

Prediction of MPE limit at given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG / 4\pi R^2$$

where: S = Power density
 P = Power input to the antenna
 G = Antenna gain
 R = Distance to the center of radiation of the antenna

Solving this equation for G

$$G = S (4\pi R^2) / P$$

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled "Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure"

Frequency Range (MHz)	Power Density (mW/cm ²)	Averaging Time (minutes)
300 -1500	f/1500	30
1500 - 100000	1.0	30

where f = Frequency (MHz)

Based on the above table the limits are for

Part 24 device: 1 mW/cm²

Part 22 device: 0.567 mW/cm²

Prediction for Part 24:

P Max power input to the antenna: 24,65 dBm / 291,7 mW
 R Distance: 20 cm
 S MPE limit for uncontrolled exposure: 1 mW/cm²
 G Antenna gain: 1 numerical
 S @20cm: **0.058mW/cm2**

Prediction for Part 22:

P Max power input to the antenna: 26 dBm / 398,1 mW
 R Distance: 20 cm
 S MPE limit for uncontrolled exposure: 0.567 mW/cm²
 G Antenna gain: 1 numerical
 S @20cm: **0.0792mW/cm2**

This prediction demonstrates the following:

The device complies with the requirement of RF Exposure for both FCC Part 22 and FCC Part 24.