

Report No.: KES-RF-23T0011-R1 Page (1) of (19)

DFS TEST REPORT

Part 15 Subpart E 15.407 & RSS-247 (Issue 2)

Equipment under test
Model nameFlat Panel Digital X-ray Detector
EVS 4343WDerivative ModelEVS 3643W, EVS 4343WP,
EVS 3643WPFCC IDRNH-EVS4343WFCC ID29808-EVS4343WIC ID29808-EVS4343WApplicantDRTECH CorporationManufacturerDRTECH CorporationDate of test(s)2022.09.01 ~ 2022.09.30Date of issue2023.03.08

Issued to DRTECH Corporation

Suite No.1, 2Floor / Suite No.2, 3Floor, 29, Dunchon-daero 541 beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do, 13216, Republic of Korea Tel: +82-31-779-7784 Fax : +82-31-779-7790

> Issued by KES Co., Ltd.

3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Kore 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
	Jacob Contraction of the second secon
Bong-Seok, Kim	Yeong-Jun, Cho
Test engineer	Technical manager

This test report is not related to KS Q ISO/IEC 17025 and KOLAS

Report No.: KES-RF-23T0011-R1 Page (2) of (19)

Revision history

Revision	Date of issue	Test report No.	Description
-	2022.01.09	KES-RF-23T0011	Initial
R1	2023.03.08	KES-RF-23T0011-R1	Change applicant's address

Report No.: KES-RF-23T0011-R1 Page (3) of (19)

TABLE OF CONTENTS

1.	General	information	4
	1.1.	EUT description	4
	1.2.	Test configuration	5
	1.3.	Information about derivative model	6
	1.4.	Accessory information	6
	1.5.	Sample calculation	6
	1.6.	Measurement Uncertainty	6
	1.7.	Application for Testing	6
	1.8.	Frequency/channel operations	7
3. D	FS (Dyna	amic Frequency Selection) test description	9
	3.1.	Applicability	9
	3.2.	Requirements	10
	3.3.	DFS Detection Thresholds	11
	3.4.	Parameters of DFS Test Signals	12
4. Te	est results	5	13
	4.1. DFS	S (Dynamic Frequency Selection)	13
	4.1.1	Radar waveform	14
	4.1.2	LAN Traffic	15
	4.1.3	Channel move time & aggregate channel closing transmission time	16
	4.1.4	Non-occupancy period	18
App	endix A.	Measurement equipment	19

1. General information

Applicant:	DRTECH Corporation		
Applicant address:	Suite No.2, 1Floor / Suite No.2, 3Floor, 29, Dunchon-daero 541 beon-gil,		
	Jungwon-gu, Seongnam-si, Gy	eonggi-do, 13216, Republic of F	Korea
Test site:	KES Co., Ltd.		
Test site address:	3701, 40, Simin-daero 365b	eon-gil, Dongan-gu, Anyang-si,	
	Gyeonggi-do, 14057, Korea		
	X473-21, Gayeo-ro, Yeoju-si	Gyeonggi-do, Korea	
Test Facility	FCC Accreditation Designation No.: KR0100, Registration No.: 444148		
	ISED Registration No.: 23298		
FCC,IC rule part(s):	FCC: 15.407 / IC: RSS-247		
FCC ID:	RNH-EVS4343W		
IC ID:	29808-EVS4343W		
Test device serial No.:	Production	Pre-production	Engineering

1.1. EUT description

Equipment under test	Flat Panel Digital X-ray Detector
Frequency range	2 412 MHz ~ 2 462 MHz (11b/g/n_HT20)
	2 422 MHz ~ 2 452 MHz (11n_HT40)
UNII-1	5 180 Mz ~ 5 240 Mz (11a/an_VHT20/ac_VHT20)
	5 190 Mz ~ 5 230 Mz (11an_VHT40/ac_VHT40)
	5 210 Mz (11ac_VHT80)
UNII-2A	5 260 Mz ~ 5 320 Mz (11a/an_VHT20/ac_VHT20)
	5 270 Mz ~ 5 310 Mz (11an_VHT40/ac_VHT40)
	5 290 Mz (11ac_VHT80)
UNII-2C	5 500 MHz ~ 5 700 MHz (11a/an_VHT20/ac_VHT20)
	5 510 Mz ~ 5 670 Mz (11an_VHT40/ac_VHT40)
	5 530 Mz ~ 5 610 Mz (11ac_VHT80)
UNII-3	5 745 Mz ~ 5 825 Mz (11a/an_VHT20/ac_VHT20)
	5 755 Mz ~ 5 795 Mz (11an_VHT40/ac_VHT40)
	5 775 Mz (11ac_VHT80)
Model	EVS 4343W
Modulation technique	OFDM

Number of channels	2 412 MHz ~ 2 462 MHz (11b/g/n_HT20) : 11ch
	2 422 MHz ~ 2 452 MHz (11n_HT40) : 7ch
UNII-1	5 180 Młz ~ 5 240 Młz (11a/an_VHT20/ac_VHT20) : 4ch
	5 190 MHz ~ 5 230 MHz (11an_VHT40/ac_VHT40) : 2ch
	5 210 Mtz (11ac_VHT80) : 1ch
UNII-2A	5 260 Mz ~ 5 320 Mz (11a/an_VHT20/ac_VHT20) : 4ch
	5 270 Mz ~ 5 310 Mz (11an_VHT40/ac_VHT40) : 2ch
	5 290 Mtz (11ac_VHT80) : 1ch
UNII-2C	5 500 MHz ~ 5 700 MHz (11a/an_VHT20/ac_VHT20) : 11ch
	5 510 Mz ~ 5 670 Mz (11an_VHT40/ac_VHT40) : 5ch
	5 530 MHz ~ 5 610 MHz (11ac_VHT80) : 2ch
UNII-3	5 745 Mtz ~ 5 825 Mtz (11a/an_VHT20/ac_VHT20) : 5ch
	5 755 Młz ~ 5 795 Młz (11an_VHT40/ac_VHT40): 2ch
	5 775 Mtz (11ac_VHT80) : 1ch
Antenna specification	ANT1/2 : PCB Antenna
Antonno Coin(SISO)	2.4 GHz band : -5.6 dBi
Antenna Gam(SISO)	5 GHz band : UNII-1 ,UNII-2A : 0.7 dBi / UNII-2C, UNII-3 : 0.5 dBi
Antonno Coin(MIMO)	2.4 GHz band : -2.6 dBi
	5 GHz band : UNII-1 ,UNII-2A : 3.7 dBi / UNII-2C, UNII-3 : 3.5 dBi
Power source	DC 7 V (Battery)
H/W version	0.3
S/W version	2207292b

1.2. Test configuration

The DRTECH Corporation // Flat Panel Digital X-ray Detector // EVS 4343 W //

FCC ID: RNH-EVS4343W // IC ID:29808-EVS4343W was tested according to the specification of EUT,

the EUT must comply with following standards and KDB documents.

FCC Part 15.407 ISED RSS-247 Issue 2 and RSS-Gen Issue 5 KDB 905462 D02 v02 ANSI C63.10-2013

1.3. Information about derivative model

Model name	Remark
EVS3643W	
EVS 4343WP	There is no difference in circuitry between the basic model and the multi-model. Addition of variant models for marketing purposes only.
EVS 3643WP	

1.4. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
Battery Charger	DRETECH Corporation	EVS-BCS	HH220401935	DC 8.4 V
AC Adpater	XP Power	AHM85PS12	V21290190	AC 120 V

1.5. Sample calculation

Where relevant, the following sample calculation is provided For all conducted test items :

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 1.52 + 10 = 11.52 (dB)

For Radiation test :

Field strength level $(^{dB}\mu / m) =$ Measured level $(^{dB}\mu / m) +$ Antenna factor $(^{dB}) +$ Cable loss $(^{dB}) -$ Amplifier gain $(^{dB})$

1.6. Measurement Uncertainty

Test Item		Uncertainty
Uncertainty for Conduction emission test		2.38 dB (SHIELD ROOM #6)
Uncertainty for Radiation emission test (include Fundamental emission)	Below 1 GHz	4.50 dB (SAC #6)
	Above 1 GHz	4.90 dB (SAC #5)
Note. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence		
level using a coverage factor of k=2.		

1.7. Application for Testing

Application Name	Version
REALTEK 11n 8188EUS USB WLAN NIC Massproduction kit	0.28.119.2010

1.8. **Frequency/channel operations**

Ch.	Frequency (Mbz)	Mode
1	2 412	802.11b/g/n_HT20
•	•	
6	2 437	802.11b/g/n_HT20
•	•	
11	2 462	802.11b/g/n_HT20

Ch.	Frequency (Mb)	Mode
3	2 422	802.11n_HT40
•		
6	2 437	802.11n_HT40
9	2 452	802.11n_HT40

UNII-1

```
UNII-2C
```

```
UNII-3
```

Ch.	Frequency (MHz)
36	5 180
44	5 220
48	5 240

Ch.	Frequency (Mz)
52	5 260
56	5 280
64	5 320

Ch.	Frequency (Mz)
100	5 500
120	5 600
140	5 700

Ch.	Frequency (Mb)
149	5 745
157	5 785
165	5 825

802.11a/an_VHT20/ac_VHT20 mode

Ch.	Frequency (Mb)
38	5 190
46	5 230

UNII-2A	
Ch.	Frequency (MLz)
54	5 270
62	5 310

Ch.	Frequency (Mz)
102	5 510
118	5 590

5 670

UNII-2C

UNII-3

Ch.	Frequency (MHz)
151	5 755
159	5 795

802.11an_VHT40/ac_VHT40 mode

134

UNII-2A

UNII-2C

UNII-3

Ch.	Frequency (MHz)		Ch.	Frequency (Mz)		Ch.	Frequency (Mz)	Ch.	Frequency (MLz)
42	5 210		58	5 290		106	5 530	155	5 775
		_			_	122	5 610		

802.11ac_VHT80 mode

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact kes@kes.co.kr.

2. Summary of tests

Section in FCC Part 15	Section in RSS-247 & Gen	Parameter	Test results
		Channel Move Time	Pass
15.407	RSS-247	Channel Closing Transmission Time	Pass
(II)(III)(IV)	0.5	Im Parameter T & Gen Channel Move Time K7 Channel Closing Transmission Time Non-Occupancy Period Image: Channel Closing Transmission Time	Pass

3. DFS (Dynamic Frequency Selection) test description

3.1. Applicability

The following table from KDB 905462 D02 v02 lists the applicable requirements for the DFS testing. The device evaluated in this report is considered a client device without radar detection capability.

Requirement	Operational M	ode	
	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2.1. DFS Applicability

Requirement	Operation	nal Mode
	Master Device or Client with Radar Detection	Client Without Radar Detection
DFS Detection Threshold	Yes	Not required
Channel Closing Transmission Time	Yes	Yes
Channel Move Time	Yes	Yes
U-NII Detection Bandwidth	Yes	Not required
Non-Occupancy Period	NA/Yes	Yes

Additional requirements for	Master Device or Client with	Client Without Radar Detection
devices with multiple	Radar Detection	
U-NII Detection Bandwidth and	All BW modes must be tested	Not required
statistical Performance Check		
Channel Move Time and Channel	Test using widest BW mode	Test using the widest BW mode
Closing Transmission Time	available	available for the link
All other tests	Any single BW mode	Not required
Note: Frequencies selected for statis	stical performance check (Section 7.8	3.4) should include several
frequencies within the radar d	etection bandwidth and frequencies n	ear the edge of the radar detection
bandwidth, For 802.11 device	s it is suggested to select frequencies	in each of the bonded 20 MHz

channels and the channel center frequency.

Table 2.2. DFS Applicability During normal operation

3.2. Requirements

KDB 905462 D02 v02 the following are the requirements for Client Devices:

- a) A Client Device will not transmit before having received appropriate control signals from a Master Device.
- b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements. The Client Device will not resume any transmissions until it has again received control signals from a Master Device.
- c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.
- d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.
- e) The client test frequency must be monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shutdown (rather than moving channels), no beacons should appear

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	Aggregate of 60 milliseconds over remaining 10
	second period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission
	power bandwidth. See Note3.
Note 1. Channel Marso Times and the Channel Classing	The second second second and the second south Deday

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (and aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should the used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 2.3. DFS Response Requirement Values

3.3. DFS Detection Thresholds

The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring. These detection Thresholds are listed in the following table.

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
$EIRP \ge 200 milliwatt$	-64 dBm
EIRP< 200 milliwatt and	62 dBm
Power spectral density < 10 dBm/MHz	-02 dbm
EIRP < 200 milliwatt that do not meet the power spectral	64 dBm
density requirement	
Note 1: This is the level at the input of the receiver assuming a 0 of	dBi receive antenna.
Note 2: Throughout these test procedures an additional 1 dB has b	been added to the amplitude of the test
transmission waveforms to account for variations in measurement	equipment. This will ensure that the test
signal is at or above the detection threshold level to trigger a DFS	respons.
Note 3: EIRP is based on the highest antenna gain. For MIMO de	vices refer to KDB Publication 662911
D01	

Table 2.4. DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

3.4. Parameters of DFS Test Signals

As the EUT is a Client Device with no Radar Detection only Zero type radar pulse is required for the testing. Radar Pulse type 0 was used in the evaluation of the Client device for the purpose of measuring the channel Move Time and the Channel Closing Transmission Time.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Mnimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup: {(1/360)*(19*10 ⁶ PRI μsec)}	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	(Radar Types			80%	120
Note 1: Sho	ort Pulse Rad	lar Type 0 should be used for ts.	or the detection bandw	vidth test, channel r	nove time, and

 Table 2.5. Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Trials
5	50-100	5-20	1000- 2000	1-3	8-20	80%	30

Table 2.6. Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses Per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	9	0.333	300	70%	30
		TT 1 1 0 7 1		· D 1 T	NY C		

Table 2.7. Frequency Hopping Radar Test Waveform

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

The authenticity of the test report, contact kes@kes.co.kr.

4. Test results4.1. DFS (Dynamic Frequency Selection)

Test setup

Figure 1: Conducted Test Setup for DFS

Test procedure

KDB 905462 D02 v02 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 1 shows the typical test setup.

- 1. One frequency will be chosen from the Operating Channels of the UUT within the 5250 ~5350 M b or 5470 ~5725 M bands.
- 2. The Client Device (EUT) is setup per the diagram in Firure1 and communications between the Master device and the Client is established.
- 3. An MPEG or data file that is typical for the device is streamed from the Master to the Client to properly load the network.

4.1.1 Radar waveform

Mode:

802.11a (UNII-2C)

5 500 MHz

Operating frequency:

Mode:

802.11ac_VHT80 (UNII-2C)

Operating frequency:

5 530 MHz

4.1.2 LAN Traffic

Mode:

802.11a (UNII-2C)

5 500 MHz

Operating frequency:

Mode:

802.11ac_VHT80 (UNII-2C)

Operating frequency:

5 530 MHz

4.1.3 Channel move time & aggregate channel closing transmission time

Mode:		

802.11a (UNII-2C) 5 500 MHz

Operating frequency:

Spectrur	n 2 Y	Spectrum 🛞					₩
Ref Leve	0.00 dBm	🖷 RBN	V 3 MHz				
Att	10 dB	. SWT 10 s . VBY	N 3 MHz				
GGL							
1Pk Clrw							
				D3[1]			0.38 dB
10 40 m						5	11.855 ms
10 UBIII-	M1 D3			M1[1]		-1	17.73 dBm
HALID						1	.128751 9
E der							
					-		
it dêr						+ +	
E dêr							
	ALL DURING	A Loldow Series and Inde Lock Street State	and the state of t	المروار والجار والارد والاردم وطورون	and the second states and	In an attended on the second	and the second states of the
ETTOTALEMENT							
70 d9m							
/o ubm							
80 dBm—							
90 dBm—							
CF 5.5 GH	z		32001 pt	s			1.0 s/
arker							
Type Re	f Trc	Stimulus	Response	Function	Fur	nction Result	
N1	1	1.128751 s	-17.73 dBm				
N2	1	1.328751 s	-62.75 dBm				
D3 I	1 1	511.855 ms	0.38 dB				

Channel closing transmission time calculated	Test results
Sweep time[S] sec	10
Sampling bins[B]	32001
Number of sampling bins in 10 sec[N]	1
Closing transmission time [C] ms	0.312

Channel move time (s)	Limit
0.512	$\leq 10 \text{ s}$

Note:

Dwell = S/B;

Where **dwell** is the dwell time per spectrum analyzer sampling bin, **S** is the sweep time and **B** is the number of spectrum analyzer sampling bins.

An upper bound of the aggregate duration of the channel closing transmission time is calculated by:

 $C = N \times Dwell;$

Where C is the closing time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and dwell is the dwell time per bin.

Dwell = [S] / [B] = 10 / 32001 = 0.000312

Closing Transmission Time[C] = $[N] \times [Dwell] = 1 \times 0.000312 = 0.000312 s = 0.312 ms$

Report No.: KES-RF-23T0011-R1 Page (17) of (19)

802.11ac_VHT80 (UNII-2C)

5 530 MHz

Operating frequency:

Mode:

opoor	rum	2	Spectrum 🛞				9
Ref L	evel	0.00 dBm	👄 RBV	V 3 MHz			
Att		10 dB	. SWT 10 s . VB	N 3 MHz			
SGL							
1Pk C	lrw						
					D3[1]		0.61 0
							511.875 n
10 aBr	n	M1 D3			M1[1]		-14.75 dB
in di	140 0	1111					1.268751
50 L L	• ••••						
		Malli	a second damage and a second	have been a feature three to	and the second		the second state of the se
8.0.4191	HINT.	L. With the second	where the other sectors where all a re-	All the second se	design of the second second	Continue de la	er an eine eine eine eine eine eine eine e
70 dBr	m						
	~						
ou ubi							
an dBr							
90 dBr				22001 pt			100
90 dBr	2 01-2			0200100	2		1.0 5,
90 dBr	3 GHz						
90 dBr CF 5.5 Iarker	3 GHz	Tro	Stimulus	Pernonse	Function	Eur	oction Result
90 dBr CF 5.5 larker Type	3 GHz Ref	Trc	Stimulus	Response	Function	Fur	nction Result
90 dBr F 5.5 larker Type N1 N2	3 GHz Ref	Trc 1	Stimulus 1.268751 s 1.468751 s	Response -14.75 dBm -61.15 dBm	Function	Fur	nction Result

Channel closing transmission time calculated	Test results
Sweep time[S] sec	10
Sampling bins[B]	32001
Number of sampling bins in 10 sec[N]	1
Closing transmission time [C] ms	0.312

Channel move time (s)	Limit		
0.512	$\leq 10 \text{ s}$		

Note:

Dwell = S/B;

Where **dwell** is the dwell time per spectrum analyzer sampling bin, **S** is the sweep time and **B** is the number of spectrum analyzer sampling bins.

An upper bound of the aggregate duration of the channel closing transmission time is calculated by: $C = N \times Dwell;$

Where C is the closing time, N is the number of spectrum analyzer sampling bins showing a U-NII transmission and dwell is the dwell time per bin.

Dwell = [S] / [B] = 10 / 32001 = 0.000312

Closing Transmission Time[C] = [N] × [Dwell] = $1 \times 0.000312 = 0.000312 \text{ s} = 0.312 \text{ ms}$

4.1.4 Non-occupancy period

Mode:

802.11a (UNII-2C)

5 500 MHz

Operating frequency:

Spectrum 2 Spectrum	×			
Ref Level 0.00 dBm	RBW 3 MHz			
Att 10 dB 🖷 SWT 2200	🛯 🔵 🕶 🖉 🖷 📟			
SGL				
1Pk Clrw				
		D2[1]		-43.64 d
10 d8m				1800.000
10 dBill M1		M1[1]		-16.22 dBr
20 dBm				226.800
30 dBm				
40 dBm				
50 dBm				
				D2
60 dBm	hente - ogie de send antalas bestatut. April ins	- and the second se		unterdate level in bing black eather de
/U dBm				
90 dBm				
oo dam				
90 dBm				
CF 5.5 GHz	8001 pt	s		220.0 s/
larker				
Type Ref Trc Stimulus	Response	Function	Functio	on Result
N1 1 226	8 s -16.22 dBm			
D2 N1 1 1.	ks -43.64 dB			

Mode:

802.11ac_VHT80 (UNII-2C)

5 530 MHz

Operating frequency:

Spectr	um :	2 .	Spectrum 🛞					
Ref Le Att SGL	evel (0.00 dBm 10 dB	● R ● SWT 2200 s ● V	BW 3 MHz BW 3 MHz				
●1Pk Clr	W							
-10 dBm	M1				D2[1] M1[1]			-47.77 dB 1800.000 s -12.29 dBm 205.072 s
-30 dBm	_							
-40 dBm	+							
-50 dBm						1.000		D2
-70 dBm								
-80 dBm	+							
-90 dBm				0001 at				800 0 - <i>(</i>
GF 3.33	GHZ			8001 pt:	5			220.0 \$7
Type N1	Ref	Trc 1	Stimulus 205.072 s	Response -12.29 dBm	Function	-	Function I	Result
D2	N1	1	1.8 ks	-47.77 dB		Beadu		444

Appendix A.	Measurement equipment
-------------	-----------------------

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV3044	101272	1 year	2023.03.14
MXG Vector SIGNAL GENERATOR	AGILENT	N5182A	MY50143829	1 year	2023.01.14
Attenuator	HP	30dB ATTENUATOR	3318A05137	1 year	2023.01.14
Attenuator	SRT	F04-H930-01	17041002	1 year	2023.01.14
Attenuator	Mini-Circuits	BW-S10-2W263+	2	1 year	2023.01.17
Attenuator	Mini-Circuits	BW-S10-2W263+	3	1 year	2023.01.17
Splitter	MINI-CIRCUITS	ZFSC-2-10G+	FG63701930-1	1 year	2023.06.16
Splitter	MINI-CIRCUITS	ZFSC-2-10G+	FG63701930-2	1 year	2023.06.16

Peripheral devices

Device	Manufacturer	Model No.	Serial No.	Note.
Access Point (Master)	Cisco system Inc.	AIR-RM3000AC-A-K9	-	FCC ID: LDK102086
Notebook computer	LG Electronics Inc.,	LGS53	306QCZP560949	Notebook computer