Maximum Permissible Exposure

Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.
(a) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-3.0$	614	1.63	$(100)^{*}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$(900 / \mathrm{f})^{*}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$			$\mathrm{~F} / 300$	6
$1500-100000$			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) $(\mathrm{V} / \mathrm{m})$	Magnetic Field Strength (H) $(\mathrm{A} / \mathrm{m})$	Power Density $(\mathrm{S})\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Times $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S (minutes)
$0.3-1.34$	614	1.63	$(100)^{*}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$(180 / \mathrm{f})^{*}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$			$\mathrm{~F} / 1500$	30
$1500-100000$			1.0	30

Note: $\mathrm{f}=$ frequency in MHz ; *Plane-wave equivalent power density

MPE Calculation Method

$\mathrm{E}(\mathrm{V} / \mathrm{m})=(30 * \mathrm{P} * \mathrm{G})^{0.5} / \mathrm{d}$
Power Density: $\mathrm{Pd}\left(\mathrm{W} / \mathrm{m}^{2}\right)=\mathrm{E}^{2} / 377$
$\mathbf{E}=$ Electric Field (V/m)
$\mathbf{P}=$ Peak RF output Power (W)
G = EUT Antenna numeric gain (numeric)
$\mathbf{d}=$ Separation distance between radiator and human body (m)
The formula can be changed to

$$
\mathbf{P d}=(30 * \mathrm{P} * \mathrm{G}) /\left(377 * \mathrm{~d}^{2}\right)
$$

From the peak EUT RF output power, the minimum mobile separation distance, $\mathrm{d}=0.2 \mathrm{~m}$, as well as the gain of the used antenna, the RF power density can be obtained.

Type of Modulation: GFSK

Calculated Result and Limit

Antenna Gain (Numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Test Result
1.585	-2.16	0.608	0.000192	1	Compiles

Note: GFSK was the worse case.

