

Test report

283771-2TRFWL

Date of issue: August 31, 2015

Applicant:

BLINQ Wireless Inc.

Product:

HUB and RBM

Model:

X1200

FCC ID:

ROR0000003

Specification:

FCC 47 CFR Part 15 Subpart E, §15.407

Unlicensed National Information Infrastructure Devises

Test location

Company name	Nemko Canada Inc.
Address	303 River Road
City	Ottawa
Province	Ontario
Postal code	K1V 1H2
Country	Canada
Telephone	+1 613 737 9680
Facsimile	+1 613 737 9691
Toll free	+1 800 563 6336
Website	www.nemko.com
Site number	FCC: 176392 (3 m semi anechoic chamber)

Tested by	Andrey Adelberg, Senior Wireless/EMC Specialist
Reviewed by	Kevin Rose, Wireless/EMC Specialist
Review date	August 31, 2015
Reviewer signature	

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

Table of contents

Table of	contents	3
Section 1	ı. Report summary	4
1.1	Applicant and manufacturer	4
1.2	Test specifications	4
1.3	Test methods	4
1.4	Statement of compliance	4
1.5	Exclusions	4
1.6	Test report revision history	4
Section 2	2. Summary of test results	5
2.1	FCC Part 15 Subpart C, general requirements test results	5
2.2	FCC Part 15 Subpart E, test results	5
Section 3	3. Equipment under test (EUT) details	6
3.1	Sample information	6
3.2	EUT information	6
3.3	Technical information	6
3.4	Product description and theory of operation	7
3.5	EUT exercise details	7
Section	4. Engineering considerations	8
4.1	Modifications incorporated in the EUT	8
4.2	Technical judgment	8
4.3	Deviations from laboratory tests procedures	8
Section !	5. Test conditions	9
5.1	Atmospheric conditions	9
5.2	Power supply range	9
Section (6. Measurement uncertainty	10
6.1	Uncertainty of measurement	. 10
Section	7. Test equipment	11
7.1	Test equipment list	
Section 8		
8.1	FCC 15.407(6) AC power line conducted emissions limits	. 12
8.2	FCC 15.403(i) Emission bandwidth	
8.3	FCC 15.407(a)(3) 5.725–5.85 GHz band output power, EIRP and spectral density limits	. 18
8.4	FCC 15.407(b) Spurious (Undesirable) emissions	
8.5	FCC 15.407(g) Frequency stability	. 36
Section		
9.1	Radiated emissions set-up	. 37
9.2	Conducted emissions set-up	. 37

Section 1. Report summary

1.1 Applicant and manufacturer

Company name	BLINQ Wireless Inc.
Address	400 March Road Suite 240
City	Ottawa
Province/State	ON
Postal/Zip code	K2K 3H4
Country	Canada

1.2 Test specifications

FCC 47 CFR Part 15, Subpart E, Clause 15.407	Unlicensed National Information Infrastructure Devises

1.3 Test methods

789033 D02 General UNII Test Procedures New Rules v01 (June 6, 2014)	Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices Part 15, Subpart E
662911 D01 Multiple Transmitter Output v02r01 (October 31, 2013)	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
662911 D02 MIMO with Cross Polarized	Emissions testing of transmitters with multiple outputs in the same band (MIMO) with Cross Polarized
Antenna v01 (October 25, 2011)	Antenna
ANSI C63.10 v2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Details of changes made to test report
TRF	Original report issued

Section 2. Summary of test results

2.1 FCC Part 15 Subpart C, general requirements test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Pass
§15.31(e)	Variation of power source	Pass ¹
§15.203	Antenna requirement	Pass ²

Notes: ¹Measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage. No noticeable output power variation was observed

2.2 FCC Part 15 Subpart E, test results

Part	Test description	Verdict
§15.403(i)	Emission bandwidth	Not applicable
§15.407(a)(1)	5.15–5.25 GHz band power and density limits	Not applicable
§15.407(a)(2)	5.25–5.35 GHz and 5.47–5.725 GHz bands power and density limits	Not applicable
§15.407(a)(3)	5.725–5.85 GHz band power and density limits	Pass
§15.407(b)(1)	5.15–5.25 GHz band undesired emission limits	Not applicable
§15.407(b)(2)	5.25–5.35 GHz band undesired emission limits	Not applicable
§15.407(b)(3)	5.47–5.725 GHz band undesired emission limits	Not applicable
§15.407(b)(4)	5.725–5.85 GHz band undesired emission limits	Pass
§15.407(b)(6)	Unwanted emissions below 1 GHz	Pass
§15.407(b)(7)	Radiated emissions within restricted bands	Pass
§15.407(e)	Minimum 6 dB bandwidth for 5.725–5.85 GHz band	Pass
§15.407(g)	Frequency stability	Pass
§15.407(h)(1) ¹	Transmit power control (TPC)	Not applicable
§15.407(h)(2) ¹	Dynamic Frequency Selection (DFS)	Not applicable

Note: ¹Applicable only to U-NII devices operating in the 5.25–5.35 GHz band and the 5.47–5.725 GHz band.

²The Antennas are located within the enclosure of EUT and not user accessible. EUT is professionally installed.

Section 3. Equipment under test (EUT) details

3.1 Sample information

Receipt date	April 22, 2015
Nemko sample ID number	1

3.2 EUT information

Product name	HUB and RBM
Model	X1200
Serial number	BA141008024

3.3 Technical information

Frequency band	5725–5850 MHz
Frequency Min (MHz)	5755 MHz (PTP); 5745 MHz (PMP)
Frequency Max (MHz)	5825 MHz (PTP); 5835 MHz (PMP)
RF power Min (W), Conducted	0.13 (20.99 dBm) for PMP application
RF power Max (W), Conducted	0.28 (24.43 dBm) for PTP application
Field strength, Units @ distance	N/A
Measured BW (MHz) (6 dBc)	17.33
Calculated BW (kHz), as per TRC-43	N/A
Type of modulation	OFDM
Emission classification (F1D, G1D, D1D)	W7D
Transmitter spurious, Units @ distance	48.59 dBμV/m @ 3 m at 15.54 GHz
Power requirements	120 V _{AC} , 60 Hz
Antenna information	Antenna configuration 1: Gain is 16 dBi , cable loss is1 dB
	Antenna configuration 2: Gain is 15 dBi , cable loss is2 dB
	The EUT is professionally installed.

3.4 Product description and theory of operation

The radio modules associated with this limited modular certification are part of BLiNQ Networks' X1200 Dual Carrier, Point-to-Multipoint and Point-to-Point Transceiver Modules. These Transceiver Modules are used to backhaul data from small cell mobile access points. One Hub Module communicates with up to 8 Remote Backhaul Modules (RBM) in a Point-to-Multipoint configuration or 1 Remote Backhaul Module (RBM) in a Point-to-Point configuration. The radio module has the following characteristics:

- operates in the 5.725 to 5.85 GHz frequency band
- supports QPSK, 16QAM, 64QAM and 256QAM
- supports 2x2 MIMO with 2 uncorrelated data streams
- supports user configurable traffic ratios 50:50 and 70:30
- outputs power in the range of -15 to 23 dBm
- the maximum output power is limited by the antenna configuration which is particular to each module, HM or RBM, and dependent on the Point-to-Point or Point-to-Multipoint scenarios

3.5 EUT exercise details

The EUT was controlled from laptop via Ethernet using Putty telnet session.

Section 4. Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5. Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	860–1060 mbar

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6. Measurement uncertainty

6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

Test name	Measurement uncertainty, dB
All antenna port measurements	0.55
Conducted spurious emissions	1.13
Radiated spurious emissions	3.78
AC power line conducted emissions	3.55

Section 7. Test equipment

7.1 Test equipment list

Table 7.1-1: Equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
3 m EMI test chamber	TDK	SAC-3	FA002047	1 year	Feb. 25/16
Flush mount turntable	Sunol	FM2022	FA002082	_	NCR
Controller	Sunol	SC104V	FA002060	_	NCR
Antenna mast	Sunol	TLT2	FA002061	_	NCR
Power source	California Instruments	3001i	FA001021	1 year	June 27/15
Spectrum analyzer	Rohde & Schwarz	FSU	FA001877	1 year	Mar. 27/16
Receiver/spectrum analyzer	Rohde & Schwarz	ESU 26	FA002043	1 year	Jan. 07/16
Bilog antenna (20–3000 MHz)	Sunol	JB3	FA002108	1 year	Apr. 12/16
Horn antenna (1–18 GHz)	EMCO	3115	FA000825	1 year	Apr. 01/16
Horn antenna (18–26.5 GHz)	Electro-metrics	SH-50/60-1	FA000479	_	VOU
Pre-amplifier (1–18 GHz)	JCA	JCA118-503	FA002091	1 year	June 23/15
Pre-amplifier (18–26 GHz)	Narda	BBS-1826N612	FA001550	_	VOU
Horn antenna (26.5–40 GHz)	Electro-metrics	SH-50/60-2	FA000485	_	VOU
Pre-amplifier (26–40 GHz)	Narda	DBL-2640N610	FA001556	_	VOU
Temperature chamber	Thermotron	SM-16C	FA001030	1 year	NCR
LISN	Rohde & Schwarz	ENV216	FA002023	1 year	Jan. 09/16
50 Ω coax cable	C.C.A.	None	FA002556	1 year	June 23/15

Note: NCR - no calibration required, VOU - verify on use

8.1 FCC 15.407(6) AC power line conducted emissions limits

8.1.1 Definitions and limits

15.407(6) Any U-NII devices using an AC power line are required to comply with the conducted limits set forth in §15.207.

 $\S15.207$ Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50 \, \mu H/50 \, \Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Table 8.1-1: Conducted emissions limit

Frequency of emission	Conducted limit (dBμV)		
(MHz)	Quasi-peak	Average**	
0.15-0.5	66 to 56*	56 to 46*	
0.5–5	56	46	
5–30	60	50	

Note:

8.1.2 Test summary

Test date	April 23, 2015	Temperature	23 °C
Test engineer	Andrey Adelberg	Air pressure	1005 mbar
Verdict	Pass	Relative humidity	31 %

^{* -} The level decreases linearly with the logarithm of the frequency.

^{** -} A linear average detector is required.

Test name FCC 15.407(6) AC power line conducted emissions limits

Specification FCC Part 15 Subpart E

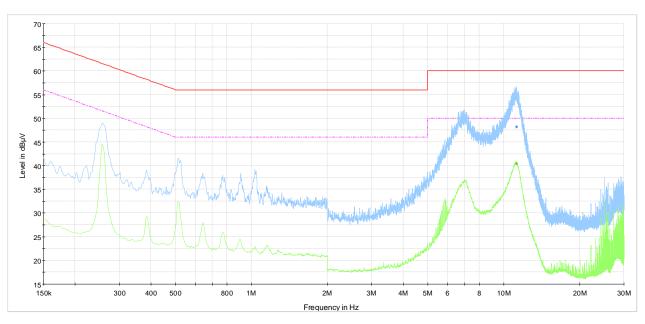
8.1.3 Observations, settings and special notes

The EUT was set up as tabletop configuration.

The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver settings for preview measurements:


Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Peak and Average
Trace mode	Max Hold
Measurement time	100 ms

Receiver settings for final measurements:

Resolution bandwidth	9 kHz
Video bandwidth	30 kHz
Detector mode	Quasi-Peak and Average
Trace mode	Max Hold
Measurement time	100 ms

8.1.4 Test data

Conducted emissions on phase line

CISPR 22 Mains QP Class B
CISPR 22 Mains AV Class B
Preview Result 1-PK+
Preview Result 2-AVG

Final Result 1-QPK
Final Result 2-AVG

Plot 8.1-1: Conducted emissions on phase line

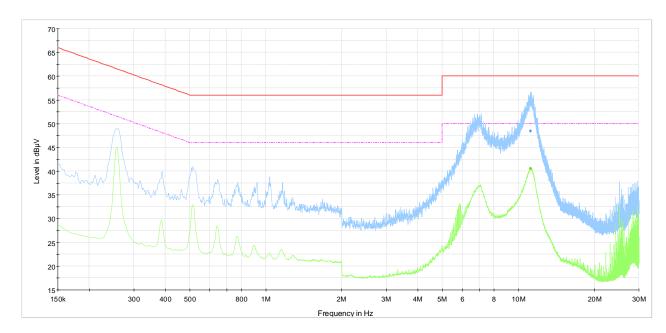
Table 8.1-2: Quasi-Peak conducted emissions results on phase line

Frequency,	Q-Peak result,	Meas. Time,	Bandwidth,	Filter	Correction,	Margin,	Limit,
MHz	dΒμV	ms	kHz		dB	dB	dΒμV
11.253250	48.1	1000.0	9.000	On	L1	10.3	11.9

Note: 43.5 dBµV = 23.2 dBµV (receiver reading) + 10.1 dB (LISN factor IL) + 0.2 dB (cable loss) + 10 dB (attenuator)

Table 8.1-3: Average conducted emissions results on phase line

Frequency, MHz	Average result, dBμV	Meas. Time, ms	Bandwidth, kHz	Filter	Correction, dB	Margin, dB	Limit, dBμV
11.253250	40.3	1000.0	9.000	On	L1	10.3	9.7


Sample calculation:

Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB) Result (dB μ V) = XX dB μ V (reading from receiver) + XX dB (Correction factor)

Example:

 $43.5 \text{ dB}\mu\text{V} = 23.2 \text{ dB}\mu\text{V}$ (receiver reading) + 10.1 dB (LISN factor IL) + 0.2 dB (cable loss) + 10 dB (attenuator)

Conducted emissions on neutral line

CISPR 22 Mains QP Class B

CISPR 22 Mains AV Class B

Preview Result 1-PK+

Preview Result 2-AVG

Final Result 1-QPK

Final Result 2-AVG

Plot 8.1-2: Conducted emissions on neutral line

Table 8.1-4: Quasi-Peak conducted emissions results on neutral line

Frequency,	Q-Peak result,	Meas. Time,	Bandwidth,	Filter	Correction,	Margin,	Limit,
MHz	dBμV	ms	kHz		dB	dB	dBμV
11.185750	48.5	1000.0	9.000	On	N	10.4	11.5

Note: $43.5 \text{ dB}\mu\text{V} = 23.2 \text{ dB}\mu\text{V}$ (receiver reading) + 10.1 dB (LISN factor IL) + 0.2 dB (cable loss) + 10 dB (attenuator)

Table 8.1-5: Average conducted emissions results on neutral line

Frequency,	Average result,	Meas. Time,	Bandwidth,	Filter	Correction,	Margin,	Limit,
MHz	dBμV	ms	kHz		dB	dB	dBμV
11.185750	40.6	1000.0	9.000	On	N	10.4	9.4

Sample calculation:

Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)

Result (dB μ V) = XX dB μ V (reading from receiver) + XX dB (Correction factor)

Example:

 $43.5 \text{ dB}\mu\text{V} = 23.2 \text{ dB}\mu\text{V}$ (receiver reading) + 10.1 dB (LISN factor IL) + 0.2 dB (cable loss) + 10 dB (attenuator)

8.2 FCC 15.403(i) Emission bandwidth

8.2.1 Definitions and limits

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

15.407(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

8.2.2 Test summary

Test date	April 22, 2015	Temperature	22 °C
Test engineer	Andrey Adelberg	Air pressure	1004 mbar
Verdict	Pass	Relative humidity	32 %

8.2.3 Observations, settings and special notes

Spectrum analyser settings:

Resolution bandwidth	200 kHz
Video bandwidth	500 kHz
Frequency span	30 MHz
Detector mode	Peak
Trace mode	Max Hold

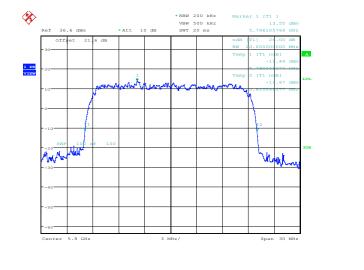
8.2.4 Test data

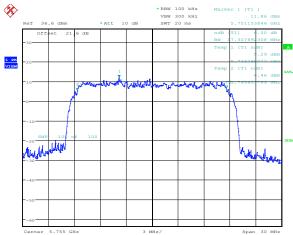
Table 8.2-1: 26 dB bandwidth results for PTP

Antenna chain	Frequency, MHz	26 dB bandwidth, MHz
	5755	20.00
ch0	5800	20.00
	5825	20.00
ch1	5755	20.09
	5800	20.09
	5825	20.09

Table 8.2-2: 26 dB bandwidth results for PMP

Antenna chain	Frequency, MHz	26 dB bandwidth, MHz
	5745	20.04
ch0	5800	20.00
	5835	20.00
ch1	5745	20.09
	5800	20.09
	5835	20.09




Table 8.2-3: 6 dB bandwidth results for PTP

Antenna chain	Frequency, MHz	6 dB bandwidth, MHz	Minimum limit, MHz	Margin, MHz
	5755	17.30	0.50	16.80
ch0	5800	17.30	0.50	16.80
	5825	17.30	0.50	16.80
	5755	17.45	0.50	16.95
ch1	5800	17.83	0.50	17.33
	5825	17.88	0.50	17.38

Table 8.2-4: 6 dB bandwidth results for PMP

Antenna chain	Frequency, MHz	6 dB bandwidth, MHz	Minimum limit, MHz	Margin, MHz
	5745	17.30	0.50	16.80
ch0	5800	17.30	0.50	16.80
	5835	17.30	0.50	16.80
	5745	17.45	0.50	16.95
ch1	5800	17.83	0.50	17.33
	5835	17.50	0.50	17.00

High channel

Date: 22.APR.2015 13:21:07

High channel Date: 22.APR.2015 13:17:41

Figure 8.2-1: 26 dB bandwidth, sample plot

Figure 8.2-2: 6 dB bandwidth, sample plot

Section 8 Test name

Specification

Testing data

FCC 15.407(a)(3) 5.725-5.85 GHz band output power, EIRP and spectral density limits

FCC Part 15 Subpart E

FCC 15.407(a)(3) 5.725-5.85 GHz band output power, EIRP and spectral density limits 8.3

Definitions and limits 8.3.1

- (3) For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

8.3.2 Test summary

Test date:	April 22, 2015	Temperature:	23 °C
Test engineer:	Andrey Adelberg	Air pressure:	1007 mbar
Verdict:	Pass	Relative humidity:	32 %

8.3.3 Observations, settings and special notes

Combined average output power was calculated as follows: $P_{combined} = 10 \times log_{10} \left(\left(10^{P_{ch0}/10} \right) + \left(10^{P_{ch1}/10} \right) \right)$

EIRP was calculated as follows: $EIRP = P_{combined} + antenna \ gain$

 $\text{Combined PPSD was calculated as follows: } PPSD_{combined} = 10 \times log_{10} \left(\left(10^{PSD_{cho}/10} \right) + \left(10^{PSD_{ch1}/10} \right) \right)$

Directional gain for cross-polarized MIMO 2 × 2 antenna configuration 1 is 16 dBi – 1 dB (cable loss) = 15 dBi. No summation of gain is needed for crosspolarized antennas as per manufacturer's definition of the cross-polarized MIMO signal type, which is completely uncorrelated.

Directional gain for cross-polarized MIMO 2 × 2 antenna configuration 2 is 15 dBi – 2 dB (cable loss) = 13 dBi. No summation of gain is needed for crosspolarized antennas as per manufacturer's definition of the cross-polarized MIMO signal type, which is completely uncorrelated.

Output power limit for PTP mode with antenna configuration 1 and antenna configuration 2 is 30 dBm. PPSD limit for PTP mode is 30 dBm/500 kHz

Output power limit for PMP mode with antenna configuration 1 was calculated as follows: 30 dBm - (15 - 6) = 21 dBm.

Output power limit for PMP mode with antenna configuration 2 was calculated as follows: 30 dBm - (13 - 6) = 23 dBm.

PPSD limit for PMP mode with Antenna configuration 1 was calculated as follows: 30 dBm/500 kHz – (15 – 6) = 21 dBm/500 kHz.

PPSD limit for PMP mode with Antenna configuration 2 was calculated as follows: 30 dBm/500 kHz - (13 - 6) = 23 dBm/500 kHz.

8.3.4 Test data

Table 8.3-1: Output power measurements results for PTP

Fraguancy MHz	Measured ave	Measured average conducted output power, dBm			Power limit, dBm	Margin dP
Frequency, MHz	On ch0	On ch1	Combined	W	Power IIIIII, abiii	Margin, dB
5755	21.37	21.41	24.40	0.275	30.00	5.60
5800	21.35	21.45	24.41	0.276	30.00	5.59
5825	21.40	21.43	24.43	0.277	30.00	5.57

Table 8.3-2: PPSD measurements results for PTP

Frequency, MHz	Measured Peak Po	ower Spectral Density (PI	PPSD limit, dBm/500	Margin, dB	
rrequency, winz	On ch0	On ch1	Combined	kHz	iviargin, ub
5755	8.29	8.35	11.33	30.00	18.67
5800	8.81	8.42	11.63	30.00	18.37
5825	8.42	8.30	11.37	30.00	18.63

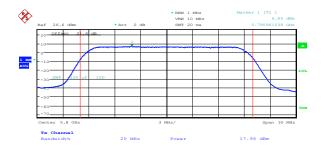
 Table 8.3-3: Output power measurements results for PMP with antenna configuration 1

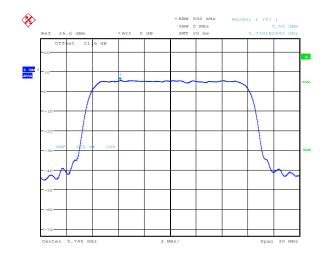
Frequency, MHz	Measured ave	Measured average conducted output power, dBm			Power limit. dBm	Margin, dB	
rrequency, winz	On ch0	On ch1	Combined	W	Power mint, abin	iviaigiii, ub	
5745	17.90	17.88	20.90	0.123	21.00	0.10	
5800	17.96	18.00	20.99	0.126	21.00	0.01	
5835	17.94	17.85	20.91	0.123	21.00	0.09	

 Table 8.3-4: PPSD measurements results for PMP with antenna configuration 1

Frequency, MHz	Measured Peak Po	ower Spectral Density (Pl	PPSD limit, dBm/500	Margin, dB	
riequency, winz	On ch0	On ch1	Combined	kHz	iviaigiii, ub
5745	3.99	3.63	6.82	21.00	14.18
5800	3.82	3.54	6.69	21.00	14.31
5835	3.96	3.43	6.71	21.00	14.29

Table 8.3-5: Output power measurements results for PMP with antenna configuration 2


Frequency, MHz	Measured ave	Measured average conducted output power, dBm			Power limit. dBm	Margin, dB
rrequency, winz	On ch0	On ch1	Combined	W	rower mint, abin	iviaigiii, ub
5745	20.06	19.81	22.95	0.197	23.00	0.05
5800	19.77	20.00	22.90	0.195	23.00	0.10
5835	19.52	19.83	22.69	0.186	23.00	0.31


 Table 8.3-6: PPSD measurements results for PMP with antenna configuration 2

Frequency, MHz	Measured Peak	Power Spectral Density (PPSD limit, dBm/MHz	Mousin dD	
	On ch0	On ch1	Combined	PP3D IIIIIIL, UBIII/IVINZ	Margin, dB
5745	6.22	5.55	8.91	23.00	14.09
5800	5.79	5.49	8.65	23.00	14.35
5835	5.50	5.38	8.45	23.00	14.55

Test name FCC 15.407(a)(3) 5.725–5.85 GHz band output power, EIRP and spectral density limits **Specification** FCC Part 15 Subpart E

High channel Date: 22.APR.2015 13:34:54

Figure 8.3-1: Sample plot for output power measurement

Figure 8.3-2: Sample plot for PPSD measurement

High channel

Date: 22.APR.2015 15:42:49

8.4 FCC 15.407(b) Spurious (Undesirable) emissions

8.4.1 Definitions and limits

- (4) For transmitters operating in the 5.725–5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of –17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of –27 dBm/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.
- (7) The provisions of § 15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

Table 8.4-1: FCC §15.209 – Radiated emission limits

Frequency,	Field strength of emissions		Measurement distance,
MHz	μV/m	dBμV/m	m
0.009-0.490	2400/F	$67.6 - 20 \times \log_{10}(F)$	300
0.490-1.705	24000/F	$87.6 - 20 \times \log_{10}(F)$	30
1.705-30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

Table 8.4-2: FCC restricted frequency bands

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9–410	4.5–5.15
0.495-0.505	16.69475-16.69525	608–614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25–7.75
4.125-4.128	25.5–25.67	1300–1427	8.025-8.5
4.17725-4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2690–2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260–3267	23.6-24.0
12.29–12.293	167.72-173.2	3332–3339	31.2-31.8
12.51975-12.52025	240–285	3345.8–3358	36.43–36.5
12.57675-12.57725	322-335.4	3600–4400	Above 38.6
13.36–13.41			

8.4.2 Test summary

Test date:	April 22, 2015	Temperature:	23 °C
Test engineer:	Andrey Adelberg	Air pressure:	1007 mbar
Verdict:	Pass	Relative humidity:	32 %

Section 8 Test name Testing data

FCC 15.407(b) Spurious (Undesirable) emissions

Specification FCC Part 15 Subpart E

8.4.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to 40 GHz.

EUT was set to transmit with 100 % duty cycle.

Radiated measurements were performed at a distance of 3 m, the EUT was transmitting on both MIMO chains simultaneously. Radiated emissions were performed while both antenna connectors were terminated with 50Ω load.

Spectrum analyser for peak conducted measurements within restricted bands below 1 GHz:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold

Limit line was set as follows: $54 \text{ dB}\mu\text{V/m} - 95.23 \text{ dB} - 15 \text{ dBi} - 4.7 \text{ dB} - 3 \text{ dB} = -63.93 \text{ dBm}$

Spectrum analyser for peak conducted measurements within restricted bands above 1 GHz:

Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

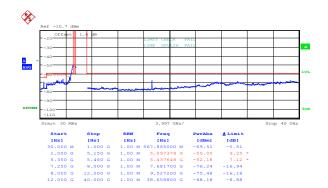
Average limit line was set as follows: $54 \text{ dB}\mu\text{V/m} - 95.23 \text{ dB} - 15 \text{ dBi} - 3 \text{ dB} = -59.23 \text{ dBm/MHz}$ where 3 dB is a multiple antenna ports compensation: $10 \times \log_{10}(2) = 3 \text{ dB}$

Spectrum analyser for average conducted measurements within restricted bands above 1 GHz for frequencies where peak results were above the average limit:

Resolution bandwidth:	1 MHz
Video bandwidth:	10 MHz
Detector mode:	RMS
Trace mode:	Power average
Number of averaging traces:	100

Peak limit is 20 dB higher than the average limit: -59.23 dBm/MHz + 20 dB = -39.23 dBm/MHz

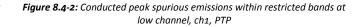
Spectrum analyser for peak conducted measurements outside restricted bands:


Resolution bandwidth:	1 MHz
Video bandwidth:	3 MHz
Detector mode:	Peak
Trace mode:	Max Hold

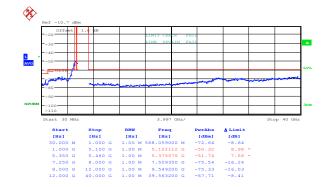
Conducted emissions measurements outside restricted bands were performed on each individual MIMO chain. The limit was adjusted to include antenna directional gain of 15 dBi and a compensation of two antenna ports: $-27 \text{ dBm/MHz} - 10 \times \log_{10}(2) - 15 \text{ dBi} = -45 \text{ dBm/MHz}$. For lower gain antenna, the limit was calculated as follows: $-27 \text{ dBm/MHz} - 10 \times \log_{10}(2) - 13 \text{ dBi} = -43 \text{ dBm/MHz}$.

For frequencies within 10 MHz outside the band of operation, the limits were 10 dB higher.

8.4.4 Test data



High channel


Date: 22.APR.2015 14:49:13

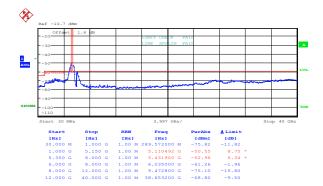
High channel Date: 22.APR.2015 14:49:48

Figure 8.4-1: Conducted peak spurious emissions within restricted bands at low channel, cho, PTP

High channel Date: 22.APR.2015 14:46:54 High channel Date: 22.APR.2015 14:46:24

Figure 8.4-3: Conducted peak spurious emissions within restricted bands at high channel, cho, PTP

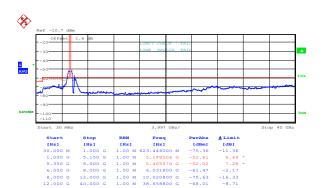
Figure 8.4-4: Conducted peak spurious emissions within restricted bands at high channel, ch1, PTP


Note: all measurement results marked in red on the plots above were retested radiated with appropriate antennas connected to the EUT.

Section 8 Test name Specification Testing data

FCC 15.407(b) Spurious (Undesirable) emissions

FCC Part 15 Subpart E



High channel
Date: 22.APR.2015 16:32:41

High channel Date: 22.APR.2015 16:33:18

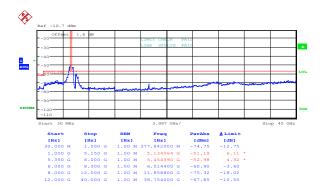
Figure 8.4-5: Conducted peak spurious emissions within restricted bands at low channel, cho, PMP with Antenna configuration 1

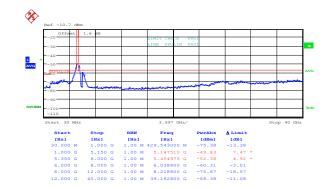
Figure 8.4-6: Conducted peak spurious emissions within restricted bands at low channel, ch1, PMP with Antenna configuration 1

High channel Date: 22.APR.2015 16:37:09 High channel Date: 22.APR.2015 16:36:42

Figure 8.4-7: Conducted peak spurious emissions within restricted bands at high channel, cho, PMP with Antenna configuration 1

Figure 8.4-8: Conducted peak spurious emissions within restricted bands at high channel, ch1, PMP with Antenna configuration 1


Note: all measurement results marked in red on the plots above were retested radiated with appropriate antennas connected to the EUT.


Section 8 Test name Specification Testing data

FCC 15.407(b) Spurious (Undesirable) emissions

FCC Part 15 Subpart E

High channel

Date: 22.APR.2015 16:42:00

High channel Date: 22.APR.2015 16:41:11

Figure 8.4-9: Conducted peak spurious emissions within restricted bands at low channel, cho, PMP with Antenna configuration 2

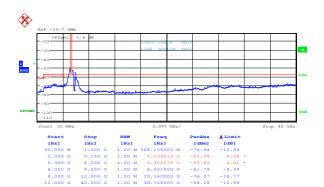


Figure 8.4-10: Conducted peak spurious emissions within restricted bands at low channel, ch1, PMP with Antenna configuration 2

High channel Date: 22.APR.2015 16:38:29 High channel Date: 22.APR.2015 16:39:02

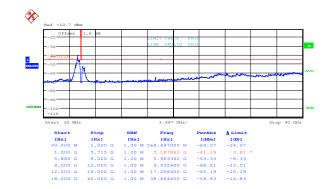

Figure 8.4-11: Conducted peak spurious emissions within restricted bands at high channel, cho, PMP with Antenna configuration 2

Figure 8.4-12: Conducted peak spurious emissions within restricted bands at high channel, ch1, PMP with Antenna configuration 2

Note: all measurement results marked in red on the plots above were retested radiated with appropriate antennas connected to the EUT.



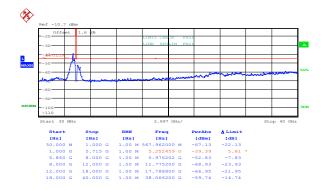
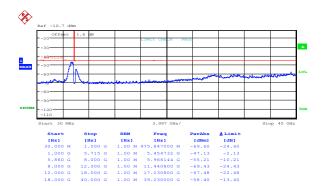

High channel Date: 22.APR.2015 14:17:19

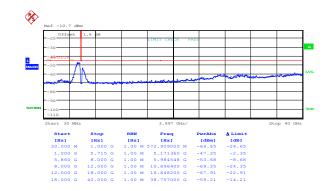
Figure 8.4-13: Conducted peak spurious emissions outside restricted bands at low channel, cho, PTP

High channel Date: 22.APR.2015 14:18:01

Figure 8.4-14: Conducted peak spurious emissions outside restricted bands at low channel, ch1, PTP

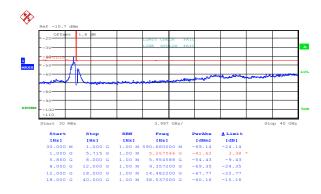
High channel Date: 22.APR.2015 14:14:35


Figure 8.4-15: Conducted peak spurious emissions outside restricted bands


at high channel, cho, PTP

High channel Date: 22.APR.2015 14:13:53

Figure 8.4-16: Conducted peak spurious emissions outside restricted bands at high channel, ch1, PTP



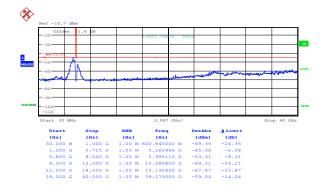
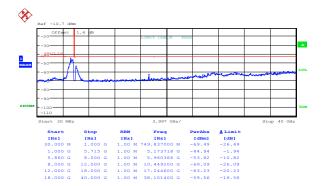
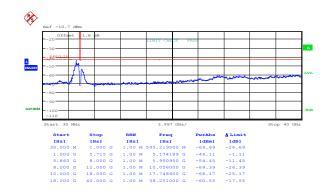

High channel
Date: 22.APR.2015 16:29:48

Figure 8.4-17: Conducted peak spurious emissions outside restricted bands at low channel, cho, PMP with Antenna configuration 1

High channel Date: 22.APR.2015 16:29:13

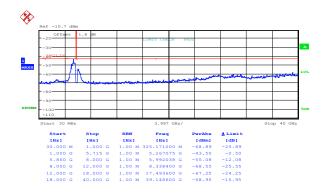
Figure 8.4-18: Conducted peak spurious emissions outside restricted bands at low channel, ch1, PMP with Antenna configuration 1


High channel Date: 22.APR.2015 16:18:52


Figure 8.4-19: Conducted peak spurious emissions outside restricted bands at high channel, cho, PMP with Antenna configuration 1

High channel Date: 22.APR.2015 16:18:13

Figure 8.4-20: Conducted peak spurious emissions outside restricted bands at high channel, ch1, PMP with Antenna configuration 1



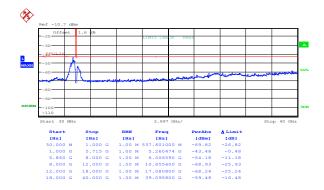
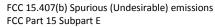

High channel Date: 22.APR.2015 16:27:39

Figure 8.4-21: Conducted peak spurious emissions outside restricted bands at low channel, cho, PMP with Antenna configuration 2

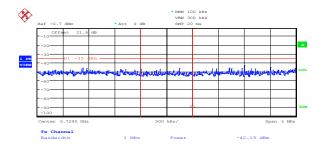
High channel Date: 22.APR.2015 16:28:14

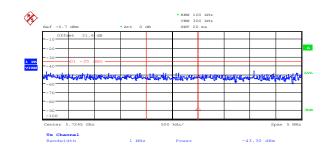
Figure 8.4-22: Conducted peak spurious emissions outside restricted bands at low channel, ch1, PMP with Antenna configuration 2

High channel Date: 22.APR.2015 16:20:11

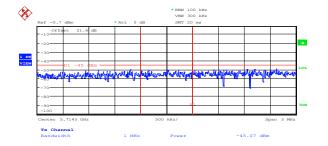

Date: 22.APR.2015 16:20:47

High channel


Figure 8.4-23: Conducted peak spurious emissions outside restricted bands at high channel, cho, PMP with Antenna configuration 2


Figure 8.4-24: Conducted peak spurious emissions outside restricted bands at high channel, ch1, PMP with Antenna configuration 2

Test name Specification



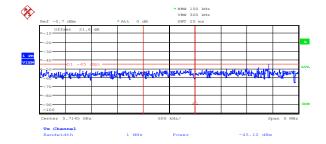

High channel Date: 22.APR.2015 13:07:35

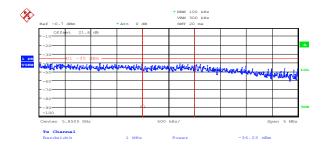
Figure 8.4-25: Lower band edge emission at 5725 MHz, cho, PTP

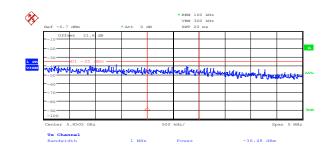
High channel Date: 22.APR.2015 13:08:12

Figure 8.4-26: Lower band edge emission at 5725 MHz, ch1, PTP

High channel Date: 22.APR.2015 13:06:07

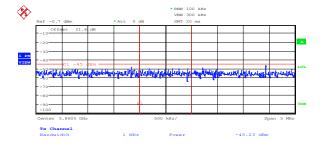
Figure 8.4-27: Lower band edge emission at 5715 MHz, cho, PTP


High channel Date: 22.APR.2015 13:05:03


Figure 8.4-28: Lower band edge emission at 5715 MHz, ch1, PTP

Test name FCC 15.407(b) Spurious (Undesirable) emissions

Specification FCC Part 15 Subpart E



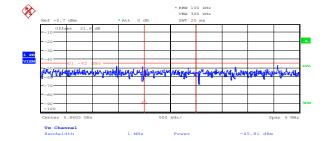

High channel Date: 22.APR.2015 13:48:13

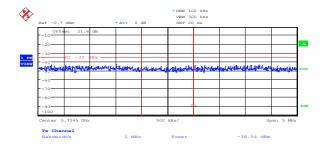
Figure 8.4-29: Upper band edge emission at 5850 MHz, cho, PTP

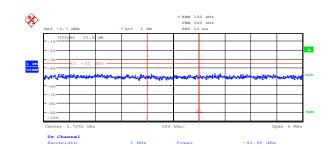
High channel Date: 22.APR.2015 13:42:30

Figure 8.4-30: Upper band edge emission at 5850 MHz, ch1, PTP

High channel
Date: 22.APR.2015 13:47:34

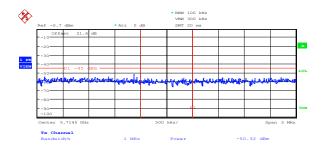
Figure 8.4-31: Upper band edge emission at 5860 MHz, cho, PTP


High channel Date: 22.APR.2015 13:43:49


Figure 8.4-32: Upper band edge emission at 5860 MHz, ch1, PTP

Test name FCC 15.407(b) Spurious (Undesirable) emissions

Specification FCC Part 15 Subpart E



High channel

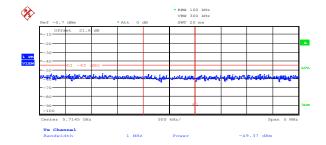

Date: 22.APR.2015 15:37:55

Figure 8.4-33: Lower band edge emission at 5725 MHz, cho, PMP with Antenna configuration 1

High channel Date: 22.APR.2015 15:37:11

Figure 8.4-34: Lower band edge emission at 5725 MHz, ch1, PMP with Antenna configuration 1

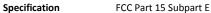
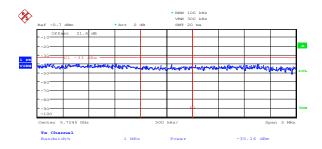
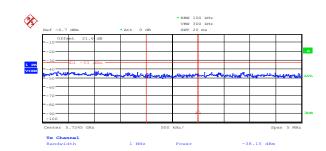
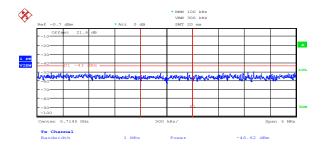

High channel Date: 22.APR.2015 15:34:53

Figure 8.4-35: Lower band edge emission at 5715 MHz, cho, PMP with Antenna configuration 1


High channel
Date: 22.APR.2015 15:34:11


Figure 8.4-36: Lower band edge emission at 5715 MHz, ch1, PMP with Antenna configuration 1

Test name FCC 15.407(b) Spurious (Undesirable) emissions



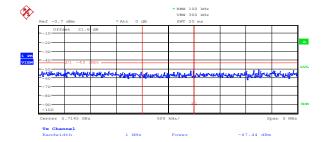

High channel Date: 22.APR.2015 15:36:17

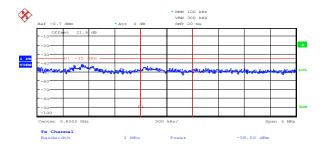
Figure 8.4-37: Lower band edge emission at 5725 MHz, cho, PMP with Antenna configuration 2

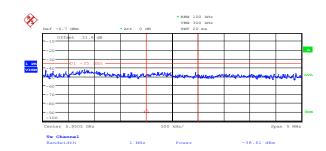
High channel Date: 22.APR.2015 15:36:47

Figure 8.4-38: Lower band edge emission at 5725 MHz, ch1, PMP with Antenna configuration 2

High channel
Date: 22.APR.2015 15:35:22

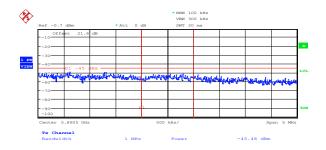
Figure 8.4-39: Lower band edge emission at 5715 MHz, cho, PMP with Antenna configuration 2


High channel
Date: 22.APR.2015 15:33:21


Figure 8.4-40: Lower band edge emission at 5715 MHz, ch1, PMP with Antenna configuration 2

Test name FCC 15.407(b) Spurious (Undesirable) emissions

FCC Part 15 Subpart E Specification



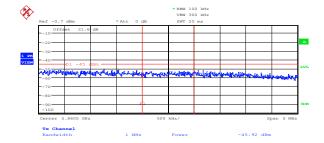

High channel Date: 22.APR.2015 16:05:13

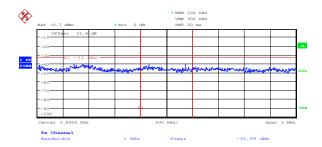
Figure 8.4-41: Upper band edge emission at 5850 MHz, cho, PMP with Antenna configuration 1

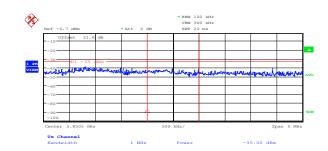
High channel Date: 22.APR.2015 16:05:37

Figure 8.4-42: Upper band edge emission at 5850 MHz, ch1, PMP with Antenna configuration 1

High channel Date: 22.APR.2015 16:04:20

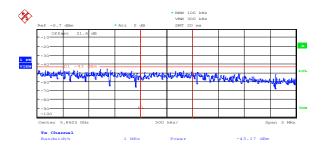
> Figure 8.4-43: Upper band edge emission at 5860 MHz, cho, PMP with Antenna configuration 1


High channel Date: 22.APR.2015 16:03:53


Figure 8.4-44: Upper band edge emission at 5860 MHz, ch1, PMP with Antenna configuration 1

Test name FCC 15.407(b) Spurious (Undesirable) emissions

Specification FCC Part 15 Subpart E



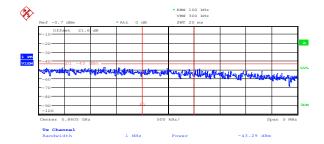

High channel Date: 22.APR.2015 15:59:40

Figure 8.4-45: Upper band edge emission at 5850 MHz, cho, PMP with Antenna configuration 2

High channel Date: 22.APR.2015 15:55:48

Figure 8.4-46: Upper band edge emission at 5850 MHz, ch1, PMP with Antenna configuration 2

High channel Date: 22.APR.2015 15:58:42

Figure 8.4-47: Upper band edge emission at 5860 MHz, cho, PMP with Antenna configuration 2

High channel Date: 22.APR.2015 15:54:49

Figure 8.4-48: Upper band edge emission at 5860 MHz, ch1, PMP with Antenna configuration 2

Section 8
Test name

Testing data

FCC 15.407(b) Spurious (Undesirable) emissions

Specification FCC Part 15 Subpart E

Table 8.4-3: Radiated field strength measurement results for emissions that fall outside restricted bands for PTP

Frequency, MHz	Peak Field strength, dBμV/m	FS to EIRP conversion factor, dB	EIRP, dBm/MHz	Limit, dBm/MHz	Margin, dB
(low channel) 5187.0	64.85	-95.23	-30.38	-27.00	3.38

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Table 8.4-4: Radiated field strength measurement results for emissions that fall outside restricted bands for PMP

Frequency, MHz	Peak Field strength, dBμV/m	FS to EIRP conversion factor, dB	EIRP, dBm/MHz	Limit, dBm/MHz	Margin, dB
(high channel) 5271.1	67.97	-95.23	-27.26	-27.00	0.26
(low channel) 5178.2	65.27	-95.23	-29.96	-27.00	2.96

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Table 8.4-5: Radiated field strength measurement results for emissions that fall within restricted bands for PTP

Frequency, MHz	Peak Field strength, dBμV/m	Peak limit, dBμV/m	Peak margin, dB	Average Field strength, dBμV/m	Average limit, dBμV/m	Average margin, dB
(high channel) 5100.0	56.63	74.00	17.37	44.65	54.00	9.35
(high channel) 5420.0	61.93	74.00	12.07	47.69	54.00	6.31
(low channel) 5090.0	57.49	74.00	16.51	44.52	54.00	9.48
(low channel) 5437.0	61.25	74.00	12.75	47.61	54.00	6.39

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Table 8.4-6: Radiated field strength measurement results for emissions that fall within restricted bands for PMP with Antenna configuration 1

Frequency, MHz	Peak Field	Peak limit,	Peak margin, dB	Average Field	Average limit,	Average margin,
	strength, dBμV/m	dBμV/m	reak maigin, ub	strength, dBμV/m	dBμV/m	dB
(high channel) 5128.5	59.25	74.00	14.75	45.71	54.00	8.29
(high channel) 5325.0	62.14	74.00	11.86	48.82	54.00	5.18
(low channel) 5147.0	58.50	74.00	15.50	45.29	54.00	8.71
(low channel) 5455.0	61.48	74.00	12.52	47.91	54.00	6.09

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Table 8.4-7: Radiated field strength measurement results for emissions that fall within restricted bands for PMP with Antenna configuration 2

Frequency, MHz	Peak Field strength, dBμV/m	Peak limit, dBμV/m	Peak margin, dB	Average Field strength, dBμV/m	Average limit, dBμV/m	Average margin, dB
(high channel) 5101.1	56.92	74.00	17.08	43.46	54.00	10.54
(high channel) 5470.0	60.06	74.00	13.94	46.97	54.00	7.03
(low channel) 5110.0	57.10	74.00	16.90	43.53	54.00	10.47
(low channel) 5431.9	60.66	74.00	13.34	47.72	54.00	6.28

Notes: Field strength includes correction factor of antenna, cable loss, amplifier, and attenuators where applicable.

Section 8 Test name Testing data

FCC 15.407(g) Frequency stability

Specification FCC Part 15 Subpart E

8.5 FCC 15.407(g) Frequency stability

8.5.1 Definitions and limits

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

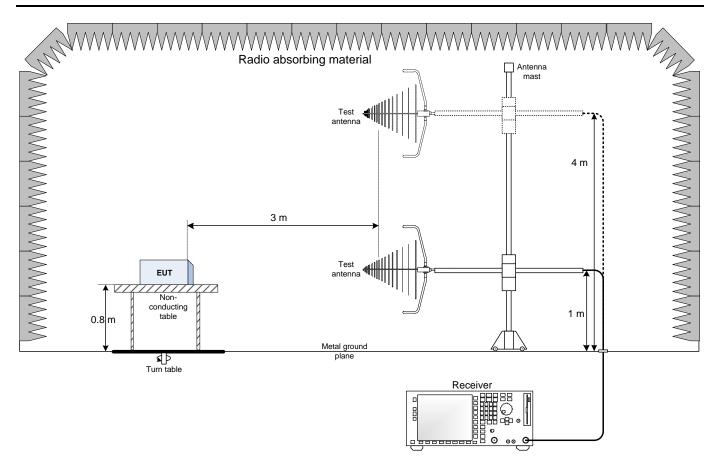
8.5.2 Test summary

Test date:	April 22, 2015	Temperature:	23 °C
Test engineer:	Andrey Adelberg	Air pressure:	1007 mbar
Verdict:	Pass	Relative humidity:	32 %

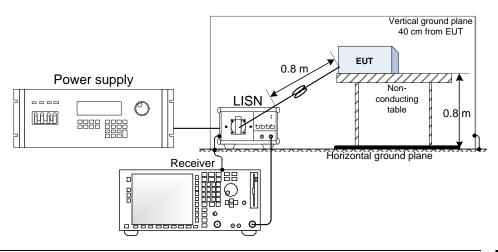
8.5.3 Observations, settings and special notes

Spectrum analyser settings:

Resolution bandwidth:	100 kHz
Video bandwidth:	300 kHz
Detector mode:	Peak
Trace mode:	Max Hold


8.5.4 Test data

Frequency stability was assessed between two extreme temperatures +55 $^{\circ}$ C and -30 $^{\circ}$ C. Maximum recorded frequency drift was 100 kHz, which is 17 ppm



Section 9. Block diagrams of test set-ups

9.1 Radiated emissions set-up

9.2 Conducted emissions set-up

