Global EMC Inc. Labs

RF Test Report

As per

RSS 197 Issue 1:2010

FCC Part 90 Subpart Z

&

on the

X100 Hub Module and X100 Remote Backhaul Module

5dale

EMC Lab Manager Global EMC Inc. 180 Brodie Dr, Unit 2 Richmond Hill, ON L4B 3K8 Canada Ph: (905) 883-3919 Testing produced for

See Appendix A for full customer & EUT details.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Table of Contents

	_
Table of Contents	2
Report Scope	3
Summary	4
Test Results Summary Justifications, Descriptions, or Deviations Applicable Standards, Specifications and Methods Sample calculation(s) Document Revision Status	5 6 7 8 8
Definitions and Acronyms	9
Testing Facility 1	0
Calibrations and Accreditations	0
Detailed Test Results Section1	2
Maximum Conducted Power1Power Spectral Density - DM1Occupied Bandwidth (99 % or 20 dB)2Emission Mask2Spurious Conducted Emissions3Spurious Radiated Emissions4Temperature Frequency Stability5	3 7 21 24 60 60 53
Appendix A – EUT Summary5	;9
Appendix B – EUT and Test Setup Photographs	50

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL +
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMC INC

Report Scope

This report addresses the EMC verification testing and test results of the <EUT>, herein referred to as EUT (Equipment Under Test) performed at Global EMC Labs.

The EUT was tested for compliance against the following standards:

RSS 197 Issue 1:2010 FCC Part 90 Subpart Z

Test procedures, results, justifications, and engineering considerations, if any, follow later in this report.

The results contained in this report relate only to the item(s) tested.

This report does not imply product endorsement by A2LA or any other accreditation agency, any government, or Global EMC Inc.

Opinions/interpretations expressed in this report, if any, are outside the scope of Global EMC Inc accreditation. Any opinions expressed do not necessarily reflect the opinions of Global EMC Inc, unless otherwise stated.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL +
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Summary

The results contained in this report relate only to the item(s) tested.

EUT FCC Certification #, FCC ID:	ROR0000001
EUT Industry Canada Certification #, IC:	10794A-00000001
EUT Passed all tests performed.	Yes (see test results summary)
Tests conducted by	Scott Drysdale

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛺
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Test Results Summary

Standard/Method	Description	Requirement	Result
FCC Section 90.205 FCC Section 90.1321	Maximum power output	10W/10MHz or 40dBm per 10 MHz	Pass
FCC Section 90.1321 RSS 197 Section 5.6	Peak EIRP power density	30 dBm per 1 MHz	Pass
FCC Section 90.209	Occupied Bandwidth	N/A	Pass
FCC Section 90.210(b)	Emission Mask	Mask B	Pass
FCC Section 9.1323	Conducted Spurious Emissions	dBc >= -43 + 10log(P)	Pass
FCC Section 9.1323	Radiated Spurious Emissions	82.2 dBuV/m (-13 dBm EiRP)	Pass
FCC Section 90.213	Frequency Stability	N/A	Pass
FCC 2.1091 FCC 90.1335 IC Safety code 6	Maximum Permissible Exposure	> 20 cm separation. (30 cm required)	Pass See justifications and MPE Exhibit
Overall Result			PASS

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛝
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

All tests were performed by Scott Drysdale.

If the product as tested or otherwise complies with the specification, the EUT is deemed to comply with the requirement and is deemed a 'PASS' grade. If not 'FAIL' grade will be issued. Note that 'PASS' / 'FAIL' grade is independent of any measurement uncertainties. A 'PASS' / 'FAIL' grade within measurement uncertainty is marked with a '*'.

Justifications, Descriptions, or Deviations

The following justifications for tests not performed or deviations from the above listed specifications apply:

For Power spectral density and peak power, this devices output signals are completely uncorrelated as defined in FCC KDB 662911 D01. Therefore, each of the two EIRPs or ERPs (total or spectral density) for ANT1 and ANT2 were measured individually to be below the limit.

The power measurements were equal or worst case with ANT1 port as compared to ANT2 port. The ANT1 port results are presented in this report as representative.

From an RF perspective, the X100 Hub Module and X100 Remote Backhaul Module are identical. The physical difference are two bulkhead N connectors placed in the chassis are not present on the remote backhaul module. The Remote Backhaul module uses internal antennas with an equal gain to the Hub module of 17 dBi. The Hub Module was tested as representative of both units.

For maximum permissible exposure, this device operates is designed to operate at fixed installations greater then 30 cm from personnel during normal operation,, as per instructions provided in end user documentation. A separate MPE exhibit is presented.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛺
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Applicable Standards, Specifications and Methods

ANSI C63.4:2003	- Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.2: 1996	- American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI/TIA/EIA-603-	C:2004 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
CFR 47 FCC 15	- Code of Federal Regulations – Radio Frequency Devices
CFR 47 FCC 90Z	- Subpart Z—Wireless Broadband Services in the 3650–3700 MHz Band
CISPR 22:1997	- Information technology equipment – Radio disturbance characteristics – Limits and methods of measurement
ICES-003:2004	- Digital Apparatus - Spectrum Management and Telecommunications Policy Interference-Causing Equipment Standard
ISO 17025:2005	- General Requirements for the competence of testing and calibration laboratories
RSS 197:2010	- Wireless Broadband Access Equipment Operating in the Band 3650-3700 MHz
RSS-Gen:2010	General Requirements and Information for the Certification of Radio Apparatus

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Sample calculation(s)

 $\label{eq:margin} \begin{array}{l} Margin = limit - (received signal + antenna factor + cable loss - pre-amp gain) \\ Margin = 50.5 dBuV/m - (50 dBuV + 10 dB + 2.5 dB - 20 dB) \\ Margin = 8.5 \ dB \end{array}$

Document Revision Status

Draft 1 -	Feb 13, 2013
	Draft released to client – subject to change

Revision 1 - Feb 19, 2013 First revision – minor corrections as per client instruction

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 🗧 🔥
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Definitions and Acronyms

The following definitions and acronyms are applicable in this report. See also ANSI C63.14.

- AE Auxiallary Equipment.
- BW Bandwidth. Unless otherwise stated, this is refers to the 6 dB bandwidth.
- **EMC** Electro-Magnetic Compatibility
- **EMI** Electro-Magnetic Immunity
- **EUT** Equipment Under Test

ITE – Information Technology Equipment with a primary function(s) of entry, storage, display, retrieval, transmission, processing, switching, or control, of data.

LISN – Line impedance stabilization network

NCR - No Calibration Required

RF – Radio Frequency

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛺
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Testing Facility

Testing for EMC on the EUT was carried out at Global EMC labs in Toronto, Ontario, Canada. The testing lab consists of a 3m semi-anechoic chamber calibrated to be able to allow measurements on an EUT with a maximum width or length of up to 2m and height up to 3m. The chamber is equipped with a turn table that is capable of testing devices up to 3300lb in weight. This facility is capable of testing products that are rated for 120 Vac and 240Vac single phase, or 208 Vac 3 phase input. DC capability is also available. The chamber is equipped with an antenna mast that controls polarization and height from the control room adjoining the shielded chamber. Radiated emissions measurements are performed using a Bilog, and Horn antenna where applicable. Conducted emissions, unless otherwise stated, are performed using a LISN.

Calibrations and Accreditations

The measurement site used is registered with Federal Communications Commission (FCC) and Industry Canada (IC). This site is calibrated for Normalized Site Attenuation (NSA) using test procedures outlined in ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The semi-anechoic chamber is lined with ferrite tiles and absorption cones to minimize any undesired reflections. All measuring equipment is calibrated on an annual or bi-annual basis as listed for each respective test. Global EMC is an ISO 17025 Accredited facility, with A2LA Certificate #2555.01, however the testing in this report is not covered under the scope of accreditation.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL +
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMC INC

Testing Dates and Environmental Conditions

Following were the environmental conditions in the facility during time of testing -

Date	Test	Init.	Temperature (°C)	Humidity (%)	Pressure (kPa)
Jan 1 - 30, 2013	Maximum power output	SD	20-25°C	30-45%	100 -103kPa
Jan 1 - 30, 2013	Peak EIRP power density	SD	20-25°C	30-45%	100 -103kPa
Jan 1 - 30, 2013	Occupied Bandwidth	SD	20-25°C	30-45%	100 -103kPa
Jan 1 - 30, 2013	Emission Mask	SD	20-25°C	30-45%	100 -103kPa
Jan 1 - 30, 2013	Conducted Spurious Emissions	SD	20-25°C	30-45%	100 -103kPa
Jan 1 - 30, 2013 Feb 13, 2013	Radiated Spurious Emissions	SD	20-25°C	30-45%	100 -103kPa
Jan 1 - 30, 2013	Frequency Stability	SD	20-25°C	30-45%	100 -103kPa

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛺
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Detailed Test Results Section

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛺
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Maximum Conducted Power

Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element does not exceed the limits specified.

Limits

The limits are defined in FCC Part 90, Section 90.205 and 90.1321. This is 10W per 10 MHz, or 40 dBm EiRP. The test procedure is as per 47 CFR, Section 2.1046; TIA/EIA-603-C, Section 2.2.1.

Results

The EUT passed. The maximum power measured was 38.96 dBm (7.87 Watts) including antenna gain, in a 10 MHz channel.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Table(s)

The table shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT.

Modulation	Channel	Dour (dDm)	4++ (dD)	Ant gain	Power	Limit	Margin
wodulation	Freq (IVIHZ)	Raw (dBm)	Att.(dB)	(аві)	(asm)	(asm)	(ab)
QPSK	3655	1.91	20	17	38.91	40	1.09
	3675	1.48	20	17	38.48	40	1.52
	3695	0.91	20	17	37.91	40	2.09
16 QAM	3655	1.44	20	17	38.44	40	1.56
	3675	1.53	20	17	38.53	40	1.47
	3695	0.51	20	17	37.51	40	2.49
64QAM	3655	1.91	20	17	38.91	40	1.09
	3675	1.62	20	17	38.62	40	1.38
	3695	0.99	20	17	37.99	40	2.01
256 QAM	3655	1.96	20	17	38.96	40	1.04
	3675	1.42	20	17	38.42	40	1.58
	3695	1.25	20	17	38.25	40	1.75

Worst case highlighted in green above.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛺
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Date: 2.JAN.2013 18:00:56

ote: See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test setup.

Ν

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL A
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Test Equipment List

Testing was performed on January 14-18th, 2013.

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Power Head	PH 2000	AR	2011-01-31	2013-01-31	GEMC 15
Power meter	PM 2002	AR	2011-01-31	2013-01-31	GEMC 16
Spectrum Analyzer	ESL 6	Rohde & Schwarz	Oct-06, 2011	Oct-06, 2013	GEMC 160
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
Power Attenuator 20 dB	25-A-FFN-20	Bird / Hutton	NCR	NCR	GEMC 49

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🔥
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMC INC

Power Spectral Density - DM

Purpose

The purpose of this test is to ensure that the maximum power spectral density to the radiating element does not exceed the limits specified. This ensures that the modulation is significantly wide enough, or low enough in power that it will allow for co-operation of other wireless devices operating within this frequency allocation.

Limits

The limits are defined in FCC Section 90.1321 and RSS 197 Section 5.6

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 30 dBm in any 1 MHz band during any time interval of continuous transmission.

Results

The EUT passed. Each mode was tested at low, medium, and high band. The worst case value is 29.76 dBm, or 946 mW, as measured with the following settings

Operating frequency range: 3650.0 – 3700.0 MHz Detector used: average (rms) Resolution bandwidth: 100 kHz with integration over a 1 MHz slice of spectrum Video bandwidth: 300 kHz (or greater) Antenna gain: 17 dBi.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 👬
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Tables

Madulation	Channel	Dow (dDm)	A++ (dD)	Ant gain	Power	Limit	Margin
wouldtion	Freq (IVIEZ)	Kaw (ubm)	АШ.(ИВ)	(аві)	(автт)	(автт)	(ав)
QPSK	3655	-7.58	20	17	29.42	30	0.58
	3675	-7.99	20	17	29.01	30	0.99
	3695	-8.71	20	17	28.29	30	1.71
16 QAM	3655	-7.47	20	17	29.53	30	0.47
	3675	-8.28	20	17	28.72	30	1.28
	3695	-8.94	20	17	28.06	30	1.94
64QAM	3655	-7.46	20	17	29.54	30	0.46
	3675	-7.75	20	17	29.25	30	0.75
	3695	-8.73	20	17	28.27	30	1.73
256 QAM	3655	-7.24	20	17	29.76	30	0.24
	3675	-7.75	20	17	29.25	30	0.75
	3695	-8.51	20	17	28.49	30	1.51

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 🚝 🗛
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Worst Case Graph

Date: 2.JAN.2013 19:53:55

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL CLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Test Equipment List

Note: Tested on January 15, 2013

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	ESL 6	Rohde & Schwarz	Oct-06, 2011	Oct-06, 2013	GEMC 160
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
Power Attenuator 20 dB	25-A-FFN-20	Bird / Hutton	NCR	NCR	GEMC 49

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🔥
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMC INC

Occupied Bandwidth (99 % or 20 dB)

Purpose

The purpose of this test is to ensure that the bandwidth is correctly reported. This helps ensure the frequency allocation.

Limits

A 10 MHz Limit applies as per FCC 90.209. Test procedure is as per 47 CFR, Section 2.1049

Results

The maximum 20 dB BW measured was 9.26 MHz.

Table

	Channel	Bandwidth
Modulation	(MHz)	(MHz)
QPSK	3655	9.18
	3675	9.18
	3695	9.18
16 QAM	3655	9.22
	3675	9.22
	3695	9.22
64QAM	3655	9.18
	3675	9.26
	3695	9.18
256 QAM	3655	9.22
	3675	9.18
	3695	9.18

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Graph(s)

Date: 3.JAN.2013 15:12:19

Maximum bandwidth graph shown above.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL +
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Test Equipment List

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Attenuator 20 dB	FP-50-20	Trilithic	NCR	NCR	GEMC 43
Spectrum Analyzer	ESL 6	Rohde & Schwarz	Oct-06, 2011	Oct-06, 2013	GEMC 160
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
Power Attenuator 20 dB	25-A-FFN-20	Bird / Hutton	NCR	NCR	GEMC 49

This report module is based on GEMC template "FCC - Power Line Conducted Emissions Class B_Rev1"

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Emission Mask

Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the limits listed below as defined in the applicable test standard. This helps protect other broadcast radio services from unwanted interference.

Limit(s) and Method

The limits are as defined in 90.210(b), emission mask B. Method is as per 47 CFR, Sections 2.1051, 2.1047, 90.210; TIA/EIA-603-C, Section 2.2.13

Frequency (from center channel)	dBc (relative to peak of in band)
0 to 5 MHz	N/A
5 MHz to 10 MHz	- 25 dBc
10 MHz to 25 MHz	- 35 dBc

Result

The device met the requirements. See graphs for details.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Graphs

Low Frequency (16 QAM shown as worst case)

	Ref	0.0 dB	sm			M1	[1]	- 1 3.65735	L6.82 dBm 50000 GHz
		Lim	it Check		PA	5 5 <u>M1</u>			
1Rm	-20	dB <mark>⊜⊨</mark> ∿	1 Limit						
View	-40	ا طBm—			ļ				
	-60	dBm—	manner		n		month	~	
	~~~~~								and and the state of the state
	-80	dBm—							
	CF	3.65	5 GHz					Span 5	50.0 MHz
	Spe	ctrum	Emission M	1ask St	tandard	l: None	1		
	Peal	< Powe	r -15.3	34 dBm				RBW	1 MHz
		Ra	nge	RBW	Frequ	ency	PwrAbs	PwrRel	ΔLimit
		<u>[</u> +	lz]	[Hz]	[H:	<u>z]</u>	[dBm]	[dBc]	[dB]
	-25.	000 M	-10.000 M	100 k	3.644	4850 G	-53.93	-38.59	-3.59
	-10.	<u>.000 M</u>	-5.000 M	100 k	3.64	9950 G	-42.77	-27.44	-2.44
	5.	<u>.000 M</u>	10.000 M	100 k	3.66	0050 G	-43.80	-28.46	-3.46
	10.	.000 M	25.000 M	100 k	3.66	5650 G	-55.82	-40.48	-5.48
PA									

Date: 21.JAN.2013 15:30:15

Note: QPSK, 16 QAM, 64 QAM and 254 QAM were evaluated, and the worst case graph is shown above.

Report issue date: 2/19/2013

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL +
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Page 26 of 65

Report issue date: 2/19/2013 GEMC File #: GEMC-FCC90-20938R1

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

#### Mid Frequency (worst case 16 QAM)

	Ref 0.0 dB	m		M1	[1]	-6	5.95 dBm 0000 GHz
	Lim	it Check		PASS		0.00700	
1Rm	-20 dB <mark>mEt</mark> v	1 Limit		hand have been h			
view	-40 dBm—						
	-60 dBm	1 Warner Market Market	and the set of the set				سادسرور در استارهم ا ^ر میار استاره ا
	-80 dBm						
						<u> </u>	
						Span 5	
	Spectrum	Emission N	1ask S	tandard: None	3		
	Peak Powe	r -16.2	28 dBm		-	RBW	1 MHz
	Peak Powe Rai	r -16.2 nge	8 dBm RBW	Frequency	PwrAbs	RBW PwrRel	1 MHz ΔLimit
	Peak Powe Ran [H	r -16.2 nge  z]	28 dBm RBW [Hz]	Frequency [Hz]	PwrAbs [dBm]	RBW PwrRel [dBc]	1 MHz ΔLimit [dB]
	Peak Powe Rai [H -25.000 M	r -16.2 nge  z] -10.000 M	28 dBm RBW [Hz] 100 k	Frequency [Hz] 3.664850 G	PwrAbs [dBm] -54.42	RBW PwrRel [dBc] -38.14	1 MHz ΔLimit [dB] -3.14
	Peak Powe Ran [H -25.000 M -10.000 M	r -16.2 nge  z] -10.000 M -5.000 M	28 dBm RBW [Hz] 100 k 100 k	Frequency [Hz] 3.664850 G 3.669950 G	PwrAbs [dBm] -54.42 -43.45	RBW PwrRel [dBc] -38.14 -27.17	1 MHz ΔLimit [dB] -3.14 -2.17
	Peak Powe Ran [H -25.000 M -10.000 M 5.000 M	r -16.2 nge  z] -10.000 M -5.000 M 10.000 M	28 dBm <b>RBW</b> [Hz] 100 k 100 k 100 k	Frequency [Hz] 3.664850 G 3.669950 G 3.680050 G	PwrAbs [dBm] -54.42 -43.45 -45.57	RBW <b>PwrRel</b> [dBc] -38.14 -27.17 -29.29	1 MHz ΔLimit [dB] -3.14 -2.17 -4.29
	Peak Powe Ran [H -25.000 M -10.000 M 5.000 M 10.000 M	r -16.2 nge iz] -10.000 M -5.000 M 10.000 M 25.000 M	28 dBm <b>RBW</b> <b>[Hz]</b> 100 k 100 k 100 k 100 k	Frequency [Hz] 3.664850 G 3.669950 G 3.680050 G 3.685250 G	PwrAbs [dBm] -54.42 -43.45 -45.57 -54.18	RBW <b>PwrRel</b> [dBc] -38.14 -27.17 -29.29 -37.90	1 MHz ΔLimit [dB] -3.14 -2.17 -4.29 -2.90
	Peak Powe Ran [H -25.000 M -10.000 M 5.000 M 10.000 M	r -16.2 nge  z] -10.000 M -5.000 M 10.000 M 25.000 M 	28 dBm <b>RBW</b> [Hz] 100 k 100 k 100 k 100 k	Frequency [Hz] 3.664850 G 3.669950 G 3.680050 G 3.685250 G	PwrAbs [dBm] -54.42 -43.45 -45.57 -54.18 	RBW <b>PwrRel</b> [dBc] -38.14 -27.17 -29.29 -37.90 	1 MHz ΔLimit [dB] -3.14 -2.17 -4.29 -2.90 -2.90
РА	Peak Powe Ran [H -25.000 M -10.000 M 5.000 M 10.000 M	r -16.2 nge iz] -10.000 M -5.000 M 10.000 M 25.000 M 	28 dBm <b>RBW</b> <b>[Hz]</b> 100 k 100 k 100 k 100 k 	Frequency [Hz] 3.664850 G 3.669950 G 3.680050 G 3.685250 G	PwrAbs [dBm] -54.42 -43.45 -45.57 -54.18 	RBW <b>PwrRel</b> [dBc] -38.14 -27.17 -29.29 -37.90 	1 MHz ΔLimit [dB] -3.14 -2.17 -4.29 -2.90 -2.90 
РА	Peak Powe Ran [H -25.000 M -10.000 M 5.000 M 10.000 M 	r -16.2 nge [z] -10.000 M -5.000 M 10.000 M 25.000 M  	28 dBm <b>RBW</b> <b>[Hz]</b> 100 k 100 k 100 k  	Frequency [Hz] 3.664850 G 3.669950 G 3.680050 G 3.685250 G 	PwrAbs [dBm] -54.42 -43.45 -45.57 -54.18 	RBW <b>PwrRel</b> [dBc] -38.14 -27.17 -29.29 -37.90  	1 MHz ΔLimit [dB] -3.14 -2.17 -4.29 -2.90  
РА	Peak Powe Ran [H -25.000 M -10.000 M 5.000 M 10.000 M 	r -16.2 nge -10.000 M -5.000 M 10.000 M 25.000 M  	28 dBm <b>RBW</b> [Hz] 100 k 100 k 100 k   	Frequency [Hz] 3.664850 G 3.669950 G 3.680050 G 3.685250 G 	PwrAbs [dBm] -54.42 -43.45 -45.57 -54.18  	RBW <b>PwrRel</b> [dBc] -38.14 -27.17 -29.29 -37.90   	1 MHz ΔLimit [dB] -3.14 -2.17 -4.29 -2.90    

Date: 21.JAN.2013 15:37:23

Note: QPSK, 16 QAM, 64 QAM and 254 QAM were evaluated, and the worst case graph is shown above.

T

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛺
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

#### High (worst case 16 QAM)



	Ref 0.0 dB	m			M1	[1]	-	66.25 dBm
	Lim	it Check		PAS	SS			
1Rm	-20 dB <mark>®E</mark> M	1 Li <mark>mit</mark>		) 				
view	-40 dBm—							
M	-60 dBm—		and the second				Hanner and the second second	ويستدودون والمترون والمتراف المروا
	ا -80 dBm							
	CF 3.695	5 GHz					Span !	50.0 MHz
	Spectrum	Emission N	<u>1ask St</u>	andard	: None	1		
	Peak Powe	r -16.7	'8 dBm				RBW	1 MHz
	Rar	nge	RBW	Frequ	ency	PwrAbs	PwrRel	ΔLimit
	[H	z]	[Hz]	[Hz	2]	[dBm]	[dBc]	[dB]
	-25.000 M	-10.000 M	100 k	3.684	1450 G	-58.39	-41.61	-6.61
	-10.000 M	-5.000 M	100 k	3.689	950 G	-44.27	-27.49	-2.49
	5.000 M	10.000 M	100 k	3.700	)050 G	-46.95	-30.17	-5.17
	10.000 M	25.000 M	100 k	3.705	5150 G	-56.27	-39.49	-4.49
PΔ								

Date: 21.JAN.2013 15:44:08

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL CONTRACT
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	<b>EMCINC</b>

## **Test Equipment List**

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum		Data da Ochara	0.1.00.0014		
Analyzer	ESL 6	Ronde & Schwarz	Oct-06, 2011	Oct-06, 2013	GEIMC 160
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 500HM-MN- MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC - 15.225 - RFID Emissions Mask_Rev1.doc"

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

#### **Spurious Conducted Emissions**

#### Purpose

The purpose of this test is to ensure that the maximum power conducted to the radiating element at frequencies outside of the authorized spectrum does not exceed the limits specified. This ensures that the only the intended signal is delivered to the radiating element.

#### Limits

The limits are defined in 47 CFR, FCC 90.1323. The spurious must be attenuated by 43log(P), or to -13 dBm EiRP. The method is as per 47 CFR, Sections 2.1051, 90.1323; TIA/EIA-603-C, Section 2.2.13. Spurious Conducted emissions are to be evaluated up to the 10th harmonic. Spurious emission limits do not apply to the in band emission within  $\pm$  250 % of the authorized bandwidth from the carrier; investigated in course of emission mask testing.

Note: P is transmitter output power in Watts

#### Results

The EUT passed. Low, middle and high band was measured for each mode, and the worst case results are presented.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

#### Graph(s)

The graphs shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT.





Note there was 20 dB of external attenuation taken during this measurement.

Page 31 of 65

Report issue date: 2/19/2013

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL CONTRACTOR
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛺
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

•				*	RBW 10	kHz					
	Att	30	dB		VBW 30	kHz	M1[	1]		- 55.1	2 dBm
	Ref	10.	0 dBm		SWT 30	0ms	1		3.04	000000	00 MHz
1Pk Max	0 dE	3m-									
Zap Cirw	-10	ı dBr ا	n								
	-20	 dBr 	n								
	-30	ا dBr ا	n								
	-40	 dBr 	n								
	-50	ا d <mark>βr</mark>	<u>n</u>								
	Malan	للعليها	have been and		1						
	-F0	4 Bi			and and pre-	Church Mun	with the with	Whenter	unteres.	للدادوريا المرامل	and to a datafat
			1	.u. 1 .llu					ul Laului		
	Sta	rt	150.0	kHz					Sto	p 30.0	0 MHz

Date: 21.JAN.2013 16:23:44

Note there was 20 dB of external attenuation taken during this measurement.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛺
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Date: 21.JAN.2013 16:28:03

Note there was 20 dB of external attenuation taken during this measurement.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Date: 21.JAN.2013 16:32:32

Note: Center frequency 16 QAM shown above as representative. Note there was 20 dB of external attenuation taken during this measurement.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Note there was 20 dB of external attenuation taken during this measurement.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 🚝
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Note there was worst case 9 dB of offset to be applied to this measurement due to harmonic mixer used.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 🚝
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Note there was worst case 8 dB of offset to be applied to this measurement due to harmonic mixer used.

Limit is -13 dBm - 8 dB - 17 dBi = -38 dBm.

See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL CONTRACTOR
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

## **Test Equipment List**

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	12/21/ 2011	12/21/2013	GEMC 141
Spectrum Analyzer	ESL 6	Rohde & Schwarz	Oct-06, 2011	Oct-06, 2013	GEMC 160
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
18.0-26.5 GHz Harmonic Mixer	11970K	HP	21-Dec-11	21-Dec-13	GEMC 158
26G to 40 GHz Harmonic Mixer	11970A	HP	On file	21-Dec-13	GEMC 165
1-26G pre-amp	HP 8449B	HP	8/22/2012	8/22/2014	GEMC 6351
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29
RF Cable 0.5M	LMR-400- 0.5M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🔥
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	<b>EMC</b> INC

#### Spurious Radiated Emissions

#### Purpose

The purpose of this test is to ensure that the maximum power radiating from the device radiating element at frequencies outside of the authorized spectrum does not exceed the limits specified.

#### Limits

The limits are defined in 47 CFR, FCC 90.1323. The spurious must be attenuated by  $43\log(P)$ , or to -13 dBm EiRP. The method is as per 47 CFR, Sections 2.1053, 90.1323; TIA/EIA-603-C, Section 2.2.12. Spurious radiated emissions are to be evaluated up to the 10th harmonic. Spurious emission limits do not apply to the in band emission within  $\pm$  250 % of the authorized bandwidth from the carrier; investigated in course of emission mask testing.

Note: P is transmitter output power in Watts

#### Results

The EUT passed. Low, middle and high band was measured for each mode, and the worst case or representative results for QPSK mode are presented.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

#### Graph(s)

The graphs shown below shows the peak power output of the device during the antenna conducted measurement during transmit operation of the EUT.



Note: No emissions from the EUT were detected in this frequency range

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Note: No emissions from the EUT were detected in this frequency range.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Vertical

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC





Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Note: no emissions were detected outside of  $\pm$  250 % of the authorized bandwidth from the carrier.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Vertical

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



10 GHz to 22 GHz maximized vertical and horizontal, measured at 1 meter. No emissions were detected.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



18 GHz to 26 GHz maximized vertical and horizontal, measured at 1 meter. No emissions were detected.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 🚝
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



26 GHz to 40 GHz maximized vertical and horizontal, measured at 1 meter. No emissions were detected.

See 'Appendix B – EUT & Test Setup Photographs' for photos showing the test set-up.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛺
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

## **Test Equipment List**

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	12/21/ 2011	12/21/2013	GEMC 141
Quasi Peak Adapter	85650A	HP	12/21/ 2011	12/21/2013	GEMC 7
Spectrum Analyzer	ESL 6	Rohde & Schwarz	Oct-06, 2011	Oct-06, 2013	GEMC 160
Loop Antenna	EM 6871	Electro-Metrics	Jan 31, 2011	Jan 31, 2013	GEMC 70
Loop Antenna	EM 6872	Electro-Metrics	Jan 31, 2011	Jan 31, 2013	GEMC 71
Loop Antenna	EM 6871	Electro-Metrics	Feb 5, 2013	Feb 5, 2015	GEMC 70
Loop Antenna	EM 6872	Electro-Metrics	Feb 5, 2013	Feb 5, 2015	GEMC 71
BiLog Antenna	3142-C	ETS	Jan 17, 2011	Jan 17, 2013	GEMC 137
BiLog Antenna	3142-C	ETS	Feb 4, 2013	Feb 4, 2015	GEMC 137
BiLog Antenna	3142-C	ETS	Aug 28, 2012	Aug 28, 2014	GEMC 8
Attenuator 3 dB	FP-50-3	Trilithic	NCR	NCR	GEMC 40
Chase Preamp 9kHz - 2 GHz	CPA9231A	Chase	8/29/2012	8/29/2014	GEMC 6403
Q-Par 1.5-18 GHz Horn	6878/24	Q-par	8/23/2012	8/23/2014	GEMC 6365
Horn Antenna 18 GHz - 26.5 GHz	SAS-572	A.H. Systems	8/27/2012	8/27/2014	GEMC 6371
Horn Antenna 26 GHz to 40 GHz	H Flange 3/4" Square	Radar Systems	NCR	8/27/2014	GEMC 6376
18.0-26.5 GHz Harmonic Mixer	11970K	HP	21-Dec-11	21-Dec-13	GEMC 158
26G to 40 GHz Harmonic Mixer	11970A	HP	NCR	21-Dec-13	GEMC 165
1-26G pre-amp	HP 8449B	HP	8/22/2012	8/22/2014	GEMC 6351
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28
RF Cable 1m	LMR-400-1M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 29

Report issue date: 2/19/2013

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	<b>EMCINC</b>

	LMR-400- 0.5M-				
RF Cable 0.5M	MN	LexTec	NCR	NCR	GEMC 31

This report module is based on GEMC template "FCC – Power Line Conducted Emissions Class B_Rev1"

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	<b>EMC INC</b>

#### Temperature Frequency Stability

#### Purpose

The purpose of this test is to ensure that the RF energy unintentionally emitted from the EUT does not exceed the permitted allocation during extreme temperature variations. This helps ensure channel allocation during extreme temp. This also helps ensure proper reception of the intended signal by ensuring the transmit frequency is correct in any temperature.

#### Limit(s) and Method

As no limits are specified, this was performed for information purposes. A worst case application of the maximum frequency drift was applied to the room temperature

Frequency must be maintained from -20 C to +50 C. For information purposes, the EUT was additionally tested at -30C. The EUT is monitored at each 10 degree increment. At each temperature, the device is checked after a stabilization period required for the device to reach the temperature.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

Cold: - 30C * RBW 10 kHz Att 40 dB VBW 30 kHz M1[1] -13.85 dBm Ref 20.0 dBm SWT 150ms 3.677545000 GHz ndB 20.00 dB Bw 9.40100000 MHz 1Pk 10 dBm[.] **Q** factor 391.2 View T1[1] -35.37 dBm 0 dBm· 3.670299000 GHz T2[1] -33.25 dBm Μ1 -10 dBm 3.679701000 GHz million ruh ųм, -20 dBm--30 dBm WHA KUND 18 -50 dBm -60 dBm--70 dBm-CF 3.675 GHz Span 15.0 MHz

Date: 18.DEC.2012 17:56:19

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 👬
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

#### Room temperature: 23C



Date: 18.DEC.2012 18:41:40

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Date: 18.DEC.2012 19:09:23

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

#### Measurement Table Table

				High	
Modulation	Channel	Temp C	Low edge	edge	Mid
QPSK	3655	-30	3650.299	3659.76	3655.0295
	3655	20	3650.299	3659.701	3655
	3655	50	3650.299	3659.701	3655
	3675	-30	3670.299	3679.701	3675
	3675	20	3670.299	3679.701	3675
	3675	50	3670.299	3679.701	3675
	3695	-30	3690.299	3699.701	3695
	3695	20	3690.299	3699.701	3695
	3695	50	3690.299	3699.701	3695

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL +
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

## **Test Equipment List**

Equipment	Model No.	Manufacturer	Last calibration date	Next calibration due date	Asset #
Spectrum Analyzer	8566B	HP	12/21/ 2011	12/21/2013	GEMC 141
Attenuator 20 dB	FP-50-20	Trilithic	NCR	NCR	GEMC 43
RF Cable 7m	LMR-400-7M- 50OHM-MN- MN	LexTec	NCR	NCR	GEMC 28

This report module is based on GEMC template "FCC - 15.225 - RFID Freq Stab_Rev1.doc"

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL +
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

## Appendix A – EUT Summary

For further details for filing purposes, refer to filing package.

#### **General EUT Description**

	Client Details
Organization / Address	Blinq Wireless Inc.
-	400 March Road,
	Suite 240, Kanata,
	ON K2K 3H4, Canada
	www.blinqnetworks.com
EUT (Equir	oment Under Test) Details
EUT Name (for report title)	X100 Hub Module and X100 Remote Backhaul
	Module
EUT Model / SN (if known)	HX1-3650-E and RX1-3650-I
EUT revision	New product
Software version	Release 1.1
EUT is powered using	-48VDC
Input voltage range(s) (V)	-36VDC to-60VDC
Frequency range(s) (Hz)	N/A
Rated input current (A)	2 A
Nominal power consumption (W)	65 W
Number of power supplies in EUT	1
Transmits RF energy? (describe)	Yes

Note the EUT is considered to have been received the date of the commencement of the first test, unless otherwise stated. For a close-up picture of the EUT, see 'Appendix B - EUT & Test Setup Photographs'.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	<b>EMC INC</b>

## Appendix B – EUT and Test Setup Photographs

Note: These photos are for information purposes only. Also refer to PDF files that are separate from this test report.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL 😤 🛝
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC



Equipment under test.

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	<b>EMCINC</b>



Antenna conducted setup.

Report issue date: 2/19/2013

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL EMCINC
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	

#### Radiated Emissions 9k to 30M



Page 63 of 65

Report issue date: 2/19/2013 GEMC

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	global EMC INC
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	

#### Radiated Emissions 30M to 2G



Report issue date: 2/19/2013 GEM

Client	Blinq Networks	
Product	X100 Hub Module and X100 Remote Backhaul Module	GLOBAL
Standard(s)	RSS 197 Issue 1:2010 & FCC Part 90 Subpart Z	EMCINC

#### Radiated Emissions 2G to 18G



Report issue date: 2/19/2013 GEMC