

Prediction of MPE and ERP/ EIRP

As to the TT-3711A BGAN satellite terminal made by Thrane & Thrane A/S, we declare that it complies with the Basic restrictions/Reference levels for electric, magnetic and electromagnetic fields as specified in the following standards for a minimum safety distance of **0.6 m**:

Nr.	Standard	Country/Region
1	47CFR FCC Part 1 (10-1-13 Edition)	USA
2	RSS-102 (Issue 4, March 2010)	Canada
3	EN 62311 / ICNIRP Guideline	EU
4	Radiocommunications (Electromagnetic Radiation-Human Exposure) Standard 2003	AUS/NZ

The compliance is demonstrated based on the following calculation model assessment:

1. The power density according to far-field model is:

$$S = \frac{PG}{4\pi R^2}$$

where:

- S = power density (in appropriate units, e.g. mW/cm2)
- P = power input to the antenna (in appropriate units, e.g., mW)
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator
- R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)
- 2. For single or multiple RF sources, the calculated power density should comply with the following:

$$\sum_{1}^{n} \frac{S_{eqn}}{S_{\lim n}} = \frac{S_{eq1}}{S_{\lim 1}} + \frac{S_{eq2}}{S_{\lim 2}} + \dots + \frac{S_{eqn}}{S_{\lim n}} \le 1$$

where:

 S_{eqn} = the power density when *f* is *i*. $S_{lim n}$ = the reference level requirement for power density when *f* is *i*

3. The calculation of the power density or safe distance is:

- Note 1 The RF exposure is based on the far-field and the radiation exposure is over-estimated.
- Note 2 The maximum output power level is taken into account as a worst case for the purpose of the calculation of power density or safe distance.
- Note 3 The minimum antenna feed cable loss (assumed no cable loss) is taken into account as a worst case for the purpose of the calculation of power density or safe distance
- Note 4 The maximum antenna radiation exposure orientation and maximum antenna gain is taken into account as a worst case for the purpose of the calculation of power density and safe distance.

Test report no.: 1-8390/14-01-07

Calculation for Inmarsat (frequency band 1626.5 – 1660.5 MHz):

S	$\leq \frac{P \cdot G (EIRP) \cdot t \cdot Dc}{4 \cdot \pi \cdot R^2} = 9.21 \text{ W/m}^2$
$\frac{S}{S_{time}}$	\leq 0.921 (less than 1, compliant)

Where:

S_{lim}

$EIRP(P \cdot G)$	=	33.11 W = 15.2 dBW (45.2 dBm) according to test report 1-8390/14-01-05
t	=	Tune up tolerance $(\pm 1.0 \text{ dB})$
Dc	=	
R	\geq	0.60 m
Slim	=	10 W/m^2

Calculation for WLAN (frequency band 2402 - 2483 MHz) :

S	≤	$\frac{P \cdot G (EIRP) \cdot t \cdot Dc}{4 \cdot \pi \cdot R^2} = 0.0080 \text{ W/m}^2$
<u>S</u> S _{lim}	≤	0.00080 (less than 1, compliant)

Where:

$EIRP(P \cdot G)$	=	0.029 W (14.6 dBm) according to test report 1-8390/14-01-09
t	=	Tune up tolerance $(\pm 1.0 \text{ dB})$
Dc	=	1:1
R	\geq	0.60 m
Slim	=	10 W/m^2

Declaration prepared by:

Thomas Vogler Professional Radio Communications & EMC