

RADIO TEST REPORT – 446890-3TRFWL

Type of assessment:	
Final product testing	
Applicant:	Product:
Blinq Wireless, Inc.	Base station
Model:	
FW6-B48-46-NA	
FCC ID:	
ROR0011	
Specification:	
FCC 47 CFR Part 15 Subpart E, §15.407	
Date of issue: January 21, 2022	
, .	4 7 / 3
Fahar Abdul Sukkoor, Wireless/EMC Specialist	O tange
Tested by	Signature
Andrey Adelberg, Senior EMC/RF Specialist	adelbery posts

Nemko Canada Inc., a testing laboratory, is accredited by the Standards Council of Canada.

The tests included in this report are within the scope of this accreditation.

The SCC Accreditation Symbol is an official symbol of the Standards Council of Canada, used under licence.

Reviewed by

Signature

Lab locations			

Company name	Nemko Canada II	nc.			
Facilities	Ottawa site:	Montré	al site:	Cambridge site:	Almonte site:
	303 River Road	292 Lak	rosse Avenue	1-130 Saltsman Drive	1500 Peter Robinson Road
	Ottawa, Ontario	Pointe-	Claire, Québec	Cambridge, Ontario	West Carleton, Ontario
	Canada	Canada		Canada	Canada
	K1V 1H2	H9R 5L	8	N3E 0B2	KOA 1LO
	Tel: +1 613 737 9	680 Tel: +1	514 694 2684	Tel: +1 519 650 4811	Tel: +1 613 256-9117
	Fax: +1 613 737 9	9691 Fax: +1	514 694 3528		
Test site identifier	Organization	Ottawa/Almonte	Montreal	Cambridge	
	FCC:	CA2040	CA2041	CA0101	
	ISED:	2040A-4	2040G-5	24676	
Website	www.nemko.con	<u>n</u>			

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Report reference ID: 446890-3TRFWL Page 2 of 52

Table of Contents

Table of 0	Contents	3
Section 1	Report summary	4
1.1	Test specifications	
1.2	Test methods	
1.3	Exclusions	4
1.4	Statement of compliance	
1.5	Test report revision history	4
Section 2		
2.1	Modifications incorporated in the EUT for compliance	
2.2	Technical judgment	5
2.3	Deviations from laboratory tests procedures	5
Section 3	Test conditions	6
3.1	Atmospheric conditions	
3.2	Power supply range	6
Section 4	Measurement uncertainty	7
4.1	Uncertainty of measurement	7
Section 5	Information provided by the applicant	8
5.1	Disclaimer	8
5.2	Applicant/Manufacture	8
5.3	EUT information	8
5.4	Radio technical information	9
5.5	EUT setup details	10
Section 6	Summary of test results	12
6.1	Testing location	12
6.2	Testing period	12
6.3	Sample information	
6.4	FCC Part 15 Subpart A and C, general requirements test results	12
6.5	FCC Part §15.407 test results	
Section 7	Test equipment	13
7.1	Test equipment list	13
Section 8	· · · · · · · · · · · · · · · · · · ·	
8.1	Variation of power source	
8.2	Number of frequencies	15
8.3	Antenna requirement	17
8.4	AC power line conducted emissions limits	
8.5	Emission bandwidth and 6 dB BW	
8.6	Occupied bandwidth	
8.7	Transmitter output power and e.i.r.p. requirements for 5725–5850 MHz band	
8.8	Spurious unwanted (undesirable) emissions	
8.9	Frequency stability	
Section 9	EUT photos	51
9.1	External photos	51

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 15, Subpart E, Clause 15.407	Unlicensed National Information Infrastructure Devises operating in the 5.15–5.35 GHz, 5.47–5.725 GHz,
	5.725–5.85 GHz, and 5.925–7.125 GHz bands.

1.2 Test methods

789033 D02 General U-NII Test Procedures	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part
New Rules v02r01 (December 14, 2017)	15, Subpart E
662911 D01 Multiple Transmitter Output	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
v02r01 (October 31, 2013)	
662911 D02 MIMO with Cross Polarized	Emissions testing of transmitters with multiple outputs in the same band (MIMO) with Cross Polarized
Antenna v01 (October 25, 2011)	Antenna
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.3 Exclusions

None

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.3 above. Results obtained indicate that the product under test complies In full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Date of issue	Details of changes made to test report
TRF	January 21, 2022	Original report issued

Section 2 Engineering considerations

2.1 Modifications incorporated in the EUT for compliance

There were no modifications performed to the EUT during this assessment.

2.2 Technical judgment

This EUT is designed and produced with six carriers numbered 0 to 5 where carriers 3 to 5 are exact replica of carriers 0 to 2 respectively in electrical ,mechanical design and manufacturing process. Due to this similarity all conducted measurements were performed only on carriers 0 to 2

Output power and PSD measurements for antenna (Brand: MTI, Model:MT-404083/ND, Peak Gain = 19 dBi) in section 8.7, are extracted from Nemko test report NEX 425119-3TRFWL

2.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 3 Test conditions

3.1 Atmospheric conditions

Temperature	15 °C – 35 °C
Relative humidity	20 % – 75 %
Air pressure	86 kPa (860 mbar) – 106 kPa (1060 mbar)

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

3.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 4 Measurement uncertainty

4.1 Uncertainty of measurement

UKAS Lab 34 and TIA-603-B have been used as guidance for measurement uncertainty reasonable estimations with regards to previous experience and validation of data. Nemko Canada, Inc. follows these test methods in order to satisfy ISO/IEC 17025 requirements for estimation of uncertainty of measurement for wireless products.

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Table 4.1-1: Measurement uncertainty calculations

Test name	Measurement uncertainty, ±dB
All antenna port measurements	0.55
Occupied bandwidth	4.45
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Information provided by the applicant Section 5

Section 5

5.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results contained within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

5.2 Applicant/Manufacture

Applicant name	Blinq Wireless, Inc.
Applicant address	140 Renfrew Dr Suite 205 Markham ON L3R6B3 Canada
Manufacture name	Same as applicant
Manufacture address	Same as applicant

5.3 **EUT** information

Product	Base station
Model	FW6-B48-46-NA
Serial number	F60D-21250001
Power supply requirements	DC: 48 V from external 100–240 V(AC) power adapter
Software details	BLINQ_FW600_3.1.1_48507
Product description and theory	The BLINQ FW-600 system is a tri-sector and tri-carrier Long-Term Evolution (LTE) Evolved Node B (eNB) with the
of operation	capability to operate in the following
	bands: 42, 43, 46 and 48 (Citizens Broadband Radio Service (CBRS)). With a distinctive feature set and integration level,
	the FW-600 brings an ideal solution to an "install anywhere" micro-base transceiver station (micro-BTS) that fully serves
	private networks, fixed wireless access and mobility use cases. This specific model incorporates dual FW600 system
	functionality with total of six sectors.

446890-3TRFWL Page 8 of 52 Report reference ID:

Radio technical information 5.4

Section 5

Device type	☑ Outdoor access point
bevice type	
	☐ Indoor access point
	☐ Fixed point-to-point access point
	☐ Client device
	☐ Device installed in vehicles
Frequency band	5725–5850 MHz (U-NII-3)
Type of modulation	OFDM (QPSK to 64-QAM)
Antenna information	Option 1: 2 × 2 MIMO - Antenna gain: 22.1 dBi Brand name: CCI Products, Model: MBM12F-HJ5B
	Option 2: 2 × 2 MIMO - Antenna gain: 19.0 dBi Brand name: MTI, Model:MT-404083/ND
	Antennas are uncorrelated and cross polarized.

Channel Bandwidth	10 MHz	20 MHz
Frequency Min (MHz)	5730	5735
Frequency Max (MHz)	5845	5840
RF power Max (W), Conducted	0.0780 (18.92 dBm)	0.0785 (18.95 dBm)
Measured BW (MHz), 99% OBW	8.95	17.88
Emission classification	8M95W7D	17M9W7D
Transmitter spurious (conducted), dBμV/m	97.37 @ 5725 MHz	89.00 @ 5725 MHz

Page 9 of 52 Report reference ID: 446890-3TRFWL

5.5 EUT setup details

5.5.1 Radio exercise details

Operating conditions

The EUT was controlled from laptop via ethernet using ssh application.

Power settings areas below:

Power settings for antenna - Brand: CCI Products, Model: MBM12F-HJ5B, Antenna gain: 22.1 dBi

Carrier Configuration		1CC		2CC	
	BW (MHz)	10	20	10	20
Į.	Aggregated BW (MHz)	gregated BW (MHz) 10 20 20		40	
Carrier 0	Power set per BW	10dBm	12dBm	10dBm	12dBm
Carrier 2	Power set per BW	10dBm	12dBm	10dBm	12dBm
Carrier 3	Power set per BW	10dBm	12dBm	10dBm	12dBm
Carrier 5	Power set per BW	10dBm	12dBm	10dBm	12dBm

Note:

- 1. 4dB power backoff needed for any carrier center frequency set above 5130MHz when operating 20MHz BW.
- 2. 2dB power backoff needed for any carrier center frequency set above 5130MHz when operating 10MHz BW.
- 3. For 2CC operations power levels specified are per carrier. Power settings referred to each MIMO channel.

Power settings for antenna - Brand: MTI Model:MT-404083/ND Antenna gain: 19.0 dBi

Carrier Configuration		10	1CC		2CC	
	BW (MHz) 10 20		10	20		
,	Aggregated BW (MHz)	10 20 20 40		40		
Carrier 0	Power set per BW	16dBm	16dBm	16dBm	16dBm	
Carrier 2	Power set per BW	16dBm	16dBm	16dBm	16dBm	
Carrier 3	Power set per BW	16dBm	16dBm	16dBm	16dBm	
Carrier 5	Power set per BW	16dBm	16dBm	16dBm	16dBm	

Notes:

- ${\bf 1.\,2\,dB\,power\,backoff\,needed\,for\,any\,carrier\,center\,frequency\,set\,above\,5830MHz}.$
- 2. For 2CC operations power levels specified are per carrier. Power settings referred to each MIMO channel.

Transmitter state Transmitter set into continuous mode.

Radio exercise details, continued

Table 5.5-1: EUT interface ports

Description	Qty.
DC Power port	1
Ethernet port	1

Table 5.5-2: Support equipment

Description	Brand name	Model/Part number	Serial number	
Power adaptor	Mean Well	HLG-600H-48	RB99055874	
Laptop	Dell Latitude	E6440	FA002914	

Table 5.5-3: Inter-connection cables

Cable description	From	То	Length (m)
DC Power port	EUT	Power adaptor	>3
AC power port	Power adaptor	AC mains	>3
Ethernet cable	EUT	laptop	>3

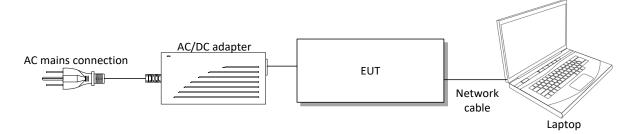


Figure 5.5-1: Setup block diagram

Section 6 Summary of test results

6.1 Testing location

Test location (s) Cambridge

6.2 Testing period

Test start date October 25, 2021	Test end date	October 29, 2021
----------------------------------	---------------	------------------

6.3 Sample information

Nemko sample ID number(s)	September 2, 2021	Receipt date
---------------------------	-------------------	--------------

6.4 FCC Part 15 Subpart A and C, general requirements test results

Table 6.4-1: FCC general requirements results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31I	Variation of power source	Pass
§15.31(m)	Number of tested frequencies	Pass
§15.203	Antenna requirement	Pass
Notes:	None	

6.5 FCC Part §15.407 test results

Table 6.5-1: FCC §15.407 requirements results

Part	Test description	Verdict
§15.403	Emission bandwidth	Pass
§15.407(a)(3)	Power and density limits within 5.725–5.85 GHz band	Pass
§15.407(b)(4)	Undesirable emission limits for 5.725–5.85 GHz band	Pass
§15.407(b)(8)	AC power line conducted limits	Pass
§15.407(e)	Minimum 6 dB bandwidth of U-NII devices within the 5.725–5.85 GHz band	Pass
§15.407(g)	Frequency stability	Pass
§15.407(h)(1) ¹	Transmit power control (TPC)	Not applicable
§15.407(h)(2) ¹	Dynamic Frequency Selection (DFS)	Not applicable
§15.407(k)	Automated frequency coordination (AFC) system	Not applicable

Notes ¹DFS and TPC requirements are only applicable to 5.25–5.35 GHz and 5.47–5.725 GHz bands

Section 7 Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA003012	1 year	Apr 12/22
Flush mount turntable	SUNAR	FM2022	FA003006	_	NCR
Controller	SUNAR	SC110V	FA002976	_	NCR
Antenna mast	SUNAR	TLT2	FA003007	_	NCR
Receiver/spectrum analyzer	Rohde & Schwarz	ESR26	FA002969	1 year	Nov 12/21
Spectrum analyzer	Rohde & Schwarz	FSW43	FA002971	1 year	Nov 13/21
Temperature chamber	Espec	EPX-4H	FA003033	1 year	VOU
Radiated Emissions cable set	Huber + Suhner Inc	_	FA003047	_	NCR
Radiated Emissions cable set	Huber + Suhner Inc	_	FA003044	_	NCR
Preamp (1–18 GHz)	ETS-Lindgren	124334	FA002956	1 year	Apr 05/22
Bilog antenna (20–2000 MHz)	Sun AR	JB1	FA003009	1 year	Feb 02/22
Horn antenna (1–18 GHz)	Electro-Metrics	3115	FA000649	1 year	May 10/22
Horn antenna (18–40 GHz)	ETS Lindgren	3116	FA002948	1 year	Jan 22/22
Two-line v-network	Rohde & Schwarz	ENV216	FA002964	1 year	Nov 30/21
50 Ω coax cable	Rohde & Schwarz	None	FA003074	1 year	Dec 17/21

Notes: NCR - no calibration required, VOU - verify on use

Testing data Variation of power source FCC Part 15 Subpart A

Section 8 Testing data

8.1	Variation of power s	source					
8.1.1	References, definitio	ns and limits					
FCC §15.31 (e): For intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage. For battery operated equipment, the equipment tests shall be performed using a new battery.							
8.1.2	Test summary						
Verdict		Pass					
Tested b	у	Fahar Abdul Sukkoor	Test date		Octobe	r 25, 2021	
8.1.3	Observations, setting	gs and special notes					
The testi	ng was performed as per Al	NSI C63.10 Section 5.13.					
a)	Where the device is inter	nded to be powered from an external power adaptoral the time of sale. If the device is not marketed or	. •				
b)		iting at a supply voltage deviating ±15% from the n		•	_	oss of intended function,	
c)		ximum allowable voltage per manufacturer's speci nge of rated supply voltage, test at 15% below the I		•		nominal rated supply	
d)		wer from an input/output (I/O) port (USB, firewire,		essary to app	oly voltage	e variation to the device	
For batte		pply, while maintaining the functionalities of the do e equipment tests shall be performed using a varia					
8.1.4	Test data						
UT Power	requirements:			□ AC	⊠ DC	☐ Battery	
	•	vered, was the noticeable output power variation o	bserved?	☐ YES	⊠ NO	□ N/A	
	If EUT is battery operated,	was the testing performed using fresh batteries?		☐ YES	\square NO	⊠ N/A	
	If EUT is rechargeable batte	ery operated, was the testing performed using fully	charged batteries?	☐ YES	□ NO	⊠ N/A	

Report reference ID: 446890-3TRFWL Page 14 of 52

Testing data Number of frequencies FCC Part 15 Subpart A

8.2 Number of frequencies

8.2.1 References, definitions and limits

FCC §15.31:

(m) Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

Table 8.2-1: Frequency Range of Operation

Frequency range over which the device		Location of measurement frequency inside the
operates (in each band)	Number of test frequencies required	operating frequency range
1 MHz or less	1	Center (middle of the band)
1–10 MHz	2	1 near high end, 1 near low end
Greater than 10 MHz	3	1 near high end, 1 near center and 1 near low end

Notes: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

8.2.2 Test summary

Verdict	Pass		
Tested by	Fahar Abdul Sukkoor	Test date	October 25, 2021

8.2.3 Observations, settings and special notes

ANSI C63.10, Clause 5.6.2.1:

The number of channels tested can be reduced by measuring the center channel bandwidth first and then applying the following relaxations as appropriate:

- a) For each operating mode, if the measured channel bandwidth on the middle channel is at least 150% of the minimum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.
- b) For multiple-input multiple-output (MIMO) systems, if the measured channel bandwidth on testing the middle channel exceeds the minimum permitted bandwidth by more than 50% on one transmit chain, then it is not necessary to repeat testing on the other chains.
- c) If the measured channel bandwidth on the middle channel is less than 50% of the maximum permitted bandwidth, then it is not necessary to measure the bandwidth on the high and low channels.

ANSI C63.10, Clause 5.6.2.2:

For devices with multiple operating modes, measurements on the middle channel can be used to determine the worst-case mode(s). The worst-case modes are as follows:

- a) Band edge requirements—Measurements on the mode with the widest bandwidth can be used to cover the same channel (center frequency) on modes with narrower bandwidth that have the same or lower output power for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- b) Spurious emissions—Measure the mode with the highest output power and the mode with the highest output power spectral density for each modulation family (e.g., OFDM and direct sequence spread spectrum).
- c) In-band PSD—Measurements on the mode with the narrowest bandwidth can be used to cover all modes within the same modulation family of an equal or lower output power provided the result is less than 50% of the limit.

Report reference ID: 446890-3TRFWL Page 15 of 52

5850

Testing data Number of frequencies FCC Part 15 Subpart A

8.2.4 Test data

5725

Table 8.2-2: Test channels selection 10 MHz

		Tuble 6.2-2. Test Chai	illieis selection 10 Minz		
Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz
5725	5850	125	5730	5800	5845
		Table 8.2-3: Test cha	nnels selection 20 MHz		
Start of Frequency range, MHz	End of Frequency range, MHz	Frequency range bandwidth, MHz	Low channel, MHz	Mid channel, MHz	High channel, MHz

5735

5800

125

5840

Testing data
Antenna requirement
FCC Part 15 Subpart C

8.3 Antenna requirement

8.3.1 References, definitions and limits

FCC §15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

RSS-Gen, Clause 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

8.3.2 Test summary

Verdict	Pass				
Tested by	Fahar Abdul Sukkoor		Test date	e	October 25, 2021
8.3.3 Observat	ions, settings and special notes				
All antenna configurati	ions listed below are used in 2 × 2 MIMO conf	iguration			
8.3.4 Test data					
Must the EUT be profess	sionally installed?	⊠ YES	□NO		
Does the EUT have detac	chable antenna(s)? , is the antenna connector(s) non-standard?		□ NO 図 NO	⊠ N/A	

Table 8.3-1: Antenna information

Antenna type	Manufacturer	Maximum gain
External Antenna	CCI Products	22.1 dBi
External Antenna	MTI	19.0 dBi

Report reference ID: 446890-3TRFWL Page 17 of 52

Testing data

AC power line conducted emissions limits

FCC Part 15 Subpart C

8.4 AC power line conducted emissions limits

8.4.1 References, definitions and limits

FCC §15.407(b):

(8) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.

FCC §15.207:

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μH/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

ANSI C63.10, Clause 6.2:

If the EUT normally receives power from another device that in turn connects to the public utility ac power lines, measurements shall be made on that device with the EUT in operation to demonstrate that the device continues to comply with the appropriate limits while providing the EUT with power. If the EUT is operated only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines (600 VAC or less) to operate the EUT (such as an adapter), then ac power-line conducted measurements are not required.

For direct current (dc) powered devices where the ac power adapter is not supplied with the device, an "off-the-shelf" unmodified ac power adapter shall be used. If the device is supposed to be installed in a host (e.g., the device is a module or PC card), then it is tested in a typical compliant host.

Table 8.4-1: Conducted emissions limit

	Conducted emissions limit, dBμV			
Frequency of emission, MHz	Quasi-peak	Average**		
0.15-0.5	66 to 56*	56 to 46*		
0.5–5	56	46		
5–30	60	50		

Notes:

- * The level decreases linearly with the logarithm of the frequency.
- ** A linear average detector is required.

8.4.2 Test summary

Verdict	Pass		
Tested by	Fahar Abdul Sukkoor	Test date	October 25, 2021

Testing data

AC power line conducted emissions limits

FCC Part 15 Subpart C

8.4.3 Observations, settings and special notes

Port under test – Coupling device	AC power port– Artificial Mains Network (AMN)		
EUT power input during test	48 VDC (via external 100–240 VAC, 50/60 Hz power adapter)		
EUT setup configuration	Table top		
Measurement details	A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB or		
	above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the final		
	measurement.		
Additional notes:	 The EUT was set up as tabletop configuration per ANSI C63.10-2013 measurement procedure. 		
	- The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for		
	determination of compliance. Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)		
	– Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15		
	seconds observation period were considered valid emissions. The maximum value of valid emissions has been		
	recorded.		

Conducted AC line emissions test was performed as per ANSI C63.10, Clause 6.2. Spectrum analyser settings:

Resolution bandwidth	9 kHz		
Video bandwidth	30 kHz		
Detector mode	Peak and Average (Preview), Quasi-peak and CAverage (Final)		
Trace mode	Max Hold		
Measurement time	100 ms (Preview), 160 ms (Final)		

8.4.4 Test data

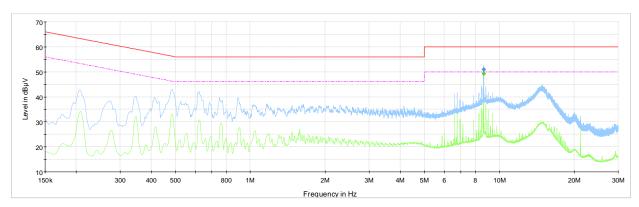
Table 8.4-2: Conducted emissions results on phase line

Frequency, MHz	Quasi-Peak result, dBμV	Quasi-Peak limit, dBμV	Quasi-Peak margin, dB	Correction factor, dB
8.65	50.8	60.0	9.2	15.7
Frequency, MHz	Average result, dBμV	Average limit, dBμV	Average margin, dB	Correction factor, dB

Table 8.4-3: Conducted emissions results on neutral line

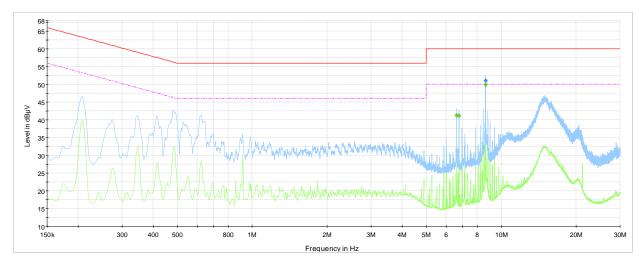
Frequency, MHz	Quasi-Peak result, dBμV	Quasi-Peak limit, dBμV	Quasi-Peak margin, dB	Correction factor, dB
8.65	51.0	60.0	9.0	15.7

Frequency, MHz	Average result, dBμV	Average limit, dBμV	Average margin, dB	Correction factor, dB
6.62	41.3	50.0	8.7	15.7
6.77	41.2	50.0	8.8	15.7
8.65	49.9	50.0	0.1	15.7


Report reference ID: 446890-3TRFWL Page 19 of 52

Testing data

AC power line conducted emissions limits FCC Part 15 Subpart C


Test data, continued

NEX-446890 Conducted emisisions 150 kHz - 30 MHz 120 Vac 60 Hz phase UNII-3

Preview Result 2-AVG
Preview Result 1-PK+
CISPR 32 Limit - Class B, Mains (Quasi-Peak)
CISPR 32 Limit - Class B, Mains (Average)
Final_Result QPK
Final_Result CAV

Plot 8.4-1: Conducted emissions on phase line

NEX-446890 Conducted emissiions 150 kHz - 30 MHz 120 Vac 60 Hz neutral UNII-3

Preview Result 2-AVG
Preview Result 1-PK+
CISPR 32 Limit - Class B, Mains (Quasi-Peak)
CISPR 32 Limit - Class B, Mains (Average)
Final_Result QPK
Final_Result CAV

Plot 8.4-2: Conducted emissions on neutral line

Testing data

Emission bandwidth and 6 dB BW FCC Part 15 Subpart E

8.5 Emission bandwidth and 6 dB BW

8.5.1 References, definitions and limits

FCC §15.403:

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

FCC §15.407:

(e) Within the 5.725–5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

8.5.2 Test summary

Verdict	Pass		
Tested by	Fahar Abdul Sukkoor	Test date	October 25, 2021

8.5.3 Observations, settings and special notes

The emission bandwidth was tested per ANSI C63.10, Clause 12.4 and KDB 789033 D02, Clause II(C)(1). Spectrum analyser settings:

Resolution bandwidth	approximately 1% of the emission bandwidth
Video bandwidth	> RBW
Detector mode	Peak
Trace mode	Max Hold

The 6 dB bandwidth was tested per ANSI C63.10, Clause 11.8 and KDB 789033 D02, Clause II(C)(2). Spectrum analyser settings:

Resolution bandwidth	approximately 1% of the emission bandwidth
Video bandwidth	≥3 × RBW
Detector mode	Peak
Trace mode	Max Hold

8.5.4 Test data

Table 8.5-1: 26 dB bandwidth 10 MHz results

Modulation	Francisco Mila	26 dB bandwidth	6 dB bandwidth	26 dB bandwidth	6 dB bandwidth at
wodulation	rrequency, winz	at ch0, MHz	at ch0, MHz	at ch1, MHz	ch1, MHz
	5730	9.63	9.00	9.44	8.99
QPSK	5800	9.66	9.00	9.60	9.01
	5845	9.64	9.00	9.67	8.96
64 QAM	5730	9.61	8.99	9.63	9.00
	5800	9.66	8.98	9.56	8.87
	5845	9.44	8.90	9.52	9.00
QPSK	5730	9.65	9.00	9.57	9.00
	5800	9.39	9.01	9.44	8.99
	5845	9.55	9.01	9.58	9.54
	5730	9.62	9.00	9.60	8.99
64QAM	5800	9.52	8.99	9.62	9.01
	5845	9.61	9.00	9.62	8.99
	64 QAM QPSK	S730 QPSK 5800 5845 5730 64 QAM 5800 5845 5730 QPSK 5800 5845 5730 64QAM 5800	Modulation Frequency, MHz at ch0, MHz 5730 9.63 5800 9.66 5845 9.64 5730 9.61 64 QAM 5800 9.66 5845 9.44 5730 9.65 QPSK 5800 9.39 5845 9.55 5730 9.62 64QAM 5800 9.52	Modulation Frequency, MHz at ch0, MHz at ch0, MHz S730 9.63 9.00 5800 9.66 9.00 5845 9.64 9.00 5730 9.61 8.99 64 QAM 5800 9.66 8.98 5845 9.44 8.90 5730 9.65 9.00 QPSK 5800 9.39 9.01 5845 9.55 9.01 5730 9.62 9.00 64QAM 5800 9.52 8.99	Modulation Frequency, MHz at ch0, MHz at ch0, MHz at ch1, MHz QPSK 5730 9.63 9.00 9.44 5800 9.66 9.00 9.60 5845 9.64 9.00 9.67 5730 9.61 8.99 9.63 64 QAM 5800 9.66 8.98 9.56 5845 9.44 8.90 9.52 5730 9.65 9.00 9.57 QPSK 5800 9.39 9.01 9.44 5845 9.55 9.01 9.58 5730 9.62 9.00 9.60 64QAM 5800 9.52 8.99 9.62

Testing data Emission bandwidth and 6 dB BW FCC Part 15 Subpart E

Test data, continued

Table 8.5-2: 26 dB bandwidth 20 MHz results

Sector	Modulation	Frequency, MHz	26 dB bandwidth at ch0, MHz	6 dB bandwidth at ch0, MHz	26 dB bandwidth at ch1, MHz	6 dB bandwidth at ch1, MHz
		5735	19.52	17.98	19.26	17.96
	QPSK	5800	18.87	17.96	18.90	17.95
0		5840	19.04	17.95	19.22	17.97
0		5735	18.69	17.89	18.84	17.93
	64 QAM	5800	18.67	17.94	18.77	17.97
		5840	18.80	17.96	18.88	17.98
		5735	18.86	17.97	18.75	17.96
	QPSK	5800	18.65	17.98	18.72	17.98
2		5840	18.98	17.96	18.77	17.96
		5735	18.58	18.03	18.67	17.91
	64QAM	5800	18.58	17.90	18.53	17.94
		5840	18.61	17.94	18.59	17.96

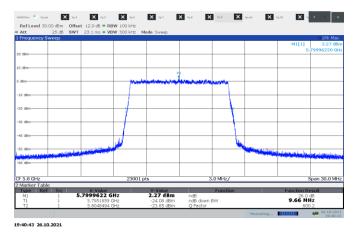


Figure 8.5-1: 26 dB bandwidth 10 MHz, sample plot

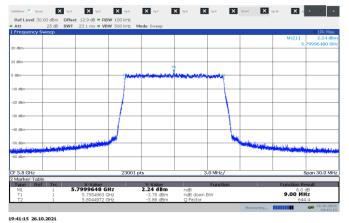


Figure 8.5-3: 6 dB bandwidth 10 MHz, sample plot

Figure 8.5-2: 26 dB bandwidth 20 MHz, sample plot

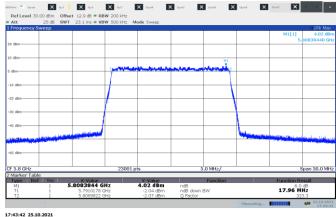


Figure 8.5-4: 6 dB bandwidth 20 MHz, sample plot

Testing data Occupied bandwidth ANSI C63.10-2013

8.6 Occupied bandwidth

8.6.1 References, definitions and limits

ANSI C63.10-2013, Clause 6.9.3:

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

8.6.2 Test summary

Verdict	Pass		
Tested by	Fahar Abdul Sukkoor	Test date	October 25, 2021

8.6.3 Observations, settings and special notes

The emission bandwidth was tested per ANSI C63.10, Clause 6.9.3 and KDB 789033 D02, Clause II(D). Spectrum analyser settings:

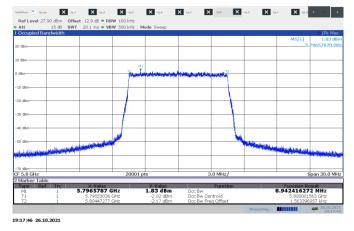
Resolution bandwidth:	1 % of emission bandwidth
Video bandwidth:	≥3 × RBW
Detector mode:	Peak
Trace mode:	Max Hold

8.6.4 Test data

Table 8.6-1: 99% bandwidth 10 MHz results

Sector	Modulation	Frequency, MHz	99% bandwidth at ch0, MHz	99% bandwidth at ch1, MHz
		5730	8.95	8.95
	QPSK	5800	8.95	8.94
0		5845	8.95	8.94
U		5730	8.95	8.95
	64 QAM	5800	8.95	8.95
		5845	8.93	8.95
		5730	8.94	8.94
	QPSK	5800	8.94	8.94
2		5845	8.95	8.95
2		5730	8.95	8.95
	64QAM	5800	8.95	8.95
		5845	8.95	8.95

Report reference ID: 446890-3TRFWL Page 23 of 52



Testing data Occupied bandwidth ANSI C63.10-2013

Test data, continued

Table 8.6-2: 99% bandwidth 20 MHz results

Sector	Modulation	Frequency, MHz	99% bandwidth at ch0, MHz	99% bandwidth at ch1, MHz
		5735	17.86	17.85
	QPSK	5800	17.85	17.86
0		5840	17.86	17.85
U		5735	17.87	17.87
	64 QAM	5800	17.85	17.87
		5840	17.87	17.85
		5735	17.86	17.85
	QPSK	5800	17.85	17.86
2		5840	17.86	17.85
4		5735	17.88	17.88
	64QAM	5800	17.87	17.88
		5840	17.87	17.86

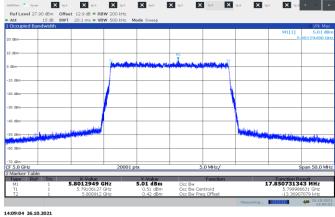


Figure 8.6-1: 99% bandwidth 10 MHz, sample plot

Figure 8.6-2: 99% bandwidth 20 MHz, sample plot

Report reference ID: 446890-3TRFWL Page 24 of 52

Testing data

Transmitter output power and e.i.r.p. requirements for 5725–5850 MHz band FCC Part 15 Subpart E

8.7 Transmitter output power and e.i.r.p. requirements for 5725–5850 MHz band

8.7.1 References, definitions and limits

FCC §15.407:

- (a) Power limits:
- (3) For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (11) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.
- (12) Power spectral density measurement. The maximum power spectral density is measured as either a conducted emission by direct connection of a calibrated test instrument to the equipment under test or a radiated measurement. Measurements in the 5.725–5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in all other bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

8.7.2 Test summary

Verdict	Pass		
Tested by	Fahar Abdul Sukkoor	Test date	October 25, 2021

Report reference ID: 446890-3TRFWL Page 25 of 52

Testing data

Transmitter output power and e.i.r.p. requirements for 5725–5850 MHz band

FCC Part 15 Subpart E

8.7.3 Observations, settings and special notes

Combined average output power was calculated as follows: $P_{combined} = 10 \times log_{10} \left(\left(10^{P_{ch0}/10} \right) + \left(10^{P_{ch1}/10} \right) \right)$

 ${\it EIRP was calculated as follows: EIRP} = P_{combined} + antenna\ gain$

Combined PPSD was calculated as follows: $PPSD_{combined} = 10 \times log_{10} \left(\left(10^{PSD_{cho}/10} \right) + \left(10^{PSD_{chi}/10} \right) \right)$

For antenna (Brand: CCI Products, Model: MBM12F-HJ5B, Peak Gain = 22.1 dBi) with the directional gain greater than 6 dBi, the maximum FCC output power limit was calculated as follows:

Limit = 30 dBm - ((Maximum antenna gain - Path Loss) - 6 dBi)

Limit = 30 dBm - ((22.1 dBi - 1.5 dB) - 6 dBi)

Limit = 15.4 dBm

For antenna (Brand: CCI Products, Model: MBM12F-HJ5B, Peak Gain = 22.1 dBi) with the directional gain greater than 6 dBi, the maximum FCC power spectral density limit was calculated as follows:

Limit = 30 dBm/500 kHz - ((Maximum antenna gain - Path Loss) - 6 dBi)

Limit = 30 dBm/500 kHz - (22.1 dBi - 1.5 dB) - 6 dBi)

Limit = 15.4 dBm/500 kHz

Measurement data for antenna (Brand: MTI, Model:MT-404083/ND, Peak Gain = 19 dBi) is extracted from Nemko test report NEX 425119-3TRFWL

For antenna (Brand: MTI, Model:MT-404083/ND, Peak Gain = 19 dBi) with the directional gain greater than 6 dBi, the maximum FCC output power limit was calculated as follows:

Limit = 30 dBm - ((Maximum antenna gain - path loss) - 6 dBi

Limit = 30 dBm - ((19 dBi - 2.0 dB) - 6 dBi

Limit = 30 dBm - ((19 dBi - 2.0 dB) - 6 dBi)

Limit = 19.0 dBm

For antenna (Brand: MTI, Model:MT-404083/ND, Peak Gain = 19 dBi) with the directional gain greater than 6 dBi, the maximum FCC power spectral density limit was calculated as follows:

Limit = 30 dBm/500 kHz - ((Maximum antenna gain - Path Loss) - 6 dBi)

Limit = 30 dBm/500 kHz - (19 dBi - 2.0 dB) - 6 dBi)

Limit = 19.0 dBm/500 kHz

Power spectral density was tested per ANSI C63.10, Clause 12.5 and 789033 D02, Clause II(F).

Conducted output power was tested per ANSI C63.10, Clause 12.3 and 789033 D02, Clause II(E) using method b)Method SA-1(trace averaging with the EUT transmitting at full power throughout each sweep):

Spectrum analyser settings:

Resolution bandwidth	1 MHz (500kHz for PSD)
Video bandwidth	≥ 3 MHz
Frequency span	Enough to encompass the entire 26 dB EBW or 99% OBW of the signal
Detector mode	RMS
Trace mode	average
Power aggregation	Over 26 dB EBW or 99% OBW

Report reference ID: 446890-3TRFWL Page 26 of 52

Section 8 Testing data
Test name Transmitter output power and e.i.r.p. requirements for 5725–5850 MHz band
Specification FCC Part 15 Subpart E

8.7.4 Test data

 Table 8.7-1: Output power measurements results for sector 0, CCI Products Antenna

Danduidih	Modulation	Francisco Mila	Measured ave	rage conducted o	utput power, dBm	Power	Marain dD
Bandwidth	iviodulation	Frequency, MHz	On ch0	On ch1	Combined	limit, dBm	Margin, dB
		5730	10.08	9.04	12.60	15.40	2.80
	QPSK	5800	10.10	9.93	13.03	15.40	2.37
	QPSK	5830	9.58	9.58	12.59	15.40	2.81
10 MHz		5845	7.06	7.28	10.18	15.40	5.22
10 141112		5730	9.86	8.82	12.38	15.40	3.02
	64 QAM	5800	10.07	9.88	12.99	15.40	2.41
		5830	9.94	9.86	12.91	15.40	2.49
		5845	7.24	7.13	10.20	15.40	5.20
		5735	11.89	11.85	14.88	15.40	0.52
	QPSK	5800	11.90	11.98	14.95	15.40	0.45
	QP3K	5830	10.96	10.96	13.97	15.40	1.43
20 MHz		5840	7.02	7.05	10.05	15.40	5.35
ZU IVITIZ		5735	11.47	11.30	14.40	15.40	1.00
	64 QAM	5800	11.88	10.55	14.28	15.40	1.12
		5830	11.74	10.87	14.34	15.40	1.06
		5840	6.72	7.17	9.96	15.40	5.44

 Table 8.7-2: PPSD measurements results for sector 0, CCI Products Antenna

Bandwidth	Modulation	Frequency, MHz	Peak Power Spectral Density, dBm/500 kHz			PPSD limit,	Margin, dB
balluwlutli	Wodulation	rrequency, winz	On ch0	On ch1	Combined	dBm/500 kHz	iviaigiii, ub
		5730	-1.33	-0.74	1.99	15.40	13.41
	QPSK	5800	-2.33	-1.28	1.24	15.40	14.16
	QFSK	5830	-1.60	-1.45	1.49	15.40	13.91
10 MHz		5845	-3.35	-2.73	-0.02	15.40	15.42
10 141112		5730	-1.92	-2.22	0.94	15.40	14.46
	64 QAM	5800	-1.59	-2.34	1.06	15.40	14.34
	04 QAIVI	5830	-1.86	-1.16	1.51	15.40	13.89
		5845	-3.23	-4.43	-0.78	15.40	16.18
		5735	-1.67	-1.20	1.58	15.40	13.82
	QPSK	5800	-1.22	-1.40	1.70	15.40	13.70
	QF3N	5830	-3.25	-2.72	0.03	15.40	15.37
20 MHz		5840	-6.40	-6.48	-3.43	15.40	18.83
20 141112	64 QAM	5735	-1.68	-1.91	1.22	15.40	14.18
		5800	-1.79	-2.33	0.96	15.40	14.44
		5830	-1.29	-2.31	1.24	15.40	14.16
		5840	-6.96	-6.16	-3.53	15.40	18.93

Test data, continued

 Table 8.7-3: Output power measurements results for sector 2, CCI Products Antenna

Bandwidth	Advitation Francisco Addi		Measured ave	Measured average conducted output power, dBm			**************************************
Bandwidth	Modulation	Frequency, MHz	On ch0	On ch1	Combined	limit, dBm	Margin, dB
		5730	9.56	9.95	12.77	15.40	2.63
	ODCK	5800	9.69	10.37	13.05	15.40	2.35
	QPSK	5830	9.79	9.80	12.81	15.40	2.59
10 MHz		5845	6.94	6.88	9.92	15.40	5.48
10 101112		5730	8.85	10.07	12.51	15.40	2.89
	64.0444	5800	8.83	9.96	12.44	15.40	2.96
	64 QAM	5830	8.58	9.89	12.29	15.40	3.11
		5845	6.88	6.91	9.91	15.40	5.49
		5735	10.73	11.37	14.07	15.40	1.33
	ODCK	5800	10.31	10.72	13.53	15.40	1.87
	QPSK	5830	10.52	10.23	13.39	15.40	2.01
20.8411-		5840	6.75	6.07	9.43	15.40	5.97
20 MHz	VIHZ	5735	11.00	11.04	14.03	15.40	1.37
	64.0414	5800	10.53	10.65	13.60	15.40	1.80
	64 QAM	5830	10.30	10.11	13.22	15.40	2.18
		5840	6.44	6.44	9.45	15.40	5.95

Table 8.7-4: PPSD measurements results for sector 2, CCI Products Antenna

Bandwidth	Modulation	Madulation Francisco MIII		Peak Power Spectral Density, dBm/ 500 kHz			Marain dB
bandwidth	iviodulation	Frequency, MHz	On ch0	On ch1	Combined	dBm/500 kHz	Margin, dB
		5730	-1.51	-0.96	1.78	15.40	13.62
	OBCK	5800	-1.72	-0.89	1.73	15.40	13.67
	QPSK	5830	-1.52	-1.38	1.56	15.40	13.84
10 MHz		5845	-4.58	-4.30	-1.43	15.40	16.83
10 141112		5730	-2.62	-1.14	1.19	15.40	14.21
	64 QAM	5800	-3.17	-1.77	0.60	15.40	14.8
	04 QAIVI	5830	-2.69	-1.34	1.05	15.40	14.35
		5845	-4.61	-4.64	-1.61	15.40	17.01
		5735	-2.79	-1.14	1.12	15.40	14.28
	QPSK	5800	-3.01	-2.57	0.23	15.40	15.17
	QP3K	5830	-4.06	-2.72	-0.33	15.40	15.73
20 MHz		5840	-6.42	-7.98	-4.12	15.40	19.52
20 101112	20 MH2 64 QAM	5735	-2.29	-1.86	0.94	15.40	14.46
		5800	-5.59	-2.14	-0.52	15.40	15.92
	04 QAIVI	5830	-4.07	-3.08	-0.54	15.40	15.94
		5840	-6.00	-5.29	-2.62	15.40	18.02

Testing data

Transmitter output power and e.i.r.p. requirements for 5725–5850 MHz band

FCC Part 15 Subpart E

Test data, continued

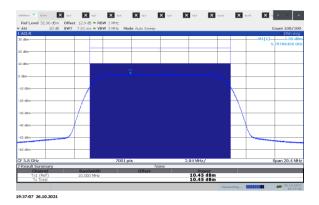


Figure 8.7-1: Sample plot for power on 10 MHz

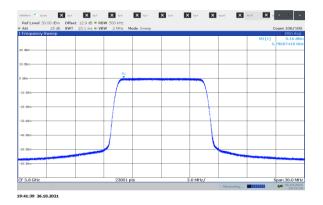


Figure 8.7-3: Sample plot for PPSD on 10 MHz

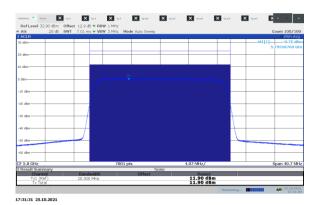


Figure 8.7-2: Sample plot for power on 20 MHz

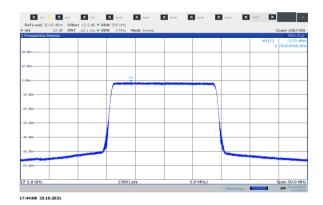


Figure 8.7-4: Sample plot for PPSD on 20 MHz

Test data, continued

Table 8.7-5: Output power measurements results for sector 0, MTI Antenna

Dondwidth	Modulation Frequency, MHz	Measured ave	Measured average conducted output power, dBm			Margin dD	
Bandwidth	Modulation	Frequency, MHz	On ch0	On ch1	Combined	limit, dBm	Margin, dB
		5730	15.76	15.95	18.87	19.00	0.13
	QPSK	5800	15.83	15.84	18.85	19.00	0.15
	QPSK	5830	15.68	15.72	18.71	19.00	0.29
10 MHz		5845	14.25	14.20	17.24	19.00	1.76
10 141112		5730	15.76	15.93	18.86	19.00	0.14
	64 QAM	5800	15.79	15.78	18.80	19.00	0.20
	04 QAIVI	5830	15.86	15.80	18.84	19.00	0.16
		5845	14.15	14.23	17.20	19.00	1.80
		5735	15.92	15.64	18.79	19.00	0.21
	ODCK	5800	15.95	15.67	18.82	19.00	0.18
	QPSK	5830	15.80	15.86	18.84	19.00	0.16
20 MHz		5840	14.02	14.18	17.11	19.00	1.89
ZU IVITIZ		5735	15.86	15.91	18.90	19.00	0.10
	64.0004	5800	15.96	15.85	18.92	19.00	0.08
	64 QAM	5830	15.95	15.87	18.92	19.00	0.08
		5840	13.96	13.98	16.98	19.00	2.02

 Table 8.7-6: PPSD measurements results for sector 0, MTI Antenna

Bandwidth	Modulation Frequency, MHz	Peak Power Spectral Density, dBm/500 kHz			PPSD limit,	Margin, dB	
Dalluwiutii	Modulation	riequelicy, winz	On ch0	On ch1	Combined	dBm/500 kHz	Margin, ub
		5730	3.69	3.67	2.03	19.00	12.31
	QPSK	5800	3.58	3.52	2.03	19.00	12.44
	QP3N	5830	3.61	3.56	2.03	19.00	12.40
10 MHz		5845	2.39	2.16	2.03	19.00	13.71
10 141112		5730	3.52	3.69	2.03	19.00	12.38
	64 QAM	5800	4.17	3.61	2.03	19.00	12.09
	OT QAIVI	5830	3.65	3.32	2.03	19.00	12.50
		5845	2.13	2.70	2.03	19.00	13.57
		5735	1.11	0.34	2.03	19.00	15.25
	QPSK	5800	1.42	0.57	2.03	19.00	14.97
	QF3K	5830	0.98	0.32	2.03	19.00	15.33
20 MHz		5840	-1.16	-1.01	2.03	19.00	17.07
20 141112		5735	0.36	0.62	2.03	19.00	15.50
	5800 5830 5840	5800	0.67	1.14	2.03	19.00	15.08
		5830	1.27	0.59	2.03	19.00	15.05
		5840	-0.76	-1.21	2.03	19.00	16.97

Test data, continued

 Table 8.7-7: Output power measurements results for sector 2, MTI Antenna

Bandwidth	Modulation Frequency, MHz	Fragues av Mila	Measured average conducted output power, dBm			Power	Maurin dD
Banawiath	Modulation	Frequency, MHz	On ch0	On ch1	Combined	limit, dBm	Margin, dB
		5730	15.54	15.78	18.67	19.00	0.33
	ODCK	5800	15.98	15.83	18.92	19.00	0.08
	QPSK	5830	15.93	15.85	18.90	19.00	0.10
10 MHz		5845	14.12	13.95	17.05	19.00	1.95
10 101112		5730	15.87	15.76	18.83	19.00	0.17
	64.0444	5800	15.75	15.82	18.80	19.00	0.20
	64 QAM	5830	15.81	15.91	18.87	19.00	0.13
		5845	14.01	14.01	17.02	19.00	1.98
		5735	15.89	15.98	18.95	19.00	0.05
	QPSK	5800	16.01	15.84	18.94	19.00	0.06
	QPSK	5830	15.81	15.93	18.88	19.00	0.12
20 1411-		5840	14.05	14.06	17.07	19.00	1.93
20 MHz		5735	15.88	15.85	18.88	19.00	0.12
	64.0414	5800	15.86	15.92	18.90	19.00	0.10
	64 QAM	5830	15.91	15.81	18.87	19.00	0.13
		5840	14.01	13.98	17.01	19.00	1.99

Table 8.7-8: PPSD measurements results for sector 2, MTI Antenna

Bandwidth	Modulation	Modulation Frequency, MHz	Peak Power :	Peak Power Spectral Density, dBm/500 kHz			Margin dP
balluwlutii	Modulation	Frequency, Minz	On ch0	On ch1	Combined	dBm/500 kHz	Margin, dB
		5730	2.88	3.66	6.30	19.00	12.70
	QPSK	5800	3.97	3.43	6.72	19.00	12.28
	QP3K	5830	3.74	3.78	6.77	19.00	12.23
10 MHz		5845	2.40	1.40	4.94	19.00	14.06
10 141112		5730	3.34	3.18	6.27	19.00	12.73
	64 QAM	5800	3.62	3.02	6.34	19.00	12.66
		5830	3.21	3.97	6.62	19.00	12.38
		5845	2.26	1.83	5.06	19.00	13.94
		5735	0.92	0.91	3.93	19.00	15.07
	QPSK	5800	0.75	1.14	3.96	19.00	15.04
	QF3K	5830	0.64	1.24	3.96	19.00	15.04
20 MHz		5840	-0.79	-1.26	1.99	19.00	17.01
ZU IVITZ	64 QAM	5735	0.21	0.87	3.56	19.00	15.44
		5800	1.19	1.06	4.14	19.00	14.86
	04 QAIVI	5830	1.56	0.87	4.24	19.00	14.76
		5840	-1.06	-1.10	1.93	19.00	17.07

Testing data

Transmitter output power and e.i.r.p. requirements for 5725–5850 MHz band FCC Part 15 Subpart E

.,..,

Test data, continued

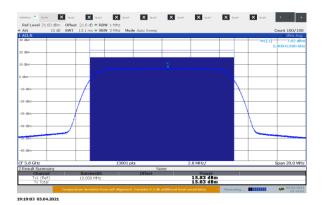


Figure 8.7-5: Sample plot for power on 10 MHz

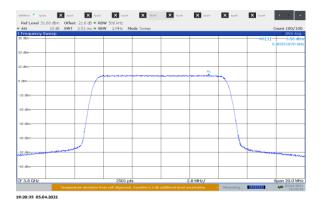


Figure 8.7-7: Sample plot for PPSD on 10 MHz

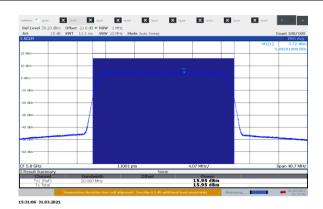


Figure 8.7-6: Sample plot for power on 20 MHz

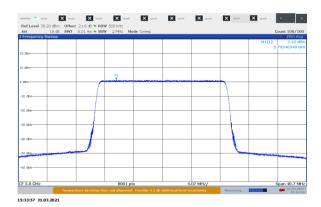


Figure 8.7-8: Sample plot for PPSD on 20 MHz

Report reference ID: 446890-3TRFWL Page 32 of 52

Testing data

Spurious unwanted (undesirable) emissions

FCC Part 15 Subpart E

8.8 Spurious unwanted (undesirable) emissions

8.8.1 References, definitions and limits

FCC §15.407:

- (b) Undesirable emission limits.
 - Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (4) For transmitters operating in the 5.725–5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (7) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (8) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in § 15.207.
- (9) The provisions of § 15.205 apply to intentional radiators operating under this section.
- (10) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

Field strength of emissions dBµV/m Measurement distance, m Frequency, MHz μV/m 0.009-0.490 2400/F $67.6 - 20 \times \log_{10}(F)$ 300 $87.6 - 20 \times \log_{10}(F)$ 0.490-1.705 24000/F 30 1.705-30.0 30 29.5 30 3 30-88 100 40.0 88-216 150 43.5 3 216-960 200 46.0 3 above 960 500 54.0 3

Table 8.8-1: FCC §15.209 - Radiated emission limits

Notes:

In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

Testing data

Spurious unwanted (undesirable) emissions

FCC Part 15 Subpart E

References, definitions and limits, continued

Table 8.8-2: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475–16.69525	608–614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108-121.94	1718.8–1722.2	13.25–13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425-8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72-173.2	3332–3339	31.2–31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

8.8.2 Test summary

Verdict	Pass		
Tested by	Fahar Abdul Sukkoor	Test date	October 28, 2021

Testing data

Spurious unwanted (undesirable) emissions

ntion FCC Part 15 Subpart E

8.8.3 Observations, settings and special notes

- As part of the current assessment, the test range of 9 kHz to 40 GHz has been fully considered and compared to the actual frequencies utilized within the EUT. Since the EUT contains a transmitter in the GHz range, the EUT has been deemed compliant without formal testing in the 9 kHz to 30 MHz test range, therefore formal test results (tabular data and/or plots) are not provided within this test report.
- EUT was set to transmit with 100 % duty cycle. The EUT was transmitting on both MIMO chains simultaneously
- Conducted spurious sample plots are shown for both avg and peak limits. For average limits, emissions above line are from unrestricted bands and
 emissions above limit within restricted bands are zoomed in and measured prove to be within limit line.
- Cabinet spurious measurements were performed at a distance of 3 m This test was performed at the antenna ports and radiated with both antennas terminated with 50 Ohm load.
- The spurious emission was tested per ANSI C63.10, Clause 12.7 and 789033 D02, Clause II(G).
- Antennae are completely uncorrelated cross polarized antenna so EIRP limit should be individually below limit.

Spectrum analyser for peak conducted measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Spectrum analyser for peak conducted measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Average limit line was set as follows:

Limit/MHz = $54 \text{ dB}\mu\text{V/m} - 95.23 \text{ dB} - (\text{Antenna Gain (dBi)} - \text{Path Loss (dB)})$

 $Limit/MHz = 54 dB\mu V/m - 95.23 dB - (21.9 dBi - 1.5 dB)$

Limit = -61.63 dBm/MHz

Spectrum analyser for average conducted measurements within restricted bands above 1 GHz for frequencies where peak results were above the average limit:

Resolution bandwidth:	1 MHz
Video bandwidth:	10 MHz
Detector mode:	RMS
Trace mode:	Power average
Number of averaging traces:	100

Peak limit is 20 dB higher than the average limit: -61.83 dBm/MHz + 20 dB = -41.83 dBm/MHz

Spectrum analyser for peak conducted measurements outside restricted bands:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

Conducted emissions measurements outside restricted bands were performed on each individual MIMO chain.

-27 dBm/MHz - 20.6 dBi =-47.6 dBm/MHz. For peak measurements, non-restricted band limits are more stringent than restricted band is taken as peak limit

Report reference ID: 446890-3TRFWL Page 35 of 52

Testing data

Spurious unwanted (undesirable) emissions

FCC Part 15 Subpart E

8.8.4 Test data

 Table 8.8-3: Conducted peak spurious emission measurement results for sector 0

Modulation	Antenna port	Channel BW, MHz	Frequency of max emission, MHz	Emission level, dBm/MHz	Limit, dBm/MHz	Margin, dB
1	10(low)	5241.8	-50.42	-47.60	2.82	
0	10(mid)	5311.6	-48.44	-47.60	0.84	
1	10(mid)	5308.9	-48.12	-47.60	0.52	
0	10(5830)	5340.9	-49.76	-47.60	2.16	
1	10(5830)	5215.3	-50.33	-47.60	2.73	
0	10(high)	5353.3	-51.38	-47.60	3.78	
1	10(high)	5105.3	-52.32	-47.60	4.72	
0	20(low)	5251.5	-48.47	-47.60	0.87	
1	20(low)	5243.2	-48.07	-47.60	0.47	
0	20(mid)	5300.7	-48.08	-47.60	0.48	
1	20(mid)	5301.9	-49.03	-47.60	1.43	
0	20(5830)	5340.9	-49.18	-47.60	1.58	
1	20(5830)	5340.9	-49.98	-47.60	2.38	
0	20(high)	5351.4	-50.71	-47.60	3.11	
1	20(high)	5349.8	-50.61	-47.60	3.01	
64 QAM	0	10(low)	5240.2	-51.00	-47.60	3.4
	1	10(low)	5240.2	-51.11	-47.60	3.51
	0	10(mid)	5188.9	-49.28	-47.60	1.68
	1	10(mid)	5189.1	-50.22	-47.60	2.62
	0	10(5830)	5212.2	-50.96	-47.60	3.36
	1	10(5830)	5211.8	-49.30	-47.60	1.70
	0	10(high)	5230.5	-51.55	-47.60	3.95
	1	10(high)	5105.3	-52.39	-47.60	4.79
	0	20(low)	5240.1	-49.48	-47.60	1.88
	1	20(low)	5238.9	-48.18	-47.60	0.58
	0	20(mid)	5310.4	-48.27	-47.60	0.67
	1	20(mid)	5299.9	-48.16	-47.60	0.56
	0	20(5830)	5334.2	-49.53	-47.60	1.93
	1	20(5830)	5334.2	-48.17	-47.60	0.57
	0	20(high)	5347.9	-51.17	-47.60	3.57
	1	20(high)	5354.5	-51.50	-47.60	3.90

Testing data

Spurious unwanted (undesirable) emissions

FCC Part 15 Subpart E

Test data, continued

 Table 8.8-4: Conducted average spurious emission measurement results for sector 0

Modulation	Antenna port	Channel BW, MHz	Frequency of max emission, MHz	Emission level, dBm/MHz	Limit, dBm/MHz	Margin, dB
	0	10(low)	5115.6	-62.14	-61.83	0.31
	1	10(low)	5115.6	-61.90	-61.83	0.07
	0	10(mid)	5062.7	-62.44	-61.83	0.61
	1	10(mid)	5062.7	-62.37	-61.83	0.54
	0	10(5830)	5091.9	-61.89	-61.83	0.06
	1	10(5830)	5091.9	-62.28	-61.83	0.45
	0	10(high)	5353.5	-61.90	-61.83	0.07
	1	10(high)	5353.7	-63.42	-61.83	1.59
QPSK	0	20(low)	5001.4	-62.89	-61.83	1.06
	1	20(low)	5005.7	-63.50	-61.83	1.67
	0	20(mid)	5069.5	-63.31	-61.83	1.48
	1	20(mid)	5063.2	-61.92	-61.83	0.09
	0	20(5830)	5098.6	-62.66	-61.83	0.83
	1	20(5830)	5098.8	-61.96	-61.83	0.13
	0	20(high)	5350.0	-61.84	-61.83	0.01
	1	20(high)	5350.0	-61.87	-61.83	0.04
	0	10(low)	5115.6	-61.88	-61.83	0.05
	1	10(low)	5113.4	-61.88	-61.83	0.05
	0	10(mid)	5063.5	-62.48	-61.83	0.65
	1	10(mid)	5063.5	-62.33	-61.83	0.50
	0	10(5830)	5092.7	-62.88	-61.83	1.05
	1	10(5830)	5089.5	-61.91	-61.83	0.08
	0	10(high)	5353.5	-61.84	-61.83	0.01
	1	10(high)	5353.5	-64.11	-61.83	2.28
64 QAM	0	20(low)	4995.6	-63.26	-61.83	1.43
	1	20(low)	5005.3	-62.61	-61.83	0.78
	0	20(mid)	5070.2	-62.37	-61.83	0.54
	1	20(mid)	5062.7	-62.32	-61.83	0.49
	0	20(5830)	5092.7	-62.66	-61.83	0.83
	1	20(5830)	5097.6	-61.84	-61.83	0.01
	0	20(high)	5350.0	-62.27	-61.83	0.44
	1	20(high)	5350.0	-62.30	-61.83	0.47

Report reference ID: 446890-3TRFWL Page 37 of 52

Testing data

Spurious unwanted (undesirable) emissions

FCC Part 15 Subpart E

Test data, continued

Table 8.8-5: Conducted peak spurious emission measurement results for sector 2

Modulation	Antenna port	Channel BW,	Frequency of max	Emission level,	Limit, dBm/MHz	Margin, dB
		MHz	emission, MHz	dBm/MHz	Lillin, abiliyivinz	iviaigiii, ub
	0	10(low)	5235.6	-51.69	-47.60	4.09
	1	10(low)	5235.6	-49.42	-47.60	1.82
	0	10(mid)	5306.9	-49.74	-47.60	2.14
	1	10(mid)	5308.9	-48.51	-47.60	0.91
	0	10(5830)	5218.8	-49.13	-47.60	1.53
	1	10(5830)	5216.8	-49.19	-47.60	1.59
	0	10(high)	5345.9	-50.76	-47.60	3.16
ODCK	1	10(high)	5346.2	-52.62	-47.60	5.02
QPSK	0	20(low)	5250.4	-49.76	-47.60	2.16
	1	20(low)	5250.3	-49.50	-47.60	1.90
	0	20(mid)	5308.1	-48.88	-47.60	1.28
	1	20(mid)	5308.1	-49.06	-47.60	1.46
	0	20(5830)	5338.1	-49.04	-47.60	1.44
	1	20(5830)	5338.1	-49.08	-47.60	1.48
	0	20(high)	5352.1	-51.03	-47.60	3.43
	1	20(high)	5352.2	-48.93	-47.60	1.33
	0	10(low)	5235.7	-50.30	-47.60	2.70
	1	10(low)	5235.6	-49.54	-47.60	1.94
	0	10(mid)	5305.4	-49.17	-47.60	1.57
	1	10(mid)	5305.4	-49.86	-47.60	2.26
	0	10(5830)	5217.2	-49.11	-47.60	1.51
	1	10(5830)	5339.7	-49.12	-47.60	1.52
	0	10(high)	5109.2	-51.03	-47.60	3.43
64.0444	1	10(high)	5232.8	-51.09	-47.60	3.49
64 QAM	0	20(low)	5246.0	-49.84	-47.60	2.24
	1	20(low)	5246.1	-48.57	-47.60	0.97
	0	20(mid)	5308.5	-49.60	-47.60	2.00
	1	20(mid)	5308.5	-49.99	-47.60	2.39
	0	20(5830)	5336.2	-49.45	-47.60	1.85
	1	20(5830)	5336.2	-48.79	-47.60	1.19
	0	20(high)	5351.7	-51.59	-47.60	3.99
	1	20(high)	5344.4	-49.62	-47.60	2.02

Report reference ID: 446890-3TRFWL

Testing data

Spurious unwanted (undesirable) emissions

FCC Part 15 Subpart E

Test data, continued

 $\textbf{\textit{Table 8.8-6:}} \ \textit{Conducted average spurious emission measurement results for sector 2}$

Modulation	Antenna port	Channel BW, MHz	Frequency of max emission, MHz	Emission level, dBm/MHz	Limit, dBm/MHz	Margin, dB
	0	10(low)	5117.9	-61.87	-61.83	0.04
	1	10(low)	5117.9	-61.89	-61.83	0.06
	0	10(mid)	5065.6	-62.11	-61.83	0.28
	1	10(mid)	5062.3	-61.90	-61.83	0.07
	0	10(5830)	5094.4	-61.85	-61.83	0.02
	1	10(5830)	5094.4	-61.85	-61.83	0.02
	0	10(high)	5350.0	-61.84	-61.83	0.01
	1	10(high)	5350.0	-61.93	-61.83	0.10
QPSK	0	20(low)	4999.9	-61.88	-61.83	0.05
	1	20(low)	4999.9	-62.22	-61.83	0.39
	0	20(mid)	5062.7	-61.97	-61.83	0.14
	1	20(mid)	5059.5	-61.86	-61.83	0.03
	0	20(5830)	5099.0	-62.02	-61.83	0.19
	1	20(5830)	5092.6	-61.90	-61.83	0.07
	0	20(high)	5350.0	-62.02	-61.83	0.19
	1	20(high)	5350.0	-62.00	-61.83	0.17
	0	10(low)	5117.9	-61.84	-61.83	0.01
	1	10(low)	5117.9	-62.31	-61.83	0.48
	0	10(mid)	5065.1	-61.84	-61.83	0.01
	1	10(mid)	5062.2	-62.63	-61.83	0.80
	0	10(5830)	5094.8	-62.19	-61.83	0.36
	1	10(5830)	5092.7	-61.93	-61.83	0.1
	0	10(high)	5109.3	-62.14	-61.83	0.31
64.044	1	10(high)	5350.0	-62.02	-61.83	0.19
64 QAM	0	20(low)	5000.1	-61.87	-61.83	0.04
	1	20(low)	5000.1	-61.85	-61.83	0.02
	0	20(mid)	5068.4	-61.97	-61.83	0.14
	1	20(mid)	5068.5	-61.89	-61.83	0.06
	0	20(5830)	5090.0	-61.89	-61.83	0.06
	1	20(5830)	5090.0	-61.86	-61.83	0.03
	0	20(high)	5100.0	-62.06	-61.83	0.23
	1	20(high)	5100.0	-62.37	-61.83	0.54

Report reference ID: 446890-3TRFWL Page 39 of 52

Testing data

Spurious unwanted (undesirable) emissions FCC Part 15 Subpart E

Test data, continued

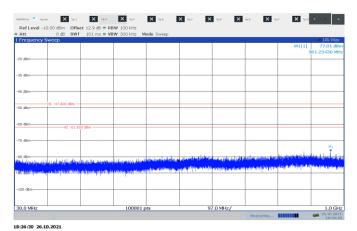


Figure 8.8-1: Conducted peak spurious emissions 30 MHz -1 GHz on low channel 10 MHz sample plot

Figure 8.8-3: Conducted average spurious emissions 1-6 GHz on low channel 10 MHz sample plot

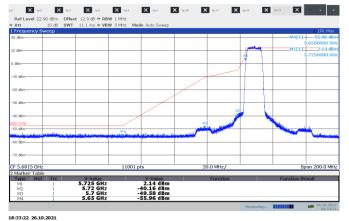


Figure 8.8-5 Conducted Banedge mask on low channel 10 MHz channel sample plot

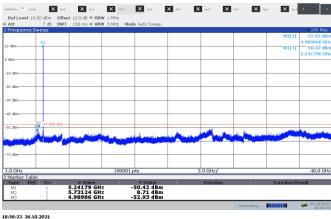
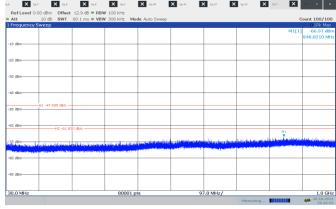



Figure 8.8-2: Conducted peak spurious emissions 1-40 GHz on low channel 10 MHz sample plot

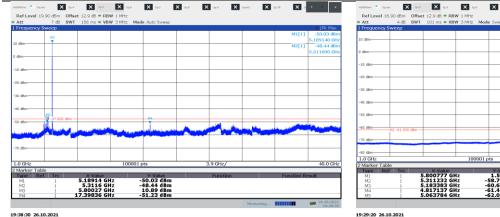
18:57:24 26.10.2021

Figure 8.8-4::: Conducted average spurious emissions 6-40 GHz on low channel 10 MHz sample plot

19:44:55 26.10.2021

Figure 8.8-6: Conducted peak spurious emissions 30 MHz -1 GHz on mid channel 10 MHz sample plot

Report reference ID: 446890-3TRFWL Page 40 of 52



Testing data

Spurious unwanted (undesirable) emissions

FCC Part 15 Subpart E

Test data, continued

Figure 8.8-7: Conducted peak spurious emissions 1 - 40 GHz on mid channel 10 MHz sample plot

Figure 8.8-9 Conducted average spurious emissions 6-40 GHz on mid channel 10 MHz sample plot

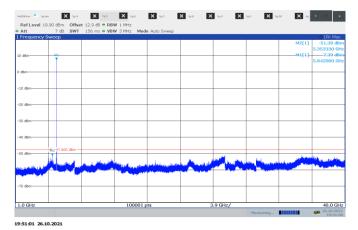
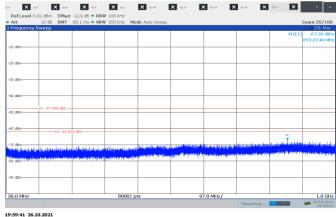



Figure 8.8-11: : Conducted peak spurious emissions 1 - 40 GHz on high channel 10 MHz sample plot

Figure 8.8-8: Conducted average spurious emissions 1- 6 GHz on mid channel 10 MHz sample plot

Figure 8.8-10: Conducted peak spurious emissions 30 MHz -1 GHz on high channel 10 MHz sample plot

Figure 8.8-12: : Conducted average spurious emissions 1- 6 GHz on high channel 10 MHz sample plot

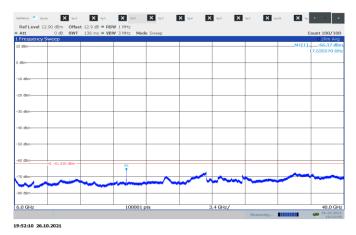
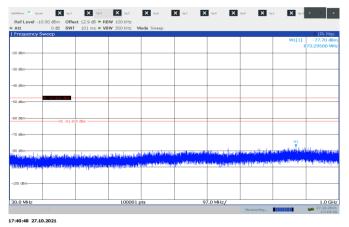
Report reference ID: 446890-3TRFWL Page 41 of 52

Testing data

Spurious unwanted (undesirable) emissions

FCC Part 15 Subpart E

Test data, continued

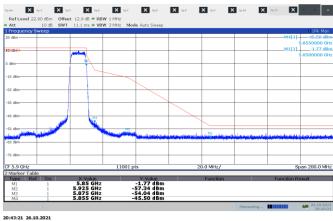

Figure 8.8-13:: Conducted average spurious emissions 6-40 GHz on high channel 10 MHz sample plot

Figure 8.8-15: Conducted peak spurious emissions 30 MHz - 1 GHz on 5830 MHz channel 10 MHz sample plot

Figure 8.8-17: Conducted average spurious emissions 1- 6 GHz on 5830 MHz channel 10 MHz sample plot

Figure 8.8-14: Conducted Banedge mask on high channel 10 MHz channel sample plot

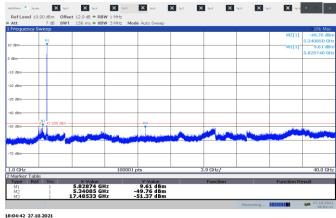


Figure 8.8-16: : Conducted peak spurious emissions 1- 40 GHz on 5830 MHz channel 10 MHz sample plot

Figure 8.8-18: Conducted average spurious emissions 6-40 GHz on 5830 MHz channel 10 MHz sample plot

Report reference ID: 446890-3TRFWL Page 42 of 52

Testing data

Spurious unwanted (undesirable) emissions

FCC Part 15 Subpart E

Test data, continued

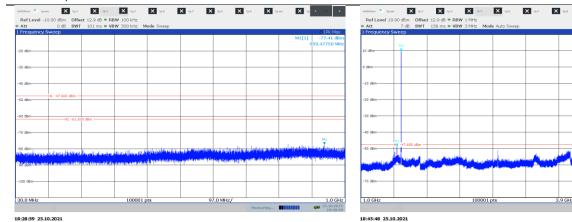
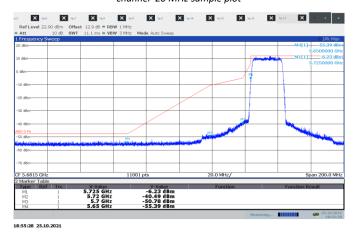



Figure 8.8-19: Conducted peak spurious emissions 30 MHz -1 GHz on low channel 20 MHz sample plot

Figure 8.8-21: Conducted average spurious emissions 1- 6 GHz on low channel 20 MHz sample plot

Figure 8.8-23 Conducted Banedge mask on low channel 20 MHz channel sample plot

Figure 8.8-20: Conducted peak spurious emissions 1-40 GHz on low channel 20 MHz sample plot

X 59.7

X 9

Figure 8.8-22: :Conducted average spurious emissions 6 -40 GHz on low channel 20 MHz sample plot

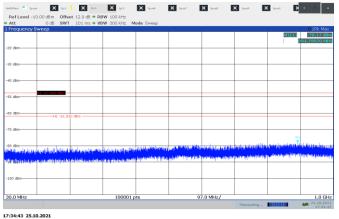


Figure 8.8-24: Conducted peak spurious emissions 30 MHz -1 GHz on mid channel 20 MHz sample plot

Report reference ID: 446890-3TRFWL Page 43 of 52

Testing data

Spurious unwanted (undesirable) emissions

FCC Part 15 Subpart E

Test data, continued

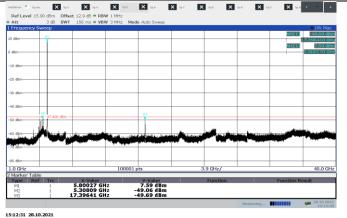
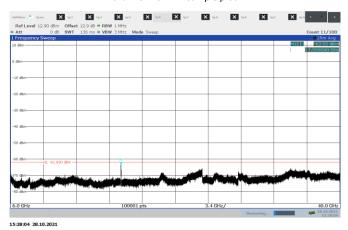



Figure 8.8-25: Conducted peak spurious emissions 1 - 40 GHz on mid channel 20 MHz sample plot

Figure 8.8-27 Conducted average spurious emissions 6-40 GHz on mid channel 20 MHz sample plot

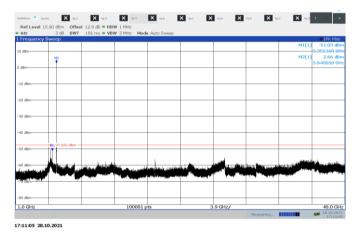


Figure 8.8-29: : Conducted peak spurious emissions 1 - 40 GHz on high channel 20 MHz sample plot

Figure 8.8-26: Conducted average spurious emissions 1- 6 GHz on mid channel 20 MHz sample plot

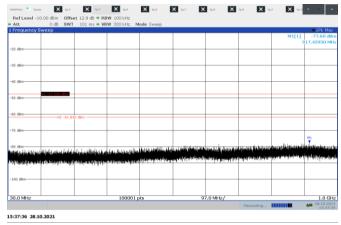
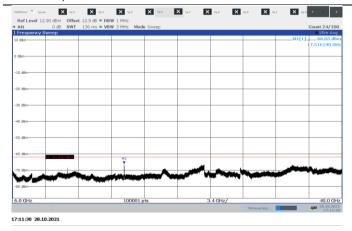


Figure 8.8-28: Conducted peak spurious emissions 30 MHz -1 GHz on high channel 20 MHz sample plot

Figure 8.8-30: : Conducted average spurious emissions 1- 6 GHz on high channel 20 MHz sample plot

Report reference ID: 446890-3TRFWL Page 44 of 52



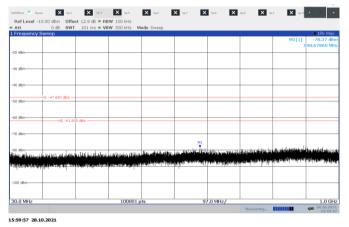
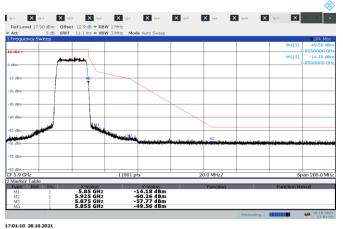
Testing data

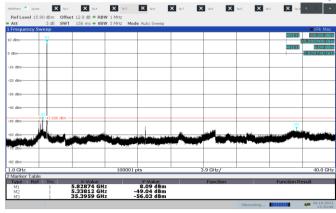
Spurious unwanted (undesirable) emissions

FCC Part 15 Subpart E

Test data, continued

Figure 8.8-31: Conducted average spurious emissions 6-40 GHz on high channel 20 MHz sample plot


Figure 8.8-33: Conducted peak spurious emissions 30 MHz - 1 GHz on 5830 MHz channel 20 MHz sample plot

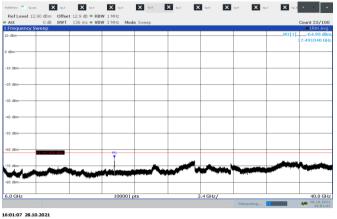
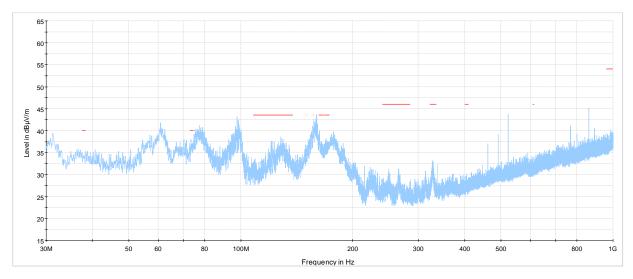

Figure 8.8-35: Conducted average spurious emissions 1-6 GHz on 5830 MHz channel 20 MHz sample plot

Figure 8.8-32: Conducted Banedge mask on high channel 20 MHz channel sample plot

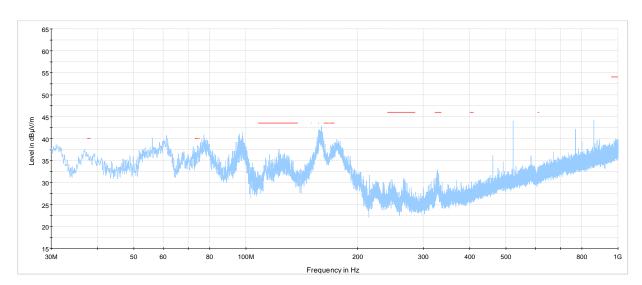
Figure 8.8-34: Conducted peak spurious emissions 1- 40 GHz on 5830 MHz channel 20 MHz sample plot

Figure 8.8-36: Conducted average spurious emissions 6-40 GHz on 5830 MHz channel 20 MHz sample plot


Report reference ID: 446890-3TRFWL Page 45 of 52

Testing data

Spurious unwanted (undesirable) emissions


FCC Part 15 Subpart E

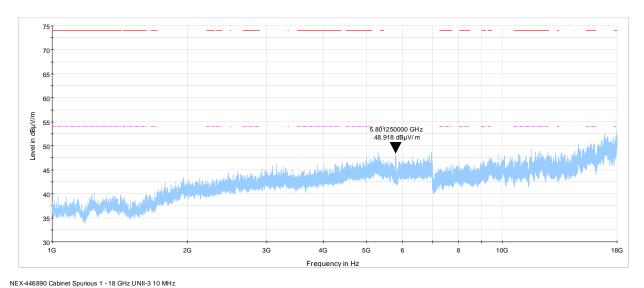
Test data, continued

NEX- 446890 Cabinet Spurious 30-1000 MHz UNII-3 10 MHz
Preview Result 1-PK+
FCC 15.209 and RSS-Gen Restricted bands limits

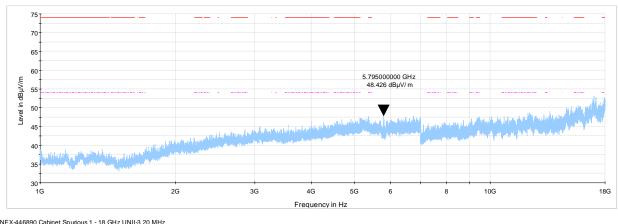
Figure 8.8-37: Cabinet spurious emissions 30 MHz – 1 GHz, 10 MHz Channel

NEX-446890 Cabinet Spurious 30-1000 MHz UNII-3 20 MHz
Preview Result 1-PK+
FCC 15.209 and RSS-Gen Restricted bands limits

Figure 8.8-38: Cabinet spurious emissions 30 MHz - 1 GHz, 20 MHzChannel


Note: All emissions above restricted bands are EMC digital noise. EUT is class A unit.

Testing data Spurious unwanted (undesirable) emissions


FCC Part 15 Subpart E

Test data, continued

Preview Result 1-PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits

Figure 8.8-39: Cabinet spurious emissions 1 – 18 GHz, 10 MHz Channel

NEX-446890 Cabinet Spurious 1 - 18 GHz UNII-3 20 MHz

Preview Result 1-PK+ FCC 15.209 and RSS-Gen Restricted bands peak limits FCC 15.209 and RSS-Gen Restricted bands average limits

Figure 8.8-40: Cabinet spurious emissions 1 – 18 GHz, 20 MHz Channel

446890-3TRFWL Report reference ID:

Test data, continued

Figure 8.8-41: Cabinet spurious emissions 1 8 - 40 GHz, 10 MHz Channel

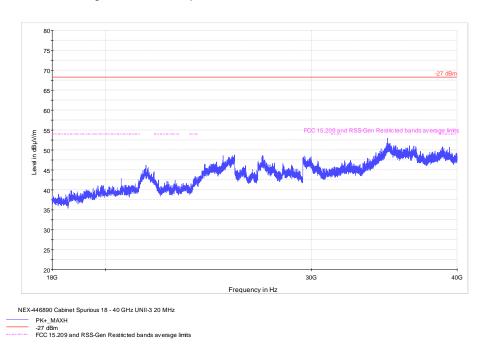


Figure 8.8-42: Cabinet spurious emissions 18 – 40 GHz, 20 MHz Channel

Testing data Frequency stability FCC Part 15 Subpart E

8.9 Frequency stability

8.9.1 References, definitions and limits

FCC §15.407:

(g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

8.9.2 Test summary

Verdict	Pass		
Tested by	Fahar Abdul Sukkoor	Test date	October 29, 2021

8.9.3 Observations, settings and special notes

Frequency stability test was performed as per ANSI C63.10, Clause 6.8 and 789033 D02, Clause II(A)(3). Spectrum analyser settings:

Resolution bandwidth:	1% of bandwidth
Video bandwidth:	3 x RBW
Detector mode:	Peak
Trace mode:	Max Hold

8.9.4 Test data

Table 8.9-1: Frequency drift measurement

Test conditions	Frequency, GHz	Drift, Hz
+60 °C, Nominal	5.800003041	-23
+50 °C, Nominal	5.800004143	-1125
+40 °C, Nominal	5.800004171	-1153
+30 °C, Nominal	5.800002588	430
+20 °C, +15 %	5.800001422	1596
+20 °C, Nominal	5.800003018	Reference
+20 °C, −15 %	5.800000625	2393
+10 °C, Nominal	5.800004287	-1269
0 °C, Nominal	5.800003511	-493
−10 °C, Nominal	5.800003177	-159
−20 °C, Nominal	5.800003177	-159
−30 °C, Nominal	5.800004171	-1153
−40 °C, Nominal	5.800003041	-23

Report reference ID: 446890-3TRFWL Page 49 of 52

Testing data Frequency stability FCC Part 15 Subpart E

Test data, continued

Table 8.9-2: Lower band edge drift calculation

	-26 dBc lower cross		Drifted lower cross		
Modulation	point, GHz	Max negative drift, Hz	point, GHz	Band edge, GHz	Margin, MHz
QPSK	5.7251754	1269	5.725174131	5.725	0.17
64QAM	5.7251689	1269	5.725167631	5.725	0.17

Notes: Drifted lower cross point = -26 dBc lower cross point – max negative drift.

Table 8.9-3: Upper band edge drift calculation

	-26 dBc upper cross		Drifted upper cross		
Modulation	point, GHz	Max positive drift, Hz	point, GHz	Band edge, GHz	Margin, MHz
QPSK	5.8498363	2393	5.849838693	5.850	1.6
64QAM	5.8498050	2393	5.849807393	5.850	1.9

Notes: Drifted upper cross point = -26 dBc upper cross point + max positive drift.

Section 9 EUT photos

9.1 External photos

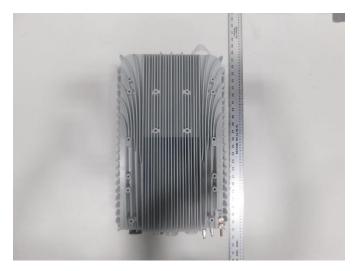


Figure 9.1-1: Front view photo

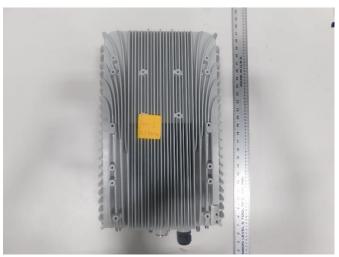


Figure 9.1-2: Rear view photo

Figure 9.1-3: Side view photo

Figure 9.1-4: Side view photo

External photos continued

Figure 9.1-5: Top view photo

Figure 9.1-6:Bottom view photo

End of the test report