	0.0	0.0	1.0		189.8	
		Z	0.0	0.0	1.0		151.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3865_Aug13-

Page 4 of 11

The uncertainties of NormX.Y.Z. do not affect the E^E-field uncertainty inside TSL (see Pages 5 and 6).

Namerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

http://www.emc2000.co.kr

Report No.: EMC-FCC-A0008

Page: 46 of 65

EX3DV4- SN:3865

August 27, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3865

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k≈2)
450	43.5	0.87	10.64	10.64	10.64	0.14	1.67	± 13.4 %
850	1 41.5	0.92	10.06	10.06	10,06	0.26	1.02	± 12.0 %
900	41.5	0.97	9.77	9.77	9.77	0.19	1.36	± 12.0 %
1750	40.1	1.37	8.61	8.61	8.61	0.41	0.75	± 12.0 %
1900	40.0	1.40	8.36	8.36	8.36	0.79	0.55	± 12.0 9
2450	39.2	1.80	7.46	7.46	7.46	0.26	0.96	± 12.0 %
2600	39.0	1.96	7.27	7.27	7.27	0.39	0.84	± 12.0 9
5200	36.0	4.66	4.69	4.69	4.69	0.30	1.80	± 13.1.9
5300	35.9	4,76	4.50	4.50	4.50	0.30	1.80	± 13.1 9
5800	35.6	4.96	4.60	4.60	4.60	0.30	1.80	± 13.1 9
5800	35.5	5.07	4.39	4.39	4.39	0.30	1.80	± 13.1 9
5800	35.3	5.27	4.59	4.59	4.59	0.30	1.80	± 13.1 9

Certificate No: EX3-3865_Aug13

Page 5 of 11

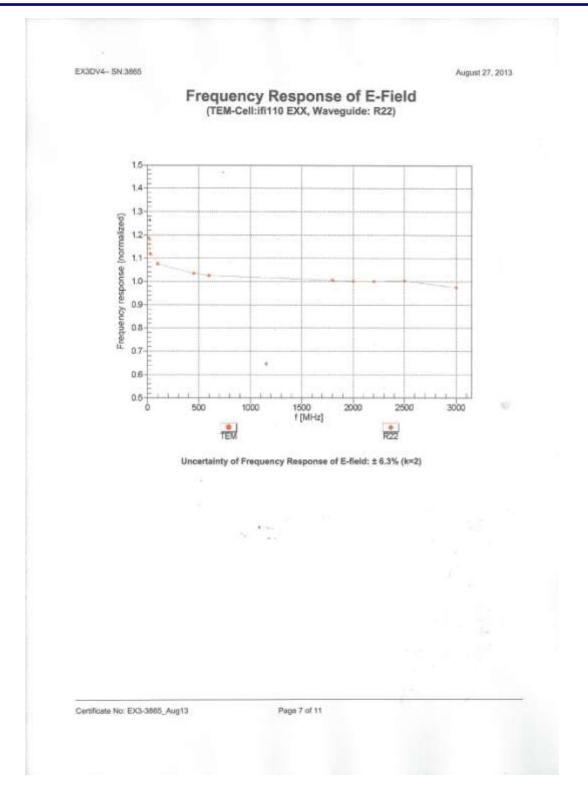
⁶ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), also ± is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency trans.
⁷ At frequencies below 3 GHz, the validity of fissue parameters (it and o) can be referred to ± 10% if liquid compensation formula is applied to measured SAR values. Aft requencies above 3 GHz, the validity of tissue parameters (it and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Report No.: EMC-FCC-A0008 Page: 47 of 65

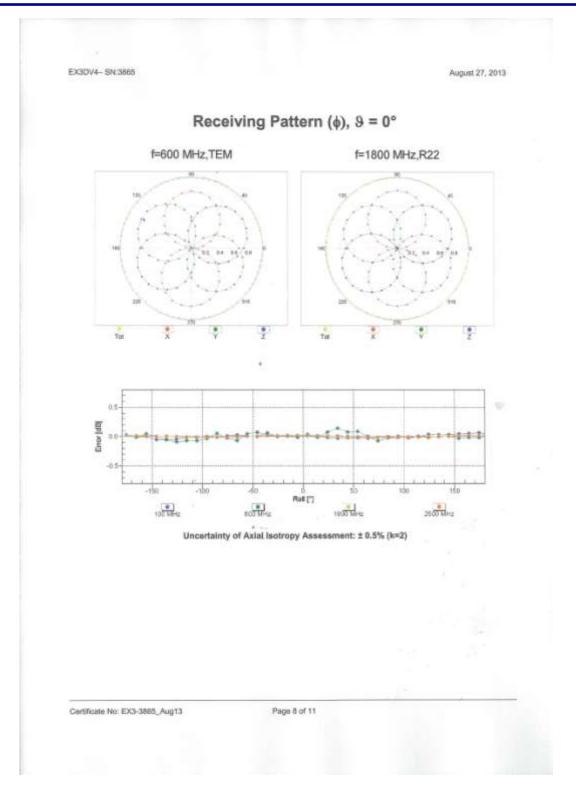
EX30V4-SN:3865 August 27, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3865

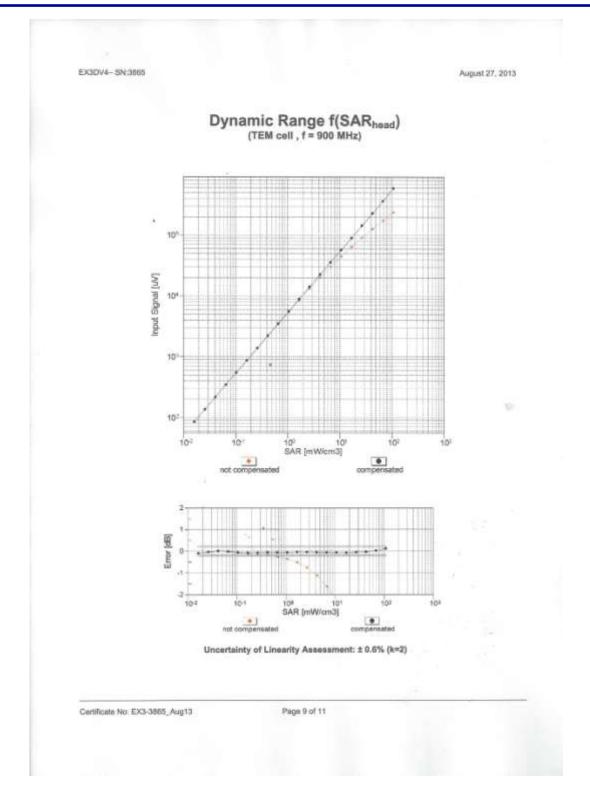
Calibration Parameter Determined in Body Tissue Simulating Media

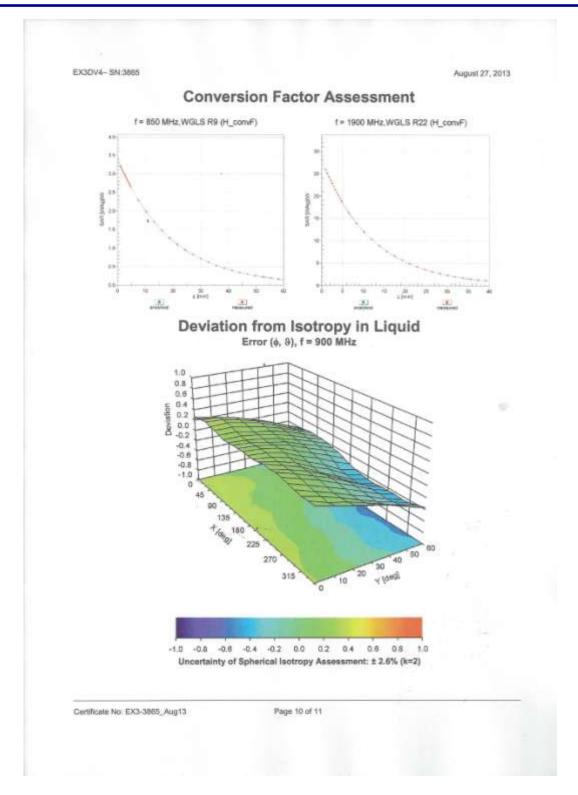

f (MHz) ^c	Relative Permittivity	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	11.42	11.42	11.42	0.08	1.10	± 13.4 %
850	1 55.2	0.99	9.77	9.77	9.77	0.20	1.35	± 12.0 %
900	55.0	1.05	9.64	9.64	9.64	0.25	1.19	± 12.0 %
1750	53.4	1.49	8.21	8,21	8.21	0.33	0.88	± 12.0 %
1900	53.3	1.52	7.92	7.92	7.92	0.41	0.78	± 12.0 %
2450	52.7	1.95	7.45	7.45	7.45	0.45	0,73	± 12.0 %
2600	52.5	2.16	7.19	7,19	7.19	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.47	4.47	4.47	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.19	4.19	4.19	0.45	1.90	± 13.1 %
5500	48,6	5.65	3.99	3.99	3.99	0.45	1.90	± 13.1 %
5600	48.5	5.77	3.74	3.74	3.74	0.50	1.90	± 13.1 %
5800	48.2	6.00	3.95	3.95	3.95	0.55	1.90	± 13.1 %

Certificate No: EX3-3865_Aug13


Page 6 of 11

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CornF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.
At the quencies below 3 GHz, the validity of fessue parameters (it and in) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. Aft requencies above 3 GHz, the validity of issue perameters (it and o) is restricted to ± 5%. The uncertainty is the RSS of the CornF uncertainty for indicated target tissue parameters.





Report No.: EMC-FCC-A0008 Page: 52 of 65

EX3DV4-SN:3865

August 27, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3865

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	24.3
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2,5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Messurement Distance from Surface	2 mm

Certificate No: EX3-3865_Aug13

Page 11 of 11

Page: 53 of 65

Annex B.2 DAE Calibration certification

Page: 54 of 65

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlecher Kalibrierdienet
C Service suisse d'étalonnage
Servicio avizzero di taratura
S Swies Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swise Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle,

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

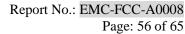
Certificate No: DAE4-1342_Jul13

Page 2 of 5

Page: 55 of 65

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = 6.1 µV, full range = -100...+300 mV
Low Range: 1LSB = 61nV, full range = -1......+3mV
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec


Calibration Factors	X	Y	Z
High Range	404.083 ± 0.02% (k=2)	404.233 ± 0.02% (k=2)	404.203 ± 0.02% (k=2)
Low Range	3.97261 ± 1.50% (k=2)	3.97908 ± 1.50% (k=2)	3.97967 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY sys	38.5°±1°

Certificate No: DAE4-1342_Jul13

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199997.53	-0.56	-0.00
Channel X + Input	20005.43	4.25	0.02
Channel X - Input	-19998.03	2.34	-0.01
Channel Y + Input	199998.02	0.01	0.00
Channel Y + Input	20001.47	0.35	0.00
Channel Y - Input	-20000.72	-0.24	0.00
Channel Z '+ Input	199998.18	0.09	0.00
Channel Z + Input	20000.42	-0.56	-0.00
Channel Z - Input	-20000.83	-0.24	0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2002.93	1.65	0.08
Channel X	+ Input	202.80	0.97	0.48
Channel X	- Input	-197.48	0.54	-0.27
Channel Y	+ Input	2002.71	1.43	0.07
Channel Y	+ Input	202.23	0.52	0.28
Channel Y	- Input	-198.64	-0.44	0.22
Channel Z	+ Input	2001.56	0.31	0.02
Channel Z	+ Input	201.13	-0.54	-0.27
Channel Z .	- Input	-200.76	-2.51	1.27
Channel Z	- Input	~200.76	-2.51	1,2

Common mode sensitivity DASY measurement parameters: A

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (μV)
Channel X	200	11.62	9.65
	- 200	-8.38	-10.57
Channel Y	200	0.96	0.47
	- 200	-2.95	-2.22
Channel Z	200	0.38	0.38
	- 200	-3.20	-3.03

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	14	4.32	-2.90
Channel Y	200	9.87		5.86
Channel Z	200	10.22	7.18	

Certificate No: DAE4-1342_Jul13

Page 4 of 5

Page: 57 of 65

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	15935	13944
Channel Y	16474	14966
Channel Z	15663	13516

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec input 10MO

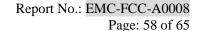
	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.19	-2.12	1.41	0.62
Channel Y	-0.49	-1.78	1,16	0.55
Channel Z	-0.35	-1.85	1.13	0.62

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <26fA

7. Input Resistance (Typical values for information)

	Zerolng (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200


8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Voc)	-0.01	-B	-9

Certificate No: DAE4-1342_Jul13

Page 5 of 5

Annex B.3 Dipole Calibration certification **D900V2**

Calibration Laboratory of Schweizerischer Kalibrierdie S Schmid & Partner Service sulsse d'étalonnage C SE SERATO Engineering AG Servizio svizzero di taratura Zeughausstrasse 43, 8004 Zurich, Switzerland S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates EMC Compliance (Dymstec) Certificate No: D900V2-1d138_Aug12 CALIBRATION CERTIFICATE Object D900V2 - SN: 1d138 Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date August 07, 2012 계 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Primary Standards ID W Cel Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 05-Oct-11 (No. 217-01451) Oct-12 Power sensor HP 8481A U\$37292783 05-Oct-11 (No. 217-01451) Oct-12 Reference 20 dB Attenuator SN: 5058 (20k) 27-Mar-12 (No. 217-01530) Apr-13 Type-N mismatch combination SN: 5047,2 / 06327 27-Mar-12 (No. 217-01533) Apr-13 Reference Probe ES3DV3 SN: 3205 30-Dec-11 (No. ES3-3205_Dec11) Dec-12 DAE4 SN: 601 27-Jun-12 (No. DAE4-601_Jun12) Jun-13 Secondary Standards Power sensor HP 8481A Check Date (in house) Scheduled Check MY41092317 18-Oct-02 (in house check Cict-11) In house check: Oct-13 RF generator R&S SMT-06 1000005 04-Aug-99 (in house check Oct-11) In house check: Oct-13 Network Analyzer HP 6753E US37390685 S4206 58-Oct-01 (in house check Oct-11) In house check: Oct-12 Function Calibrated by: larae El-Naoug Laboratory Technician Approved by: Kitis Pokovic **Technical Manager** Issued: August 7, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D900V2-1d138_Aug12

Page 1 of 8

Page: 59 of 65

Calibration Laboratory of

Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kullbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swisa Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D900V2-1d138_Aug12

Page 2 of 8

Page: 60 of 65

Measurement Conditions

DASY Version	DASY5	V52.8.2
Extrapolation	Advanced Extrapolation	ILD STERRES
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	0.96 mha/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		200

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.65 mW / g
SAR for nominal Head TSL parameters	normalized to TW	10.6 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.70 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.82 mW/g ± 16.5 % (k=2)

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.05 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		340

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.75 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	10.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.76 mW/g
SAR for nominal Body TSL parameters	normalized to TW	7.00 mW / g = 16.5 % (k=2)

Certificate No: D900V2-1d138_Aug12

Page 3 of 8

Page: 61 of 65

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2 Ω - 0.2 jΩ
Return Loss	+ 33.5 dB

Antenna Parameters with Body TSL

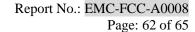
Impedance, transformed to feed point	48.3 Ω - 2.0 jΩ	
Return Loss	- 31.2 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.412 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.


No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 10, 2010	

Certificate No: D900V2-1d138_Aug12

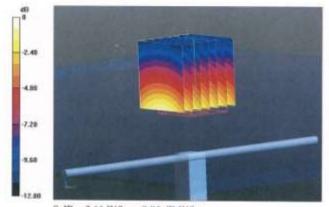
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 07.08.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d138


Communication System: CW; Frequency: 900 MHz Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\epsilon_r = 40.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 30.12.2011;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.2(961); SEMCAD X 14.6.6(6816)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.685 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.968 mW/g SAR(1 g) = 2.65 mW/g; SAR(10 g) = 1.7 mW/g Maximum value of SAR (measured) = 3.11 W/kg



0 dB = 3.11 W/kg = 9.86 dB W/kg

Certificate No: D900V2-1d138_Aug12

Impedance Measurement Plot for Head TSL

Certificate No: D900V2-1d138_Aug12

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 06.08.2012

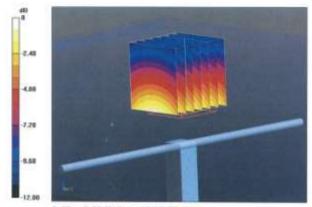
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d138

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 1.05$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(5.94, 5.94, 5.94); Calibrated: 30.12.2011;
- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.2(961); SEMCAD X 14.6.6(6816)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.908 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 4.203 mW/g SAR(1 g) = 2.75 mW/g; SAR(10 g) = 1.76 mW/g Maximum value of SAR (measured) = 3.23 W/kg



0 dB = 3.23 W/kg = 10.18 dB W/kg

Certificate No: D900V2-1d138_Aug12

Impedance Measurement Plot for Body TSL

Certificate No: D900V2-1d138_Aug12

Page 8 of 8

- END OF REPORT -