

Choose Scandinavian trust

RADIO TEST REPORT

Type of assessment:

MPE Calculation report

Applicant:

BLiNQ Networks, Inc.

Description of product:

Hardware Version Identification Number (HVIN):

LTE Base Station

Product Marketing Name (PMN):

FW 600

FW6-B53-00-NA ISED certification number:

10794A-FW600B53

FCC ID:

ROR0013

Specification:

- FCC 47 CFR Part 1 Subpart I, §§1.1307, 1.1310
- FCC 47 CFR Part 2 Subpart J, §2.1091 ٠
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- ISED Canada RSS-102 Issue 5 Amendment 1, (February 2021)

RSS-102 Annex B - Declaration of RF Exposure Compliance

ATTESTATION: I attest that the information provided in Annex A is correct; that the Technical Brief was prepared and the information contained therein is correct; that the device evaluation was performed or supervised by me; that applicable measurement methods and evaluation methodologies have been followed; and that the device meets the SAR and/or RF field strength limits of RSS-102.

Date of issue: June 8, 2023

Andrey Adelberg, Senior EMC/RF Specialist

Prepared by

adelberg pols

Signature

Nemko Canada Inc., a testing laboratory, is accredited by ANSI National Accreditation Board (ANAB). The tests included in this report are within the scope of this accreditation. The ANAB symbol is an official symbol of the ANSI National Accreditation Board, used under licence.

ANAB File Number: AT-3195 (Ottawa/Almonte); AT-3193 (Pointe-Claire); AT-3194 (Cambridge)

FCC and RSS-102 Annex C – MPE Calculation; Date: May 2021

Lab locations

Company name	Nemko Canada I	nc.			
Facilities	Ottawa site:	Mont	réal site:	Cambridge site:	Almonte site:
	303 River Road	292 L	abrosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario	Pointe	e-Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada	Canad	la	Canada	Canada
	K1V 1H2	H9R 5	L8	N3E 0B2	KOA 1LO
	Tel: +1 613 737 9	9680 Tel: +	1 514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737	9691 Fax: +	1 514 694 3528		
Test site identifier	Organization	Ottawa/Almonte	Montreal	Cambridge	
	FCC:	CA2040	CA2041	CA0101	
	ISED:	2040A-4	2040G-5	24676	
Website	www.nemko.com	<u>n</u>			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.

Section 1 Evaluation summary

1.1 MPE calculation for standalone transmission

1.1.1 References, definitions and limits

FCC §2.1091(d)

(2) (2) For operations within the frequency range of 300 kHz and 6 GHz (inclusive), the limits for maximum permissible exposure (MPE), derived from whole-body SAR limits and listed in Table 1 in paragraph (e)(1) of this section, may be used instead of whole-body SAR limits as set forth in paragraphs (a) through (c) of this section to evaluate the environmental impact of human exposure to RF radiation as specified in §1.1307(b) of this part, except for portable devices as defined in §2.1093 of this chapter as these evaluations shall be performed according to the SAR provisions in §2.1093.

Frequency range	Electric field strength	Magnetic field strength	Power density	Averaging time
(MHz)	(V/m)	(A/m)	(mW/cm²)	(minutes)
	(i) Limits	for Occupational/Controlled Exp	osure	
0.3–3.0	614	1.63	*(100)	≤6
3.0–30	1842 / f	4.89 / f	*(900 / f ²)	<6
30–300	61.4	0.163	1.0	<6
300-1500			f / 300	<6
1500-100000			5	<6
	(ii) Limits for	General Population/Uncontrolled	l Exposure	
0.3-1.34	614	1.63	*(100)	<30
1.34–30	824 / f	2.19 / f	*(180 / f ²)	<30
30–300	27.5	0.073	0.2	<30
300-1500			f / 1500	<30
1500-100000			1.0	<30

Table 1.1-1: Table 1 to §1.1310(e)(1)—Limits for Maximum Permissible Exposure (MPE)

Notes: f = frequency in MHz. * = Plane-wave equivalent power density.

RSS-102, Section 4

For the purpose of this standard, Industry Canada has adopted the SAR and RF field strength limits established in Health Canada's RF exposure guideline, Safety Code 6:

Frequency range	Electric field strength	Magnetic field strength	Power density	Reference Period
(MHz)	(V/m rms)	(A/m rms)	(W/m²)	(minutes)
	Lin	mits for Controlled Environment		
10-20	61.4	0.163	10	6
20–48	129.8 / f ^{0.25}	0.3444 / f ^{0.25}	44.72 / f ^{0.5}	6
48-100	49.33	0.1309	6.455	6
100-6000	15.60 f ^{0.25}	0.04138 f ^{0.25}	0.6455 f ^{0.5}	6
6000-15000	137	0.364	50	6
	Lim	its for Uncontrolled Environmen	t	
10-20	27.46	0.0728	2	6
20–48	58.07 / f ^{0.25}	0.1540 / f ^{0.25}	8.944 / f ^{0.5}	6
48-300	22.06	0.05852	1.291	6
300–6000	3.142 f ^{0.3417}	0.008335 f ^{0.3417}	0.02619 f ^{0.6834}	6
6000-15000	61.4	0.163	10	6
s: f = frequency in MHz.				

Report reference ID: TRFWL

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density (mW/cm² or W/m²)

- P = power input to the antenna (mW or W)
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator
- R = distance to the center of radiation of the antenna (cm or m)

1.1.2 EUT technical information

Prediction frequency	2489 MHz
Antenna gain	18 dBi
Cable loss	1 dB (typical)
Maximum transmitter power	21.7 dBm (conducted from both ports)
Prediction distance (declared)	35 cm

1.1.3 MPE calculation

Fundamental transmit (prediction) frequency:	2489 MHz	
Maximum measured conducted peak output power:	21.7 dBm	
Cable and/or jumper loss:	1 dB	
Maximum peak power at antenna input terminal:	20.7 dBm	
Duty cycle:	100 %	
Maximum calculated average power at antenna input terminal:	117.4897555 mW	
Single Antenna gain (typical):	18 dBi	
Number of antennae:	1	
Total system gain:	18.00 dBi	
	FCC limit:	ISED limit:
MPE limit for <u>uncontrolled</u> exposure at prediction frequency:	1.000000 mW/cm	
	10.000000_W/m ²	<u>5.482503</u> W/m ²
MPE limit for <u>controlled</u> exposure at prediction frequency:	5.000000 mW/cm	
	50.000000 W/m ²	32.203917 W/m ²
Minimum calculated prediction distance for compliance:	24 cm	33 cm
Typical (declared) distance:	<u>35</u> cm	<u>35</u> cm
Average power density at prediction frequency:	0.481564 mW/cn	n ² 0.481564 mW/cm ²
	4.815640 W/m ²	4.815640 W/m ²
Margin of Compliance for uncontrolled envirenment:	3.17 dB	0.56 dB
with Maximum premitted antenna gain:	21.17 dBi	18.56 dBi
Margin of Compliance for controlled envirenment:	<u>10.16</u> dB	8.25 dB
	40.0C JD:	

48.86 dBi

1.1.4 Verdict

The calculation is below the limit; therefore, the product is passing the RF Exposure requirements for the declared distance.

with Maximum permitted antenna gain:

End of the test report

46.95 dBi