

TEST REPORT

Report No.:	BCTC2107037524-1E				
Applicant:	CHINA DRAGON TECHNOLOGY LIMITED				
Product Name:	WLAN 11a/b/g/n/ac SDIO3.0 1T1R + Bluetooth 5.0 module				
Model/Type reference:	CDW-47W3155-00				
Tested Date:	2021-07-29 to 2021-08-23				
Issued Date:	2021-08-23				
She She	nzhen BC HC Testing Co., Ltd	•			
No. : BCTC/RF-EMC-007	Page: 1 of 42	Edition : A.3			

FCC ID: ROW-CDW47W3155

Product Name:	WLAN 11a/b/g/n/ac SDIO3.0 1T1R + Bluetooth 5.0 module
Trademark:	N/A
Model/Type Ref.:	CDW-47W3155-00
Prepared For:	CHINA DRAGON TECHNOLOGY LIMITED
Address:	B4 Bidg.haosan No.1 Industry Park, Shajing street, B Shenzhen China
Manufacturer:	CHINA DRAGON TECHNOLOGY LIMITED
Address:	B4 Bidg.haosan No.1 Industry Park, Shajing street, B Shenzhen China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2021-07-29
Sample tested Date:	2021-07-29 to 2021-08-23
Issue Date:	2021-08-23
Report No.:	BCTC2107037524-1E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS
Remark:	This is Bluetooth BLE radio test report.

Tested by: Willem Woing

Willem Wang/Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

TABLE OF CONTENT

Test I	Report Declaration	Page
1.	VERSION	5
2.	TEST SUMMARY	
3.	MEASUREMENT UNCERTAINTY	
4.	PRODUCT INFORMATION AND TEST SETUP	
4.1	Product Information	
4.2	Test Setup Configuration	
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	
4.6	Table of parameters of text software setting	
5.	TEST FACILITY AND TEST INSTRUMENT USED	
5.1	Test Facility	
5.2	Test Instrument Used	
6.	CONDUCTED EMISSIONS	
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test procedure	
6.4	EUT operating Conditions	
6.5	Test Result	
7.	RADIATED EMISSIONS	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	4. 2
7.4	EUT operating Conditions	
7.5	Test Result	
8.	RADIATED BAND EMISSION MEASUREMENT AND RESTRICTED IDS OF OPERATION Block Diagram Of Test Setup	
BAN	IDS OF OPERATION	
8.1		
8.2	Limit	24
8.3	Test procedure EUT operating Conditions Test Result	25
8.4	EUT operating Conditions	25
8.5	Test Result	
9.	POWER SPECTRAL DENSITY TEST	
9.1	Block Diagram Of Test Setup	
9.2	Limit	27
9.3	Limit	27
9.4	EUT operating Conditions	27
9.5	Test Result	
10.	BANDWIDTH TEST	30

Page: 3 of 42

10.1	Block Diagram Of Test Setup	30
10.2	Limit	
10.3	Test procedure	30
10.4	EUT operating Conditions	30
10.5	Test Result	31
11.	PEAK OUTPUT POWER TEST	33
11.1	Block Diagram Of Test Setup	33
11.2	Limit	33
11.3	Test procedure	33
11.4	EUT operating Conditions	33
11.5	Test Result	34
12.	100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	35
12.1	Block Diagram Of Test Setup	35
12.2	Limit	35
12.3	Test procedure	35
12.4	EUT operating Conditions	35
12.5	Test Result	36
13.	ANTENNA REQUIREMENT	38
13.1	Limit	38
13.2	Test Result	38
14.	EUT PHOTOGRAPHS	39
	EUT TEST SETUP PHOTOGRAPHS	

(Note: N/A means not applicable)

Page: 4 of 42

1. VERSION

Report No.	Issue Date Description		Approved
BCTC2107037524-1E	2021-08-23	Original	Valid

Page: 5 of 42

2. TEST SUMMARY

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d), 15.205	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247(d)	PASS
8	Antenna Requirement	15.203	PASS

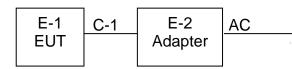
No. : BCTC/RF-EMC-007

Page: 6 of 42

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59 ℃


4. PRODUCT INFORMATION AND TEST SETUP

4.1 Product Information

Model/Type reference:	CDW-47W3155-00
Model differences:	N/A
Bluetooth Version:	BT 5.0
Hardware Version:	N/A
Software Version:	N/A
Operation Frequency:	Bluetooth: 2402-2480MHz
Type of Modulation:	Bluetooth: GFSK
Number Of Channel	40CH
Antenna installation:	External antenna
Antenna Gain:	2dBi
Ratings:	DC 3.3V

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment. Conducted Emission/ Radiated Spurious Emission::

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	WLAN 11a/b/g/n/ac SDIO3.0 1T1R + Bluetooth 5.0 module	N/A	CDW-47W 3155-00	N/A	EUT
E-2	Adapter	N/A	BCTC001	N/A	Auxiliary

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.5M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
00	2402	10	2422	20	2442		
01	2404	11	2424	21	2444		
02	2406	12	2426	22	2446		
~	~	~	~	~	~		
08	2418	18	2438	38	2478		
09	2420	19	2440	39	2480		

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type
Mode 1	СНОО	
Mode 2	CH19	GFSK
Mode 3	CH39	
Mode 4	Link mode (Conducted emission and	Radiated emission)

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table of parameters of text software setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	CMD			
Frequency	2402 MHz	2440 MHz	2480 MHz	
Parameters	DEF	DEF	DEF	

Page: 10 of 42

5. TEST FACILITY AND TEST INSTRUMENT USED

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

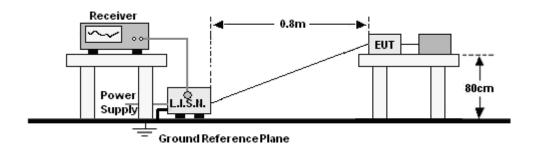
FCC Test Firm Registration Number: 712850

IC Registered No.: 23583

5.2 Test Instrument Used

Conducted emissions Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022		
LISN	R&S	ENV216	101375	May 28, 2021	May 27, 2022		
ISN	HPX	ISN T800	S150900 1	May 28, 2021	May 27, 2022		
Software	Frad	EZ-EMC	EMC-CO N 3A1	١	Λ_{ij}		

RF conducted test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Power Metter	Keysight	E4419B	l'internet	May 28, 2021	May 27, 2022		
Power Sensor (AV)	Keysight	E9 300A	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	May 28, 2021	May 27, 2022		
Signal Analyzer 20kHz-26.5GHz	KEYSIGHT	N9020A	MY4910006 0	May 28, 2021	May 27, 2022		
Spectrum Analyzer 9kHz-40GHz	Agilent	FSP40	100363	May 28, 2021	May 27, 2022		



Radiated emissions Test (966 chamber)								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
966 chamber	ChengYu	966 Room	966	Jun. 06. 2020	Jun. 05, 2023			
Receiver	R&S	ESR3	102075	May 28, 2021	May 27, 2022			
Receiver	R&S	ESRP	101154	May 28, 2021	May 27, 2022			
Amplifier	SKET	LAPA_01G 18G-45dB	١	May 28, 2021	May 27, 2022			
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 28, 2021	May 27, 2022			
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	VULB9163 -942	Jun. 01, 2021	May 31, 2022			
Horn Antenna	SCHWARZBE CK	BBHA9120 D	1541	Jun. 02, 2021	Jun. 01, 2022			
Horn Antenna (18GHz-40 GHz)	SCHWARZBE CK	BBHA9170	822	Jun. 15, 2021	Jun. 14, 2022			
Amplifier (18GHz-40 GHz)	MITEQ	TTA1840-3 5-HG	2034381	May 28, 2021	May 27, 2022			
Loop Antenna (9KHz-30M Hz)	SCHWARZBE CK	FMZB1519 B	014	Jun. 02, 2021	Jun. 01, 2022			
RF cables1 (9kHz-30MH z)	Huber+Suhnar	9kHz-30M Hz	B1702988- 0008	May 28, 2021	May 27, 2022			
RF cables2 (30MHz-1G Hz)	Huber+Suhnar	30MHz-1G Hz	1486150	May 28, 2021	May 27, 2022			
RF cables3 (1GHz-40G Hz)	Huber+Suhnar	1GHz-40G Hz	1607106	May 28, 2021	May 27, 2022			
Power Metter	Keysight	E4419B		May 28, 2021	May 27, 2022			
Power Sensor (AV)	Keysight	E9 300A		May 28, 2021	May 27, 2022			
Signal Analyzer 20kHz-26.5 GHz	KEYSIGHT	N9020A	MY491000 60	May 28, 2021	May 27, 2022			
Spectrum Analyzer 9kHz-40G Hz	R&S	FSP40	100363	May 28, 2021	May 27, 2022			
Software	Frad	EZ-EMC	FA-03A2 RE					

6. CONDUCTED EMISSIONS

6.1 Block Diagram Of Test Setup

6.2 Limit

FREQUENCY (MHz)	Limit (dBuV)				
	Quas-peak	Average			
0.15 -0.5	66 - 56 *	56 - 46 *			
0.50 -5.0	56.00	46.00			
5.0 -30.0	60.00	50.00			
Notes: 1. *Decreasing linearly with logarithm of frequency.					

2. The lower limit shall apply at the transition frequencies.

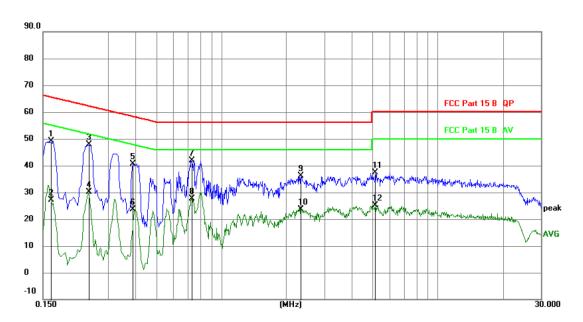
6.3 Test procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

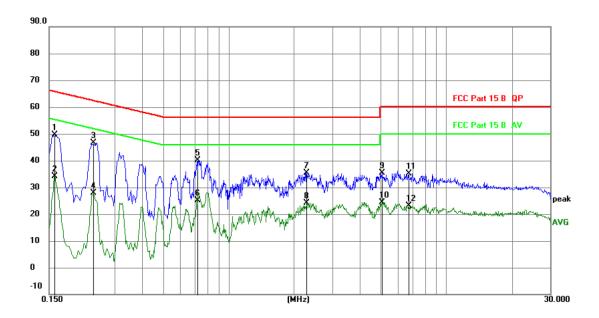
6.5 Test Result

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 4

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBu∨	dBu∨	dB	Detector
1	0.1632	39.56	9.61	49.17	65.30	-16.13	QP
2	0.1632	17.57	9.61	27.18	55.30	-28.12	AVG
3	0.2442	38.24	9.61	47.85	61.95	-14.10	QP
4	0.2442	20.49	9.61	30.10	51.95	-21.85	AVG
5	0.3912	31.07	9.62	40.69	58.04	-17.35	QP
6	0.3912	14.13	9.62	23.75	48.04	-24.29	AVG
7 *	0.7312	32.35	9.62	41.97	56.00	-14.03	QP
8	0.7312	18.02	9.62	27.64	46.00	-18.36	AVG
9	2.3334	26.45	9.64	36.09	56.00	-19.91	QP
10	2.3334	14.02	9.64	23.66	46.00	-22.34	AVG
11	5.1388	27.59	9.71	37.30	60.00	-22.70	QP
12	5.1388	15.36	9.71	25.07	50.00	-24.93	AVG


No.: BCTC/RF-EMC-007

Page: 14 of 42

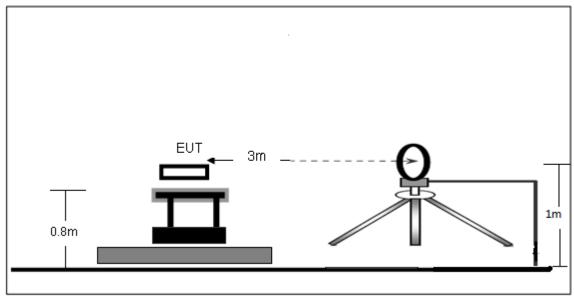
Edition :

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 4

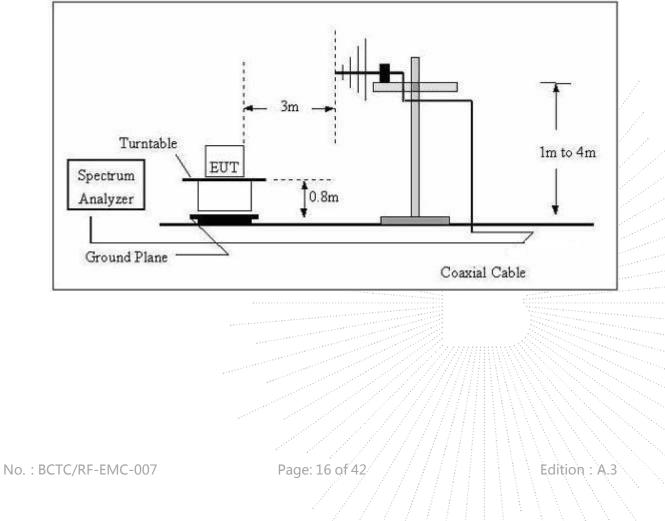
Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

1 0.1582 39.91 9.61 49.52 65.56 -16.04 QP 2 0.1582 24.60 9.61 34.21 55.56 -21.35 AVG 3 * 0.2391 36.97 9.61 46.58 62.13 -15.55 QP 4 0.2391 18.34 9.61 27.95 52.13 -24.18 AVG 5 0.7160 30.43 9.62 40.05 56.00 -15.95 QP 6 0.7160 15.59 9.62 25.21 46.00 -20.79 AVG 7 2.2726 25.68 9.64 35.32 56.00 -20.68 QP 8 2.2726 14.38 9.64 24.02 46.00 -21.98 AVG 9 5.0580 25.71 9.71 35.42 60.00 -24.58 QP 10 5.0580 14.75 9.71 24.46 50.00 -25.54 AVG 11 6.7333 </th <th>No.</th> <th>Mk.</th> <th>Freq.</th> <th>Reading Level</th> <th>Correct Factor</th> <th>Measure- ment</th> <th>Limit</th> <th>Over</th> <th></th>	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
2 0.1582 24.60 9.61 34.21 55.56 -21.35 AVG 3 * 0.2391 36.97 9.61 46.58 62.13 -15.55 QP 4 0.2391 18.34 9.61 27.95 52.13 -24.18 AVG 5 0.7160 30.43 9.62 40.05 56.00 -15.95 QP 6 0.7160 15.59 9.62 25.21 46.00 -20.79 AVG 7 2.2726 25.68 9.64 35.32 56.00 -21.98 AVG 9 5.0580 25.71 9.71 35.42 60.00 -21.98 AVG 9 5.0580 25.71 9.71 35.42 60.00 -24.58 QP 10 5.0580 14.75 9.71 24.46 50.00 -25.54 AVG 11 6.7333 25.50 9.74 35.24 60.00 -24.76 QP			MHz		dB	dBu∨	dBu∨	dB	Detector
3 * 0.2391 36.97 9.61 46.58 62.13 -15.55 QP 4 0.2391 18.34 9.61 27.95 52.13 -24.18 AVG 5 0.7160 30.43 9.62 40.05 56.00 -15.95 QP 6 0.7160 15.59 9.62 25.21 46.00 -20.79 AVG 7 2.2726 25.68 9.64 35.32 56.00 -21.98 AVG 8 2.2726 14.38 9.64 24.02 46.00 -21.98 AVG 9 5.0580 25.71 9.71 35.42 60.00 -24.58 QP 10 5.0580 14.75 9.71 24.46 50.00 -25.54 AVG 11 6.7333 25.50 9.74 35.24 60.00 -24.76 QP	1		0.1582	39.91	9.61	49.52	65.56	-16.04	QP
4 0.2391 18.34 9.61 27.95 52.13 -24.18 AVG 5 0.7160 30.43 9.62 40.05 56.00 -15.95 QP 6 0.7160 15.59 9.62 25.21 46.00 -20.79 AVG 7 2.2726 25.68 9.64 35.32 56.00 -20.68 QP 8 2.2726 14.38 9.64 24.02 46.00 -21.98 AVG 9 5.0580 25.71 9.71 35.42 60.00 -24.58 QP 10 5.0580 14.75 9.71 24.46 50.00 -24.76 QP 11 6.7333 25.50 9.74 35.24 60.00 -24.76 QP	2		0.1582	24.60	9.61	34.21	55.56	-21.35	AVG
5 0.7160 30.43 9.62 40.05 56.00 -15.95 QP 6 0.7160 15.59 9.62 25.21 46.00 -20.79 AVG 7 2.2726 25.68 9.64 35.32 56.00 -20.68 QP 8 2.2726 14.38 9.64 24.02 46.00 -21.98 AVG 9 5.0580 25.71 9.71 35.42 60.00 -24.58 QP 10 5.0580 14.75 9.71 24.46 50.00 -25.54 AVG 11 6.7333 25.50 9.74 35.24 60.00 -24.76 QP	3	*	0.2391	36.97	9.61	46.58	62.13	-15.55	QP
6 0.7160 15.59 9.62 25.21 46.00 -20.79 AVG 7 2.2726 25.68 9.64 35.32 56.00 -20.68 QP 8 2.2726 14.38 9.64 24.02 46.00 -21.98 AVG 9 5.0580 25.71 9.71 35.42 60.00 -24.58 QP 10 5.0580 14.75 9.71 24.46 50.00 -25.54 AVG 11 6.7333 25.50 9.74 35.24 60.00 -24.76 QP	4		0.2391	18.34	9.61	27.95	52.13	-24.18	AVG
7 2.2726 25.68 9.64 35.32 56.00 -20.68 QP 8 2.2726 14.38 9.64 24.02 46.00 -21.98 AVG 9 5.0580 25.71 9.71 35.42 60.00 -24.58 QP 10 5.0580 14.75 9.71 24.46 50.00 -25.54 AVG 11 6.7333 25.50 9.74 35.24 60.00 -24.76 QP	5		0.7160	30.43	9.62	40.05	56.00	-15.95	QP
8 2.2726 14.38 9.64 24.02 46.00 -21.98 AVG 9 5.0580 25.71 9.71 35.42 60.00 -24.58 QP 10 5.0580 14.75 9.71 24.46 50.00 -25.54 AVG 11 6.7333 25.50 9.74 35.24 60.00 -24.76 QP	6		0.7160	15.59	9.62	25.21	46.00	-20.79	AVG
9 5.0580 25.71 9.71 35.42 60.00 -24.58 QP 10 5.0580 14.75 9.71 24.46 50.00 -25.54 AVG 11 6.7333 25.50 9.74 35.24 60.00 -24.76 QP	7		2.2726	25.68	9.64	35.32	56.00	-20.68	QP
10 5.0580 14.75 9.71 24.46 50.00 -25.54 AVG 11 6.7333 25.50 9.74 35.24 60.00 -24.76 QP	8		2.2726	14.38	9.64	24.02	46.00	-21.98	AVG
11 6.7333 25.50 9.74 35.24 60.00 -24.76 QP	9		5.0580	25.71	9.71	35.42	60.00	-24.58	QP
	10		5.0580	14.75	9.71	24.46	50.00	-25.54	AVG
12 6.7333 13.31 9.74 23.05 50.00 -26.95 AVG	11		6.7333	25.50	9.74	35.24	60.00	-24.76	QP
	12		6.7333	13.31	9.74	23.05	50.00	-26.95	AVG

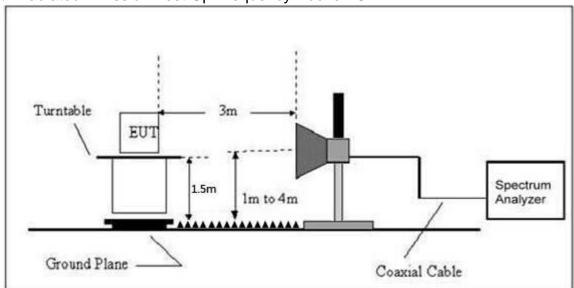

No. : BCTC/RF-EMC-007

Page: 15 of 42



7. RADIATED EMISSIONS

- 7.1 Block Diagram Of Test Setup
 - (A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance			
(MHz)	uV/m	(m)	uV/m	dBuV/m		
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80		
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40		
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40		
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾		
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾		
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾		
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENC Y (MHz)Limit (dBuV/m) (at 3M)Y (MHz)PEAKAbove 10007454			(,	
	FREQUENC	Limit (dBuV/		
Above 1000 74 54	Y (MHz)	PEAK	AVERAGE	
	Above 1000		54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

FREQUENCY RANGE OF RADIATED MEASUREMENT

(a) For an intentional radiator

the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP
	= NNNNNHHHHHHH

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 1/T for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a.The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g.Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

Below 30MHz

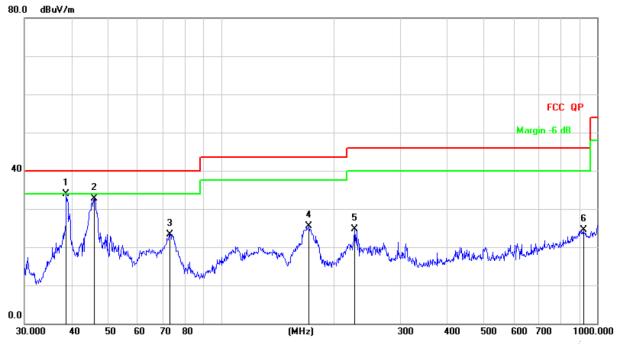
Temperature:	26 ℃	Relative Humidtity:	24%
Pressure:	101 kPa	Test Voltage :	AC 120V/60Hz
Test Mode :	Mode 4	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

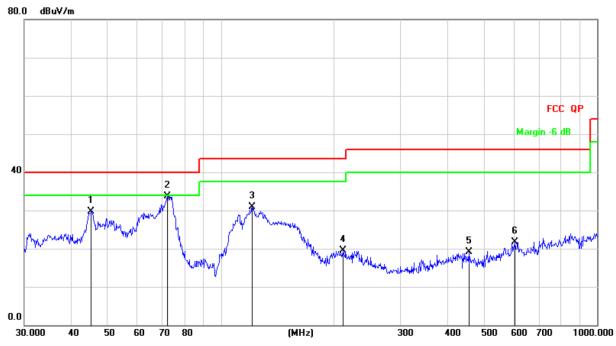
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.


No. : BCTC/RF-EMC-007

Page: 20 of 42

Between 30MHz – 1GHz					
Temperature:	26 ℃	Relative Humidtity:	54%		
Pressure:	101 kPa	Test Voltage :	AC 120V/60Hz		
Test Mode :	Mode 4	Polarization :	Horizontal		



Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dB/m	dB	Detector
1	*	38.7518	49.46	-15.64	33.82	40.00	-6.18	QP
2		46.0162	47.75	-15.07	32.68	40.00	-7.32	QP
3		73.1025	42.18	-18.88	23.30	40.00	-16.70	QP
4		171.3925	43.63	-18.13	25.50	43.50	-18.00	QP
5	:	226.8934	40.34	-15.68	24.66	46.00	-21.34	QP
6	!	919.2866	25.86	-1.35	24.51	46.00	-21.49	QP

Temperature:	26 ℃	Relative Humidtity:	54%
Pressure:	101 kpa	Test Voltage :	AC 120V/60Hz
Test Mode :	Mode 4	Polarization :	Vertical

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBuV/m	dB/m	dB	Detector	
1		45.2165	44.78	-15.12	29.66	40.00	-10.34	QP	
2	*	72.0841	52.36	-18.65	33.71	40.00	-6.29	QP	
3		121.1230	48.48	-17.64	30.84	43.50	-12.66	QP	
4	2	210.7860	35.59	-16.05	19.54	43.50	-23.96	QP	
5	4	455.9057	28.86	-9.85	19.01	46.00	-26.99	QP	
6	(605.6592	28.24	-6.55	21.69	46.00	-24.31	QP	

Between	1GHz –	25GHz
---------	--------	-------

	GFSK						
Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Low chan	nel			
V	4804.00	54.51	-0.43	54.08	74.00	-19.92	PK
V	4804.00	44.58	-0.43	44.15	54.00	-9.85	AV
V	7206.00	47.34	8.31	55.65	74.00	-18.35	PK
V	7206.00	36.38	8.31	44.69	54.00	-9.31	AV
Н	4804.00	50.24	-0.43	49.81	74.00	-24.19	PK
Н	4804.00	39.42	-0.43	38.99	54.00	-15.01	AV
Н	7206.00	45.53	8.31	53.84	74.00	-20.16	PK
Н	7206.00	37.10	8.31	45.41	54.00	-8.59	AV
		1	Middle cha	1	1	1	
V	4880.00	53.12	-0.38	52.74	74.00	-21.26	PK
V	4880.00	46.24	-0.38	45.86	54.00	-8.14	AV
V	7320.00	45.37	8.83	54.20	74.00	-19.80	PK
V	7320.00	36.15	8.83	44.98	54.00	-9.02	AV
H	4880.00	48.39	-0.38	48.01	74.00	-25.99	PK
Н	4880.00	37.40	-0.38	37.02	54.00	-16.98	AV
Н	7320.00	42.51	8.83	51.34	74.00	-22.66	PK
H	7320.00	34.66	8.83	43.49	54.00	-10.51	AV
	T	Γ	High chan				
V	4960.00	56.01	-0.32	55.69	74.00	-18.31	PK
V	4960.00	47.06	-0.32	46.74	54.00	-7.26	AV
V	7440.00	48.29	9.35	57.64	74.00	-16.36	PK
V	7440.00	37.43	9.35	46.78	54.00	-7.22	AV
Н	4960.00	54.52	-0.32	54.20	74.00	-19.80	PK
Н	4960.00	44.39	-0.32	44.07	54.00	-9.93	AV
Н	7440.00	46.77	9.35	56.12	74.00	-17.88	PK
Н	7440.00	39.52	9.35	48.87	54.00	-5.13	AV

Remark:

1.Emission Level = Meter Reading + Factor,

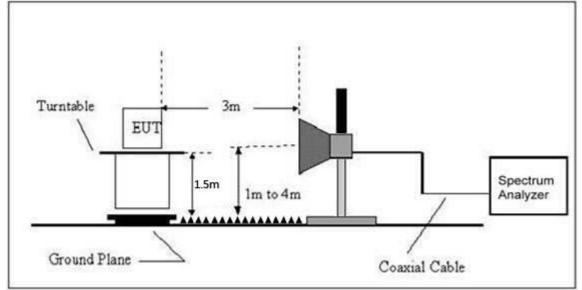
Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5. This report only shows the worst case test data.

8. RADIATED BAND EMISSION MEASUREMENT AND RESTRICTED BANDS OF OPERATION

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENC	Limit (dBuV/m) (at 3M)				
Y (MHz)	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1/T for Average

Above 1GHz test procedure as below:

a.The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g.Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

	Polar (H/V)	Frequency (MHz)	Reading Level (dBuV/m)	ReadingCorrectLevelFactor	Measure- ment (dBuV/m)	Lin (dBu		Result
	(1	((dB)	PK	PK	AV	
	Low Channel 2402MHz							
	Н	2390.00	56.22	-6.70	49.52	74.00	54.00	PASS
	Н	2400.00	49.14	-6.71	42.43	74.00	54.00	PASS
	V	2390.00	55.49	-6.70	48.79	74.00	54.00	PASS
GFSK	V	2400.00	47.61	-6.71	40.90	74.00	54.00	PASS
Gran			High	Channel 2	2480MHz			
	Н	2483.50	56.24	-6.79	49.45	74.00	54.00	PASS
	Н	2485.00	47.52	-6.81	40.71	74.00	54.00	PASS
	V	2483.50	55.87	-6.79	49.08	74.00	54.00	PASS
	V	2485.00	47.25	-6.81	40.44	74.00	54.00	PASS

Remark:

1. Emission Level = Meter Reading + Factor,

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Over= Emission Level - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5. This report only shows the worst case test data.

Page: 26 of 42

9. POWER SPECTRAL DENSITY TEST

9.1 Block Diagram Of Test Setup

9.2 Limit

	FCC Part15 (15.247), Subpart C					
SectionTest ItemLimitFrequency Range (MHz)Result				Result		
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

9.3 Test procedure

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.

9. Use the peak marker function to determine the maximum amplitude level within the RBW.

10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.4 EUT operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Note: Power Spectral Density(dBm)=Reading+Cable Loss

No. : BCTC/RF-EMC-007

Page: 27 of 4

9.5 Test Result


Temperature :	26 ℃	Relative Humidity :	54%
Test Mode :	GFSK	Test Voltage :	AC 120V/60Hz

Frequency	Power Spectral Density(dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-20.670	8	PASS
2440 MHz	-20.446	8	PASS
2480 MHz	-20.152	8	PASS

CH20

10. BANDWIDTH TEST

10.1 Block Diagram Of Test Setup

10.2 Limit

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

10.3 Test procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 EUT operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Note: Power Spectral Density(dBm)=Reading+Cable Loss

No. : BCTC/RF-EMC-007

Page: 30 of 42

10.5 Test Result

Temperature :	126°C	Relative Humidity:	54%
Test Mode :	GFSK	Test Voltage :	AC 120V/60Hz

Frequency (MHz)	6dB bandwidth (MHz)	Limit (kHz)	Result
2402	0.666	500	Pass
2440	0.672	500	Pass
2480	0.672	500	Pass

CH 01

No. : BCTC/RF-EMC-007

CH20

CH40

11. PEAK OUTPUT POWER TEST

11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS	

11.3 Test procedure

a. The EUT was directly connected to the Power meter

11.4 EUT operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Note: Power Spectral Density(dBm)=Reading+Cable Loss

Page: 33 of 42

11.5 Test Result

Temperature :	26 (1)	Relative Humidity:	54%
Test Mode :	GFSK	Test Voltage :	AC 120V/60Hz

Test Mode	Frequency	Maximum Conducted Output Power(PK)	Conducted Output Power Limit
	(MHz)	(dBm)	dBm
	2402	-6.176	30
GFSK	2440	-5.894	30
	2480	-5.646	30

No. : BCTC/RF-EMC-007

Page: 34 of 42

12. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE

12.1 Block Diagram Of Test Setup

12.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

12.3 Test procedure

Using the following spectrum analyzer setting:

- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize..

12.4 EUT operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Note: Power Spectral Density(dBm)=Reading+Cable Loss

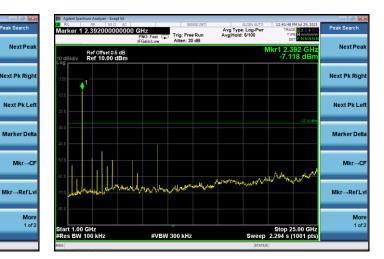
12.5 Test Result

Temperature :	26°C	Relative Humidity:	54%
Test Mode :	GFSK	Test Voltage :	AC 120V/60Hz

GFSK: Band Edge, Left Side

GFSK: Band Edge, Right Side

Agilent Spect	trum Analyzer - Swept RF 50 Ω	AC AC	SENSE	TNT	ALIGN AUTO	12:46:56 PM Jul 29		
	2.40180000	DOOO GHZ PNO: Fas	at 😱 Trig: Free R	Av tun Avg	g Type: Log-Pwr Hold:>100/100	TRACE 1 2 3 TYPE MW	456 WWW	k Search
dB/div	Ref Offset 0.5 o Ref 10.00 di		w Atten: 20 d	D	Mk	r1 2.401 8 G -6.519 d	HZ	NextPea
						1	Nex	t Pk Rig
						//-26.5 ///22	52 d Bm Ne	ext Pk Lo
).0).0).0 <mark>al.t</mark>	ger byster vet bysteft of the beginning	Monnenerister	างราวรายสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถส	hand and the second	hand the the transformed	wind the man had been a	uhuu yy Ma	arker De
Res BW	000 GHz 100 kHz		VBW 300 kHz		Sweep 9	Stop 2.41000 .600 ms (1001	pts)	Mkr→
R MODE TR 1 N 1 2 N 1 3 N 1 4	f f	X 2.401 8 GHz 2.400 0 GHz 2.399 0 GHz	-53.913 dBn	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE		r→RefL
7 B								М а 1 о
			m				Þ	
3					STATUS			

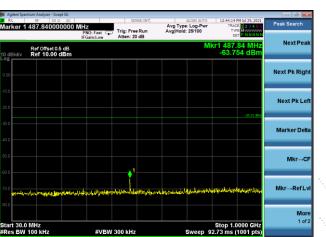


30.0 MHz BW 100 kH

Report No.: BCTC2107037524-1E

GFSK Marker 1 480.080000000 MHz Aug Type: Log-Pwr Avg Hold: 27/100 Trig: Free Run Atten: 20 dB Next Pea Ref Offset 0.5 dB Ref 10.00 dBm

#VBW 300 kH:



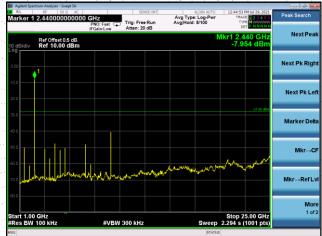
Low Channel 2402MHz

Middle Channel 2440MHz

Next Pk Rig

Next Pk Le

ALIGN AUTO Avg Type: Log-Pw AvgiHold: 27/100


Trig: Free Run

Marker 1 2.440000000000 GHz Aug Type: Log-Pwr Avg Hold: 63/100 Peak Search Trig: Free Run NextPea Ref Offset 0.5 dB Ref 10.00 dBm 2.440 (-6.321 d Next Pk Rig Next Pk Le Marker Delt Mkr→C Mkr→RefLv More 1 of 2 tart 1.00 GHz Res BW 100 kHz Stop 25.00 GH 2.294 s (1001 pt

Stop 1.0000 GH 92.73 ms (1001 pt

High Channel 2480MHz

No.: BCTC/RF-EMC-007

#VBW 300 kH

ker 1 487.840000000 MHz

Ref Offset 0.5 dB Ref 10.00 dBm

30.0 MHz BW 100 kH

Peak Search

Next Pea

Next Pk Righ

Next Pk Le

Marker Delt

Mkr→CF

Mkr→RefL

Stop 1.0000 GF ep 92.73 ms (1001 pt

Mon 1 of:

13. ANTENNA REQUIREMENT

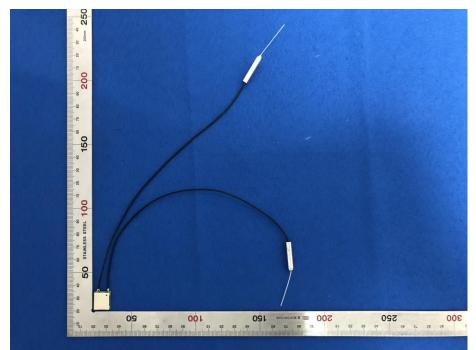
13.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall

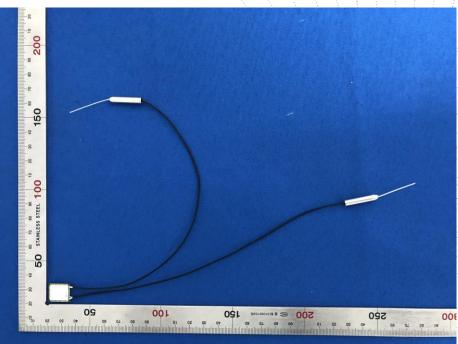
be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

13.2 Test Result

The EUT antenna is External antenna, The antenna gain is 2dBi, fulfill the requirement of this section.



Page: 38 of 42



14. EUT PHOTOGRAPHS

EUT Photo 1

No. : BCTC/RF-EMC-007

Page: 39 of 42

15. EUT TEST SETUP PHOTOGRAPHS

Conducted emissions

No. : BCTC/RF-EMC-007

Page: 40 of 42

Radiated Measurement Photos

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without stamp of laboratory.

4. The test report is invalid without signature of person(s) testing and authorizing.

5. The test process and test result is only related to the Unit Under Test.

6. The quality system of our laboratory is in accordance with ISO/IEC17025.

7.If there is any objection to report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Tangwei, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website : http://www.chnbctc.com

E-Mail : <u>bctc@bctc-lab.com.cn</u>

***** END *****

No. : BCTC/RF-EMC-007

Page: 42 of 42