

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where:

S = power density

P = power input to the antenna G = power gain of the antenna in the direction of interest relative to isotropic radiator

R = distance to the center of radiation of the antenna

PWR in dBm Maximum peak output power at antenna input terminal: Maximum peak output power at antenna input terminal: Ant. gain in dBi Maximum antenna gain:	33.9 dBm 2449.1 mW 17 dBi 50.1 numeric
Use the dutv cvcle from test report or 100% Time Averaging:	100 %
Separation distance from antenna to user in cm. SPrediction distance:	1100 cm
Freq. in MHz > Prediction frequency:	3700 MHz
FCC MPE limit for uncontrolled exposure at prediction frequency:	1.00 mW/cm ²
IC MPE limit for uncontrolled exposure at prediction frequency:	7.19 W/m ²
Power density at prediction frequency:	0.01 mW/cm ²
This equates to:	0.08 W/m ²