Prediction of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density

P = power

G = antenna gain

R = distance

Conducted output power:	27.11	(dBm)
Tune up tolerance	0.25	(dB)
Number of carriers	2	(N)
	1089	(mW)
	1	(W)
Antenna gain:	13.5	(dBi)
Maximum antenna gain:	22.4	(numeric)
EIRP	24.4	(W)
ERP ERP	14.9	(W)
Distance:	50	(cm)
Duty Cycle:	100	(%)
Frequency:	3675	(MHz)
MPE Limit:	1.0	(mW/cm^2)
Power density:	0.78	(mW/cm^2)
	7.76	(W/m^2)
Margin	1.10	(dB)