

CETECOM ICT Services consulting - testing - certification >>>

TEST REPORT

Deutsche Akkreditierungsstelle D-PL-12076-01-00

Test report no.: 1-8390/14-01-05

Testing laboratory

CETECOM ICT Services GmbHUntertuerkheimer Strasse 6 – 1066117 Saarbruecken / GermanyPhone:+ 49 681 5 98 - 0Fax:+ 49 681 5 98 - 9075Internet:http://www.cetecom.come-mail:ict@cetecom.com

Accredited Testing Laboratory: The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-00

Applicant

Thrane & Thrane A/SLundtoftegaardsvej 93DDK-2800 Kgs Lyngby / DENMARKPhone:Fax:+45 3955 8888Contact:Morten Becker Saule-mail:morten.saul@cobham.comPhone:+45 3955 8209

Manufacturer

Thrane & Thrane A/S Lundtoftegaardsvej 93D DK-2800 Kgs Lyngby / DENMARK

Test standard/s

CFR 47 Part 25

Satellite Communications Mobile Earth Stations and Ancillary Terrestrial Component Equipment Operating in

RSS-170 the Mobile-Satellite Service Bands

For further applied test standards please refer to section 3 of this test report.

		Test Item	
Kind of test item: Model name:	BGAN Satellite Terminal TT-3711A		
FCC ID:	ROJ-3711A		
IC:	6200B-3711A		
Frequency:	Tx: 1626.5 – 1660.5 MHz Rx: 1525.0 – 1559.0 MHz		
Antenna:	Integrated patch antenna		
Power supply:	24.0V DC		EXPLORED
Temperature range:	-25°C to +55°C		

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:

Thomas Vogler Professional Radio Communications & EMC

Test performed:

Karsten Geraldy Professional Radio Communications & EMC

1 Table of contents

1	Table	of contents	2
2	Gener	ral information	3
	2.1 2.2	Notes and disclaimer Application details	3 3
3	Test s	standard/s	3
4	Test l	ocation	4
5	Test e	environment	4
6	Test l	aboratory/ies sub-contracted	4
7	Additi	ional information	4
8	Test i	tem	5
	8.1 8.2	General Description Operating conditions	5 5
9	RF me	easurements	6
	9.1	Description of test setup	6
	9.1.1	Conducted measurements	6
	9.1.2	Radiated measurements	7
10	Μ	leasurement results	10
	10.1	Summary	10
	10.2	Overview	11
Anr	nex A	Test equipment and ancillaries used for tests	20
Anr	nex B	Measurement results	22
Anr	nex C	Document history	134
Anr	nex D	Further information	134
۸ m r		Accorditation Contificate	125

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2014-08-22
Date of receipt of test item:	2014-10-06
Start of test:	2014-10-06
End of test:	2014-10-10
Person(s) present during the test:	-/-

3 Test standard/s

Test standard	Date	Test standard description
CFR 47 Part 25	2013-10	Satellite Communications
RSS-170	2011-03	Mobile Earth Stations and Ancillary Terrestrial Component Equipment Operating in the Mobile-Satellite Service Bands

4 Test location

CETECOM ICT Services GmbH Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

5 Test environment

Temperature:	T _{nom} T _{min} T _{max}	+23 °C during room temperature tests -30 °C +50 °C
Relative humidity:		45 %
Barometric pressure:		not relevant for this kind of testing
Power supply:	V _{nom} V _{min} V _{max}	24.0 V DC 10.5 V DC 32.0 V DC

6 Test laboratory/ies sub-contracted

None

7 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-8390/14-01-08_AnnexA 1-8390/14-01-08_AnnexB 1-8390/14-01-08_AnnexC

8 **Test item**

8.1 **General Description**

Kind of test item	BGAN Satellite Terminal
Type identification	TT-3711A
Operating characteristics	BGAN, Rx/Tx, QPSK-pi/4, 16-QAM
S/N serial number	0873940016
HW hardware status	A
SW software status	0.05 Build 506
TX frequency range / CS ¹⁾	1626.5 – 1660.5 MHz // 1.25 kHz
RX frequency range	1525.0 – 1559.0 MHz
TX output power cond.	max. 34.0 dBm (measured value)
TX output power rad. (EIRP) 2)	max. 45.2 dBm (measured value)
Kind of baseband signal	data
Occupied bandwidth 3)	< 168 kHz
Data rate	33.6 – 604.8 kbps
Type of modulation	QPSK-pi/4, 16-QAM
Type of radio transmission	G7W, D7W
Antenna	integrated patch antenna
Power supply	24.0 V DC
Temperature range	-30 °C to +50 °C

¹⁾ channel spacing of modem / transceiver
 ²⁾ for an antenna with an on-axis gain of 11.25 dBi (RHCP) within the transmit band

³⁾ for operating conditions defined below

8.2 Operating conditions

Modulation Scheme	Modulation	Bitrate (kbps)	f _{low}	f _{mid}	f _{high}
R20T05Q	QPSK-pi/4	33.6	1626.6 MHz	1643.5 MHz	1660.4 MHz
R20T1Q	QPSK-pi/4	67.2	1626.6 MHz	1643.5 MHz	1660.4 MHz
R5T1X R20T1X	16QAM	134.4	1626.6 MHz	1643.5 MHz	1660.4 MHz
R5T2Q R20T2Q	QPSK-pi/4	134.4	1626.6 MHz	1643.5 MHz	1660.4 MHz
R5T2X R20T2X	16QAM	268.8	1626.6 MHz	1643.5 MHz	1660.4 MHz
R5T45Q R20T45Q	QPSK-pi/4	302.4	1626.6 MHz	1643.5 MHz	1660.4 MHz
R5T45X R20T45X	16QAM	604.8	1626.6 MHz	1643.5 MHz	1660.4 MHz

9 **RF** measurements

9.1 Description of test setup

Following diagrams show possible test setups. They can be considered as applicable in general. Depending on the tests performed and/or depending on the EUT configuration (e.g. amount of different components, setup, ...) the real test setup may vary slightly from the diagrams shown below.

9.1.1 Conducted measurements

9.1.2 Radiated measurements

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 12 GHz in a semi-anechoic chamber. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63.2-1996 clause 15 and ANSI C63.4-2003 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-2003 clause 4.2.

Antennas are conform with ANSI C63.2-1996 item 15.

Setup 2.0: Radiated measurements (semi-anechoic chamber)

9 kHz - 30 MHz:	active loop antenna
30 MHz – 1 GHz:	tri-log antenna
> 1 GHz:	horn antenna

Setup 2.3

10 Measurement results

10.1 Summary

The present test report:

\boxtimes	describes the first test
	describes an additional test
	is a verification of documents
	is only valid with the test report no .:

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

TC identifier	Description	Verdict	Date	Remark
RF-Testing	CFR 47 Part 25 / RSS-170	PASS	2014-12-08	-/-

Test Specification Clause	Test Case	Pass	Fail	N/A	N/P	Results
§2.1046 / §25.204/ RSS-170, 5.3.2	Measurements required: RF power output / Power limits	х				complies
§2.1049	Measurements required: Occupied bandwidth	Х				complies
§2.1051/ §25.202/ RSS-170, 5.4.3.1	Measurements required: Spurious emissions at antenna terminals / Emission limitations (conducted emissions)	x				complies
§2.1053/ §25.202/ RSS-170, 5.4.3.1	Measurements required: Field strength of spurious radiation / Emission limitations (radiated emissions)	x				complies
§2.1055 / §25.202/ RSS-170, 5.2	Measurements required: Frequency stability / Frequency tolerances	х				complies
§25.216/ RSS-170, 5.4.3.2 & 5.4.4	Limits on emissions from mobile earth stations for protection of aeronautical radionavigation-satellite service / Carrier-Off State Emissions	х				complies
RSS-170, 5.5	Receiver Spurious Emissions	х				see test report 1-8390/14- 01-06_A

Note:

 $\overline{NA} = Not$ applicable; NP = Not performed

10.2 Overview

I.	RF power output / Power limits	12
11.	Occupied bandwidth	13
III.	Emission limitations (RF spectrum mask)	14
IV.	Emissions limitations (conducted emissions)	15
V.	Emissions limits (radiated emissions)	16
VI.	Emissions limitations (conducted emissions)	17
VII.	Transmitter frequency tolerance	18

I. RF power output / Power limits

Description / Limit:

§25.204 Power limits

(b) In bands shared coequally with terrestrial radiocommunication services, the equivalent isotropically radiated power transmitted in any direction towards the horizon by an earth station operating in frequency bands between 1 and 15 GHz shall not exceed the following limits except as provided for in paragraph (c) of this section:

+40 dBW in any 4 kHz band for $\theta \le 0^{\circ}$ +40 + 3 * θ dBW in any 4 kHz band for 0° < $\theta \le 5^{\circ}$ θ = elevation angle above horizon

(c) For angles of elevation of the horizon greater than 5° there shall be no restriction as to the equivalent isotropically radiated power transmitted by an earth station towards the horizon.

Test setup(s):

Test setup 1.2cdk

Measurement results:

Modulation Scheme	Transmitter conducted output power [dBW]			Transmitter radiated output power / EIRP [dBW]		
	f _{low}	f _{mid}	fhigh	f _{low}	f _{mid}	fhigh
R20T05Q	3.5	3.5	3.5	14.8	14.7	14.7
R20T1Q	3.4	3.5	3.4	14.7	14.7	14.6
R5T1X	3.9	4.0	3.9	15.2	15.2	15.1
R20T1X	3.7	3.8	3.7	15.0	15.0	14.9
R5T2Q	3.3	3.2	3.2	14.6	14.4	14.4
R20T2Q	3.4	3.5	3.5	14.7	14.7	14.7
R5T2X	3.6	3.7	3.5	14.9	14.9	14.7
R20T2X	3.5	3.6	3.5	14.8	14.8	14.7
R5T45Q	3.2	3.2	3.2	14.5	14.4	14.4
R20T45Q	3.4	3.5	3.5	14.7	14.7	14.7
R5T45X	3.3	3.4	3.3	14.6	14.6	14.5
R20T45X	3.5	3.5	3.5	14.8	14.7	14.7

Operating conditions of DUT:

Carrier-on radio state (for more details see table above)

II. Occupied bandwidth

Description:

§2.1 Occupied Bandwidth

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage b/2 of the total mean power of a given emission. NOTE: Unless otherwise specified in an ITU–R Recommendation for the appropriate class of emission, the value of b/2 should be taken as 0.5%. (RR).

Test setup(s):

Test setup 1.2hgj

Measurement results:

Modulation Scheme	Occupied Bandwidth (99%)					
	f _{low}	f _{mid}	fhigh			
R20T05Q	18.5 kHz	18.6 kHz	18.6 kHz			
R20T1Q	37.3 kHz	37.2 kHz	37.3 kHz			
R5T1X	36.9 kHz	37.1 kHz	37.1 kHz			
R20T1X	37.3 kHz	37.5 kHz	37.5 kHz			
R5T2Q	73.75 kHz	74.25 kHz	74.00 kHz			
R20T2Q	74.25 kHz	74.25 kHz	74.25 kHz			
R5T2X	73.75 kHz	73.75 kHz	73.75 kHz			
R20T2X	74.25 kHz	74.25 kHz	74.00 kHz			
R5T45Q	166.6 kHz	166.5 kHz	166.5 kHz			
R20T45Q	167.4 kHz	166.8 kHz	167.0 kHz			
R5T45X	166.3 kHz	166.8 kHz	166.7 kHz			
R20T45X	166.8 kHz	167.4 kHz	166.8 kHz			

Operating conditions of DUT:

Carrier-on radio state (for more details see table above)

Plots:

see also annex B, plot 1 - 36

III. Emission limitations (RF spectrum mask)

Description / Limit:

§25.202 Frequencies, frequency tolerance and emission limitations

(f) Emission limitations. Except for SDARS terrestrial repeaters, the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section.

(1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;

(2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;

(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth:

An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;

(4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the

Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

Test setup: 1.2hgj

Measurement results:

Mode	see following plots
Tx-mode, f _{low}	41, 43, 45
Tx-mode, f _{mid}	62, 64, 66
Tx-mode, f _{high}	83, 85, 87

IV. Emissions limitations (conducted emissions)

Description / Limit:

§25.202 Frequencies, frequency tolerance and emission limitations

(f) Emission limitations. Except for SDARS terrestrial repeaters, the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section.

(1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;

(2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;

(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth:

An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;

(4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the

Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

Test setup: 1.2hgj

Measurement results:

Conducted Spurious Emissions [dBm]										
	f _{low}			f _{mid}			f high			
F [MHz]	Detector	Level [dBm]	F [GHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]		
6520	Pos-Peak	-30.3	6587	Pos-Peak	-47.0	8320	Pos-Peak	-30.1		
8147	Pos-Peak	-34.5								
Measu	irement unce	ertainty			± 1.	5 dB				

n.f. = nothing found

Plots:

see also Annex B, plots 41 - 101

V. Emissions limits (radiated emissions)

Description / Limit:

§25.202 Frequencies, frequency tolerance and emission limitations

(f) Emission limitations. Except for SDARS terrestrial repeaters, the mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the schedule set forth in paragraphs (f)(1) through (f)(4) of this section.

(1) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: 25 dB;

(2) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: 35 dB;

(3) In any 4 kHz band, the center frequency of which is removed from the assigned frequency by more than 250 percent of the authorized bandwidth:

An amount equal to 43 dB plus 10 times the logarithm (to the base 10) of the transmitter power in watts;

(4) In any event, when an emission outside of the authorized bandwidth causes harmful interference, the

Commission may, at its discretion, require greater attenuation than specified in paragraphs (f) (1), (2) and (3) of this section.

Test setup: 2.0 - 2.4

Measurement results:

Radiated Spurious Emissions [dBm]										
	f _{low}			f _{mid}			f high			
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]		
3253.2	Pos-Peak	-29.1	3287.0	Pos-Peak	-30.8	3320.8	Pos-Peak	-28.2		
4879.8	Pos-Peak	-47.8	4930.5	Pos-Peak	-49.1	4981.2	Pos-Peak	-43.4		
6506.4	Pos-Peak	-43.2	6574.0	Pos-Peak	-40.6	6641.6	Pos-Peak	-42.3		
8133.0	Pos-Peak	-38.3	8217.5	8217.5 Pos-Peak		8302.0	Pos-Peak	-37.1		
						11622.8	Pos-Peak	-46.7		
Measurement uncertainty					± 3	B dB				

n.f. = nothing found

v / h = vertical / horizontal

Plots:

see also Annex B, plots 37 - 40

VI. Emissions limitations (conducted emissions)

Description / Limit:

§ 25.216 Limits on emissions from mobile earth stations for protection of aeronautical radionavigationsatellite service.

(h) Mobile earth stations manufactured more than six months after FEDERAL REGISTER publication of the rule changes adopted in FCC 03–283 with assigned uplink frequencies in the 1626.5–1660.5 MHz band shall suppress the power density of emissions in the 1605–1610 MHz band-segment to an extent determined by linear interpolation from -70 dBW/MHz at 1605 MHz to -46 dBW/MHz at 1610 MHz, averaged over any 2 millisecond active transmission interval. The e.i.r.p of discrete emissions of less than 700 Hz bandwidth from such stations shall not exceed a level determined by linear interpolation from -80 dBW at 1605 MHz to -56 dBW at 1610 MHz, averaged over any 2 millisecond active transmission interval.

(i) The e.i.r.p density of carrier-off state emissions from mobile earth stations manufactured more than six months after FEDERAL REGISTER publication of the rule changes adopted in FCC 03–283 with assigned uplink frequencies between 1 and 3 GHz shall not exceed -80 dBW/MHz in the 1559–1610 MHz band averaged over any two millisecond interval.

Test setup: 1.2gj

Measurement results:

Conducted Spurious Emissions [dBm]										
	f _{low}			f _{mid}			f high			
F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]	F [MHz]	Detector	Level [dBm]		
no cr	itical peaks f	ound	no ci	ritical peaks f	ound	no c	ritical peaks t	found		
Measu	irement unce	ertainty			± 1.	5 dB				

n.f. = nothing found

Plots:

see also Annex B, plots 101 - 111

VII. Transmitter frequency tolerance

Description / Limit:

§25.202 Frequencies, frequency tolerance and emission limitations

(d) Frequency tolerance, Earth stations.

The carrier frequency of each earth station transmitter authorized in these services shall be maintained within 0.001 percent of the reference frequency.

Test setup: 1.2hgj

Measurement results:

Low Channel

Temperature [°C]	Voltage [V DC]	Reference Frequency [MHz]	Measured Frequency [MHz]	Deviation [Hz]	Deviation [ppm]
-30	24.0	1626.6	1626.600715	715	0.44
-20	24.0	1626.6	1626.600937	937	0.58
-10	24.0	1626.6	1626.600763	763	0.47
0	24.0	1626.6	1626.600738	738	0.45
10	24.0	1626.6	1626.600441	441	0.27
20	24.0	1626.6	1626.600014	14	0.01
20	10.5	1626.6	1626.600014	14	0.01
20	32.0	1626.6	1626.600015	15	0.01
30	24.0	1626.6	1626.599448	-552	-0.34
40	24.0	1626.6	1626.599020	-980	-0.60
50	24.0	1626.6	1626.598740	-1260	-0.77

lowest measured frequency:	1626.598740 MHz
highest measured frequency:	1626.600937 MHz
maximum deviation:	-1260 Hz (-0.77 ppm)

Mid Channel

Temperature [°C]	Voltage [V DC]	Reference Frequency [MHz]	Measured Frequency [MHz]	Deviation [Hz]	Deviation [ppm]
-30	24.0	1643.5	1643.500733	733	0.45
-20	24.0	1643.5	1643.500943	943	0.57
-10	24.0	1643.5	1643.500767	767	0.47
0	24.0	1643.5	1643.500740	740	0.45
10	24.0	1643.5	1643.500445	445	0.27
20	24.0	1643.5	1643.500006	6	0.00
20	10.5	1643.5	1643.500007	7	0.00
20	32.0	1643.5	1643.500005	5	0.00
30	24.0	1643.5	1643.499448	-552	-0.34
40	24.0	1643.5	1643.498999	-1001	-0.61
50	24.0	1643.5	1643.498724	-1276	-0.78

lowest measured frequency: highest measured frequency: maximum deviation: 1643.498724 MHz 1643.500943 MHz -1276 Hz (-0.78 ppm)

High Channel

Temperature [°C]	Voltage [V DC]	Reference Frequency [MHz]	Measured Frequency [MHz]	Deviation [Hz]	Deviation [ppm]
-30	24.0	1660.4	1660.400715	715	0.43
-20	24.0	1660.4	1660.400947	947	0.57
-10	24.0	1660.4	1660.400770	770	0.46
0	24.0	1660.4	1660.400742	742	0.45
10	24.0	1660.4	1660.400453	453	0.27
20	24.0	1660.4	1660.399998	-2	0.00
20	10.5	1660.4	1660.399996	-4	0.00
20	32.0	1660.4	1660.399994	-6	0.00
30	24.0	1660.4	1660.399448	-552	-0.33
40	24.0	1660.4	1660.398979	-1021	-0.61
50	24.0	1660.4	1660.398710	-1290	-0.78

lowest measured frequency: highest measured frequency: maximum deviation: 1660.398710 MHz 1660.400947 MHz -1290 Hz (-0.78 ppm)

Annex A Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2818A03450	300001040	Ve	12.01.2012	12.01.2015
2	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	viKi!	08.05.2013	08.05.2015
3	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
4	n. a.	Switch / Control Unit	3488A	HP Meßtechnik	*	300000199	ne		
5	9	Artificial Mains 9 kHz to 30 MHz	ESH3-Z5	R&S	828576/020	300001210	Ve	30.01.2014	30.01.2016
6	9	Isolating Transformer	MPL IEC625 Bus Regeltrenntravo	Erfi	91350	300001155	ne		
7	90	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	13.06.2013	13.06.2015
8	90	Amplifier	js42-00502650-28- 5a	Parzich GMBH	928979	300003143	ne		
9	90	Band Reject filter	WRCG1855/1910- 1835/1925-40/8SS	Wainwright	7	300003350	ev		
10	90	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev		
11	90	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789	ne		
12	90	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854	viKi!	29.10.2014	29.10.2017
13	90	MXE EMI Receiver 20 Hz bis 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	13.03.2014	13.03.2015
14	90	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne		
15	45	Switch-Unit	3488A	HP Meßtechnik	2719A14505	300000368	g		
16	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2920A04466	300000580	ne		
17	50	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	27.01.2014	27.01.2015
18	50	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	11.02.2014	11.02.2015
19	50	Antenna Tower	Model 2175	ETS-LINDGREN	64762	300003745	izw		
20	50	Positioning Controller	Model 2090	ETS-LINDGREN	64672	300003746	izw		
21	50	Turntable Interface- Box	Model 105637	ETS-LINDGREN	44583	300003747	izw		
22	50	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	22.04.2014	22.04.2016
23	50	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	22.01.2014	22.01.2015
24	50	Breitband Doppelsteg- Hornantenne	BBHA9120 B	Schwarzbeck	188	300003896	k	10.06.2013	10.06.2015
25	C217	HF-Cable	KPS1533-590-KPS	Insulated Wire		300002290	ev		
26	R001	Spectrum Analyzer 9kHz-50GHz portable spectrum analyzer	8565E	HP Meßtechnik	3515A00283	300000916	Ve	28.01.2013	28.01.2015
27	A026	Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787	k	22.07.2013	22.07.2015
28	U005	Attenuator	9498A	Hewlett Packard	2702A04550	300002403	ev	-/-	-/-
29	U311	Attenuator 10 dB/100W, N-kon.	WA91-10-34	Weinschel Associates	A244	300004265	ev	-/-	-/-
30	F227	HPF 2275	VHF-2275+	Mini-Circuits	30719	-	ev	-/-	-/-
31	R011	Power Meter	438A	Hewlett Packard	2730U00683	300000852	vIKI!	14.01.2013	14.01.2015
32	R013	Power-Sensor	8481A	Hewlett-Packard	2702A65984	300001197	Ve	21.01.2014	21.01.2016

Agenda: Kind of Calibration

- k calibration / calibrated
- not required (k, ev, izw, zw not required) ne
- periodic self verification ev
- long-term stability recognized Attention: extended calibration interval Ve
- vlkl!
- NK! Attention: not calibrated

- ΕK limited calibration
- cyclical maintenance (external cyclical maintenance) ZW
- internal cyclical maintenance izw
- blocked for accredited testing g
- *) next calibration ordered / currently in progress

Annex B Measurement results

This annex consists of 112 pages including this page.

Plot No. 1 (111)

Plot No. 2 (111)

Plot No. 3 (111)

Plot No. 4 (111)

Plot No. 5 (111)

Plot No. 6 (111)

Plot No. 7 (111)

Plot No. 8 (111)

Plot No. 9 (111)

Plot No. 10 (111)

Plot No. 11 (111)

Plot No. 12 (111)

Plot No. 13 (111)

Plot No. 14 (111)

Plot No. 15 (111)

Plot No. 16 (111)

Plot No. 17 (111)

Plot No. 18 (111)

Plot No. 19 (111)

Plot No. 20 (111)

Plot No. 21 (111)

Plot No. 22 (111)

Plot No. 23 (111)

Plot No. 24 (111)

Plot No. 25 (111)

Plot No. 26 (111)

Plot No. 27 (111)

Plot No. 28 (111)

Plot No. 29 (111)

Plot No. 30 (111)

Plot No. 31 (111)

Plot No. 32 (111)

Plot No. 33 (111)

Plot No. 34 (111)

Plot No. 35 (111)

Plot No. 36 (111)

Plot No. 37 (111)

Plot No. 38 (111)

Plot No. 39 (111)

Plot No. 40 (111)

Plot No. 41 (111)

Plot No. 42 (111)

Plot No. 43 (111)

Plot No. 44 (111)

Plot No. 45 (111)

Plot No. 46 (111)

Plot No. 47 (111)

25.202 f) emission limit 9k-1 M, fu / (25_202_2 fu_1.hgl)	
50	
10/	
measured data	
limit	
	▼
- marine preserved with the second of the se	water and the second of the
-50	
9000	30M
τreque	V: -35.16
Δ X: 18.5035M	y: -13
∇- <u>∆</u> ×: -5.04849M	y: -22.16
Subclause: 25.202 f) Frequencies, frequency tolerance and emission limitations Emission limitations Modulated rf-carrier at the lower edge of the band (fu) Limit: Limit according to 25.202 f): 50-100% of assigned bw: -250Bc/4kHz 100-250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition 1, flow, see section 7.4 R20T05Q Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005 Remark: Test passed	Environment condition: Ued 08/Oct/2014 14:23:53 Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 1 kHz Directional coupler + 0.0 dB Coarial cable (C217) + 0.5 dB DuT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Test antenna + 0.0 dB Test antenna + 0.0 dB ToTAL CORRECTION: + <t< td=""></t<>

Plot No. 48 (111)

25.202 f) emission limit 9k-1M, fu / (25_202_2fu_2.hgl)	
10/	
measured data	
limit	
-	
M. How when a some for a	markedurally and markeduranter and the second
freque	ency [Hz] 5M/
∇ — ×: 17.9536M	y: -34.83
Δ — ×: 17.4538M	y: -13
V-D A Hastock	y21.00
Subclause: 25.202 f) Frequencies, frequency tolerance and emission limitations Emission limitations	Environment condition: Date & Time: Wed 08/Oct/2014 14:24:15
woodulated in-carrier at the lower edge of the band (id)	
	Temperature: 22 °C
	Humidity: 45 % Voltage: 24 Vdc
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz	Humidity: 22 C Humidity: 45 % Voltage: 24 Vdc
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW	Humidity: 22 C Humidity: 45 % Voltage: 24 Vdc Start frequency: 9 kHz Stop frequency: 30 MHz
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter	Humidity: 22 C Humidity: 45 % Voltage: 24 Vdc Step of measurement equipment: 9 kHz Start frequency: 9 kHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule.	Humidity: 22 C Humidity: 45 % Voltage: 24 Vdc Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u>	Imperature: 22 C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: 5 Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1)
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated)	Humidity: 22 C Humidity: 45 % Voltage: 24 Vdc Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold)
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, flow, see section 7.4	Imperature: 22 C Humidity: 45 % Voltage: 24 Vdc Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency: 15.0045 MHz Input attenuation: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + 0.0 dB
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz >250% of assigned bw: -35dBc/4kHz >250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, flow, see section 7.4 R5T1X	Humidity: 22 C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Start frequency: 30 MHz Center frequency: 10 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 10 Kd Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, flow, see section 7.4 R5T1X Test setup: see section 8.1: 1.2hgj	I emperature: 22 Humidity: 45 Voltage: 24 Start frequency: 9 Klz Stop frequency: Stop frequency: 30 MHz MHz Center frequency: 15.0045 Frequency span: 29.991 Input attenuation: 20 Resolution-BW: 10 KHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB DUT-Antenna (on-axis) + + 11.2 BW correction factor + 0.0 dB
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, flow, see section 7.4 R5T1X <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u>	Humidity: 22 Humidity: 45 Voltage: 24 Start frequency: 9 Klart frequency: 30 MHz Stop frequency: Stop frequency: 30 MHz MHz Center frequency: 15.0045 MHz Frequency span: Prequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 KHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 2 Pos Peak (Maximum-Hold) Correction (average): 10 Directional coupler + + 0.0 DUT-Antenna (on-axis) + + 11.2 BW correction factor + + 0.0 BW correction factor + + 0.0 Atten. between HPA and feedhorm + + 29.8
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean opwer of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition of DUT: operating condition 1, flow, see section 7.4 R5T1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005	I emperature: 22 Humidity: 45 Voltage: 24 Start frequency: 9 Start frequency: 30 MHz Stop frequency: 30 MHz Center frequency: 15.0045 Frequency span: 29.991 Input attenuation: 20 Resolution-BW: 10 KHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Coaxial cable (C217) + + 11.2 BUT-Antenna (on-axis) + + 11.2 BW correction factor + + 0.0 Atten. between HPA and feedhorm + + 29.8 TOTAL CORRECTION: +
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, flow, see section 7.4 R5T1X <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u> see annex A: C217, R001, U005 Remark:	I emperature: 22 Humidity: 45 Voltage: 24 Start frequency: 9 Start frequency: 30 MHz Center frequency: 15.0045 MHz Center frequency: 15.0045 Frequency span: 29.991 MHz Input attenuation: 20 Resolution-BW: 10 KHz Video-Average: 1 Sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Costai cable (C217) + + 0.0 dB DUT-Antenna (on-axis) + 11.2 DIT-St antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhom + 0.0 dB ToTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier at the lower edge of the band
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean opwer of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition of DUT: operating condition 1, flow, see section 7.4 RST1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005 Remark:	I emperature: 22 Humidity: 45 Voltage: 24 Start frequency: 9 Start frequency: 30 MHz MHz Center frequency: 10 MHz MHz Prequency span: 29.991 Input attenuation: 20 Resolution-BW: 10 KHz Video-BW: Video-Average: 1 Sweep(s) (>1) Detector-Mode: Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + DuT-Antenna (on-axis) + + 11.2 BW correction factor + + 0.0 Atten. between HPA and feedhom + + 0.0 Attenuation (U005) + TOTAL CORRECTION: + 41.5 B Remarks: Carrier at the lower edge of the band (fu) For EIRP calculation: 'worst-case' = maximum antenna gain
Limit: Limit according to 25.202 f): S0-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, flow, see section 7.4 RST1X Test setup: see annex A: C217, R001, U005 Remark: Test result: Test passed	I emperature: 22 Humidity: 45 Voltage: 24 Start frequency: 9 Start frequency: 30 MHz Center frequency: 10 MHz Center frequency: 20.4 Input attenuation: 20.4 Resolution-BW: 10 Video-Average: 10 Video-Average: 10 Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + DuT-Antenna (on-axis) + 11.2 dBi Test antenna + Attenuation (U005) + Yold CORRECTION: + 41.5 dB Remarks: Carrier at the lower edge of the band (fu) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.
Limit: Limit according to 25.202 f): S0-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -assigned bw: -assig	Humidity: 22 Humidity: 45 Voltage: 24 Start frequency: 9 Start frequency: 30 MHz MHz Center frequency: 15.0045 MHz MHz Center frequency: 15.0045 Input attenuation: 20 Resolution-BW: 10 KHz Video-BW: Video-Average: 1 Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + Voltage: + DUT-Antenna (on-axis) + H11.2 dBi BW correction factor + Voltage: + Voltage: + Voltage: + DUT-Antenna (on-axis) + H12.2 dBi DUT-Antenna + No Attenuation (U005) Humage: + Voltage: + Attenuation
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, flow, see section 7.4 RST1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005 Remark: Test passed	I emperature: 22 Humidity: 45 Yoltage: 24 Start frequency: 9 KHz Stop frequency: Stop frequency: 30 MHz Input attenuation: Center frequency span: 29.991 MHz Input attenuation: Input attenuation: 20 Resolution-BW: 10 KHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + Voldeo-Average: 11.2 Directional coupler + Voldeo-Average: 12 Directional coupler + 0.0 dB BUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + + 0.0 dB TOTAL CORRECTION: + 41.5
Limit: Limit according to 25.202 f): S0-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, flow, see section 7.4 R5T1X Test setup: see annex A: C217, R001, U005 Remark: Test result: Test passed	Temperature: 22 Humidity: 45 Start frequency: 9 Start frequency: 30 MHz MHz Center frequency: 10 MHz MHz Input attenuation: 20 Resolution-BW: 10 KHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + + 0.0 DUT-Antenna (on-axis) + + 11.2 BW correction factor + + 0.0 BW correction factor + + 0.0 BW correction factor + + 0.0 BW correction factor + + 1.2 Garrier-on state / Carrier at the lower edge of the band (fu) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, flow, see section 7.4 RST1X Test setup: see section 8.1: 1.2hgj Test result: Test result: Test result: Test result: Test passed	I emperature: 22 Humidiy: 45 Stat frequency: 30 Stat frequency: 30 MHz Stop frequency: Stop frequency: 30 MHz Input attenuation: Prequency span: 29.991 MHz Input attenuation: QO dB Resolution-BW: 10 kHz Video-Average: 1 Sweep(s) (>1) Detector-Mode: Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + Video-Average: 11.2 Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB Atten. between HPA and feedhom + 0.0 dB Test-on state / Carrier at the lower edge of the band (fu) For ELP calculation: 'worst-case'
Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, flow, see section 7.4 RST1X Test result: Test result: See section 8.1: 1.2hgj Test result: Test result: Test passed	Temperature: 22 Humidiy: 45 Start frequency: 9 Start frequency: 30 MHz MHz Stop frequency: 30 MHz MHz Center frequency: 15.0045 Input attenuation: 20 Resolution-BW: 10 KHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Carrection (average): Directional coupler + Video-Average: + Directional coupler + 0.0 dB Correction (average): 11.2 DuT-Antenna (on-axis) + 11.2 dBi Test antenna + + 0.0 BW correction factor + + 0.0 dB Attenuation (U005) + 29.8 TOTAL CORRECTION: + 41.5 Remarks: Carrier-on state / Carrier at the lower edge of the band (fu) For EIRP c

Plot No. 49 (111)

25.202 f) emission limit 9k-1M, fu / (25_202_2fu_3.hgl)	
10/	
measured data	
limit	
-	
-	
- marine and marine and a second	and and man the many har many how have been and the second s
-50	
9000 freque	30M 5M/
∇ ×: 10.7558M	У: -35.33
Δ — ×: 7.85665M	У: -13
∇-Δ ×: 2.89913M	y: -22.33
Limit: Limit coording to 25.202 f):	Environment conductor. Wed 08/Oct/2014 14:24:34 Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 Humidity: 45 Voltage: 24
100-250% of assigned bw: -35dBC/4KHz 2250% of assigned bw: -35dBC/4KHz 2250% of assigned bw: -43+100g(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule.	Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz
<u>Test results:</u> see plot (an explicit table was not generated)	Video-Average:1sweep(s) (>1)Detector-Mode:2Pos Peak (Maximum-Hold)
Operating condition of DUT: operating condition 1, flow, see section 7.4	<u>Correction (average):</u> Directional coupler + 0.0 dB
R20T45X	Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi
<u>rest setup:</u> see section 8.1: 1.2hgj	BW correction factor + 0.0 dB table between HDA and facthorm + 0.0 dB
<u>Test equipment:</u> see annex A: C217, R001, U005	Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB
Remark:	Remarks: Carrier-on state / Carrier at the lower edge of the band (fu) For EIRP calculation: 'worst-case' = maximum antenna gain
Test result: Test passed	Rather left the plot shows the zero line of the spectrum analyzer.

Plot No. 50 (111)

Plot No. 51 (111)

Plot No. 52 (111)

Plot No. 53 (111)

Plot No. 54 (111)

Plot No. 55 (111)

Plot No. 56 (111)

Plot No. 57 (111)

Plot No. 58 (111)

Plot No. 59 (111)

Plot No. 60 (111)

Plot No. 61 (111)

Plot No. 62 (111)

Plot No. 63 (111)

Plot No. 64 (111)

Plot No. 65 (111)

Plot No. 66 (111)

Plot No. 67 (111)

Plot No. 68 (111)

25.202 f) emission limit 9k-1M, fm / (25_202_2fm_1.hgl)	
50 50 50 50 50 50 50 50 50 50 50 50 50 5	· · · · · · · · · · · · · · · · · · ·
10/	
measured data	
limit -	
	Δ
the war and the second and the second and the second	www.weineranderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstanderstand
-50 -50	
frequ	ancy [Hz] 5M/
∇ — ×: 8.85634M	y: -35.66
Δ — ×: 12.3417M ∇-Δ ×: -3.4854M	y: -13 y: -22.66
Subclause: 25.202.ft. Eraguencies fraguency tolerance and emission limitations	Environment condition:
Emission limitations Modulated rf-carrier in the middle of the band (fm)	Date & Time: Wed 08/Oct/2014 14:22:10 Location: CETECOM ICT Services GmbH. Laboratory RSC-Sat
	Temperature: 22 °C Humidity: 45 %
Limit: Limit according to 25.202 f):	Temperature:22°CHumidity:45%Voltage:24Vdc
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Stetup of measurement equipment: Start frequency: 9 Stop frequency: 30 MHz Center frequency: 15.0045 MHz Center frequency: 15.0045 MHz
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule.	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Densitie DWM 14 Hz
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule.	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.91 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated)	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Start frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold)
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -3dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fmid, see section 7.4	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + 0.0 dB
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fmid, see section 7.4 R20T05Q	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency: 15.0045 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -36Bc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fmid, see section 7.4 R20T05Q <u>Test setup:</u> see section 8.1: 1.2hgj	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Start frequency: 9 kHz Start frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -35dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -3400g(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fmid, see section 7.4 R20T05Q <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u>	Temperature:22°CHumidity:45%Voltage:24VdcSetup of measurement equipment:Start frequency:9Start frequency:30MHzCenter frequency:15.0045MHzFrequency span:29.991MHzInput attenuation:20dBResolution-BW:10kHzVideo-BW:10kHzVideo-Average:1sweep(s) (>1)Detector-Mode:2Pos Peak (Maximum-Hold)Correction (average):11.2Directional coupler+0.0DUT-Antenna (on-axis)+11.2BW correction factor+0.0W correction factor+0.0Atten. between HPA and feedhorm+29.8dB4
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -36Bc/4kHz > 250% of assigned bw: -34+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fmid, see section 7.4 R20T05Q <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u> see annex A: C217, R001, U005	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 10. dB Directional coupler + 0.0 dB Carrection (average): Directional coupler + 0.0 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhom + 0.0 dB TOTAL CORRECTION: + 41.5 dB - - - - Volta Atten. Video-BW HPA - -
Limit: Limit according to 25.202 fl: 50-100% of assigned bw: -35dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 R20T05Q Test setup: see annex A: C217, R001, U005 Remark:	Temperature:22°CHumidity:45%Voltage:24VdcSetup of measurement equipment:Start frequency:9Klart frequency:30MHzCenter frequency:15.0045MHzFrequency span:29.991MHzInput attenuation:20dBResolution-BW:10kHzVideo-Average:1sweep(s) (>1)Detector-Mode:2Pos Peak (Maximum-Hold)Correction (average):11.2dBDirectional coupler+0.0dBCoaxial cable (C217)+0.5dBDUT-Antenna (on-axis)+11.2dBiTest antenna+0.0dBBW correction factor+0.0dBAtten. between HPA and feedhorm+0.0dBAttenuation (U005)+29.8dBTOTAL CORRECTION:+41.5dBRemarks:Carrier-on state / Carrier in the middle of the band (fm)For EID
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -36Bc/4kHz > 250% of assigned bw: -34+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fmid, see section 7.4 R20T05Q <u>Test setup:</u> see annex A: C217, R001, U005 Remark: Test security: Test securit	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Start frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 10 kHz Directional coupler + 0.0 dB Correction (average): 11.2 dBi DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks:
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -35dBc/4kHz 100-250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 R20T05Q Test result: Test result: Test result: Test result: Test passed	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Start frequency: 30 MHz Center frequency: 15.0045 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 1 bit Directional coupler + 0.0 dB Cavail cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBit Test antenna + 0.0 dB Atten. between HPA and feedhom + 0.0 dB Attenuation (U005) + 29.8 <
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -35dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -34+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition of DUT: operating condition 1, fmid, see section 7.4 R20T05Q Test setup: see annex A: C217, R001, U005 Remark: Test result: Test passed	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 11.2 dB DUT-Antenna (on-axis) + 11.2 dB Test antenna + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier in t
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 R20T0SQ Test result: Test result: Test result: Test result: Test result: Test passed	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction factor + 0.0 dB Quartical ble (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB Atten. between HPA and feedhom + 0.0 dB Atten. between HPA and feedhom + 0.0 dB TOTAL CORRECTION:
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -35dBc/4kHz 100-250% of assigned bw: -33+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 R20T05Q Test result: see section 8.1: 1.2hgj Test result: Test result: Test result: Test result: Test result: Test passed	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Start frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 11.2 dB Dur-Antenna (on-axis) + 11.2 dB Test antenna + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier in
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition of 1, fmid, see section 7.4 R20T05Q Test result: Test result: Test result: Test result: Test result: Test passed	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Center frequency: 15.0045 MHz Resolution-BW: 0 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Corraction (average): 0 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Corraction (average): 0 dB Dur-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB Worrection factor + 0.0 dB Atten.between HPA and feedhom + 0.0 dB Atten.uation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier in the middle of the band (fm) For EIRP calculation: <td< td=""></td<>
Limit Imit according to 25 202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -43+0log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition of DUT: operating condition 1, fmid, see section 7.4 R20T05Q Test setup: see section 8.1: 1.2hg; Test result: see annex A: C217, R001, U005 Remark: Test result: Test result: Test result: Test passed	Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 10 kHz Directional coupler + 0.0 dB Cosxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dB BW correction factor + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier in the middle of the band (fm) <u>For EIRP calculation:</u> 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.

Plot No. 69 (111)

25.202 f) emission limit 9k-1 M, fm / (25_202_2 fm_2.hgl)	
50 50 50 50 50 50 50 50 50 50 50 50 50 5	· · · · · · · · ·] · · · ·]
10/	
measured data	
limit	
-	
- Martine way when when when we want the second sec	un norther war and the man and the second and the second second second second second second second second second
9000	30M
Treque	У: -35.16
Δ — ×: 18.9033M	У: -13
∇-Δ ×: -1.59952M	y: -22.16
Subclause: 25.202 f) Frequencies, frequency tolerance and emission limitations Emission limitations	Environment condition: Date & Time: Wed 08/Oct/2014 14:22:33
Modulated rf-carrier in the middle of the band (fm)	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule.	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: 5 % Start frequency: 9 kHz Stop frequency: 15.0045 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated)	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: 5 % Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Input attenuation: 20 981 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold)
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 RST1X	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DIIT-Antena (on-avir) + 112 dBi
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 R5T1X Test setup: see section 8.1: 1.2hgj	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Start frequency: 30 MHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna + 0.0 dB BW correction factor + 0.0 dB
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz > 250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -3410log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 RST1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Coaxia Lable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhorm + 0.0 dB
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 RST1X Test equipment: see annex A: C217, R001, U005 Remark:	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 Start frequency: 30 MHz Stop frequency: 30 MHz Center frequency: 10 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 10 kHz Directional coupler + 0.0 dB Correction (average): 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier in the middle of the band (fm) For EIRP calculation:
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz > 250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 RST1X Test result: see annex A: C217, R001, U005 Remark: Test result: Test passed	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 kHz Stop frequency: 30 MHz Stop frequency: 10 MHz Center frequency: 15.0045 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB DUT-Antenna (on-axis) + 11.2 dBi B B BW correction factor + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier in the middle of the band (fm) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz > 250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: opperating condition 1, fmid, see section 7.4 R5T1X Test result: see annex A: C217, R001, U005 Remark: Test result: Test passed	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Input attenuation: 20.901 MHz Input attenuation: 20.0dB Resolution-BW: Video-Average: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + 0.0 dB Caxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Test antenna + 0.0 dB ToTAL CORRECTION: + 41.5 dB TOTAL CORRECTION: + 41.5
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz > 250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 R5T1X Test equipment: see annex A: C217, R001, U005 Remark: Test result: Test passed	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB Atten. between HPA and feedhorm + 0.0 dB Atten. between HPA and feedhorm + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier in the middle of the band (fm) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.
Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 R5T1X Test result: See section 8.1: 1.2hgj Test result: Test result: Test passed	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 kHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB Attenuation (u005) + 29.8 dB TOTAL CORRECTION: 41.5 dB Remarks: Carrier-on state / Carrier in the middle of the band (fm) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.
Limit: Limit according to 25.202 ft: 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fmid, see section 7.4 R5T1X Test result: Test passed	Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 kHz Stop frequency: 15.0045 MHz Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhom + 0.0 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier in the middle of the band (fm) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.

Plot No. 70 (111)

25.202 f) emission limit 9k-1M, fm / (25_202_2fm_3.hgl)	
50 50 50 50 50 50 50 50 50 50 50 50 50 5	
10/	
measured data	
limit -	
	Δ
+ -	
Log Musing Mulinen of Man and Marian	Emprovement when any more and the mark of the second secon
-50 []	
frequ	ency [Hz] 5M/
	y: -35.83
Δ ^ 18.5035M ∇-Δ ×: 849.745k	y: -13 y: -22.83
Subclause: 25.202 f) Frequencies, frequency tolerance and emission limitations Emission limitations Modulated rf-carrier in the middle of the band (fm) Limit: Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz 100-250% of assigned bw: -35dBc/4kHz >250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the above schedule. Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition of DUT: operating condition of DUT: see section 8.1: 1.2hg; Test setup: see annex A: C217, R001, U005 Remark: Test result: Test passed	Environment condition: Wed 08/Oct/2014 14:22:54 Date & Time: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C Humidity: 45 % Voltage: 24 Vdc Setup of measurement equipment: Start frequency: 9 KHz Stop frequency: 30 MHz Center frequency: 15.0045 MHz Input attenuation: 20 dB Resolution-BW: 10 KHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 10 Directional coupler + 0.0 dB Caxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB Atten. between HPA and feedhom + 0.0 dB Atten. between HPA and feedhom + 0.0 dB Atten. between HPA and feedhom + 0.0 dB Carrier-on state / Carrier in the middle of the band (fm) For EIRP calculation: + 41.5 dB Remarks: Carrier-on state / Carrier in the middle of the spectrum analyzer. Worst-case = maximum antenna gain Rather left

Plot No. 71 (111)

Plot No. 72 (111)

Plot No. 73 (111)

Plot No. 74 (111)

Plot No. 75 (111)

Plot No. 76 (111)

Plot No. 77 (111)

Plot No. 78 (111)

Plot No. 79 (111)

Plot No. 80 (111)

Plot No. 81 (111)

Plot No. 82 (111)

Plot No. 83 (111)

Plot No. 84 (111)

Plot No. 85 (111)

Plot No. 86 (111)

Plot No. 87 (111)

Plot No. 88 (111)

Plot No. 89 (111)

Plot No. 90 (111)

25.202 f) emission limit 9k-1M, fo / (25_202_2fo_2.hgl)			
50 50			
measured data			
limit			
	Δ		
	▽ -		
Caller and	when we we we we we we we we want when the		
9000	30M		
freque	oncy [Hz] 5M/		
	У: -34.66 V: -13		
∑-∆ ×: -847.876k	y: -21.66		
Published 25,002.0 Economics frequency talances and emission limitations	Environment condition		
Subbladse: 23.2021) Trequencies, incluency interface and emission immations Emission limitations Modulated ficarrige at the unper edge of the band (fn)	Date & Time: Wed 08/Oct/2014 14:20:44		
	Temperature: 22 °C		
Limit:	Voltage: 24 Vdc		
50-100% of assigned by: -25dBc/4kHz 100-250% of assigned by: -25dBc/4kHz	Start frequency:		
250% of assigned by: -43+10log(Pmax)dBc/4kHz = -43 dBW	Start trequency: 9 kHz Stop frequency: 30 MHz		
below the mean output power of the transmitter	Frequency span: 29.991 MHz		
in accordance with the above schedule.			
	Resolution-BW: 10 kHz		
Test results:	Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detoelse Mode: 2 Bee Deate (Maximum Hald)		
Test results: see plot (an explicit table was not generated)	Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold)		
Test results: see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4	Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Convict Data (C217) + 0.5 dP		
Test results: see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R5T1X	Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Text extreme + 0.0 dD		
Test results: see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R5T1X <u>Test setup:</u> see section 8.1: 1.2hgj	Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + 0.0 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB		
Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fhigh, see section 7.4 RST1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005	Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + 0.0 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten-uation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB		
Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fhigh, see section 7.4 R5T1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005 Remark:	Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 11.2 Bi Directional coupler + 0.0 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhorm + 0.0 dB Atten. between HPA and feedhorm + 41.5 dB Remarks: - - 41.5 dB		
Test results: see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R5T1X <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u> see annex A: C217, R001, U005 Remark:	Resolution-BW: 10 kHz Video-Average: 10 kHz Video-Average: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 11 Directional coupler Directional coupler + 0.0 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhorm + 0.0 dB Atten. between HPA and feedhorm + 41.5 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier at the upper edge of the band (fo) Errer For EIRP calculation: 'worst-case' = maximum antenna gain		
Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fhigh, see section 7.4 R5T1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005 Remark: Test result: Test passed	Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 10 kHz Directional coupler + 0.0 dB Correction (average): 11.2 dB Directional coupler + 0.0 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhorn + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier at the upper edge of the band (fo) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer		
Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fhigh, see section 7.4 RST1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005 Remark: Test result: Test passed	Resolution-BW: 10 kHz Video-Average: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 10 kHz Directional coupler + 0.0 dB Coaxia cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhorm + 0.0 dB Atten. between HPA and feedhorm + 0.0 dB Atten. between HPA and feedhorm + 1.5 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier at the upper edge of the band (fo) Erre EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.		
Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fhigh, see section 7.4 RST1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005 Remark: Test result: Test passed	Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 0 dB Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhorn + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier at the upper edge of the band (fo) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.		
Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fhigh, see section 7.4 RST1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005 Remark: Test result: Test passed	Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhorm + 0.0 dB Atten. between HPA and feedhorm + 0.0 dB Atten. between HPA and feedhorm + 41.5 dB Remarks: Carrier-on state / Carrier at the upper edge of the band (fo) <u>For EIRP calculation</u> : 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.		
Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fhigh, see section 7.4 RST1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005 Remark: Test result: Test passed	Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 0 dB Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhom + 0.0 dB Atten. between HPA and feedhom + 0.0 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier at the upper edge of the band (fo) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.		
Test results: see plot (an explicit table was not generated) Operating condition of DUT: operating condition 1, fhigh, see section 7.4 RST1X Test setup: see section 8.1: 1.2hgj Test equipment: see annex A: C217, R001, U005 Remark: Test result: Test passed	Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhorm + 0.0 dB Atten. between HPA and feedhorm + 0.0 dB Remarks: Carrier-on state / Carrier at the upper edge of the band (fo) <u>For EIRP calculation:</u> 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.		

Plot No. 91 (111)

23.202 I) 61113301 11111 3K-141, 10 / (23_202_210_3.11g1)	
10/	
measured data	
limit	
-	
	Δ
- Monthand Man March and March Mar March March M	Marken
-50	
9000 freque	30M 5M/
∇ — ×: 3.40798M	y: -34.33
Δ — ×: 13.6031M	У: -13
∇-Δ ×: -10.1951M	y: -21.33
<u>Subclause:</u> 25.202 f) Frequencies, frequency tolerance and emission limitations Emission limitations Modulated rf-carrier at the upper edge of the band (fo)	Environment condition: Date & Time: Wed 08/Oct/2014 14:21:09 Location: CETECOM ICT Services GmbH, Laboratory RSC-Sat Temperature: 22 °C
Limit:	Humidity: 45 % Voltace: 24 Vdc
Limit according to 25.202 f): 50-100% of assigned bw: -25dBc/4kHz	Setup of measurement equipment:
100-250% of assigned bw: -35dBc/4kHz > 250% of assigned bw: -43+10log(Pmax)dBc/4kHz = -43 dBW	Start frequency: 9 kHz Stop frequency: 30 MHz
The mean power of emissions shall be attenuated	Contor fraguaday: 15 0045 MHz
below the mean output power of the transmitter	Frequency span: 29.991 MHz
below the mean output power of the transmitter in accordance with the above schedule.	Frequency span: 29.91 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz
below the mean output power of the transmitter in accordance with the above schedule.	Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector:Mode: 2 Pos Pask (Maximum-Hold)
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) Operating condition of DUT:	Center Instruction: 13:0043 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Example: Example:
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R20T45X	Center Instruction: 10:00-50 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R20T45X <u>Test setup:</u>	Certee interuter(c). 10:00-5 Min2 Frequency span: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): 0.0 dB Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R20T45X <u>Test setup:</u> see section 8.1: 1.2hgj Test equipment:	Center insider(c). 10:00-5 Input attenuation: 20 Input attenuation: 20 Resolution-BW: 10 KHz 10 Video-BW: 10 Video-Average: 1 Sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + + 0.0 dB BUCT-Antenna (on-axis) + Test antenna + BW correction factor + + 0.0 dB Attenuber (HDR)
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R20T45X <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u> see annex A: C217, R001, U005	Center Instruction. 10:00-50 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Awerage: 10 kHz Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Atten. between HPA and feedhom + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R20T45X <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u> see annex A: C217, R001, U005 Remark:	Certer instruction 100045 Frequency span: 29.991 Input attenuation: 20 dB dB Resolution-BW: 10 kHz Video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Correction (average): Directional coupler + 0.0 dB DUT-Antenna (on-axis) + + 1.2 BW correction factor + + 0.0 BW correction factor + + 0.0 BW correction factor + + 0.0 BW correction factor + + 29.8 TOTAL CORRECTION: + + 41.5 Remarks: Carrier-on state / Carrier at the upper edge of the band (fo) For EIRP calculation: -
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R20T45X <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u> see annex A: C217, R001, U005 Remark: <u>Test result:</u> Test passed	Certer inside in Equation. 100045 Input attenuation: 20 Input attenuation: 20 Resolution-BW: 10 Klasse 10 Video-Average: 10 Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier at the upper edge of the band (fo) For EIRP calculation: 'worst-case' = maximum antenna gain Particular the application the application of the spectrum and particular care.
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R20T45X <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u> see annex A: C217, R001, U005 Remark: <u>Test result:</u> Test passed	Certee insequency. 100045 Frequency span: 29.991 Input attenuation: 20 dB dB Resolution-BW: 10 kHz Video-Awerage: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + video-axial cable (C217) + 0.0 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + + 0.0 BW correction factor + + 0.0 BW correction factor + + 0.0 BW correction factor + + 0.0 TOTAL CORRECTION: + + 41.5 B Remarks: Carrier-on state / Carrier at the upper edge of the band (fo) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the sp
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R20T45X <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u> see annex A: C217, R001, U005 Remark: <u>Test result:</u> Test passed	Certer inside inside in the upper edge of the band (fo) Frequency span: 29.991 Input attenuation: 20 dB Resolution-BW: 10 kHz Video-BW: 10 betector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Coaxial cable (C217) + + 0.0 DuT-Antenna (on-axis) + + 1.0 BW correction factor + + 0.0 BW correction factor + + 0.0 BTOTAL CORRECTION: + + 41.5 Bremarks: Carrier-on state / Carrier at the upper edge of the band (fo) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R20T45X <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u> see annex A: C217, R001, U005 Remark: <u>Test result:</u> Test passed	Certein Instruction, 10,0045 Input attenuation: 20 Resolution-BW: 10 Klasse 10 Video-Average: 10 Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + Directional coupler + 11:2 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11:2 dB Test antenna + 0.0 dB Atten. between HPA and feedhorn + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier at the upper edge of the band (fo) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R20T45X <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u> see annex A: C217, R001, U005 Remark: <u>Test result:</u> Test passed	Certer inside inside in the upper edge of the band (fo) Frequency span: 29.991 Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 10 video-Average: 1 sweep(s) (>1) Detector-Mode: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Correction (average): Directional coupler + 0.0 dB DUT-Antenna (on-axis) + 1.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Attenuation (U005) + 10 + VALL CORRECTION: + 41.5 dB Remarks: Carrier at the upper edge of the band (fo) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer.
below the mean output power of the transmitter in accordance with the above schedule. <u>Test results:</u> see plot (an explicit table was not generated) <u>Operating condition of DUT:</u> operating condition 1, fhigh, see section 7.4 R20T45X <u>Test setup:</u> see section 8.1: 1.2hgj <u>Test equipment:</u> see annex A: C217, R001, U005 Remark: <u>Test result:</u> Test passed	Center inside in Equation: 29.991 MHz Input attenuation: 20 dB Resolution-BW: 10 kHz Video-Average: 10 kHz Urdeo-Average: 2 Pos Peak (Maximum-Hold) Correction (average): Directional coupler + 0.0 dB Coaxial cable (C217) + 0.5 dB DUT-Antenna (on-axis) + 11.2 dBi Test antenna + 0.0 dB BW correction factor + 0.0 dB Attenuation (U005) + 29.8 dB TOTAL CORRECTION: + 41.5 dB Remarks: Carrier-on state / Carrier at the upper edge of the band (fo) For EIRP calculation: 'worst-case' = maximum antenna gain Rather left the plot shows the zero line of the spectrum analyzer. Rather left the plot shows the zero line of the spectrum analyzer.

Plot No. 92 (111)

Plot No. 93 (111)

Plot No. 94 (111)

Plot No. 95 (111)

Plot No. 96 (111)

Plot No. 97 (111)

Plot No. 98 (111)

Plot No. 99 (111)

Plot No. 100 (111)

Plot No. 101 (111)

Plot No. 102 (111)

Plot No. 103 (111)

Plot No. 104 (111)

Plot No. 105 (111)

Plot No. 106 (111)

Plot No. 107 (111)

Plot No. 108 (111)

Plot No. 109 (111)

Plot No. 110 (111)

Plot No. 111 (111)

Annex C Document history

Version	Applied changes	Date of release
	Initial release - DRAFT	2014-11-29
	FCC/IC ID changed	2014-12-08

Annex D Further information

<u>Glossary</u>

-	Average
-	Device under test
-	Electromagnetic Compatibility
-	European Standard
-	Equipment under test
-	European Telecommunications Standard Institute
-	Federal Communication Commission
-	Company Identifier at FCC
-	Hardware
-	Industry Canada
-	Inventory number
-	Not applicable
-	Positive peak
-	Quasi peak
-	Serial number
-	Software

Annex E Accreditation Certificate

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html