TEST REPORT

DT&C Co., Ltd.

42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664

1. Report No: DRTFCC1704-0062

 $\overline{\mathbf{D}}$ Dt&C

- 2. Customer
 - Name : DRTECH Corporation
 - Address : Suite No.2, 3 Floor, 29, Dunchon-daero 541beon-gil Seongnam-si, Gyeonggi-do, Republic of Korea
- 3. Use of Report : FCC Original Grant
- 4. Product Name / Model Name : Flat Panel Digital X-ray Detector / EVS 2430Wi FCC ID : RNH-EVS2430WI
- 5. Test Method Used : KDB 558074, ANSI C63.10-2013

Test Specification : FCC Part 15 Subpart C.247

- 6. Date of Test : 2016.12.26 ~ 2017.02.10
- 7. Testing Environment : See appended test report.
- 8. Test Result : Refer to the attached test result.

Affirmation	Tested by		Technical Manager	
	Name : JungWoo Kim	dure)	Name : HyunSu Son	(Stature)
. The resu	Its shown in this test report refer only to	the sam	ple(s) tested unless otherwi	se stated. This Test
	Report cannot be re	eproduce	ed, except in full.	
	1			
	2017	. 04 .	24.	
			к	, 6
	DT&C	Co.	., Ltd.	

If this report is required to confirmation of authenticity, please contact to report@dtnc.net

Test Report Version

Test Report No.	Date	Description
DRTFCC1704-0062	Apr. 24, 2017	Initial issue

Table of Contents

1. EUT DESCRIPTION
2. INFORMATION ABOUT TESTING
2.1 Test mode5
2.2 Auxiliary equipment5
2.3 Tested environment5
2.4 EMI suppression Device(s) / Modifications5
2.5 Measurement Uncertainty6
3. SUMMARY OF TESTS 6
4. TEST METHODOLOGY
4.1 EUT configuration7
4.2 EUT exercise7
4.3 General test procedures7
4.4 Description of test modes7
5. INSTRUMENT CALIBRATION
6. FACILITIES AND ACCREDITATIONS
6.1 Facilities
6.2 Equipment8
7. ANTENNA REQUIREMENTS
8. TEST RESULT
8.1 6dB bandwidth9
8.2 Maximum peak conducted output power26
8.3 Maximum power spectral density30
8.4 Out of band emissions at the band edge / conducted spurious emissions
8.5 Radiated spurious emissions112
8.6 Power-line conducted emissions119
8.7 Occupied Bandwidth 122
9. LIST OF TEST EQUIPMENT 123
APPENDIX I
APPENDIX II

1. EUT DESCRIPTION

FCC Equipment Class	Digital Transmission System(DTS)
Product	Flat Panel Digital X-ray Detector
Model Name	EVS 2430Wi
Add Model Name	EVS 2430GWi
Software version	0.0.07
Hardware version	EVS_2430W V0.1
Serial Number	Identical prototype
Power Supply	DC 7.4 V
Frequency Range	• 802.11b/g/n(20 MHz) : 2412 MHz ~ 2462 MHz • 802.11n(40 MHz) : 2422 MHz ~ 2452 MHz
Modulation Type	• 802.11b/g: CCK, DSSS • 802.11n: OFDM
Transmissions category	Completely uncorrelated signal
	Antenna type: Internal Antenna
	Antenna gain
	 2.4 GHz Band: ANT 1 : -5.50 dBi & ANT 2 : -5.50 dBi
Antenna Specification	Antenna configuration
	 802.11b/g: Single Transmitting (ANT 1 or ANT 2)
	 802.11n(MCS 0 ~ 7): Single Transmitting (ANT 1 or ANT 2)
	 802.11n(MCS 8 ~ 15): Multiple Transmitting (ANT 1 and ANT 2)

2. INFORMATION ABOUT TESTING

2.1 Test mode

Test	Worst case data rate	Tested Frequency(MHz)					
mode		Lowest	Middle	Highest			
TM 1	802.11b 1 Mbps	2412	2437	2462			
TM 2	802.11g 6 Mbps	2412	2437	2462			
ТМ 3	802.11n(HT20) MCS 8	2412	2437	2462			
TM 4	802.11n(HT40) MCS 8	2422	2437	2452			

Note 1: The worst case data rate is determined as above test mode according to the power measurements. And radiated spurious emission was performed at the worst case data rate.

2.2 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
Notebook	Compaq 6530b	CNU8313PMW	HP	-
-	-	-	-	-

2.3 Tested environment

Temperature	: 22 ~ 25 °C
Relative humidity content	: 42 ~ 48 % R.H
Details of power supply	: DC 7.4 V

2.4 EMI suppression Device(s) / Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

2.5 Measurement Uncertainty

Test items	Measurement uncertainty
Transmitter Output Power	0.71 dB (The confidence level is about 95 %, $k = 2$)
Conducted spurious emission	0.94 dB (The confidence level is about 95 %, $k = 2$)
AC conducted emission	2.4 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (1 GHz Below)	5.1 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (1 GHz ~ 18 GHz)	5.4 dB (The confidence level is about 95 %, k = 2)
Radiated spurious emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, $k = 2$)

3. SUMMARY OF TESTS

FCC Part	RSS Std.	Parameter	Limit	Test Condition	Status Note 1		
15.247(a)	RSS-247 [5.2]	6 dB Bandwidth	> 500 kHz		С		
15.247(b)	RSS-247 [5.4]	Transmitter Output Power	< 1 Watt		С		
15.247(d)	RSS-247 [5.5]	Out of Band Emissions / Band Edge	20 dBc in any 100 kHz BW	Conducted	с		
15.247(e)	RSS-247 [5.2]	Transmitter Power Spectral Density	< 8 dBm/3 kHz		с		
-	RSS-Gen [6.6]	ccupied Bandwidth (99 %) RSS-Gen(6.6)			NA		
15.247(d) 15.205 15.209	RSS-247 [5.5] RSS-GEN [8.9] RSS-GEN [8.10]	Radiated	C Note 2				
15.207	RSS-Gen [8.8] AC Line Conducted Emissions FCC 15.207 limits				С		
15.203	-	Antenna Requirements	FCC 15.203	-	С		
	Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable Note 2: This test item was performed in each axis and the worst case data was reported.						

4. TEST METHODOLOGY

Generally the tests were performed according to the KDB558074 v04, KDB662911 D01 v02r01 And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing

4.1 EUT configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT exercise

The EUT was operated in the test mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

4.3 General test procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB 558074. So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector

Radiated Emissions

Basically the radiated tests were performed with KDB 558074. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10 as stated on section 12.1 of the KDB 558074.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the highest emission, the relative positions of the EUT were rotated through three orthogonal axes.

4.4 Description of test modes

The EUT has been tested with all modes of operating conditions to determine the worst case emission characteristics. A test program is used to control the EUT for staying in continuous transmitting mode.

5. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

6. FACILITIES AND ACCREDITATIONS

6.1 Facilities

The open area test site(OATS) or semi anechoic chamber and conducted measurement facility used to collect the radiated and conducted test data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 449-935. The site is constructed in conformance with the requirements.

- Semi anechoic chamber registration Number: 165783

6.2 Equipment

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, loop, horn. Spectrum analyzers with pre-selectors and peak, quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

7. ANTENNA REQUIREMENTS

7.1 According to FCC 47 CFR §15.203

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The internal antennas of this EUT are permanently attached using the unique connectors. Therefore this module complies with the requirement of §15.203.

7.2 Directional antenna gain(worst case):

Bands	ANT 1 [dBi]	ANT 2 [dBi]	Directional Gain [dBi]
2.4 GHz	-3.60	-5.50	-4.447 Note 2.

Note 1. Directional gain(correlated signal with unequal antenna gain and equal transmit power) $10 \log \left[(10^{G_1/20} + 10^{G_2/20} + ... + 10^{G_N/20})^2 / N^{ANT} \right] dBi$

Note 2. Directional gain(completely uncorrelated signal with unequal antenna gain and equal transmit power) $10 \log \left[\left(10 \frac{G_1}{10} + 10 \frac{G_2}{10} + ... + 10 \frac{G_N}{10} \right) / N^{ANT} \right] dBi$

Note 3. Directional gain(spatial multiplexing) *G*_{ANT MAX} + 10 log (N_{ANT} / N_{SS}) dBi

8. TEST RESULT

8.1 6dB bandwidth

■ Test Requirements and limit, §15.247(a) & RSS-247 [5.2]

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Refer to the APPENDIX I.

Test Procedure:

The transmitter output is connected to the Spectrum Analyzer and used following test procedure of KDB558074

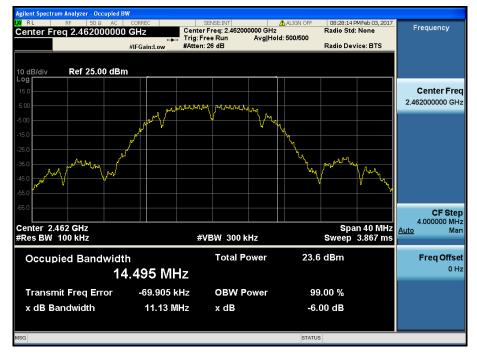
- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 x RBW. (RBW : 100 kHz / VBW : 300 kHz)
- 3. Detector = **Peak**.
- 4. Trace mode = **Max hold**.
- 5. Sweep = Auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Results: Comply

Test Mode	Fraguanay	Test Results[MHz]			
iest mode	Frequency	ANT 1	ANT 2		
	Lowest	10.180	11.080		
TM 1	Middle	10.190	10.180		
	Highest	11.130	12.070		
	Lowest	15.950	16.290		
TM 2	Middle	16.290	16.080		
	Highest	16.090	15.930		
	Lowest	16.350	16.130		
ТМ 3	Middle	16.380	16.550		
	Highest	16.400	16.330		
	Lowest	35.240	35.260		
TM 4	Middle	35.240	35.240		
	Highest	35.240	35.250		

RESULT PLOTS

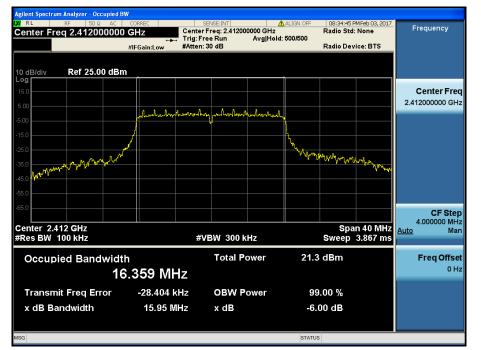
6 dB Bandwidth


6 dB Bandwidth

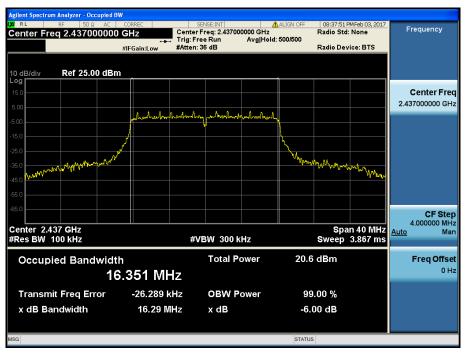
TDt&C

6 dB Bandwidth

TM 1 & ANT 1 & Highest


Middle

&

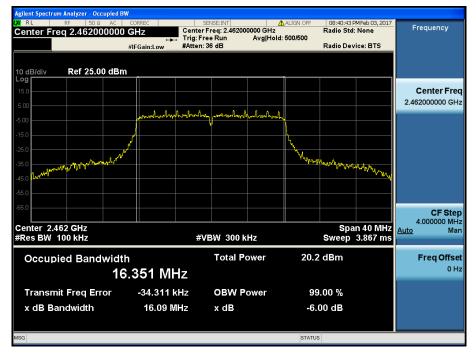

6 dB Bandwidth

🛈 Dt&C

TM 2 & ANT 1 & Lowest

6 dB Bandwidth

TM 2

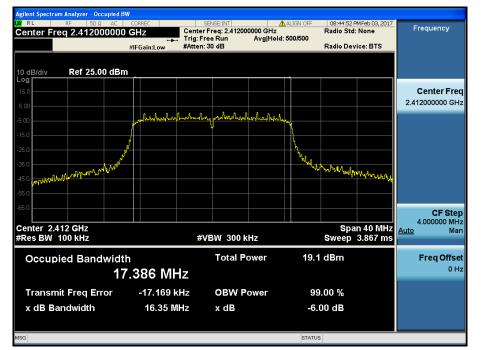

&

ANT 1

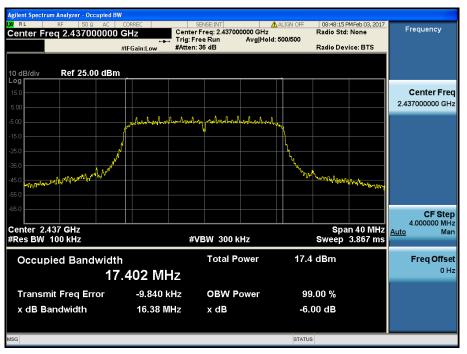
TDt&C

6 dB Bandwidth

TM 2 & ANT 1 & Highest



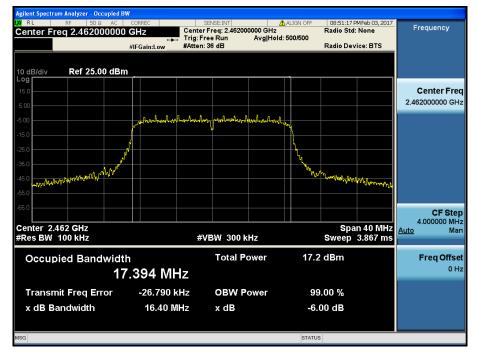
6 dB Bandwidth


🛈 Dt&C

TM 3 & ANT 1 & Lowest

& Middle

6 dB Bandwidth

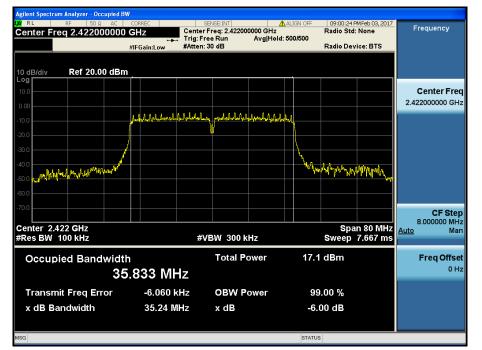

TM 3

&

ANT 1

6 dB Bandwidth

TM 3 & ANT 1 & Highest

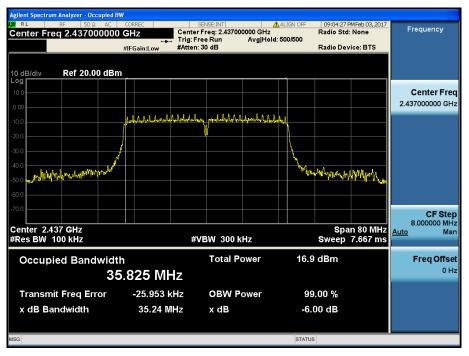

Middle

&

6 dB Bandwidth

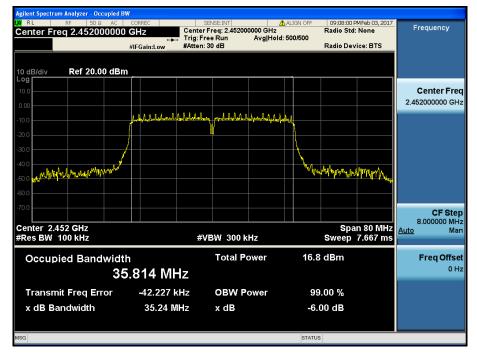
🛈 Dt&C

TM 4 & ANT 1 & Lowest



TM 4

&

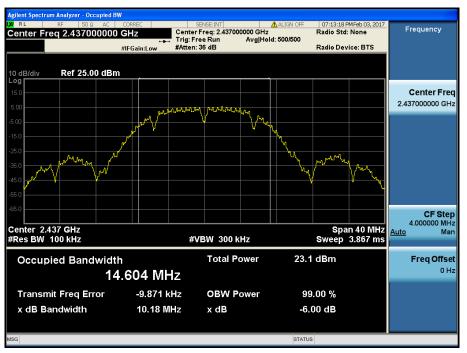

ANT 1

6 dB Bandwidth

6 dB Bandwidth

TM 4 & ANT 1 & Highest

FCC ID: RNH-EVS2430WI

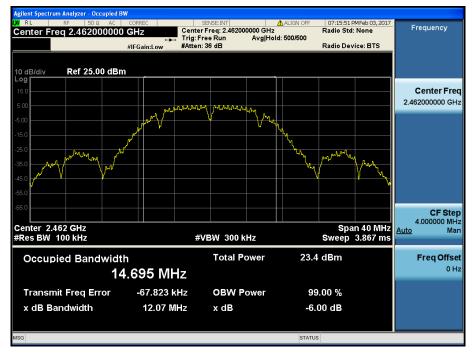

6 dB Bandwidth

🛈 Dt&C

TM 1 & ANT 2 & Lowest

6 dB Bandwidth

& Middle

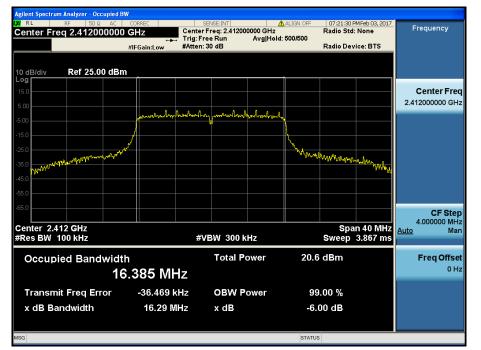

ANT 2

TM 1

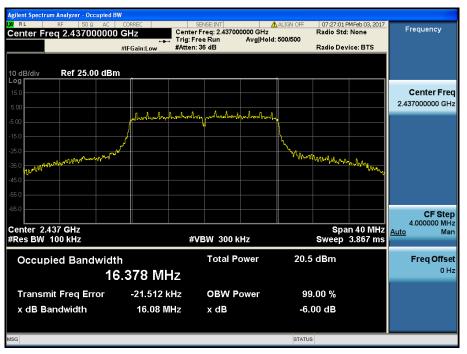
&

6 dB Bandwidth

TM 1 & ANT 2 & Highest


Middle

&

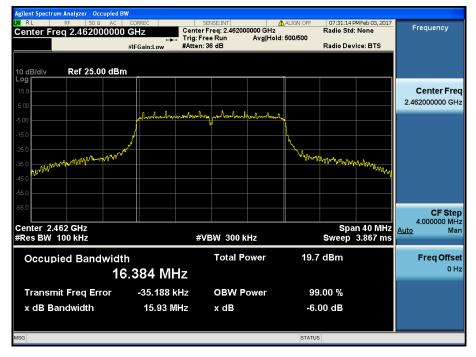

6 dB Bandwidth

🛈 Dt&C

TM 2 & ANT 2 & Lowest

6 dB Bandwidth

TM 2

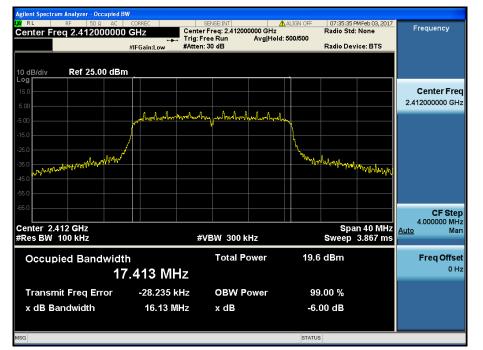

&

ANT 2

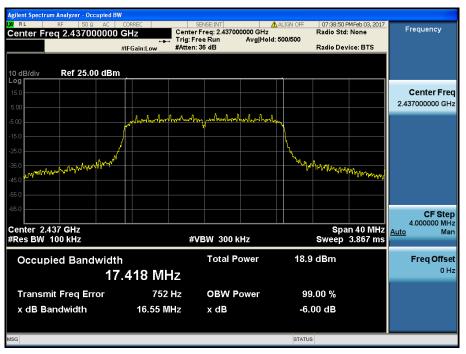
Dt&C

6 dB Bandwidth

TM 2 & ANT 2 & Highest



6 dB Bandwidth


🛈 Dt&C

TM 3 & ANT 2 & Lowest

ANT 2 & Middle

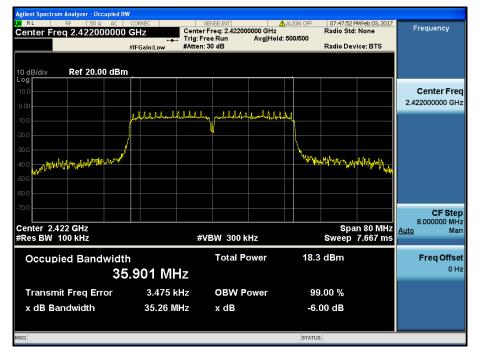
6 dB Bandwidth

TM 3

&

6 dB Bandwidth

TM 3 & ANT 2 & Highest

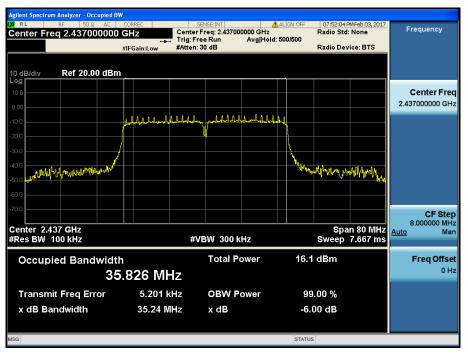

gilent Spectrum Analyzer - Occupied C RL RF 50Ω AC	CORREC	SENSE:INT		LIGN OFF	07:41:15 F	MFeb 03, 2017	Frequency
Center Freq 2.46200000	U GHZ #IFGain:Low	Talas Francis Press	Avg Hold: 5	00/500	Radio Dev		
10 dB/div Ref 25.00 dB	m						
5.00							Center Fre 2.462000000 GH
5.00	mbrokent	hormonymberry	nhallondenden	1			
25.0							
35.0 Mananapanapanapana				WWW	www.apwapay	uther white your	
45.0 55.0							
5.0							CF Ste
enter 2.462 GHz Res BW 100 kHz		#VBW 300) kHz		Spa Sweep	n 40 MHz 3.867 ms	4.000000 MI <u>Auto</u> Mi
Occupied Bandwid			Power	19.7	dBm		Freq Offs
1	7.442 M	Hz					01
Transmit Freq Error	-18.650	kHz OBW	Power	99.	00 %		
x dB Bandwidth	16.33 I	VIHz xdB		-6.0	0 dB		
56				STATUS			

Middle

6 dB Bandwidth

🛈 Dt&C

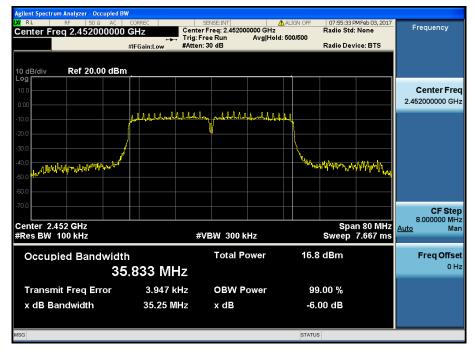
TM 4 & ANT 2 & Lowest



TM 4

&

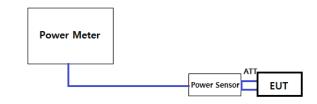
ANT 2 &


6 dB Bandwidth

Dt&C

6 dB Bandwidth

TM 4 & ANT 2 & Highest



8.2 Maximum peak conducted output power

Test Requirements and limit, §15.247(b) & RSS-247 [5.4]

The maximum permissible conducted output power is **1 Watt**.

Test Configuration

Test Procedure

1. PKPM1 Peak power meter method of KDB558074

The maximum conducted output powers were measured using a broadband peak RF power meter which has greater video bandwidth than DUT's DTS bandwidth and utilize a fast-responding diode detector.

2. Method AVGPM-G (Measurement using a gated RF average power meter) of KDB558074

The average conducted output powers were measured using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

Note: The measure-and-sum technique is used for test mode with multiple transmitting.

Test Results: Comply

Single transmitting mode

Single transmitting

	-		Maximum Peak Conducted Output Power (dBm) for 802.11b								
ANT	Freq. (MHz)	Det.	Data Rate [Mbps]								
			1	2	5.5	11					
	2412	PK	19.940	19.900	19.790	19.750					
	2412	AV	17.860	17.850	17.830	17.730					
ANT 1	2437	PK	19.430	19.340	19.300	19.280					
ANTI	2437	AV	17.320	17.240	17.080	16.950					
	2462	PK	20.020	19.940	19.920	19.770					
	2402	AV	17.890	17.850	17.770	17.660					
	0410	PK	19.500	19.470	19.460	19.360					
	2412	AV	17.430	17.420	17.380	17.300					
ANT 2	0407	PK	19.110	19.020	18.910	18.880					
ANT 2	2437	AV	16.960	16.880	16.850	16.840					
	2462	PK	19.560	19.530	19.460	19.360					
	2402	AV	17.430	17.360	17.260	17.220					

ANT	_		Maximum Peak Conducted Output Power (dBm) for <u>802.11g</u>								
	Freq. (MHz)	Det.	Data Rate [Mbps]								
			6	9	12	18	24	36	48	54	
	2412	PK	24.490	24.470	24.320	24.260	24.210	24.140	23.870	23.800	
	2412	AV	15.060	15.050	14.920	14.850	14.820	14.790	14.540	14.510	
ANT 1	2437	PK	24.280	24.260	24.120	24.000	23.960	23.940	23.760	23.760	
ANTI		AV	14.780	14.690	14.680	14.550	14.530	14.500	14.300	14.280	
	2462	PK	23.720	23.630	23.620	23.610	23.610	23.520	23.350	23.280	
		AV	14.030	13.980	13.870	13.830	13.800	13.790	13.490	13.400	
	0410	PK	24.180	24.170	24.030	24.020	23.990	23.920	23.870	23.810	
	2412	AV	14.680	14.620	14.420	14.390	14.340	14.240	13.990	13.970	
ANT 2	2437	PK	23.940	23.860	23.790	23.740	23.700	23.600	23.570	23.540	
AINT 2	2437	AV	14.550	14.470	14.330	14.250	14.220	14.150	13.770	13.680	
	2462	PK	23.540	23.440	23.280	23.170	23.150	23.140	23.060	22.980	
		AV	13.940	13.920	13.880	13.880	13.830	13.820	13.660	13.590	

	-		Maximum Peak Conducted Output Power (dBm) for <u>802.11n(HT20)</u>									
ANT	Freq. (MHz)	Det.	Data Rate [MCS]									
			0	1	2	3	4	5	6	7		
	2412	PK	21.400	21.310	21.240	21.220	21.180	20.990	20.950	20.940		
	2412	AV	12.810	12.650	12.580	12.530	12.500	12.330	12.270	12.170		
ANT 1	2437	PK	20.670	20.630	20.510	20.470	20.430	19.960	19.960	19.920		
ANTI		AV	11.890	11.760	11.720	11.710	11.610	11.170	11.140	11.110		
	2462	PK	20.210	20.200	20.180	20.170	20.110	19.890	19.860	19.840		
		AV	11.570	11.510	11.450	11.430	11.410	11.140	11.100	11.020		
	2412	PK	21.210	21.030	20.990	20.960	20.900	20.720	20.700	20.640		
	2412	AV	13.300	13.220	13.120	13.090	13.020	12.540	12.440	12.390		
ANT 2	2437	PK	20.810	20.750	20.620	20.610	20.530	20.480	20.450	20.370		
ANT 2	2437	AV	13.100	13.030	12.900	12.860	12.790	12.550	12.540	12.490		
	2462	PK	21.500	21.440	21.400	21.400	21.360	21.270	21.260	21.240		
	2462	AV	13.710	13.650	13.610	13.590	13.550	13.050	13.040	12.970		

	F		Maximum Peak Conducted Output Power (dBm) for <u>802.11n(HT40)</u>										
ANT	Freq. (MHz)	Det.		Data Rate [MCS]									
			0	1	2	3	4	5	6	7			
	2422	PK	20.250	20.240	20.200	20.170	20.160	20.110	20.080	20.070			
	2422	AV	10.870	10.830	10.820	10.790	10.790	10.720	10.660	10.650			
ANT 1	2437	PK	20.180	20.170	20.120	20.050	19.990	19.970	19.960	19.940			
ANTI		AV	10.410	10.380	10.360	10.290	10.240	10.170	10.100	10.080			
	2452	PK	20.010	19.970	19.930	19.860	19.820	19.750	19.730	19.650			
		AV	10.380	10.320	10.270	10.200	10.130	10.100	10.090	10.030			
	0.400	PK	20.480	20.450	20.430	20.410	20.380	20.330	20.300	20.280			
	2422	AV	11.960	11.940	11.940	11.910	11.840	11.820	11.780	11.720			
ANT 2	2437	PK	18.610	18.590	18.560	18.480	18.440	18.420	18.380	18.360			
ANT 2	2437	AV	9.720	9.700	9.680	9.620	9.550	9.530	9.450	9.370			
	0.450	PK	18.680	18.620	18.560	18.540	18.500	18.420	18.380	18.310			
	2452	AV	9.920	9.880	9.820	9.790	9.770	9.700	9.630	9.560			

Multiple transmitting

ANT	_		Maximum Peak Conducted Output Power (dBm) for <u>802.11n(HT20)</u>								
	Freq. (MHz)	Det.	Data Rate [MCS]								
			8	9	10	11	12	13	14	15	
	2412	PK	21.520	21.430	21.260	21.160	21.130	21.070	21.010	20.990	
	2412	AV	12.910	12.890	12.720	12.710	12.680	12.620	12.380	12.360	
ANT 1	0407	PK	20.840	20.750	20.700	20.670	20.660	20.620	20.400	20.380	
ANTI	2437	AV	12.020	11.960	11.810	11.700	11.650	11.590	11.490	11.430	
	2462	PK	20.260	20.250	20.090	20.050	20.000	19.930	19.680	19.630	
		AV	11.670	11.600	11.420	11.380	11.350	11.270	11.270	11.200	
	2412	PK	21.270	21.260	21.160	21.120	21.100	21.090	20.960	20.920	
		AV	13.310	13.230	13.190	13.140	13.140	13.080	12.810	12.810	
ANT 2	0407	PK	20.840	20.780	20.770	20.650	20.650	20.630	20.550	20.540	
ANT 2	2437	AV	13.150	13.050	12.950	12.950	12.950	12.940	12.550	12.550	
	2462	PK	21.590	21.500	21.420	21.420	21.420	21.340	20.860	20.820	
	2402	AV	13.740	13.650	13.490	13.370	13.330	13.310	13.150	13.070	
	2412	PK	24.408	24.357	24.221	24.151	24.126	24.091	23.996	23.966	
Sum (ANT 1+2)	2437	PK	23.851	23.776	23.746	23.671	23.666	23.636	23.486	23.472	
	2462	PK	23.987	23.931	23.817	23.800	23.779	23.703	23.321	23.276	

ANT	_		Maximum Peak Conducted Output Power (dBm) for <u>802.11n(HT40)</u>								
	Freq. (MHz)	Det.	Data Rate [MCS]								
			8	9	10	11	12	13	14	15	
	2422	PK	20.280	20.260	20.250	20.220	20.190	20.150	20.150	20.130	
	2422	AV	10.920	10.910	10.860	10.820	10.740	10.700	10.690	10.610	
ANT 1	2437	PK	20.190	20.130	20.060	20.010	19.950	19.920	19.890	19.850	
	2437	AV	10.420	10.380	10.320	10.310	10.300	10.240	10.180	10.180	
	2452	PK	20.060	20.010	20.000	19.970	19.930	19.910	19.890	19.830	
		AV	10.410	10.400	10.340	10.300	10.260	10.210	10.120	10.040	
	2422	PK	20.490	20.460	20.460	20.460	20.420	20.410	20.370	20.350	
		AV	12.010	11.950	11.930	11.910	11.870	11.820	11.790	11.790	
ANT 2	2437	PK	18.650	18.630	18.580	18.560	18.490	18.470	18.390	18.330	
AINT 2	2437	AV	9.770	9.730	9.710	9.700	9.700	9.670	9.590	9.560	
	2452	PK	18.730	18.690	18.620	18.560	18.530	18.470	18.410	18.390	
	2402	AV	9.970	9.920	9.900	9.890	9.820	9.770	9.770	9.710	
	2422	PK	23.397	23.372	23.367	23.352	23.317	23.293	23.272	23.252	
Sum (ANT 1+2)	2437	PK	22.499	22.455	22.394	22.356	22.292	22.266	22.215	22.167	
. ,	2452	PK	22.457	22.411	22.375	22.333	22.297	22.260	22.224	22.180	

8.3 Maximum power spectral density

■ Test requirements and limit, §15.247(e) & RSS-247 [5.2]

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Configuration

Refer to the APPENDIX I.

Test Procedure

Method PKPSD of KDB558074 is used.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to **1.5 times** the DTS bandwidth.
- 3. Set the RBW to : **3 kHz** ≤ RBW ≤ **100 kHz**
- 4. Set the VBW \geq **3 x RBW**
- 5. Detector = **Peak**
- 6. Sweep time = **Auto couple**
- 7. Trace mode = **Max hold.**
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Results: Comply

Test Mede	Freedoment	DDW	PKPSD [dBm]					
Test Mode	Frequency	RBW	ANT 1	ANT 2	SUM (ANT 1 + ANT 2)			
	Lowest	3 kHz	-8.700	-6.340	-			
TM 1	Middle	3 kHz	-10.060	-9.650	-			
	Highest	3 kHz	-8.830	-9.970	-			
	Lowest	3 kHz	-12.530	-12.300	-			
TM 2	Middle	3 kHz	-12.440	-12.690	-			
	Highest	3 kHz	-13.360	-13.740	-			
	Lowest	3 kHz	-14.830	-14.270	-11.531			
ТМ 3	Middle	3 kHz	-17.250	-14.860	-12.883			
	Highest	3 kHz	-17.240	-13.480	-11.955			
	Lowest	3 kHz	-16.450	-15.300	-12.827			
TM 4	Middle	3 kHz	-16.330	-16.610	-13.458			
	Highest	3 kHz	-16.850	-16.780	-13.805			

RESULT PLOTS

gilent Spectrum Analyzer - Swept SA ALIGN OFF Center Freq 2.412000000 GHz Frei State Sta RI Trace/Detector TYPE MWAAWAAAA DET P P P P P P Select Trace Mkr1 2.410 718 GHz -8.70 dBm I0 dB/div Ref 15.00 dBm **Clear Write** Ŷ u. Trace Average Jabile u da da da se հես واسلو المراطوران Max Hold **Min Hold** View Blank View More Center 2.412000 GHz #Res BW 3.0 kHz 1 of 3 Span 15.27 MHz Sweep 1.620 s (3001 pts) #VBW 9.1 kHz

Maximum PKPSD

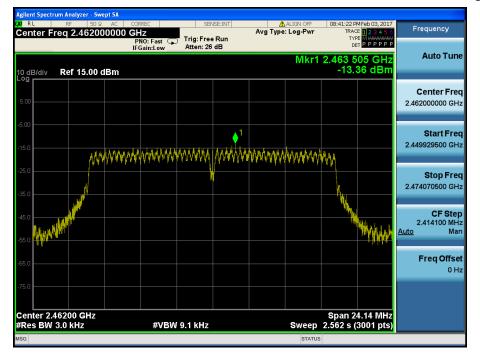
TM 1 & ANT 1 & Lowest

Maximum PKPSD

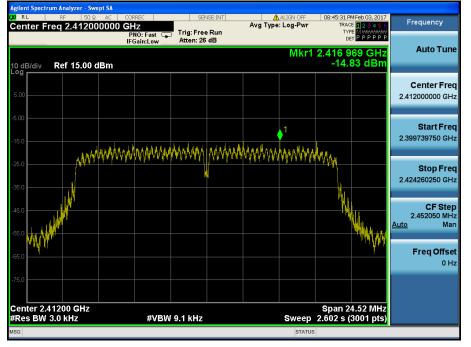
TM 1 & ANT 1 & Middle

TM 1 & ANT 1 & Highest

TM 2 & ANT 1 & Lowest



Maximum PKPSD


TM 2 & ANT 1 & Middle

TM 2 & ANT 1 & Highest

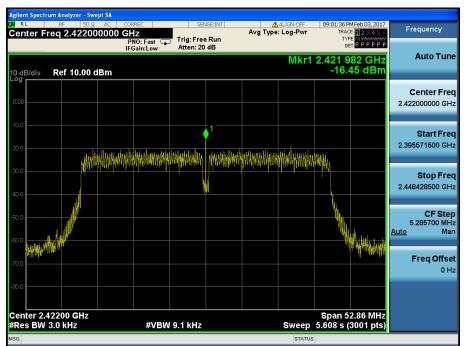
TM 3 & ANT 1 & Lowest

Maximum PKPSD

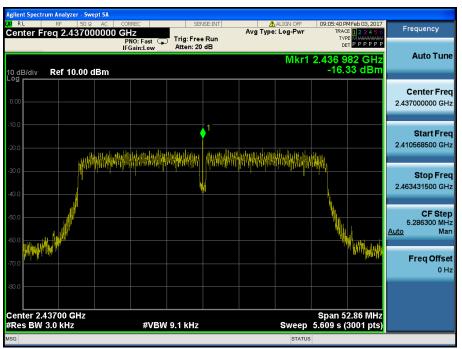
Spectrum Analyzer - Swept SA QM RL RF 50 Ω AC CURREL Center Freq 2.437000000 GHz PN0: Fast IFGain:Low Trig: Free Run Atten: 26 dB :55 PM Feb 03, 20 TRACE **1 2 9 4 5** ALIGN OFF SENSE:INT 08:48 Frequency TYPE MWWWWW DET P P P P P Auto Tune Mkr1 2.439 154 GHz -17.25 dBm 10 dB/div Ref 15.00 dBm **Center Freq** 2.437000000 GHz Start Freq 2.424715750 GHz NW Stop Freq 2.449284250 GHz **CF Step** 2.456850 MHz Man Auto **Freq Offset** 0 Hz Span 24.57 MHz Sweep 2.607 s (3001 pts) Center 2.43700 GHz #Res BW 3.0 kHz #VBW 9.1 kHz

TM 3

& ANT 1


& Middle

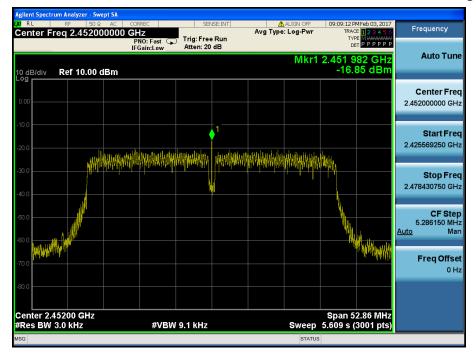
TM 3 & ANT 1 & Highest



Maximum PKPSD

🛈 Dt&C

Maximum PKPSD


TM 4 & ANT 1 & Lowest

TM 4 & ANT 1

& Middle

Maximum PKPSD

TM 4 & ANT 1 & Highest

🛈 Dt&C

Maximum PKPSD

TM 1 & ANT 2 & Lowest

TM 1

&

ANT 2

&

Middle

Maximum PKPSD

Maximum PKPSD

TM 1 & ANT 2 & Highest

TDt&C

Maximum PKPSD

TM 2 & ANT 2 & Lowest

TM 2 & ANT 2

& Middle



Maximum PKPSD

nt Spectrum Analyzer - Swept SA ALIGN OFF Frequency Center Freq 2.437000000 GHz GHz PNO: Fast IFGain:Low Trig: Free Run Atten: 26 dB TYPE MANANANAN DET PPPPP Auto Tune Mkr1 2.444 461 GHz -12.69 dBm 0 dB/div Ref 15.00 dBm **Center Freq** 2.437000000 GHz Start Freq 2.424940000 GHz MMMMMMMMMM/ mannannan Stop Freq 2.449060000 GHz CF Step 2.412000 MHz Man 111 Auto Freq Offset 0 Hz Span 24.12 MHz Sweep 2.559 s (3001 pts) Center 2.43700 GHz #Res BW 3.0 kHz #VBW 9.1 kHz

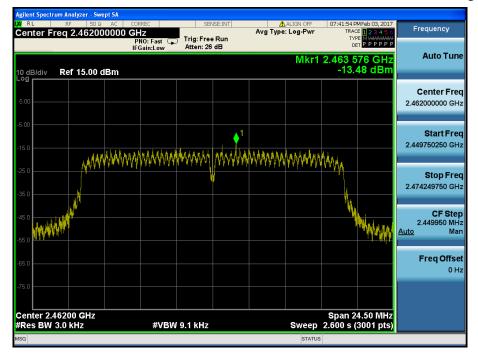
Maximum PKPSD


TM 2 & ANT 2 & Highest

TDt&C

Maximum PKPSD

TM 3 & ANT 2 & Lowest


Maximum PKPSD

gilent Spectrum Analyzer - Swept SA 07:39:30 PMFeb 03, 2017 TRACE 123456 TYPE MMMMM DET PPPPP Center Freq 2.437000000 GHz PNO:Fast IFGain:Low Trig: Free Run Atten: 26 dB SENSE:INT ALIGN OFF Frequency Auto Tune Mkr1 2.436 983 GHz -14.86 dBm I0 dB/div Ref 15.00 dBm **Center Freq** 2.437000000 GHz Start Freq 2.424586750 GHz ANY MARKAN MARKAN MANANA NO NO NA MANANA MANANA MANA Stop Freq 2.449413250 GHz CF Step 2.482650 MHz Man Auto MAL **Freq Offset** 0 Hz Center 2.43700 GHz #Res BW 3.0 kHz Span 24.83 MHz Sweep 2.634 s (3001 pts) #VBW 9.1 kHz

TM 3 & ANT 2 & Middle

Maximum PKPSD

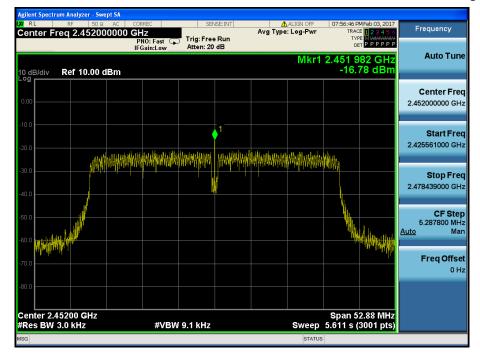
TM 3 & ANT 2 & Highest



Dt&C

Maximum PKPSD

TM 4 & ANT 2 & Middle


Maximum PKPSD

gilent Spectrum Analyzer - Swept SA 07:53:17 PMFeb 03, 2017 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P P P P P Center Freq 2.437000000 GHz PNO:Fast IFGain:Low Trig: Free Run Atten: 20 dB SENSE:INT ALIGN OFF Frequency Auto Tune Mkr1 2.436 982 GHz -16.61 dBm 0 dB/div Ref 10.00 dBm **Center Freq** 2.437000000 GHz Start Freq 2.410573000 GHz panakisin kulu panakai pinakaan nen offenter filler the structure of a structure for Stop Freq 2.463427000 GHz CF Step 5.285400 MHz Man Auto Freq Offset 0 Hz Center 2.43700 GHz #Res BW 3.0 kHz Span 52.85 MHz Sweep 5.608 s (3001 pts) #VBW 9.1 kHz

Maximum PKPSD

TM 4 & ANT 2 & Highest

8.4 Out of band emissions at the band edge / conducted spurious emissions

Test requirements and limit, §15.247(d) & RSS-247 [5.5]

§15.247(d) specifies that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

If **the peak output power procedure** is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated **by at least 20 dB** relative to the maximum measured in-band peak PSD level.

If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to **15.247(b)(3)** requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in band average PSD level. In either case, attenuation to levels below the general emission limits specified in **§15.209(a)** is not required.

Test Configuration

Refer to the APPENDIX I.

Test Procedure

The transmitter output is connected to a spectrum analyzer.

- Measurement Procedure 1 – Reference Level

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to \geq 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = Peak.
- 6. Sweep time = Auto couple.
- 7. Trace mode = **Max hold.**
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level.

- Measurement Procedure 2 - Unwanted Emissions

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz. (Actual 1 MHz , See below note)
- 3. Set the VBW \geq 3 x RBW. (Actual 3 MHz, See below note)
- 4. Detector = Peak.
- 5. Ensure that the number of measurement points \geq Span / RBW.
- 6. Sweep time = **Auto couple.**
- 7. Trace mode = Max hold.
- 8. Allow the trace to stabilize. (this may take some time, depending on the extent of the span)
- 9. Use the peak marker function to determine the maximum amplitude level.

Note : The conducted spurious emission was tested with below settings.

Frequency range: 9 kHz ~ 30 MHz

RBW = 100 kHz, VBW = 300 kHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

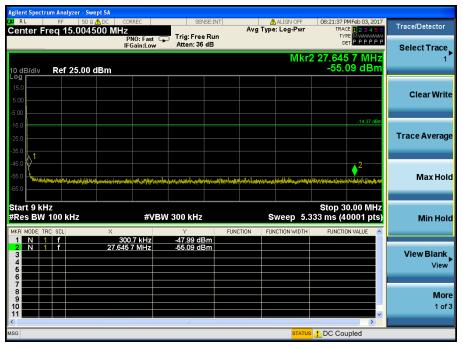
Frequency range: 30 MHz ~ 10 GHz, 10 GHz ~25 GHz RBW = 1 MHz, VBW = 3 MHz, SWEEP TIME = AUTO, DETECTOR = PEAK, TRACE = MAX HOLD, SWEEP POINT : 40001

LIMIT LINE = 20 dB below of the reference level of above measurement procedure Step 2. (RBW = 100 kHz, VBW = 300 kHz)

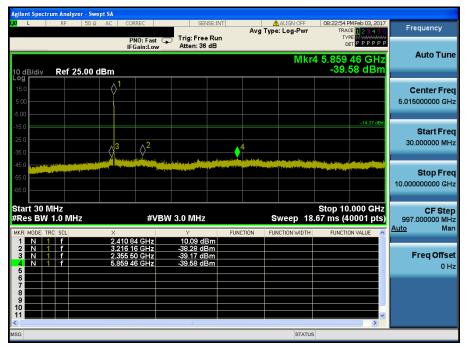
If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2001 to get accurate emission level within 100 kHz BW.

Also the path loss for conducted measurement setup was used as described on the Appendix I of this test report.

RESULT PLOTS

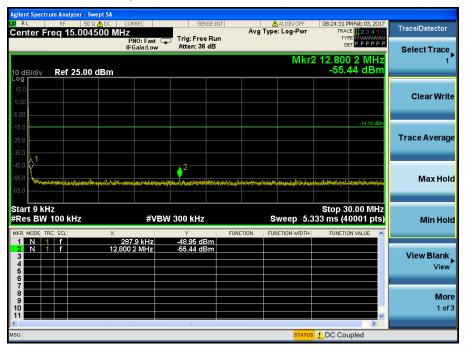

<TM 1 & ANT 1>

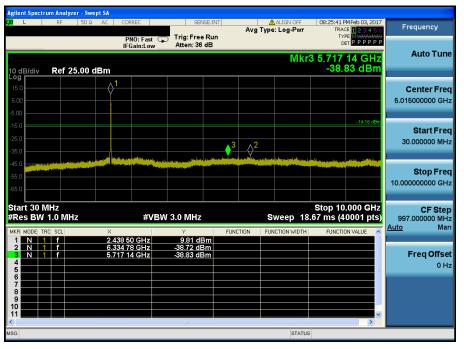
Reference (Test Channel : Lowest)


Low Band-edge (Test Channel : Lowest)

Conducted Spurious Emissions 1 (Test Channel : Lowest)

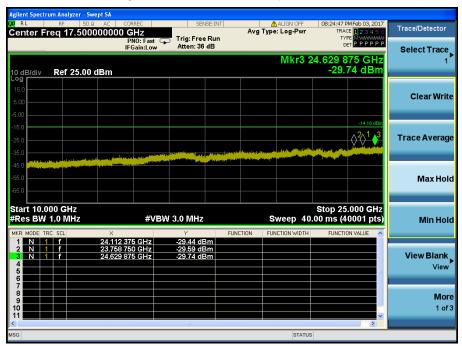
Conducted Spurious Emissions 2 (Test Channel : Lowest)


Conducted Spurious Emissions 3 (Test Channel : Lowest)



Reference (Test Channel : Middle)

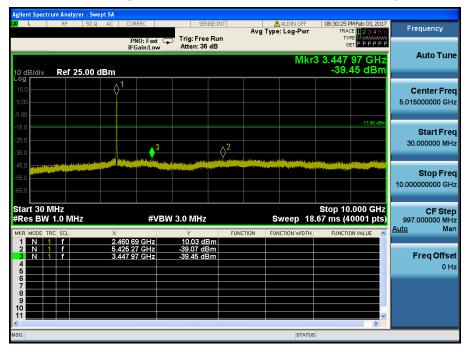
Conducted Spurious Emissions 1 (Test Channel : Middle)

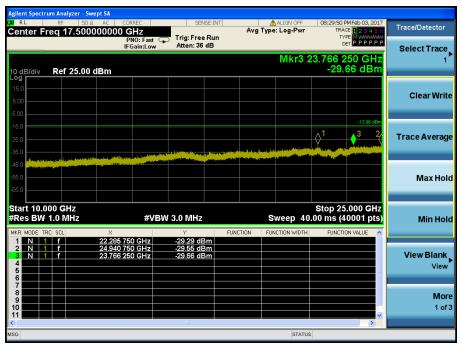


Conducted Spurious Emissions 2 (Test Channel : Middle)

Conducted Spurious Emissions 3 (Test Channel : Middle)

Reference (Test Channel : Highest)


High Band-edge (Test Channel : Highest)

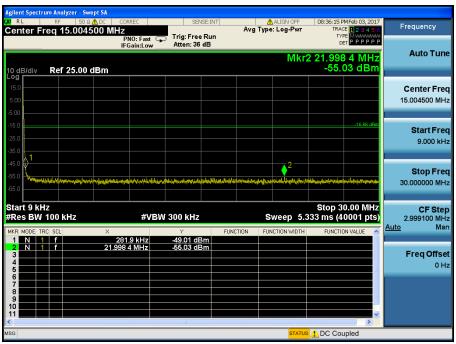


Conducted Spurious Emissions 1 (Test Channel : Highest)

Conducted Spurious Emissions 2 (Test Channel : Highest)

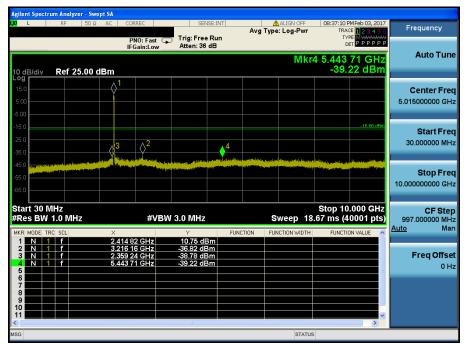
Conducted Spurious Emissions 3 (Test Channel : Highest)


<TM 2 & ANT 1>


🛈 Dt&C

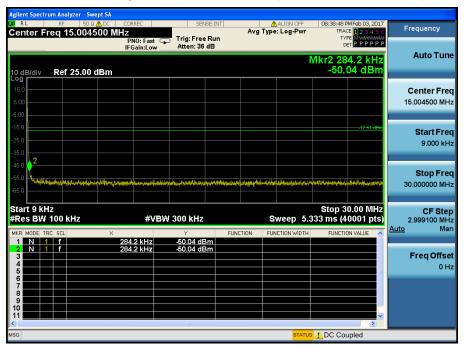
ALIGN OFF Feh 03. 2 Center Freq 2.412000000 GHz PRO: Fast IFGain:Low Atten: 36 dB Mkr1 2.413 236 GH: 3.34 dBn Auto Tune 10 dB/div Ref 25.00 dBm Center Frea 2.412000000 GHz **Start Freq** 2.400040500 GHz thrule and marken have Americanon and and and and Stop Freq 2.423959500 GHz MM Nd CF Step 2.391900 MHz Man <u>Auto</u> Freq Offset 0 Hz Center 2.41200 GHz #Res BW 100 kHz Span 23.92 MHz Sweep 2.400 ms (3001 pts) #VBW 300 kHz

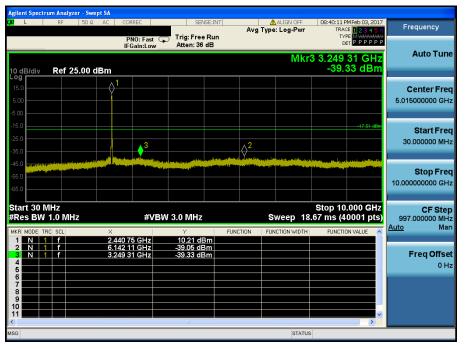
Reference (Test Channel : Lowest)


Low Band-edge (Test Channel : Lowest)

Conducted Spurious Emissions 1 (Test Channel : Lowest)

Conducted Spurious Emissions 2 (Test Channel : Lowest)


Conducted Spurious Emissions 3 (Test Channel : Lowest)

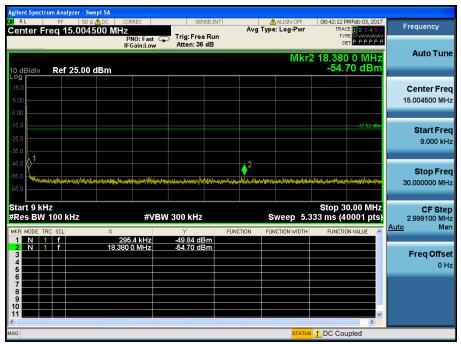


Reference (Test Channel : Middle)

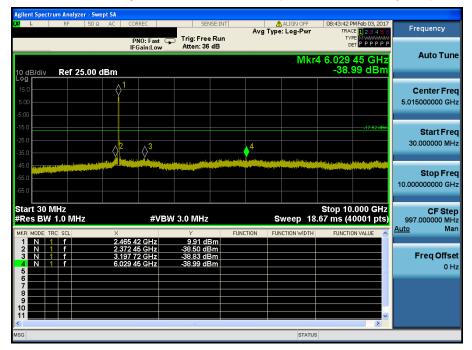
Conducted Spurious Emissions 1 (Test Channel : Middle)

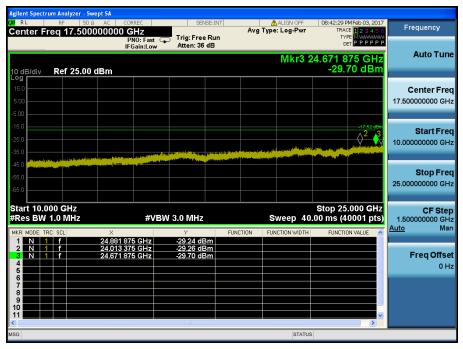
Conducted Spurious Emissions 2 (Test Channel : Middle)

Conducted Spurious Emissions 3 (Test Channel : Middle)



Reference (Test Channel : Highest)

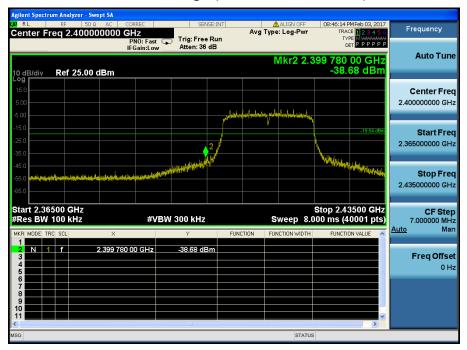

High Band-edge (Test Channel : Highest)

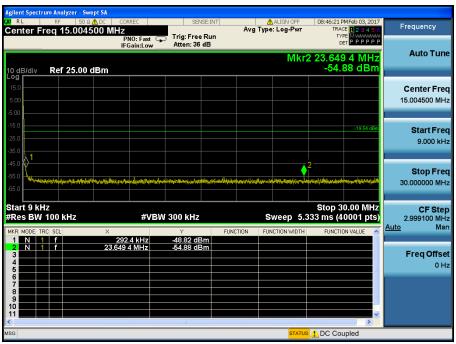


Conducted Spurious Emissions 1 (Test Channel : Highest)

Conducted Spurious Emissions 2 (Test Channel : Highest)

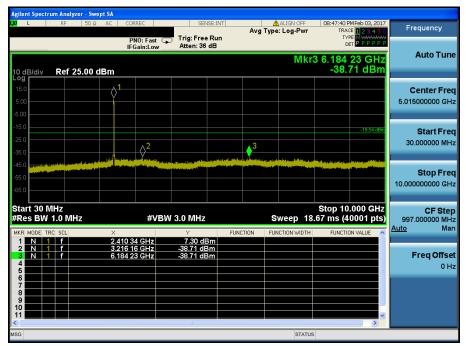
Conducted Spurious Emissions 3 (Test Channel : Highest)


<TM 3 & ANT 1>


🛈 Dt&C

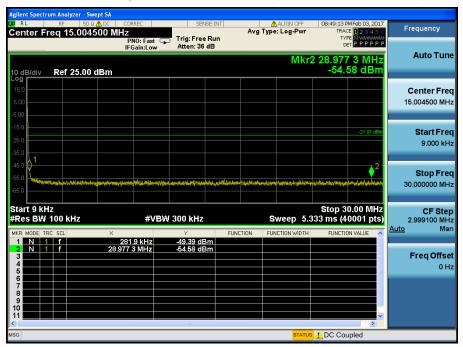
ALIGN OFF Center Freq 2.412000000 GHz PRO: Fast IFGain:Low Atten: 36 dB Auto Tune Mkr1 2.413 242 GH: 0.46 dBn 10 dB/div Ref 25.00 dBm Center Frea 2.412000000 GHz **Start Freq** 2.399739750 GHz . Markan And the Co . . Am . . Stop Freq 2.424260250 GHz CF Step 2.452050 MHz Man M ingh <u>Auto</u> Freq Offset 0 Hz Center 2.41200 GHz #Res BW 100 kHz Span 24.52 MHz Sweep 2.400 ms (3001 pts) #VBW 300 kHz

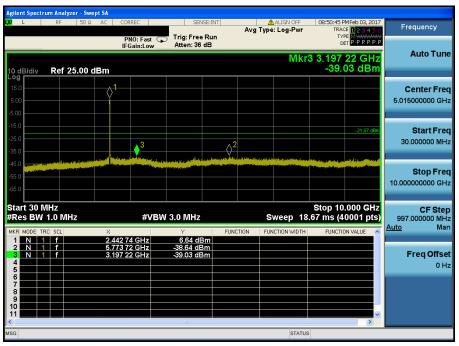
Reference (Test Channel : Lowest)


Low Band-edge (Test Channel : Lowest)

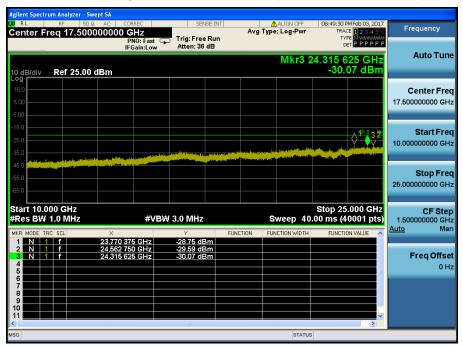
Conducted Spurious Emissions 1 (Test Channel : Lowest)

Conducted Spurious Emissions 2 (Test Channel : Lowest)

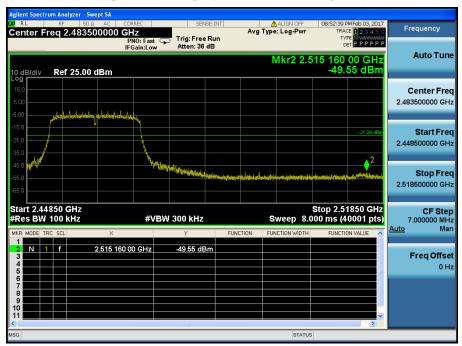

Conducted Spurious Emissions 3 (Test Channel : Lowest)



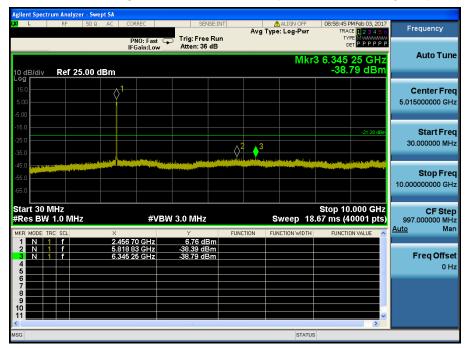
Reference (Test Channel : Middle)


Conducted Spurious Emissions 1 (Test Channel : Middle)

Conducted Spurious Emissions 2 (Test Channel : Middle)


Conducted Spurious Emissions 3 (Test Channel : Middle)

Reference (Test Channel : Highest)

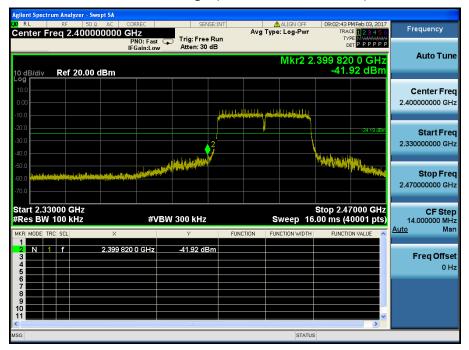

High Band-edge (Test Channel : Highest)

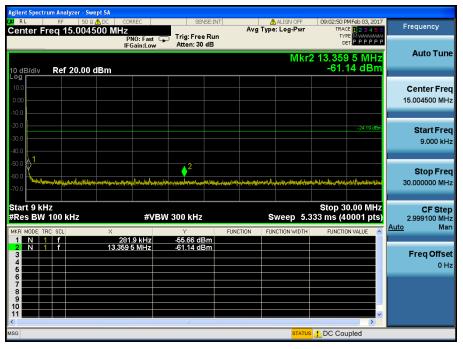
ALIGN OFF Feb 03, 2013 Frequency Center Freq 15.004500 MHz PNO: Fast Trig: Free Run IFGain:Low Atten: 36 dB DET P P P P P Auto Tune Mkr2 281.9 kHz -50.04 dBm Ref 25.00 dBm 10 dB/div Log **Center Freq** 15.004500 MHz Start Freq 9.000 kHz Stop Freq 30.000000 MHz Stop 30.00 MHz Sweep 5.333 ms (40001 pts) Start 9 kHz #Res BW 100 kHz CF Step 2.999100 MHz Man #VBW 300 kHz Auto -50.04 dBn -50.04 dBn 281.9 kHz 281.9 kHz N 1 f Freq Offset 0 Hz s 🚹 DC Coupled

Conducted Spurious Emissions 1 (Test Channel : Highest)

Conducted Spurious Emissions 2 (Test Channel : Highest)

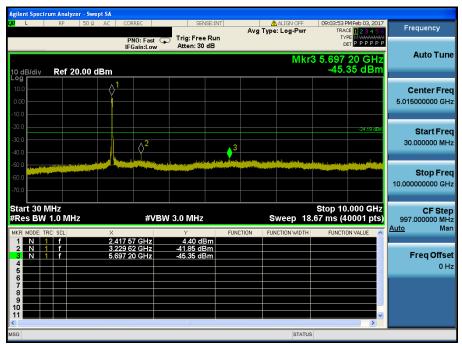
Conducted Spurious Emissions 3 (Test Channel : Highest)


<TM 4 & ANT 1>


🛈 Dt&C

ALIGN OFF eh 03.2 Center Freq 2.422000000 GHz PRO: Fast IFGain:Low Atten: 30 dB Mkr1 2.416 996 GHz -4.19 dBm Auto Tune 10 dB/div Ref 20.00 dBm Center Frea 2.422000000 GHz **Start Freq** 2.395571500 GHz minuter harder to be the for the for the former of the Stop Freq 2.448428500 GHz CF Step 5.285700 MHz Man 1 how when WAAMW <u>Auto</u> Freq Offset 0 Hz Center 2.42200 GHz #Res BW 100 kHz Span 52.86 MHz Sweep 5.200 ms (3001 pts) #VBW 300 kHz

Reference (Test Channel : Lowest)


Low Band-edge (Test Channel : Lowest)

Conducted Spurious Emissions 1 (Test Channel : Lowest)

Conducted Spurious Emissions 2 (Test Channel : Lowest)

Conducted Spurious Emissions 3 (Test Channel : Lowest)

