

FCC LISTED, REGISTRATION NUMBER: 720267

IC LISTED REGISTRATION NUMBER IC 4621A-1

AT4 wireless, S.A.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 29590 Campanillas/ Málaga/ España Tel. 952 61 91 00 - Fax 952 61 91 13 MÁLAGA, C.I.F. A29 507 456 Registro Mercantil de Málaga,Tomo 1169, Libro 82, Folio 133, Hoja MA3729

TEST REPORT

REFERENCE STANDARD:

USA FCC Part 15.247, 15.209

CANADA RSS-210, RSS-Gen

Radio Frequency Devices. Operation within the bands 902 - 928 MHz, 2400 -2483.5 MHz, and 5725 - 5850 MHz.

Licence-Exempt Radio Apparatus (All Frequency Bands): Category I Equipment.

General Requirements and Information for the Certification of Radio Apparatus.

NIE....: 41273RRF.001 Approved by A. Llamas / RF Lab. Manager (name / position & signature): Elaboration date: 2014-03-12 Identification of item tested: 7265NGW **INTEL** Brand name: 7265NGW (includes family sub-models 7265NGW AN, 7265NGW NB and Model and/or type reference: 7265NGW BN) Serial number: TA#: G97996-007 WF MAC:001500E67260 BD MAC: 001500E67264 Other identification of the product: Commercial name: 7265NGW **HW Version: OS** SW Version: Test SW: DRTU_1_7_3_859 Op SW: V17.0.0 For OEM factory installation: FCC ID: PD97265NG IC: 1000M-7265NG For user installation: FCC ID: PD97265NGU IC: 1000M-7265NG 802.11 a/b/g/n/ac Wireless LAN+ BT 4.0 Features :: Description: 2x2 PCIe M.2 adapter card Applicant: INTEL MOBILE COMMUNICATIONS 100 Center Point Circle, Suite 200, Columbia, South Carolina 29210 USA CIF/NIF/Passport...:: No provided data Contact person: Steven Hackett Telephone / Fax: Tel: 803-216-2344/ FAX: 803-216-2176

e-mail::	steven.c.hackett@intel.com
Test samples supplier: Same as applicant	
Manufacturer:	Same as applicant

Standard USA FCC Part 15.247 10-01-12 Edition: Operation within the bands 902-928 MHz, 2400 -2483.5 MHz, and 5725 - 5850 MHz. USA FCC Part 15.209 10-01-12 Edition: Radiated emission limits; general requirements. CANADA RSS-210 Issue 8 (December 2010). CANADA RSS-210 Issue 8 (December 2010). FCC part 15.247 and Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum System DA 00-705 Released March 30, 2000. ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices. PERF010	Test method requested:	See St	andard					
requirements. CANADA RSS-210 Issue 8 (December 2010). CANADA RSS-Gen Issue 3 (December 2010). FCC part 15.247 and Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum System DA 00-705 Released March 30, 2000. ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices. PERF010	Standard:		•					
CANADA RSS-Gen Issue 3 (December 2010). FCC part 15.247 and Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum System DA 00-705 Released March 30, 2000. ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices. Test procedure PERF010 N/A				diated emission	limits; general			
FCC part 15.247 and Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum System DA 00-705 Released March 30, 2000. ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices. Test procedure		CANA	ADA RSS-210 Issue 8 (December 2010)).				
Hopping Spread Spectrum System DA 00-705 Released March 30, 2000. ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices. Test procedure								
Wireless Devices. PERF010		Hoppi	Opping Spread Spectrum System DA 00-705 Released March 30, 2000.					
Test procedure				dard for Testing	Unlicensed			
Non-standardized test method N/A	To describe the second							
Conducted Measurements			010					
Last Cal. date Cal. due date	Non-standardized test method	N/A						
1. Spectrum analyser Rohde & Schwarz 2013/10 2015/10	Used instrumentation:	Cond	lucted Measurements					
Radiated Measurements Last Cal. date Cal. due date				Last Cal. date	Cal. due date			
Last Cal. date Cal. due date		1.		2013/10	2015/10			
1. Semianechoic Absorber Lined Chamber IR 11. BS N.A. N.A. 2. Control Chamber IR 12.BC N.A. N.A. 3. Hybrid Bilog antenna Sunol Sciences Corporation JB6 2011/05 2014/05 4. Antenna mast EM 1072 NMT N.A. N.A. 5. Rotating table EM 1084-4. ON N.A. N.A. 6. Double-ridge Guide Horn antenna 1-18 GHz HP 11966E 2011/05 2014/05 7. Double-ridge Guide Horn antenna 18-40 GHz Agilent 119665J 2011/09 2014/09 8. EMI Test Receiver R&S ESPI3 2013/12 2015/12 9. RF pre-amplifier Miteq JS4-12002600-30-5A. 2012/07 2014/07 10. Multi Device Controller EMCO 2090 N.A. N.A. 11. Spectrum analyser Rohde & Schwarz FSW50 2013/10 2015/10 12. RF pre-amplifier Schwarzbeck BBV 9718 2014/02 2015/02		Radia	Radiated Measurements					
1. IR 11. BS 2. Control Chamber IR 12.BC N.A. N.A. Hybrid Bilog antenna Sunol Sciences 2011/05 2014/05 3. Corporation JB6 4. Antenna mast EM 1072 NMT N.A. N.A. 5. Rotating table EM 1084-4. ON N.A. N.A. Double-ridge Guide Horn antenna 1-18 GHz HP 11966E 7. Double-ridge Guide Horn antenna 18-40 GHz Agilent 119665J 8. EMI Test Receiver R&S ESPI3 2011/09 2014/09 40 GHz Agilent 119665J 9. RF pre-amplifier Miteq JS4-12002600-30-5A. 10. Multi Device Controller EMCO 2090 N.A. N.A. Spectrum analyser Rohde & Schwarz FSW50 12. RF pre-amplifier Schwarzbeck BBV 2014/02 2015/02			Last Cal. date Cal. due date					
2. Control Chamber IR 12.BC N.A. N.A. 3. Hybrid Bilog antenna Sunol Sciences Corporation JB6 2011/05 2014/05 4. Antenna mast EM 1072 NMT N.A. N.A. 5. Rotating table EM 1084-4. ON N.A. N.A. 6. Double-ridge Guide Horn antenna 1-18 GHz HP 11966E 2011/05 2014/05 7. Double-ridge Guide Horn antenna 18-40 GHz Agilent 119665J 2011/09 2014/09 8. EMI Test Receiver R&S ESPI3 2013/12 2015/12 9. RF pre-amplifier Miteq JS4-12002600-30-5A. 2012/07 2014/07 10. Multi Device Controller EMCO 2090 N.A. N.A. 11. Spectrum analyser Rohde & Schwarz FSW50 2013/10 2015/10 12. RF pre-amplifier Schwarzbeck BBV 9718 2014/02 2015/02		1.		N.A.	N.A.			
Corporation JB6 4. Antenna mast EM 1072 NMT N.A. N.A. 5. Rotating table EM 1084-4, ON N.A. N.A. 6. Double-ridge Guide Horn antenna 1-18 GHz HP 11966E 7. Double-ridge Guide Horn antenna 18- 40 GHz Agilent 119665J 8. EMI Test Receiver R&S ESPI3 2013/12 2015/12 9. RF pre-amplifier Miteq JS4-12002600- 30-5A. 10. Multi Device Controller EMCO 2090 N.A. N.A. 11. Spectrum analyser Rohde & Schwarz FSW50 12. RF pre-amplifier Schwarzbeck BBV 2014/02 2015/02		2.	Control Chamber IR 12.BC					
5. Rotating table EM 1084-4. ON N.A. N.A. 6. Double-ridge Guide Horn antenna 1-18 (GHz HP 11966E) 7. Double-ridge Guide Horn antenna 18-40 GHz Agilent 119665J 8. EMI Test Receiver R&S ESPI3 (2013/12) 2015/12 9. RF pre-amplifier Miteq JS4-12002600-30-5A. 10. Multi Device Controller EMCO 2090 N.A. N.A. 11. Spectrum analyser Rohde & Schwarz FSW50 12. RF pre-amplifier Schwarzbeck BBV (2014/02) 2015/02		3.		2011/05	2014/05			
6. Double-ridge Guide Horn antenna 1-18 GHz HP 11966E 7. Double-ridge Guide Horn antenna 18- 40 GHz Agilent 119665J 8. EMI Test Receiver R&S ESPI3 9. RF pre-amplifier Miteq JS4-12002600- 30-5A. 10. Multi Device Controller EMCO 2090 11. Spectrum analyser Rohde & Schwarz FSW50 RF pre-amplifier Schwarzbeck BBV 9718 2011/05 2014/05 2014/09 2015/12 2015/12 2015/12 2015/10								
GHz HP 11966E Double-ridge Guide Horn antenna 18- 40 GHz Agilent 119665J EMI Test Receiver R&S ESPI3 RF pre-amplifier Miteq JS4-12002600- 30-5A. Multi Device Controller EMCO 2090 N.A. Spectrum analyser Rohde & Schwarz FSW50 RF pre-amplifier Schwarzbeck BBV 9718 2011/03 2014/05 2014/09 2014/09 2015/12 2015/12 2015/10 2015/10								
40 GHz Agilent 119665J 8. EMI Test Receiver R&S ESPI3 2013/12 2015/12 9. RF pre-amplifier Miteq JS4-12002600-30-5A. 10. Multi Device Controller EMCO 2090 N.A. N.A. 11. Spectrum analyser Rohde & Schwarz FSW50 12. RF pre-amplifier Schwarzbeck BBV 2014/02 2015/02		6.	GHz HP 11966E	2011/05	2014/05			
8. EMI Test Receiver R&S ESPI3 2013/12 2015/12 9. RF pre-amplifier Miteq JS4-12002600- 2012/07 2014/07 10. Multi Device Controller EMCO 2090 N.A. N.A. 11. Spectrum analyser Rohde & Schwarz FSW50 12. RF pre-amplifier Schwarzbeck BBV 2014/02 2015/02		7.		2011/09	2014/09			
30-5A. 2012/07 2014/07 10. Multi Device Controller EMCO 2090 N.A. N.A. 11. Spectrum analyser Rohde & Schwarz FSW50 2013/10 2015/10 12. RF pre-amplifier Schwarzbeck BBV 2014/02 2015/02		8.	EMI Test Receiver R&S ESPI3	2013/12	2015/12			
10. Multi Device Controller EMCO 2090 N.A. N.A. 11. Spectrum analyser Rohde & Schwarz 2013/10 2015/10 FSW50 2014/02 2015/02		9.		2012/07	2014/07			
11. FSW50 12. RF pre-amplifier Schwarzbeck BBV 2014/02 2015/02		10.	Multi Device Controller EMCO 2090	N.A.	N.A.			
12. RF pre-amplifier Schwarzbeck BBV 2014/02 2015/02		11.		2013/10	2015/10			
RE pre-amplifier Schaffner CDA		12.	RF pre-amplifier Schwarzbeck BBV 9718	2014/02	2015/02			
13. RF pie-amplifier Schaffier CFA 2013/06 2015/06		13.	RF pre-amplifier Schaffner CPA 9231A.	2013/06	2015/06			

Report template No. FDT08_14

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of AT4 wireless, S.A.

INDEX

Competences and guarantees	5
General conditions	
Uncertainty	
Usage of samples	
Usage of samples	
Testing period	
Environmental conditions	
Summary	9
Remarks and comments	9
Testing verdicts	9
APPENDIX A: Test result	10

Competences and guarantees

AT4 wireless is a laboratory with a measurement facility in compliance with the requirements of Section 2.948 of the FCC rules and has been added to the list of facilities whose measurements data will be accepted in conjuction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Registration Number: 720267.

AT4 wireless is a laboratory with a measurement site in compliance with the requirements of RSS 212, Issue 1 (Provisional) and has been added to the list of filed sites of the Canadian Certification and Engineering Bureau. Reference File Number: IC 4621A-1.

In order to assure the traceability to other national and international laboratories, AT4 wireless has a calibration and maintenance programme for its measurement equipment.

AT4 wireless guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at AT4 wireless at the time of performance of the test.

AT4 wireless is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of AT4 wireless.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of AT4 wireless and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the AT4 wireless internal document:

PODT000: Procedimiento para el cálculo de incertidumbres de medida.

Usage of samples

Samples undergoing test have been selected by: **the client**.

Sample S/01 is composed of the following elements:

Control No	Description	Model	<u>Serial Nº</u>	Date of reception
41273/001	2x2 PCIe M.2	7265NGW	TA#: G97996-007	16/01/2014
adapter card		,2001(0)	WF MAC:001500E67260	
			BD MAC: 001500F67264	

Auxiliary elements used with the sample S/01:

Control No	Description	Manufacture	Model	Serial Nº	Date of reception
38067/28	Laptop PC	DELL	Latitude E5420	CTFQQL1	08/01/2013
38067/29	Cable of the AC/DC Adapter	DELL			08/01/2013
38067/30	AC/DC Adapter	DELL	LA90PM111		08/01/2013
40104B/16	Reference Antenna	SkyCross	WIMAX/WLAN		26/09/2013
40104B/17	Reference Antenna	SkyCross	WIMAX/WLAN		26/09/2013
38067/36	M2/NGFF extender cable				08/01/2013
38067/37	HMC/NGFF Testing board	INTEL	PCB00390	3902412-252	11/01/2013
38067/38	Adapter of the AC/DC Board Testing	SINPRO	SPU60-102	07990464 1249	11/01/2013
1302	Board 35mmx35mm				
40079/09	USB cable				26/09/2013

Usage of samples

Sample S/02 is composed of the following elements:

Control Nº	Description	Model	Serial Nº	Date of reception
41273/001	2x2 PCIe M.2	7265NGW	TA#: G97996-007	16/01/2014
	adapter card	, _ , , , , , , , , , , , , , , , , , ,	WF MAC:001500E67260	
			BD MAC: 001500E67264	

Auxiliary elements used with the sample S/01:

Control Nº	Description	Manufacture	Model	Serial Nº	Date of reception
38067/28	Laptop PC	DELL	Latitude E5420	CTFQQL1	08/01/2013
38067/29	Cable of the AC/DC Adapter	DELL			08/01/2013
38067/30	AC/DC Adapter	DELL	LA90PM111		08/01/2013
38067/36	M2/NGFF extender cable				08/01/2013
38067/37	HMC/NGFF Testing board	INTEL	PCB00390	3902412-252	11/01/2013
38067/38	Adapter of the AC/DC Board Testing	SINPRO	SPU60-102	07990464 1249	11/01/2013
1302	Board 35mmx35mm				
40079/09	USB cable				26/09/2013

- Sample S/01 has undergone following test(s).
 All radiated tests indicated in appendix A.
- Sample S/02 has undergone following test(s).
 All conducted tests indicated in appendix A.

Testing period

The performed test started on 2014-01-28 and finished on 2014-02-05.

The tests have been performed at AT4 wireless.

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 19.1°C
	Max. = 22.1°C
Relative humidity	Min. = 49%
-	Max. = 55.5%
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω

In the semianechoic chamber (21 meters x 11 meters x 8 meters), the following limits were not exceeded during the test.

Temperature	Min. = 17.4°C
	$Max. = 20.1^{\circ}C$
Relative humidity	Min. = 41.1%
	Max. = 44.5%
Air pressure	Min. = 1016mbar
	Max. = 1019mbar
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω
Normal site attenuation (NSA)	< ±4 dB at 10 m distance between item
	under test and receiver antenna, (30 MHz to
	1000 MHz)
Field homogeneity	More than 75% of illuminated surface is
	between 0 and 6 dB (26 MHz to 1000
	MHz).

In the chamber for conducted measurements the following limits were not exceeded during the test:

Temperature	Min. = 19.1°C
	Max. = 24.7°C
Relative humidity	Min. = 43.1%
	Max. = 51.1%
Air pressure	Min. = 1018mbar
	Max. = 1019mbar
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	$< 0.5 \Omega$

Summary

Considering the results of the performed test according to standard USA FCC Parts 15.247 and 15.209 / Canada RSS-210, the item under test is **IN COMPLIANCE** with the requested specifications specified in the standard.

NOTE: The results presented in this Test Report apply only to the particular item under test established in page 1 of this document, as presented for test on the date(s) shown in section, "USAGE OF SAMPLES, TESTING PERIOD AND ENVIRONMENTAL CONDITIONS".

Remarks and comments

1.- No comments.

Testing verdicts	
Not applicable:	NA
Pass:	P
Fail:	F
Not measured	NM

FCC PART 15 / RSS-210 PARAGRAPH			VERDICT			
	NA	P	F	NM		
FCC 15.247 Subclause (a) (1). 20 dB Bandwidth and Carrier frequency separation / RSS-210 Clause A8.1 (b)		P				
FCC 15.247 Subclause (a) (1) (iii). Number of hopping channels / RSS-210 Clause A8.1 (d)		P				
FCC 15.247 Subclause (a) (1) (iii). Time of occupancy (Dwell Time) / RSS-210 Clause A8.1 (d)		P				
FCC 15.247 Subclause (b). Maximum peak output power and antenna gain / RSS-210, Clause A8.4 (2)		P				
FCC 15.247 Subclause (d). Emission limitations conducted (Transmitter) / RSS-210 Clause A8.5		P				
FCC 15.247 Subclause (d). Emission limitations radiated (Transmitter) / RSS-210 Clause A8.5		P				

APPENDIX A: Test result

INDEX

TEST CONDITIONS	12
FCC Section 15.247 Subclause (a) (1) / RSS-210 Clause A8.1 (b). 20 dB Bandwidth and Carrier frequency	
separation	13
FCC Section 15.247 Subclause (a) (1) (iii) / RSS-210 Clause A8.1 (d). Number of hopping channels	20
FCC Section 15.247 Subclause (a) (1) (iii) / RSS-210 Clause A8.1 (d). Time of occupancy (Dwell Time)	26
FCC Section 15.247 Subclause (b) / RSS-210 Clause A8.4 (2). Maximum peak output power and antenna gain	35
FCC Section 15.247 Subclause (d) / RSS-210 Clause A8.5. Band-edge compliance of conducted emissions	
(Transmitter)	41
FCC Section 15.247 Subclause (d) / RSS-210 Clause A8.5. Emission limitations conducted (Transmitter)	48
FCC Section 15 247 Subclause (d) / RSS-210 Clause A8 5 Emission limitations radiated (Transmitter)	54

TEST CONDITIONS

Power supply (V):

 $V_{nominal} = 3.3 \text{ Vdc}$

Type of power supply = DC voltage from HMC/NGFF Testing board.

Type of antenna = External attachable PIFA antenna.

Declared Gain for antenna (maximum) = 3.24 dBi

TEST FREQUENCIES:

Lowest channel: 2402 MHz Middle channel: 2441 MHz Highest channel: 2480 MHz

For Bluetooth Basic and EDR operational modes the transmission is at CHAIN B RF output.

For radio testing purposes the card was installed in a test fixture. The test fixture is connected to a laptop computer and dc power supplied. The laptop computer was used to configure the EUT to continuously transmit at a specified output power with different modes and modulation schemes.

CONDUCTED MEASUREMENTS

The equipment under test was set up in a shielded room and it is connected to the spectrum analyzer using a low loss RF cable. The reading in the spectrum analyser is corrected taking into account the cable loss.

RADIATED MEASUREMENTS

All radiated tests were performed in a semi-anechoic chamber. The measurement antenna is situated at a distance of 3 m for the frequency range 30 MHz-1000 MHz (30 MHz-1000 MHz Bilog antenna) and at a distance of 1m for the frequency range 1 GHz-25 GHz (1 GHz-18 GHz Double ridge horn antenna and 18 GHz-40 GHz horn antenna).

For radiated emissions in the range 1 GHz-25 GHz that is performed at a distance closer than the specified distance, an inverse proportionality factor of 20 dB per decade is used to normalize the measured data for determining compliance.

The equipment under test was set up on a non-conductive (wooden) platform one meter above the ground plane and the situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.

Measurements were made in both horizontal and vertical planes of polarization.

FCC Section 15.247 Subclause (a) (1) / RSS-210 Clause A8.1 (b). 20 dB Bandwidth and Carrier frequency separation

SPECIFICATION

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

RESULTS

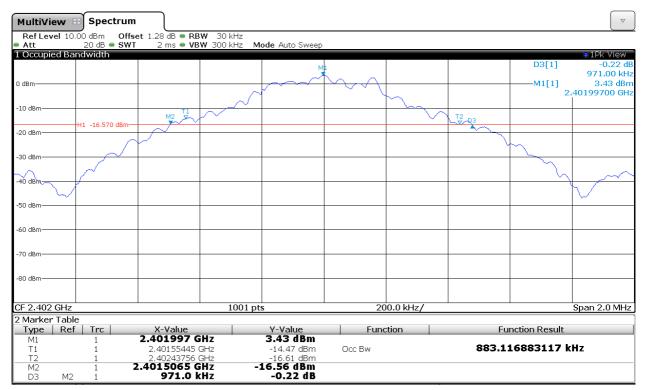
(See next plots)

Modulation: GFSK

	Lowest frequency	Middle frequency	Highest frequency
	2402 MHz	2441 MHz	2480 MHz
20 dB Spectrum bandwidth (kHz)	971.00	971.00	973.00
Measurement uncertainty (kHz)		±7	

Modulation: Π/4-DQPSK (2Mbps)

	Lowest frequency	Middle frequency	Highest frequency
	2402 MHz	2441 MHz	2480 MHz
20 dB Spectrum bandwidth (kHz)	1424.60	1426.60	1432.60
Measurement uncertainty (kHz)		±7	

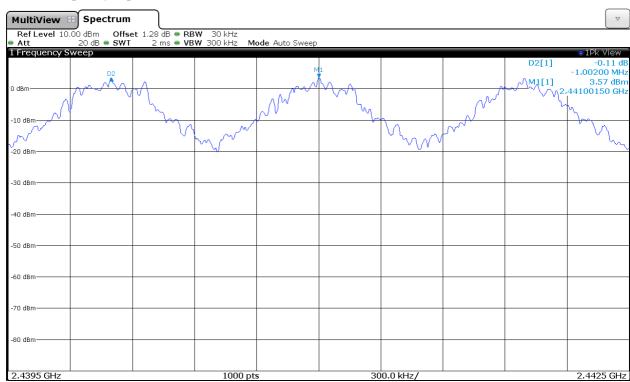

Modulation: 8-DPSK (3Mbps)

	Lowest frequency	Middle frequency	Highest frequency
	2402 MHz	2441 MHz	2480 MHz
20 dB Spectrum bandwidth (kHz)	1442.60	1444.60	1438.60
Measurement uncertainty (kHz)		±7	

Modulation: GFSK

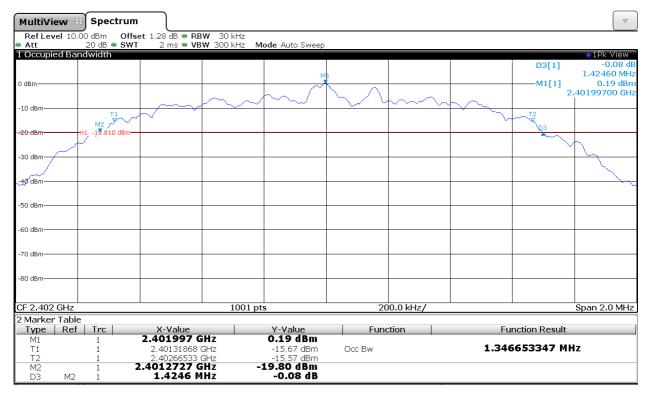
20 dB BANDWIDTH. Lowest Channel: 2402 MHz.

20 dB BANDWIDTH Middle Channel: 2441 MHz.



20 dB BANDWIDTH Highest Channel: 2480 MHz.

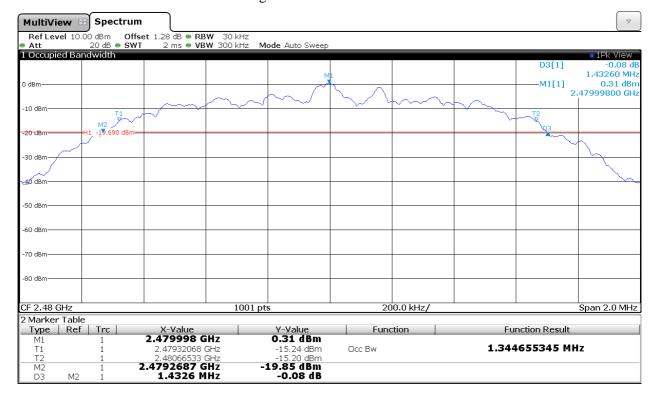
Carrier frequency separation

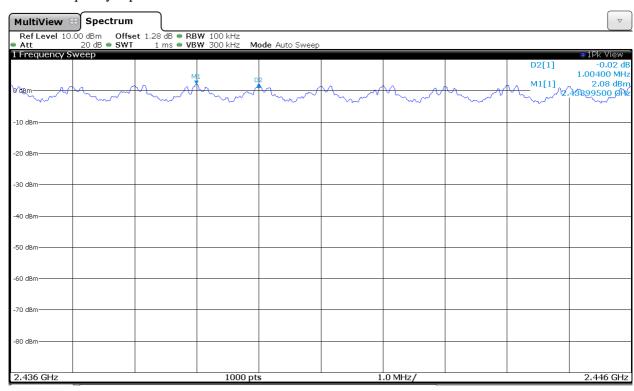


The hopping channel carrier frequencies are separated by a minimum of the 20 dB bandwidth of the hopping channel.

Modulation: Π/4-DQPSK

20 dB BANDWIDTH. Lowest Channel: 2402 MHz.

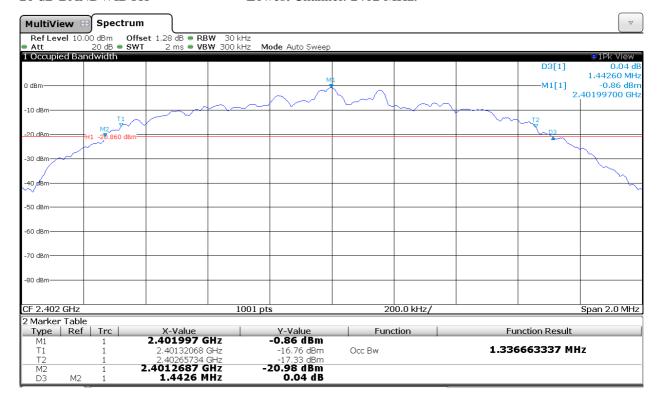

20 dB BANDWIDTH Middle Channel: 2441 MHz.



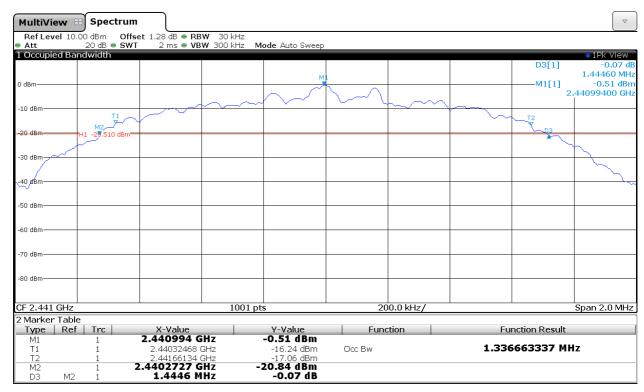
20 dB BANDWIDTH

Highest Channel: 2480 MHz.

Carrier frequency separation

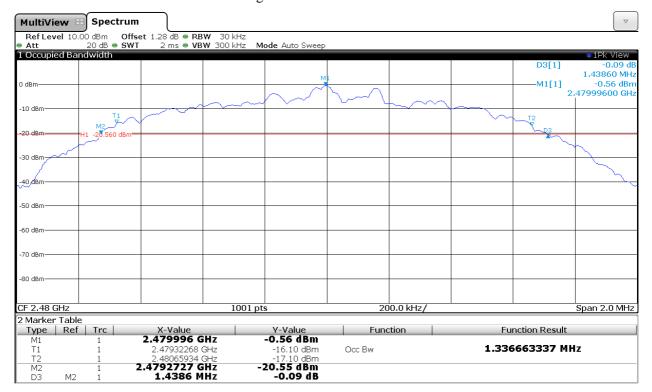

The hopping channel carrier frequencies are separated by a minimum of the two-thirds of the 20 dB bandwidth of the hopping channel

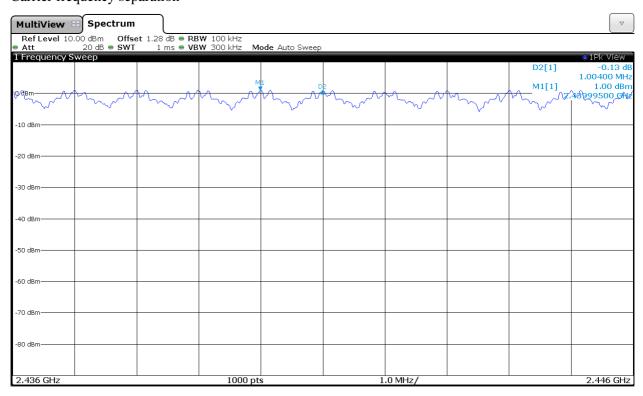
Modulation: 8-DPSK


20 dB BANDWIDTH

Lowest Channel: 2402 MHz.

20 dB BANDWIDTH


Middle Channel: 2441 MHz.



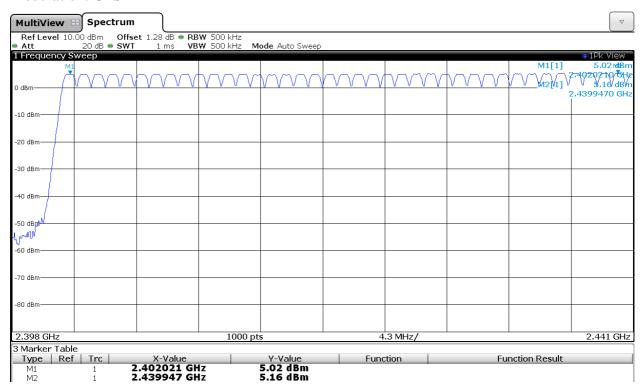
20 dB BANDWIDTH

Highest Channel: 2480 MHz.

Carrier frequency separation

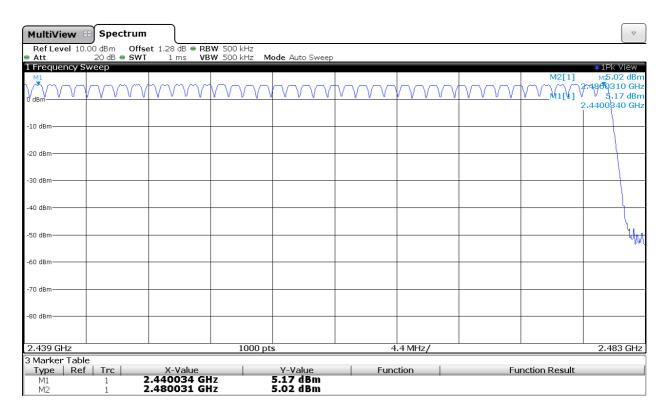
The hopping channel carrier frequencies are separated by a minimum of the two-thirds of the 20 dB bandwidth of the hopping channel.

FCC Section 15.247 Subclause (a) (1) (iii) / RSS-210 Clause A8.1 (d). Number of hopping channels


SPECIFICATION

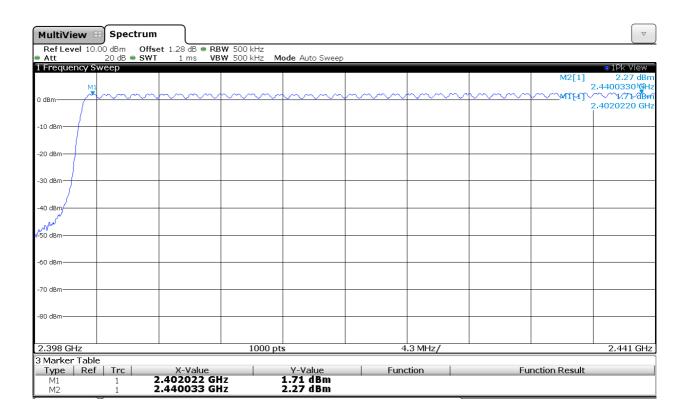
Frequency hopping system in the 2400-2483.5 MHz band shall use at least 15 channels.

RESULTS


The number of hopping channels is 79 for all three modes (see next plots).

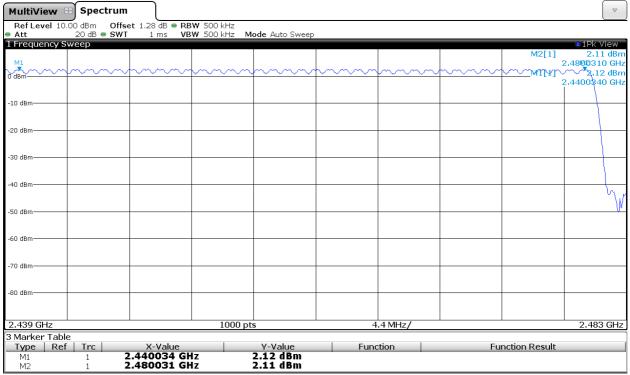
Modulation: GFSK

Number of hopping frequencies: 39



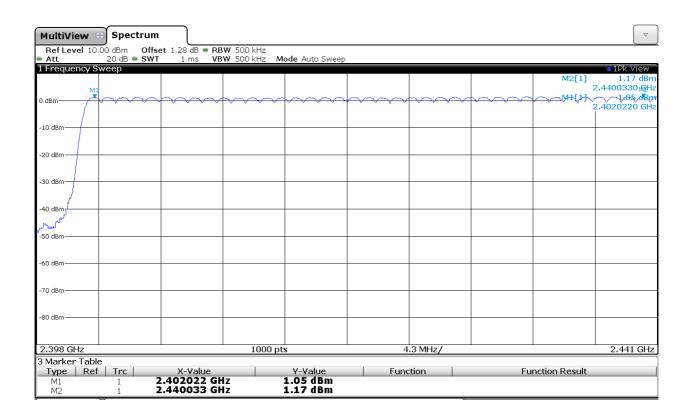
Number of hopping frequencies: 40

Total number of hopping frequencies: 79



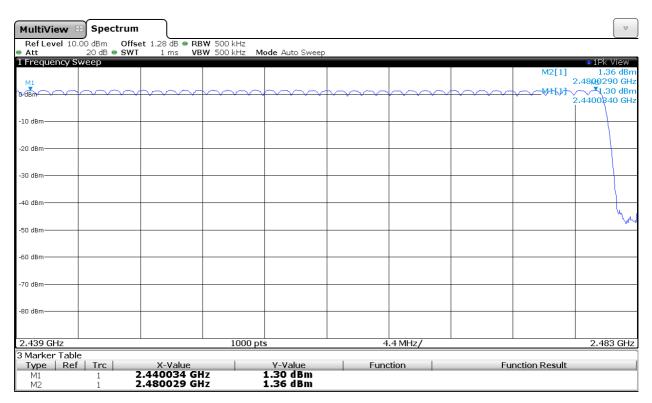
Modulation: Π/4-DQPSK

Number of hopping frequencies: 39



Number of hopping frequencies: 40

Total number of hopping frequencies: 79



Modulation: 8-DPSK

Number of hopping frequencies: 39

Number of hopping frequencies: 40

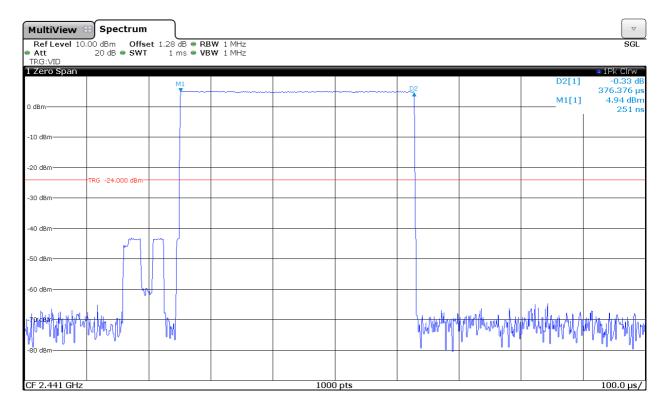
Total number of hopping frequencies: 79

FCC Section 15.247 Subclause (a) (1) (iii) / RSS-210 Clause A8.1 (d). Time of occupancy (Dwell Time)

SPECIFICATION

The average time of occupancy on any channel shall not be greater than 0.4 seconds (400 ms) within a period of 0.4 seconds multiplied by the number of hopping channels employed = $0.4 \times 79 = 31.6$ seconds.

RESULTS

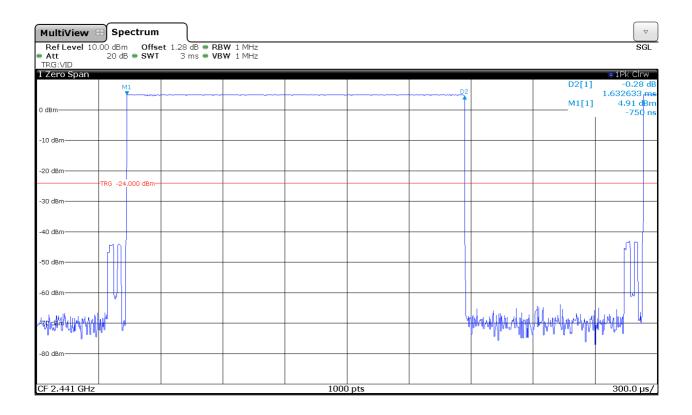

Modulation: GFSK

1. TIME OF OCCUPANCY (DWELL TIME) FOR PACKET TYPE DH1.

The system makes worst case 1600 hops per second or 1 time slot has a length of $625\mu s$ with 79 channels. A DH1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/2 = 800 hops per second with 79 channels. So you have each channel 800/79 = 10.13 times per second and so for a period of $0.4 \times 79 = 31.6$ seconds you have $10.13 \times 31.6 = 320.11$ times of appearance.

Each Tx-time per appearance is 376.38 µs (see next plot).

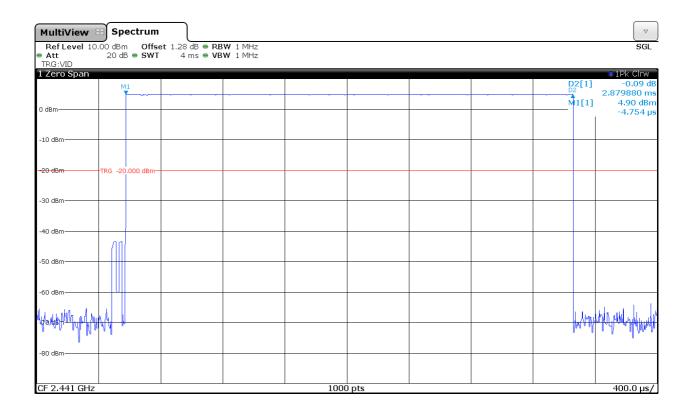
So we have $320.11 \times 376.38 \,\mu s = 120.48 \,ms$ per 31.6 seconds.



2. TIME OF OCCUPANCY (DWELL TIME) FOR PACKET TYPE DH3.

A DH3 Packet needs 3 time slots for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/4 = 400 hops per second with 79 channels. So you have each channel 400/79 = 5.1 times per second and so for a period of $0.4 \times 79 = 31.6$ seconds you have $5.1 \times 31.6 = 161.16$ times of appearance.

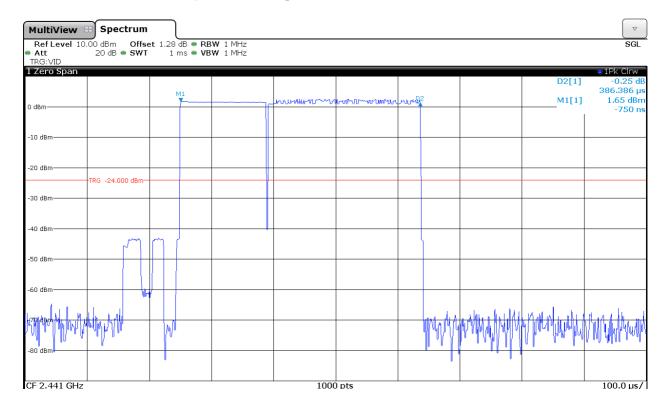
Each Tx-time per appearance is 1.633 ms (see next plot). So we have 161.16×1.633 ms = 263.17 ms per 31.6 seconds.



3. TIME OF OCCUPANCY (DWELL TIME) FOR PACKET TYPE DH5.

A DH5 Packet needs 5 time slots for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/6 = 266.67 hops per second with 79 channels. So you have each channel 266.67/79 = 3.37 times per second and so for a period of $0.4 \times 79 = 31.6$ seconds you have $3.37 \times 31.6 = 106.49$ times of appearance.

Each Tx-time per appearance is 2.880 ms (see next plot). So we have $106.49 \times 2.880 \text{ ms} = 306.69 \text{ ms}$ per 31.6 seconds.

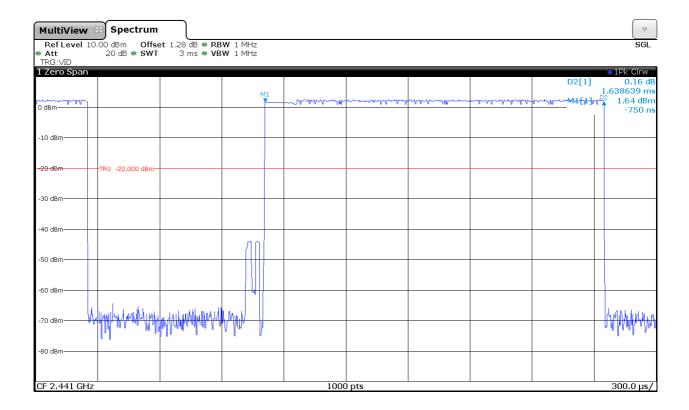


Modulation: Π/4-DQPSK

1. TIME OF OCCUPANCY (DWELL TIME) FOR PACKET TYPE DH1.

The system makes worst case 1600 hops per second or 1 time slot has a length of $625\mu s$ with 79 channels. A DH1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/2 = 800 hops per second with 79 channels. So you have each channel 800/79 = 10.13 times per second and so for a period of $0.4 \times 79 = 31.6$ seconds you have $10.13 \times 31.6 = 320.11$ times of appearance.

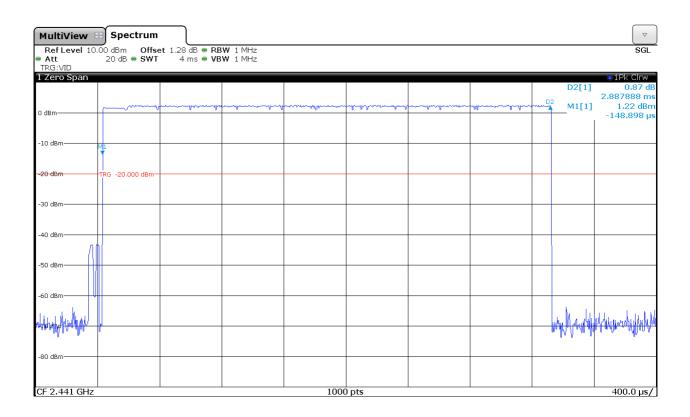
Each Tx-time per appearance is $386.39 \,\mu s$ (see next plot). So we have $320.11 \,x \,386.39 \,\mu s = 123.69 \,ms$ per $31.6 \,seconds$.



2. TIME OF OCCUPANCY (DWELL TIME) FOR PACKET TYPE DH3.

A DH3 Packet needs 3 time slots for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/4 = 400 hops per second with 79 channels. So you have each channel 400/79 = 5.1 times per second and so for a period of $0.4 \times 79 = 31.6$ seconds you have $5.1 \times 31.6 = 161.16$ times of appearance.

Each Tx-time per appearance is 1.639 ms (see next plot). So we have $161.16 \times 1.639 \text{ ms} = 264.14 \text{ ms}$ per 31.6 seconds.

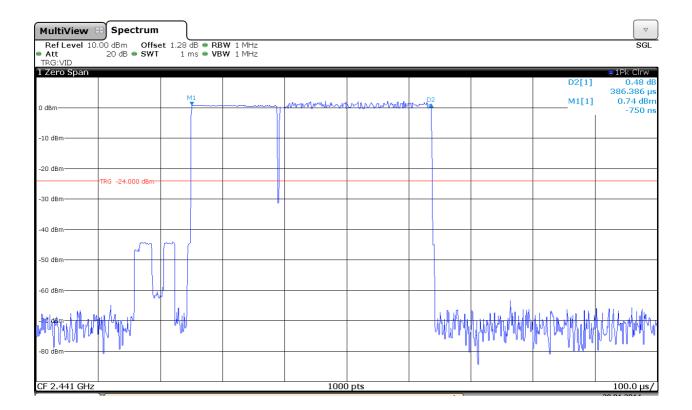


3. TIME OF OCCUPANCY (DWELL TIME) FOR PACKET TYPE DH5.

A DH5 Packet needs 5 time slots for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/6 = 266.67 hops per second with 79 channels. So you have each channel 266.67/79 = 3.37 times per second and so for a period of $0.4 \times 79 = 31.6$ seconds you have $3.37 \times 31.6 = 106.49$ times of appearance.

Each Tx-time per appearance is 2.888 ms (see next plot).

So we have $106.49 \times 2.888 \text{ ms} = 307.54 \text{ ms per } 31.6 \text{ seconds.}$

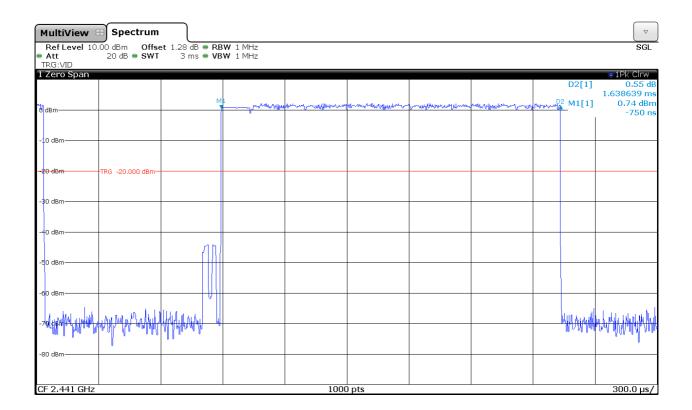


Modulation: 8-DPSK

1. TIME OF OCCUPANCY (DWELL TIME) FOR PACKET TYPE DH1.

The system makes worst case 1600 hops per second or 1 time slot has a length of $625\mu s$ with 79 channels. A DH1 Packet need 1 time slot for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/2 = 800 hops per second with 79 channels. So you have each channel 800/79 = 10.13 times per second and so for a period of $0.4 \times 79 = 31.6$ seconds you have $10.13 \times 31.6 = 320.11$ times of appearance.

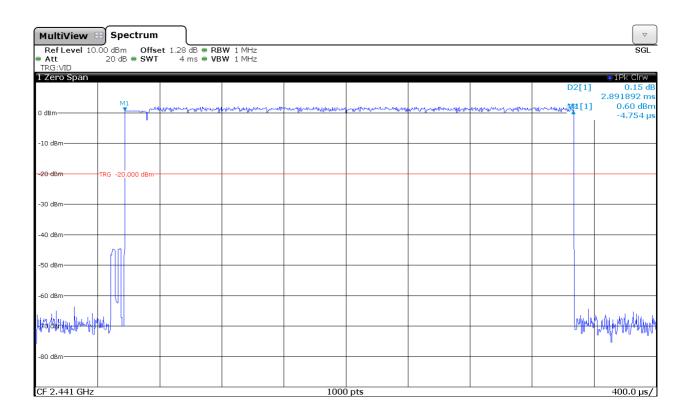
Each Tx-time per appearance is $386.39 \,\mu s$ (see next plot). So we have $320.11 \,x \,386.39 \,\mu s = 123.69 \,ms$ per $31.6 \,seconds$.



2. TIME OF OCCUPANCY (DWELL TIME) FOR PACKET TYPE DH3.

A DH3 Packet needs 3 time slots for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/4 = 400 hops per second with 79 channels. So you have each channel 400/79 = 5.1 times per second and so for a period of $0.4 \times 79 = 31.6$ seconds you have $5.1 \times 31.6 = 161.16$ times of appearance.

Each Tx-time per appearance is 1.639 ms (see next plot). So we have $161.16 \times 1.639 \text{ ms} = 264.14 \text{ ms}$ per 31.6 seconds.



3. TIME OF OCCUPANCY (DWELL TIME) FOR PACKET TYPE DH5.

A DH5 Packet needs 5 time slots for transmitting and 1 time slot for receiving. Then the system makes worst case 1600/6 = 266.67 hops per second with 79 channels. So you have each channel 266.67/79 = 3.37 times per second and so for a period of $0.4 \times 79 = 31.6$ seconds you have $3.37 \times 31.6 = 106.49$ times of appearance.

Each Tx-time per appearance is 2.892 ms (see next plot).

So we have $106.49 \times 2.892 \text{ ms} = 307.97 \text{ ms per } 31.6 \text{ seconds.}$

FCC Section 15.247 Subclause (b) / RSS-210 Clause A8.4 (2). Maximum peak output power and antenna gain

SPECIFICATION

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels: 1 watt (30 dBm).

RESULTS

MAXIMUM OUTPUT POWER. See next plots.

Declared maximum antenna gain: 3.24 dBi.

The EIRP power (dBm) is calculated by adding the declared maximum antenna gain to the measured conducted power.

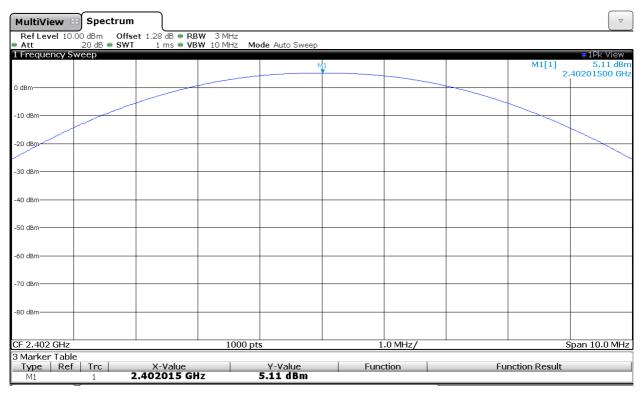
Modulation: GFSK

	Lowest frequency	Middle frequency	Highest frequency
	2402 MHz	2441 MHz	2480 MHz
Maximum peak power (dBm)	5.11	5.34	5.37
Maximum EIRP power (dBm)	8.35	8.58	8.61
Measurement uncertainty (dB)		±1.2	

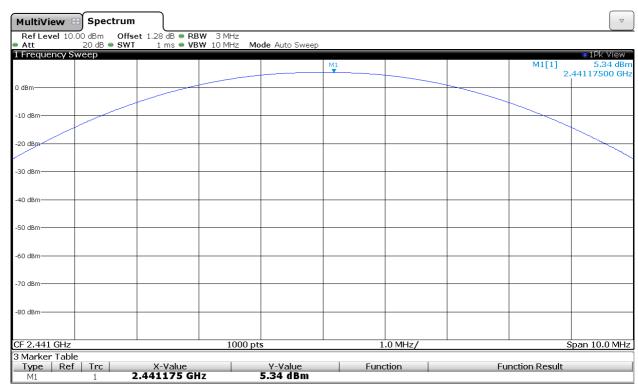
Modulation: Π/4-DQPSK (2Mbps)

	Lowest frequency	Middle frequency	Highest frequency
	2402 MHz	2441 MHz	2480 MHz
Maximum peak power (dBm)	3.97	4.23	4.38
Maximum EIRP power (dBm)	7.21	7.47	7.62
Measurement uncertainty (dB)		±1.2	

Modulation: 8-DPSK (3Mbps)

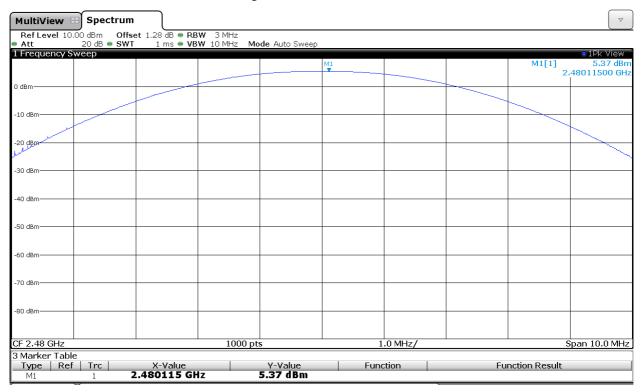

	Lowest frequency	Middle frequency	Highest frequency
	2402 MHz	2441 MHz	2480 MHz
Maximum peak power (dBm)	3.35	3.61	3.55
Maximum EIRP power (dBm)	6.59	6.85	6.79
Measurement uncertainty (dB)		±1.2	

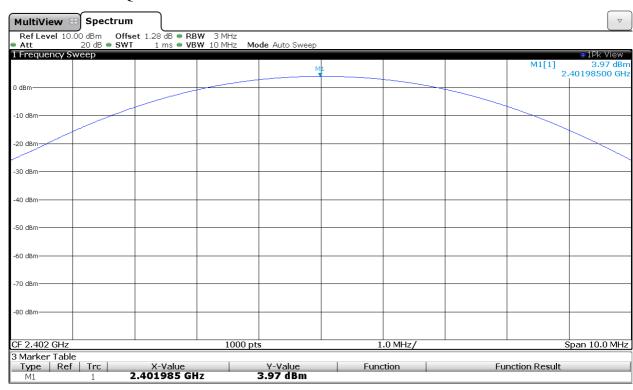
The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.



PEAK OUTPUT POWER (CONDUCTED).

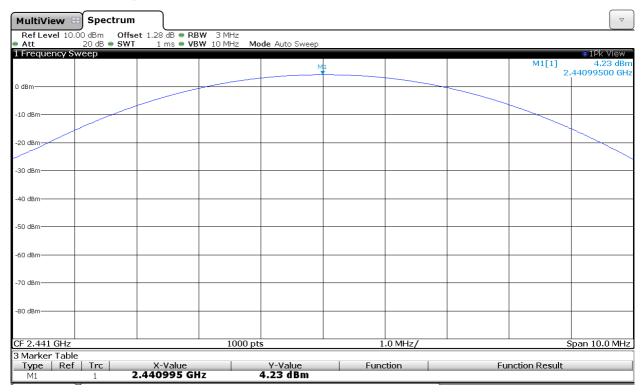
Modulation: GFSK Lowest Channel: 2402 MHz.

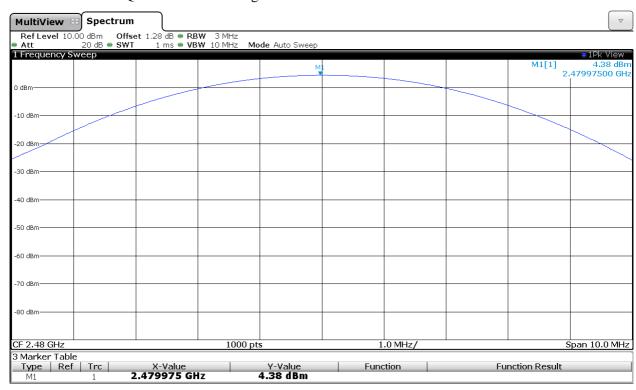

Modulation: GFSK Middle Channel: 2441 MHz.



PEAK OUTPUT POWER (CONDUCTED).

Modulation: GFSK Highest Channel: 2480 MHz.

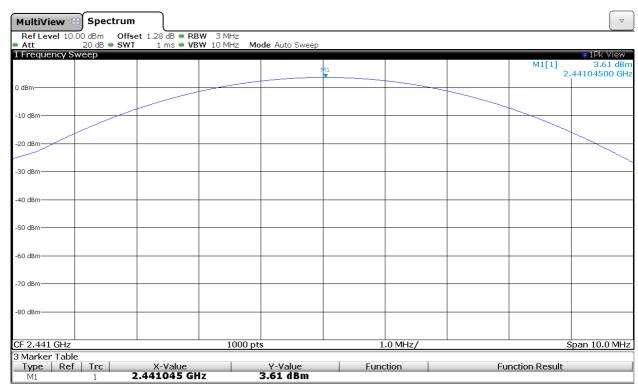

Modulation: Π/4-DQPSK Lowest Channel: 2402 MHz



PEAK OUTPUT POWER (CONDUCTED)

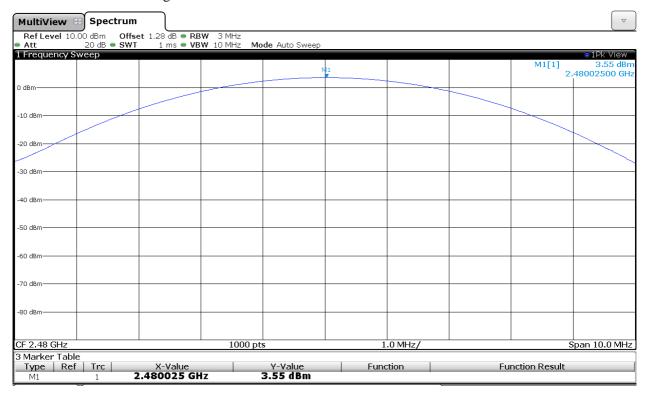
Modulation: Π/4-DQPSK Middle Channel: 2441 MHz.

Modulation: Π/4-DQPSK Highest Channel: 2480 MHz.



PEAK OUTPUT POWER (CONDUCTED).

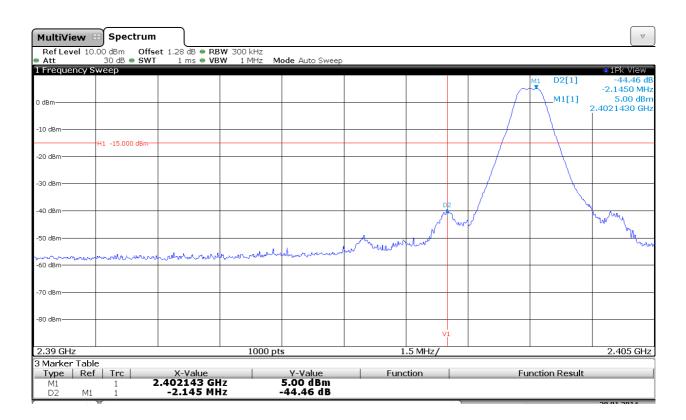
Modulation: 8-DPSK Lowest Channel: 2402 MHz


Modulation: 8-DPSK Middle Channel: 2441 MHz.

PEAK OUTPUT POWER (CONDUCTED).

Modulation: 8-DPSK Highest Channel: 2480 MHz.

FCC Section 15.247 Subclause (d) / RSS-210 Clause A8.5. Band-edge compliance of conducted emissions (Transmitter)

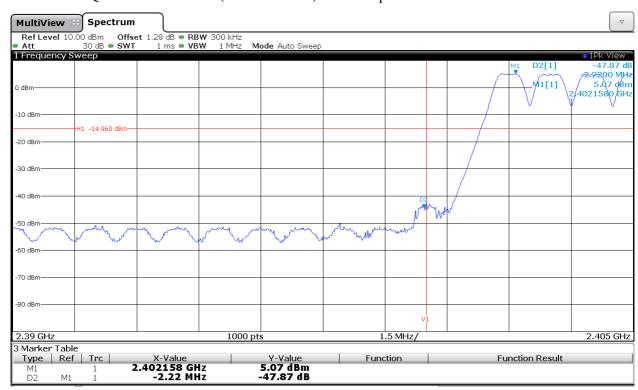

SPECIFICATION

Emissions outside the frequency band in which the intentional radiator is operating shall be at least 20dB below the highest level of the desired power.

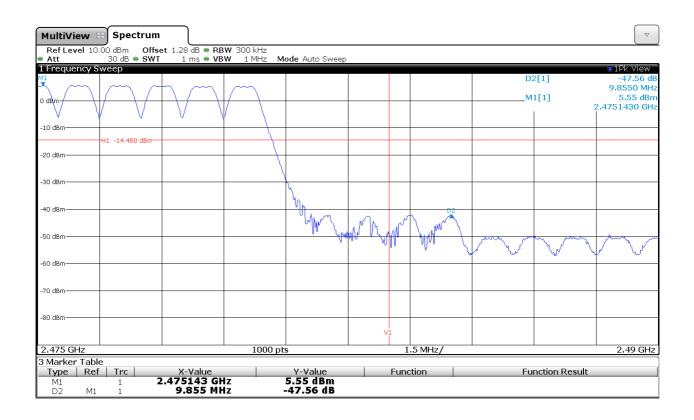
RESULTS:

Modulation: GFSK

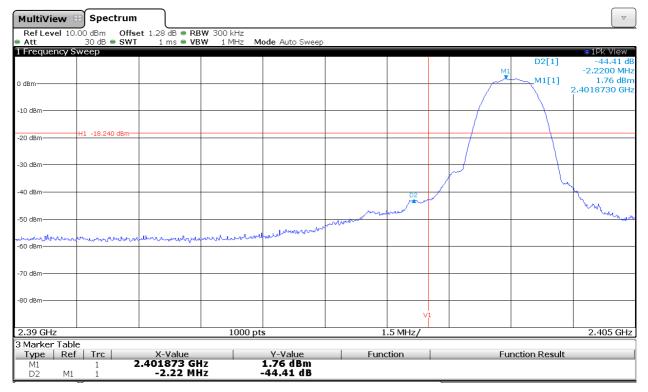
1. LOW FREQUENCY SECTION 2402 MHz (HOPPING OFF). See next plot.

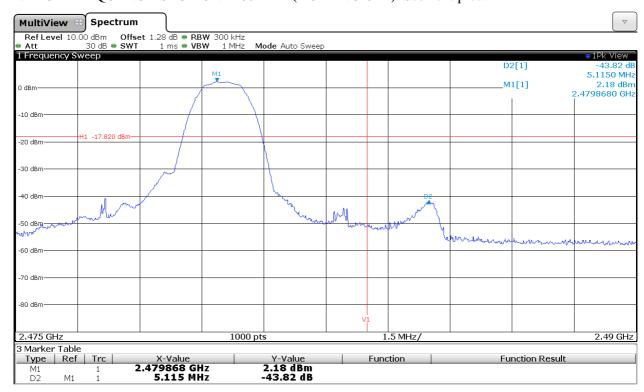


2. HIGH FREQUENCY SECTION 2480 MHz (HOPPING OFF). See next plot.

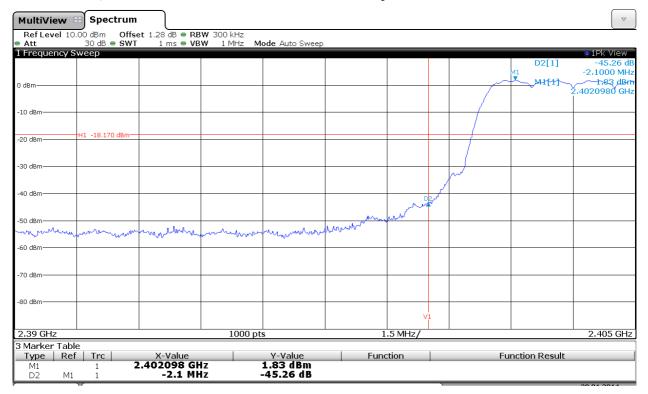

Verdict: PASS

3. LOW FREQUENCY SECTION (HOPPING ON). See next plot.


4. HIGH FREQUENCY SECTION (HOPPING ON). See next plot.


Modulation: Π/4-DQPSK

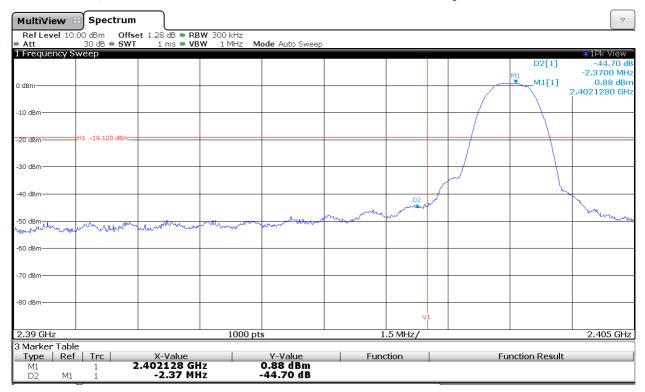
1. LOW FREQUENCY SECTION 2402 MHz (HOPPING OFF). See next plot.

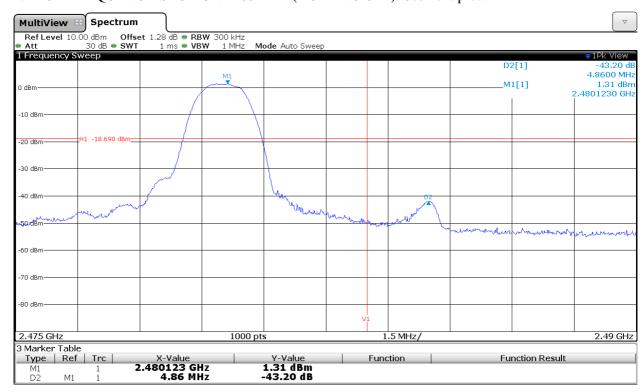

Verdict: PASS

2. HIGH FREQUENCY SECTION 2480 MHz (HOPPING OFF). See next plot.

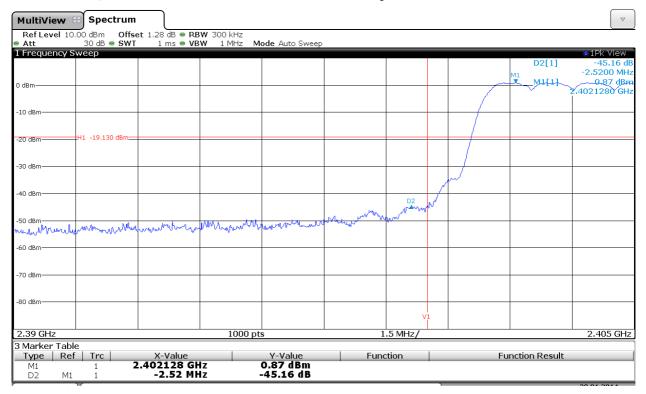
3. LOW FREQUENCY SECTION (HOPPING ON). See next plot.

Verdict: PASS


4. HIGH FREQUENCY SECTION (HOPPING ON). See next plot.


Modulation: 8-DPSK

1. LOW FREQUENCY SECTION 2402 MHz (HOPPING OFF). See next plot.


Verdict: PASS

2. HIGH FREQUENCY SECTION 2480 MHz (HOPPING OFF). See next plot.

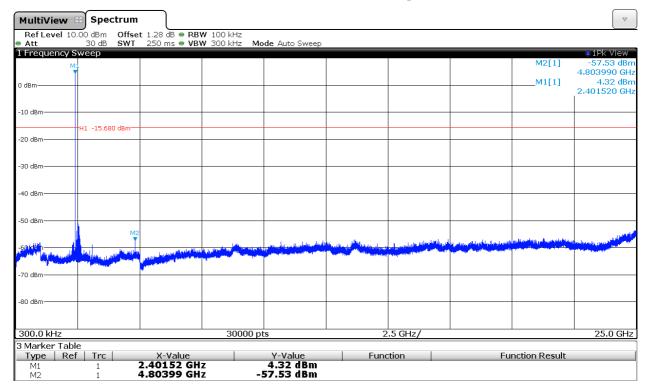
3. LOW FREQUENCY SECTION (HOPPING ON). See next plot.

Verdict: PASS

4. HIGH FREQUENCY SECTION (HOPPING ON). See next plot.

2014-03-12

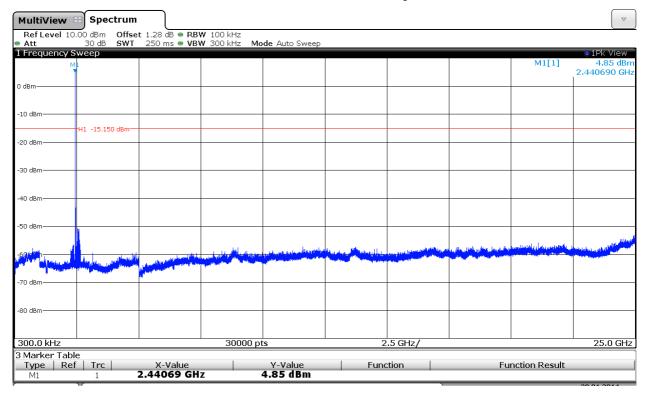
FCC Section 15.247 Subclause (d) / RSS-210 Clause A8.5. Emission limitations conducted (Transmitter)


SPECIFICATION

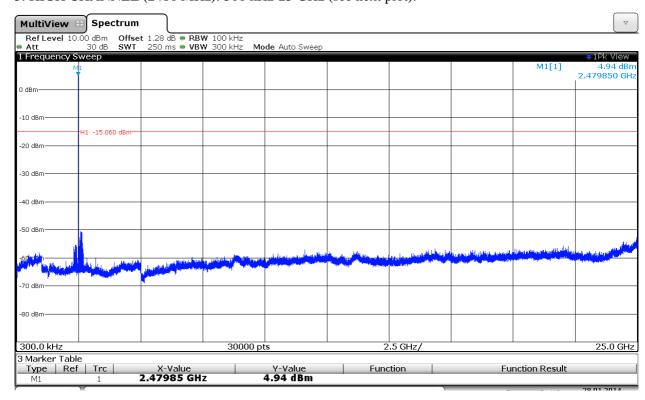
In any 100 kHz bandwidths outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

RESULTS:

Modulation: GFSK


1. LOWEST CHANNEL (2402 MHz): 300 kHz-25 GHz (see next plot).

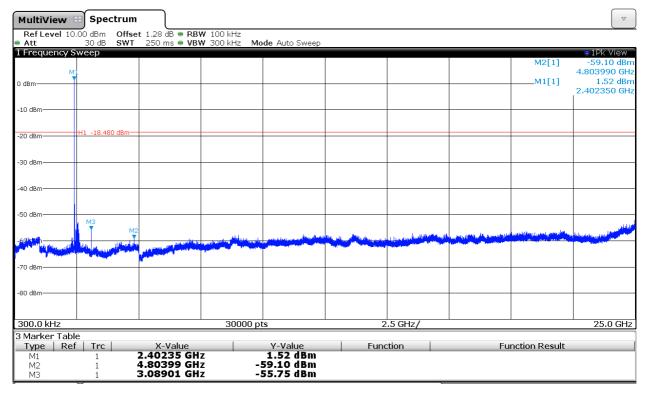
Note: The peak above the limit is the carrier frequency.


2. MIDDLE CHANNEL (2441 MHz): 300 kHz-25 GHz (see next plot).

Note: The peak above the limit is the carrier frequency.

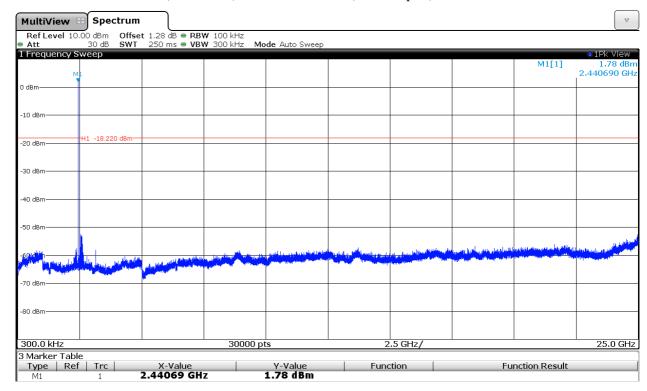
Verdict: PASS

3. HIGH CHANNEL (2480 MHz): 300 kHz-25 GHz (see next plot).



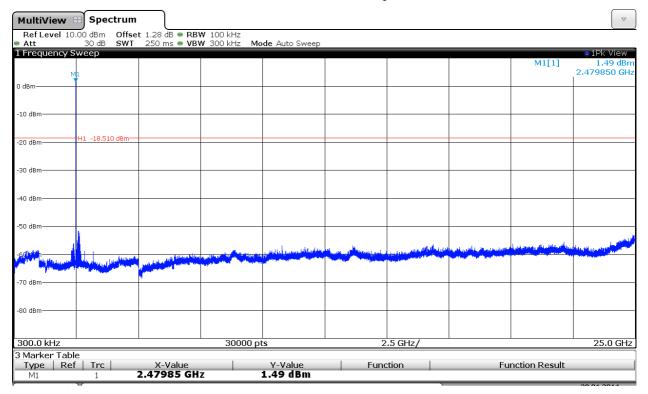
Note: The peak above the limit is the carrier frequency.

Modulation: Π/4-DQPSK


1. LOWEST CHANNEL (2402 MHz): 300 kHz-25 GHz (see next plot).

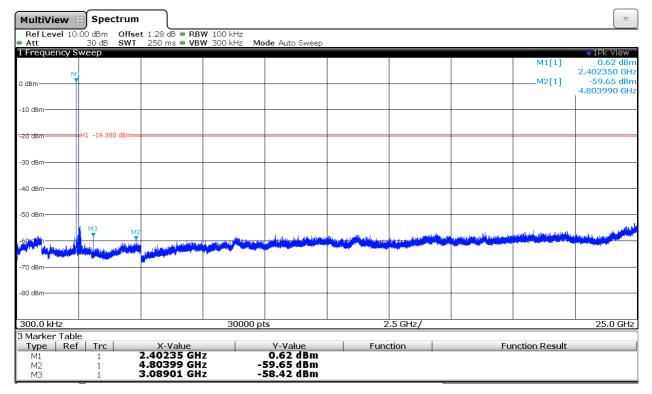
Note: The peak above the limits is the carrier frequency.

Verdict: PASS


2. MIDDLE CHANNEL (2441 MHz): 300 kHz-25 GHz (see next plot).

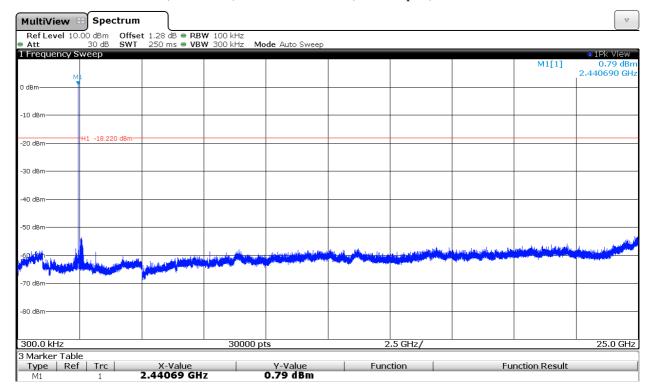
Note: The peak above the limits is the carrier frequency.

3. HIGH CHANNEL (2480 MHz): 300 kHz-25 GHz (see next plot).



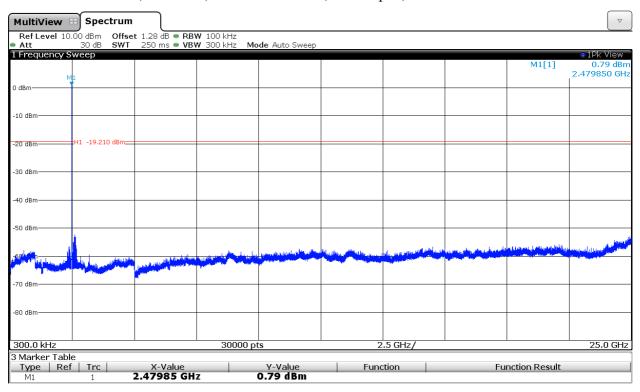
Note: The peak above the limit is the carrier frequency.

Modulation: 8-DPSK


1. LOWEST CHANNEL (2402 MHz): 300 kHz-25 GHz (see next plot).

Note: The peak above the limits is the carrier frequency.

Verdict: PASS


2. MIDDLE CHANNEL (2441 MHz): 300 kHz-25 GHz (see next plot).

Note: The peak above the limit is the carrier frequency.

3. HIGH CHANNEL (2480 MHz): 300 kHz-25 GHz (see next plot).

Note: The peak above the limit is the carrier frequency.

FCC Section 15.247 Subclause (d) / RSS-210 Clause A8.5. Emission limitations radiated (Transmitter)

SPECIFICATION

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)):

Frequency Range (MHz)	Field strength (µV/m)	Field strength (dBµV/m)	Measurement distance (m)
0.009-0.490	2400/F(kHz)	-	300
0.490-1.705	24000/F(kHz)	-	300
1.705 - 30.0	30	-	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
960 - 25000	500	54	3

The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

RESULTS:

The situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.

Measurements were made in both horizontal and vertical planes of polarization.

All tests were performed in a semi-anechoic chamber at a distance of 3 m for the frequency range 30 MHz-1000 MHz and at distance of 1m for the frequency range 1 GHz-25 GHz.

The field strength is calculated by adding correction factor to the measured level from the spectrum analyzer. This correction factor includes antenna factor, cable loss and pre-amplifiers gain.

Frequency range 30 MHz-1000 MHz.

Note: The spurious emissions below 1 GHz do not depend on either the operating channel or the modulation mode selected in the EUT.

Spurious levels operating (radiated) closest to limit.

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
32.91	V	Quasi-peak	30.33	±4.12
81.41	V	Quasi-peak	28.64	±4.12
143.49	V	Quasi-peak	36.52	±4.12
165.80	V	Quasi-peak	37.88	±4.12

Frequency range 1 GHz-25 GHz

Modulation: GFSK

1. CHANNEL: LOWEST (2402 MHz).

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
2.3422	Н	Peak	46.06	± 4.0
2.3422	Н	Average	34.79	± 4.0
2.4943	Н	Peak	46.61	± 4.0
2.4943	Н	Average	35.05	± 4.0
2.5021	Н	Peak	47.93	± 4.0
2.5021	Н	Average	38.97	± 4.0
2.5218	Н	Peak	47.94	± 4.0
	Н	Average	39.09	± 4.0
4.8040	V	Peak	48.37	± 4.0
	V	Average	46.73	± 4.0

2. CHANNEL: MIDDLE (2441 MHz).

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
	Н	Peak	47.76	± 4.0
2.3809	Н	Average	35.71	± 4.0
	Н	Peak	47.13	± 4.0
2.4934	Н	Average	35.05	± 4.0
	Н	Peak	48.07	± 4.0
2.5412	Н	Average	39.90	± 4.0
	Н	Peak	48.41	± 4.0
2.5611	Н	Average	39.11	± 4.0
	V	Peak	47.79	± 4.0
4.8819	V	Average	46.27	± 4.0

3. CHANNEL: HIGHEST (2480 MHz).

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
	Н	Peak	46.31	± 4.0
2.3800	Н	Average	36.37	± 4.0
2.4025	Н	Peak	47.55	± 4.0
2.4835	Н	Average	35.50	± 4.0
2 7004	Н	Peak	48.03	± 4.0
2.5801	Н	Average	38.72	± 4.0
	Н	Peak	47.52	± 4.0
2.6401	Н	Average	39.13	± 4.0
2.1007	V	Peak	32.89	± 4.0
3.1885	V	Average	27.54	± 4.0
4.9601	V	Peak	45.90	± 4.0
	V	Average	44.23	± 4.0

Modulation: $\Pi/4$ -DQPSK

1. CHANNEL: LOWEST (2402 MHz).

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
2.3420	Н	Peak	47.03	± 4.0
2.3420	Н	Average	34.59	± 4.0
2,4953	Н	Peak	46.68	± 4.0
2.4933	Н	Average	35.04	± 4.0
	Н	Peak	47.60	± 4.0
2.5019	Н	Average	37.46	± 4.0
2.7001	Н	Peak	47.67	± 4.0
2.5206	Н	Average	37.65	± 4.0
	V	Peak	34.08	± 4.0
3.0885	V	Average	27.60	± 4.0
4.8039	V	Peak	45.34	± 4.0
	V	Average	41.95	± 4.0

2. CHANNEL: MIDDLE (2441 MHz).

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
2 2010	Н	Peak	46.10	± 4.0
2.3810	Н	Average	35.03	± 4.0
2 10 12	Н	Peak	47.42	± 4.0
2.4943	Н	Average	35.02	± 4.0
2.5105	Н	Peak	49.24	± 4.0
2.5407	Н	Average	38.09	± 4.0
2.5600	Н	Peak	48.13	± 4.0
2.5609	Н	Average	37.44	± 4.0
2.120.1	V	Peak	33.33	± 4.0
3.1384	V	Average	26.89	± 4.0
	V	Peak	44.13	± 4.0
4.8820	V	Average	40.59	± 4.0

3. CHANNEL: HIGHEST (2480 MHz).

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
	Н	Peak	46.98	± 4.0
2.3801	Н	Average	35.54	± 4.0
2 4025	Н	Peak	48.21	± 4.0
2.4835	Н	Average	36.19	± 4.0
2.7000	Н	Peak	47.06	± 4.0
2.5399	Н	Average	37.25	± 4.0
2.1100	Н	Peak	47.58	± 4.0
2.6400	Н	Average	37.85	± 4.0
	V	Peak	35.77	± 4.0
3.1886	V	Average	30.04	± 4.0
	V	Peak	43.09	± 4.0
4.9600	V	Average	38.73	± 4.0

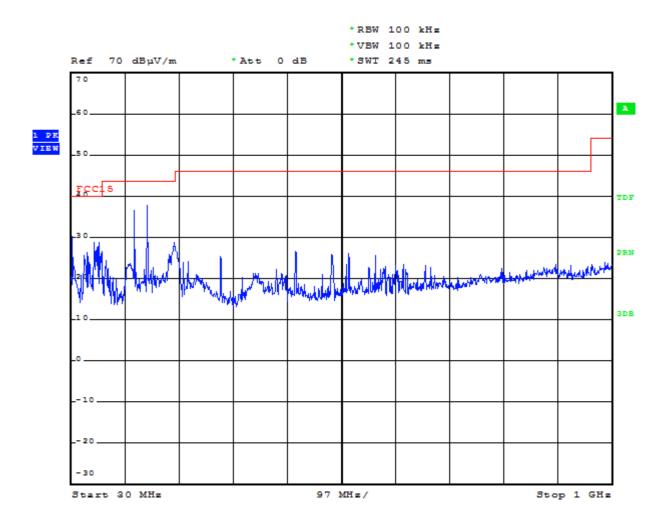
Verdict: PASS

Modulation: 8-DPSK

1. CHANNEL: LOWEST (2402 MHz).

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
	Н	Peak	46.31	± 4.0
2.3220	Н	Average	34.47	± 4.0
	Н	Peak	47.51	± 4.0
2.4950	Н	Average	34.99	± 4.0
	Н	Peak	47.55	± 4.0
2.5021	Н	Average	37.26	± 4.0
	Н	Peak	48.47	± 4.0
2.5222	Н	Average	37.38	± 4.0
	V	Peak	33.75	± 4.0
3.0882	V	Average	26.88	± 4.0
4.8040	V	Peak	45.52	± 4.0
	V	Average	40.76	± 4.0

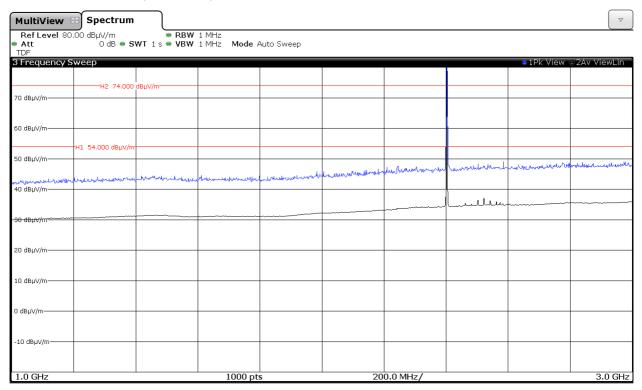
2. CHANNEL: MIDDLE (2441 MHz).


Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
	Н	Peak	46.80	± 4.0
2.3809	Н	Average	35.81	± 4.0
2 40.72	Н	Peak	46.73	± 4.0
2.4953	Н	Average	35.05	± 4.0
2	Н	Peak	47.94	± 4.0
2.5411	Н	Average	38.33	± 4.0
2.7.4.0	Н	Peak	47.90	± 4.0
2.5610	Н	Average	38.08	± 4.0
2.4007	V	Peak	33.36	± 4.0
3.1385	V	Average	26.09	± 4.0
	V	Peak	43.66	± 4.0
4.8821	V	Average	38.92	± 4.0

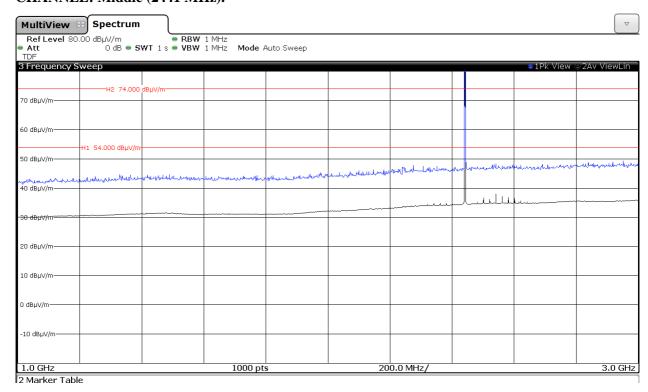
3. CHANNEL: HIGHEST (2480 MHz).

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
2 2000	Н	Peak	46.64	± 4.0
2.3800	Н	Average	36.39	± 4.0
2.4025	Н	Peak	49.40	± 4.0
2.4835	Н	Average	36.59	± 4.0
	Н	Peak	47.51	± 4.0
2.5800	Н	Average	37.70	± 4.0
	Н	Peak	47.49	± 4.0
2.6201	Н	Average	37.76	± 4.0
2.4400	Н	Peak	48.05	± 4.0
2.6400	Н	Average	38.95	± 4.0
2.1007	V	Peak	35.69	± 4.0
3.1885	V	Average	29.24	± 4.0
4.0501	V	Peak	41.97	± 4.0
4.9601	V	Average	37.24	± 4.0

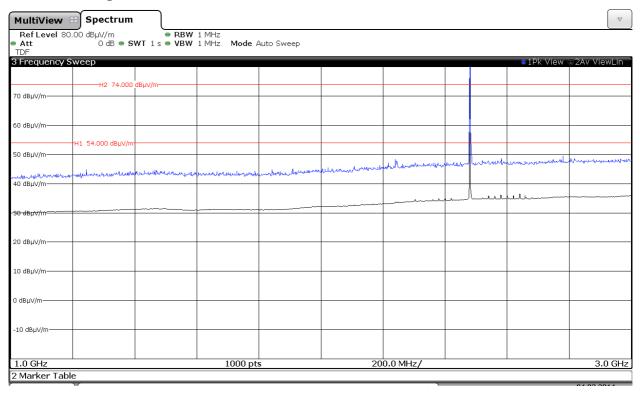
FREQUENCY RANGE 30 MHz-1000 MHz.


(This plot is valid for all three channels and all modulation modes).

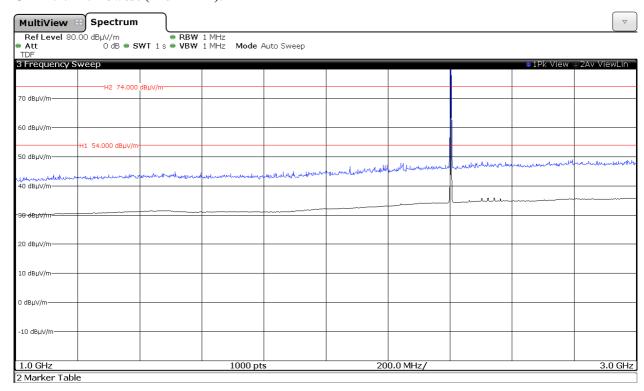
FREQUENCY RANGE 1 GHz to 3 GHz.


Modulation: GFSK

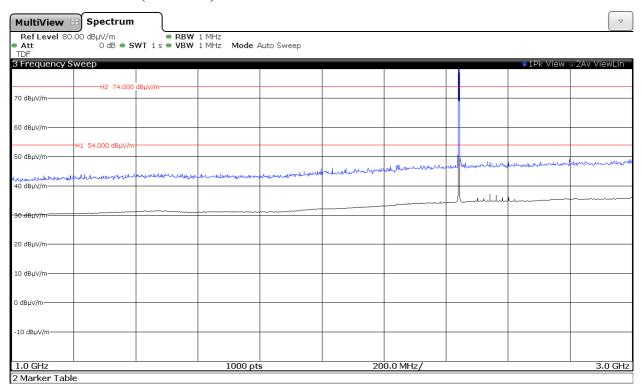
CHANNEL: Lowest (2402 MHz).


Note: The peak shown in the plot is the carrier frequency.

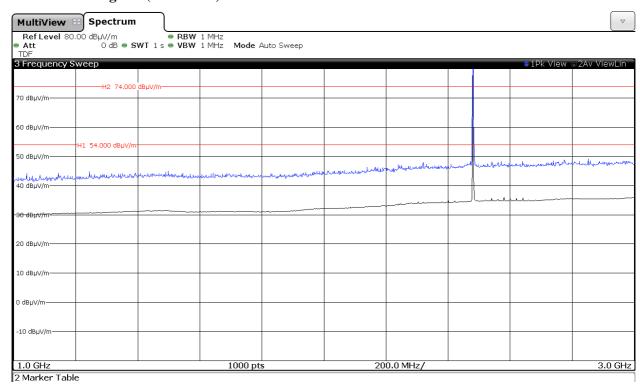
CHANNEL: Middle (2441 MHz).


CHANNEL: Highest (2480 MHz).

Note: The peak shown in the plot is the carrier frequency.

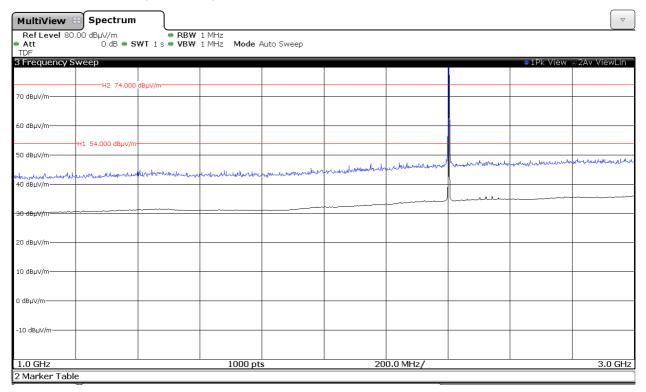

Modulation: Π/4-DQPSK

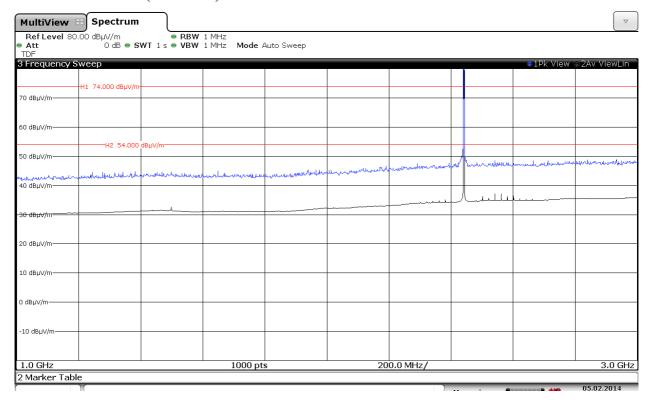
CHANNEL: Lowest (2402 MHz).



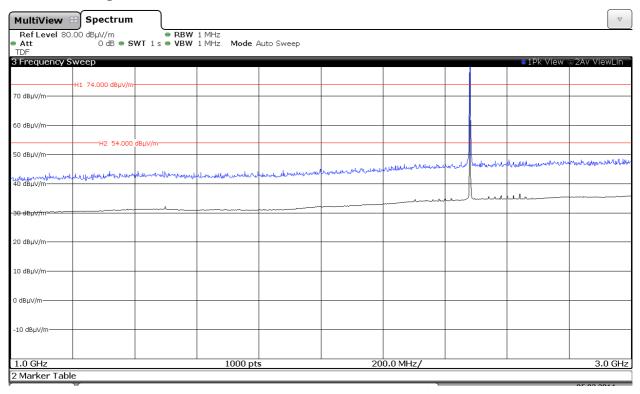
CHANNEL: Middle (2441 MHz).

Note: The peak shown in the plot is the carrier frequency.


CHANNEL: Highest (2480 MHz).

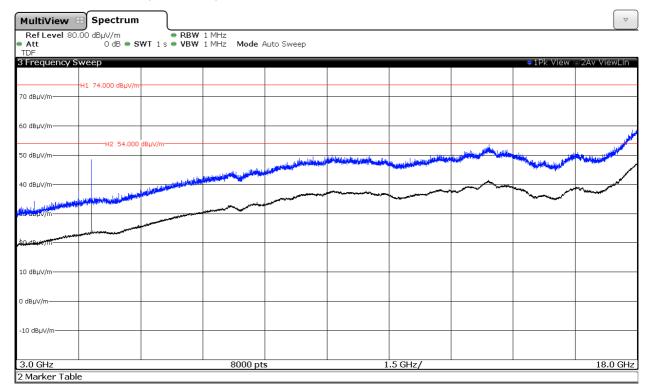

Modulation: 8-DPSK

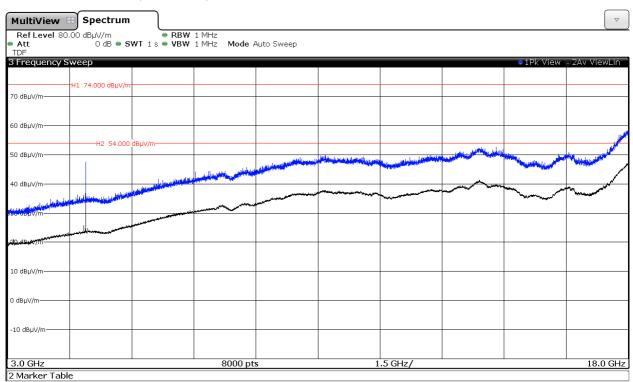
CHANNEL: Lowest (2402 MHz).


Note: The peak shown in the plot is the carrier frequency.

CHANNEL: Middle (2441 MHz).

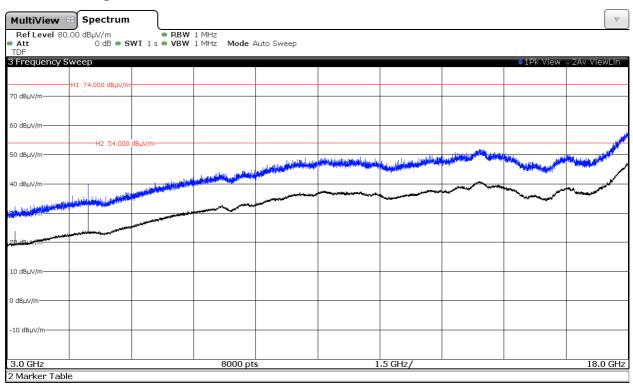
CHANNEL: Highest (2480 MHz).



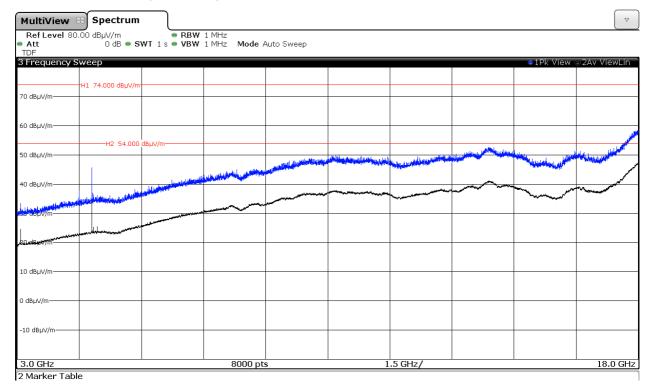

FREQUENCY RANGE 3 GHz to 18 GHz.

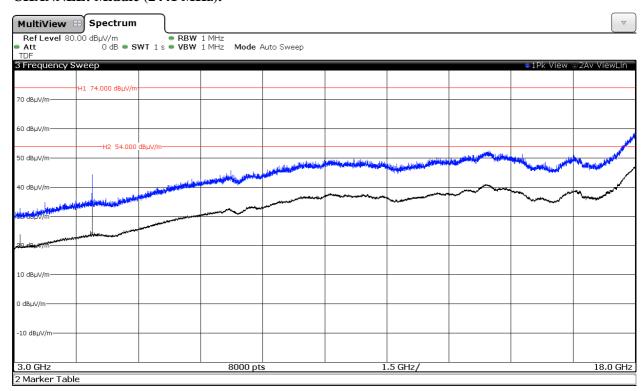
Modulation: GFSK

CHANNEL: Lowest (2402 MHz).



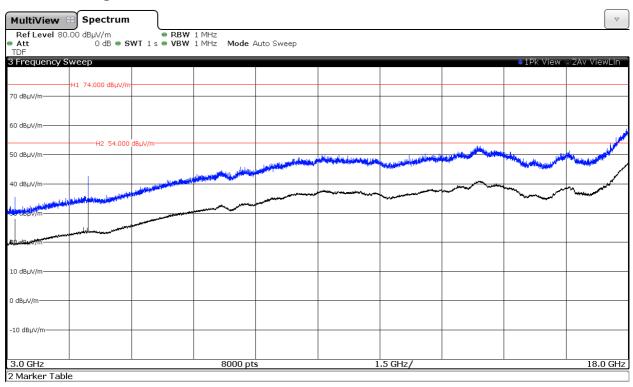
CHANNEL: Middle (2441 MHz).


CHANNEL: Highest (2480 MHz).

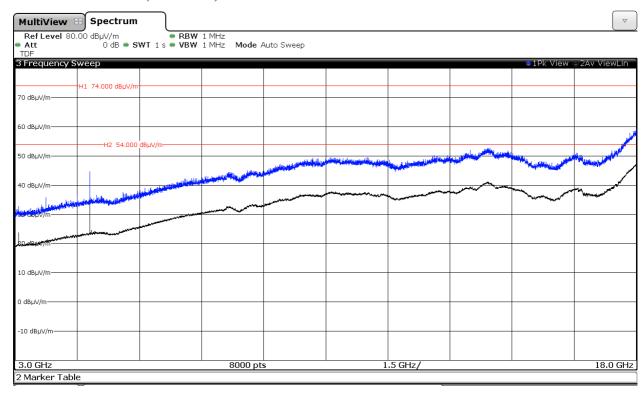


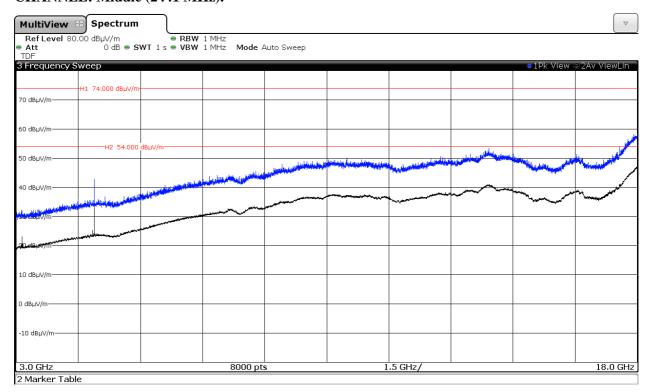
$Modulation: \Pi/4\text{-}DQPSK$

CHANNEL: Lowest (2402 MHz).



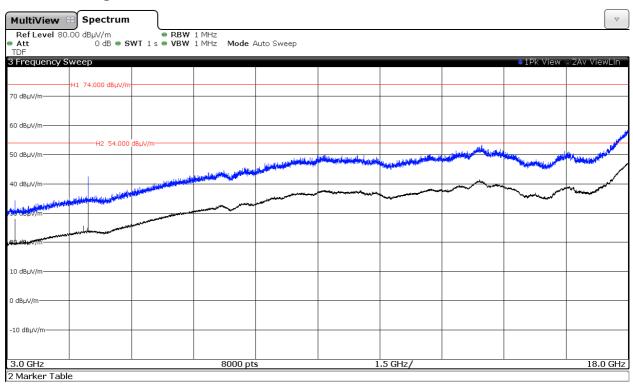
CHANNEL: Middle (2441 MHz).


CHANNEL: Highest (2480 MHz).

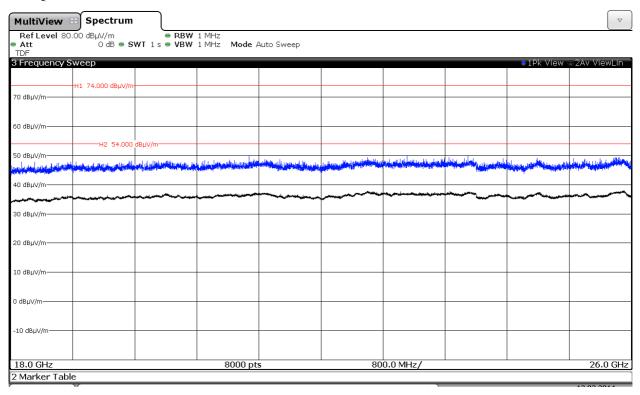


Modulation: 8-DPSK

CHANNEL: Lowest (2402 MHz).

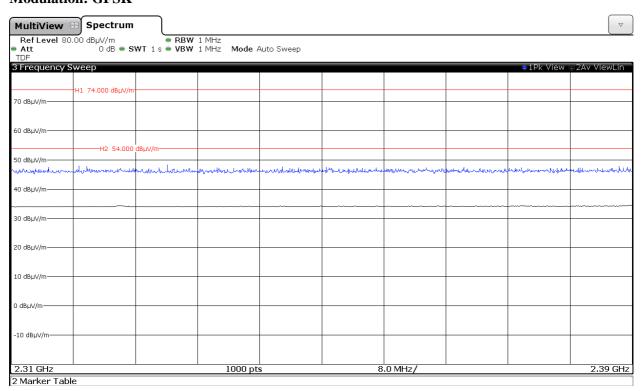


CHANNEL: Middle (2441 MHz).

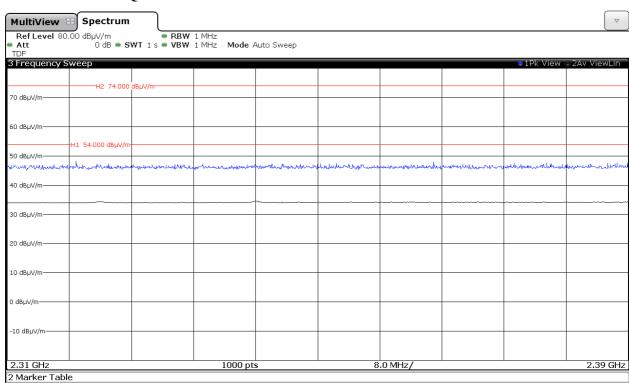


CHANNEL: Highest (2480 MHz).

FREQUENCY RANGE 18 GHz to 25 GHz.

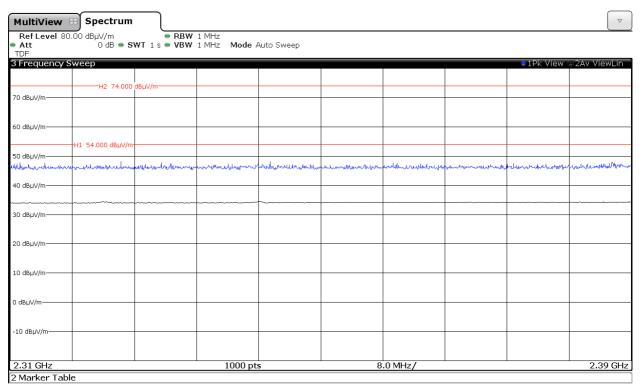


(This plot is valid for all three channels and all modulation modes).

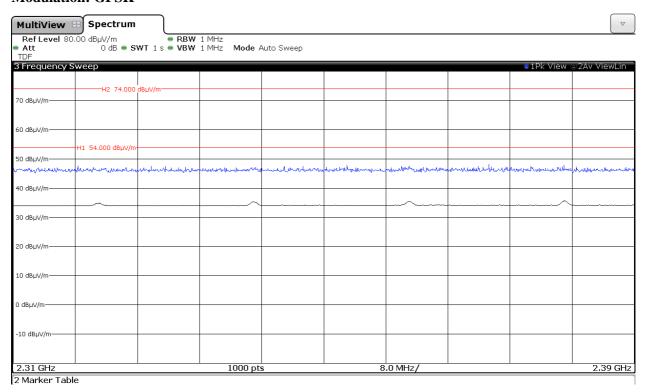


FREQUENCY RANGE 2.31 GHz to 2.39 GHz. (RESTRICTED BAND)

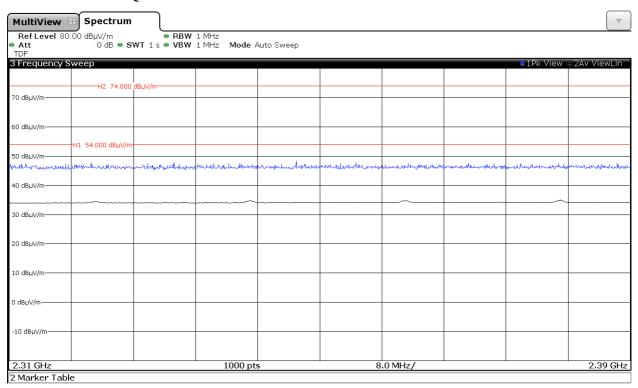
CHANNEL: Lowest Modulation: **GFSK**



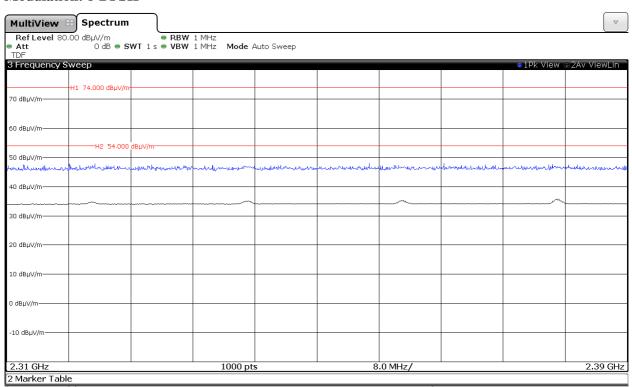
Modulation: Π/4-DQPSK



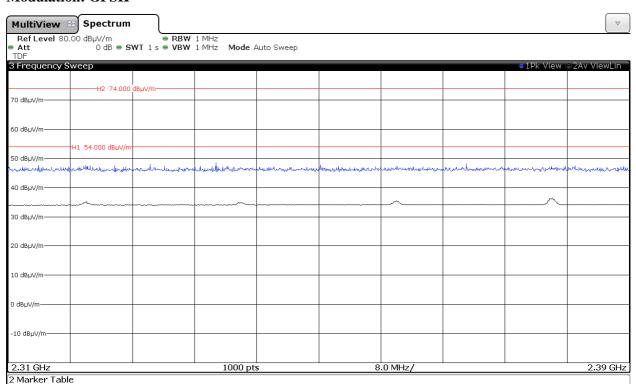
Modulation: 8-DPSK


CHANNEL: Middle

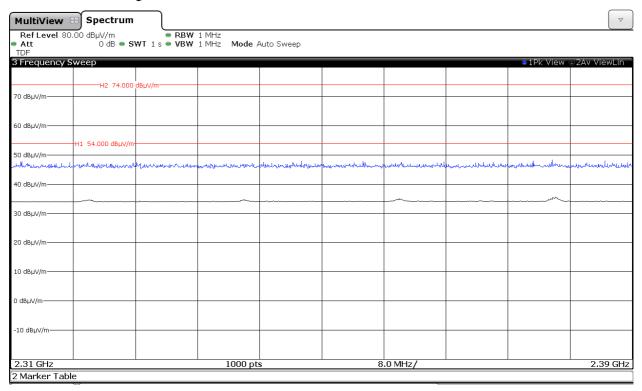
Modulation: GFSK



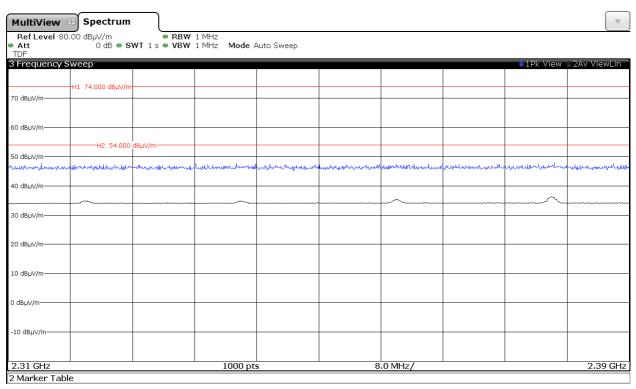
Modulation: Π/4-DQPSK



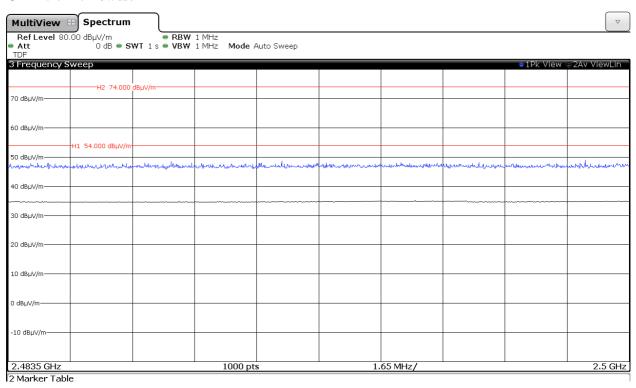
Modulation: 8-DPSK

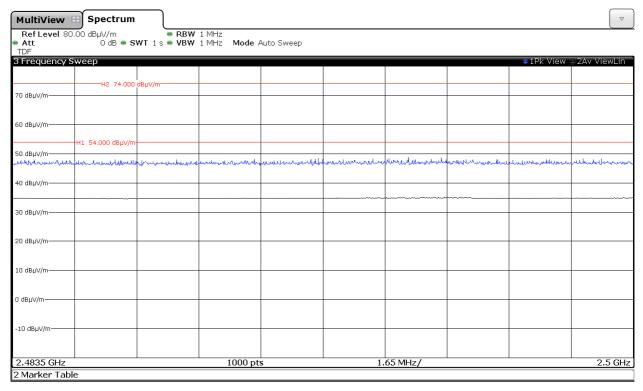


CHANNEL: Highest Modulation: GFSK



Modulation: Π/4-DQPSK

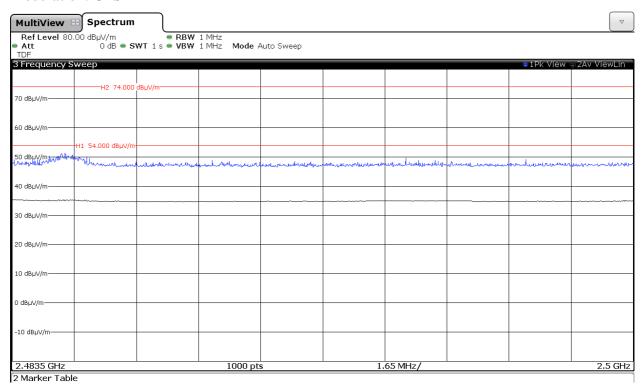

Modulation: 8-DPSK


FREQUENCY RANGE 2.4835 GHz to 2.5 GHz. (RESTRICTED BAND)

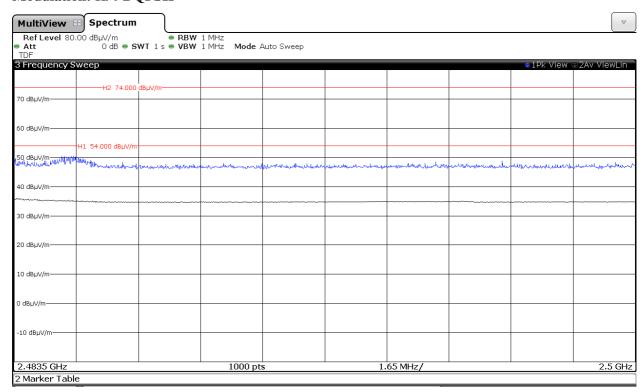
CHANNEL: Lowest

(This plot is valid for all modulation modes).

CHANNEL: Middle

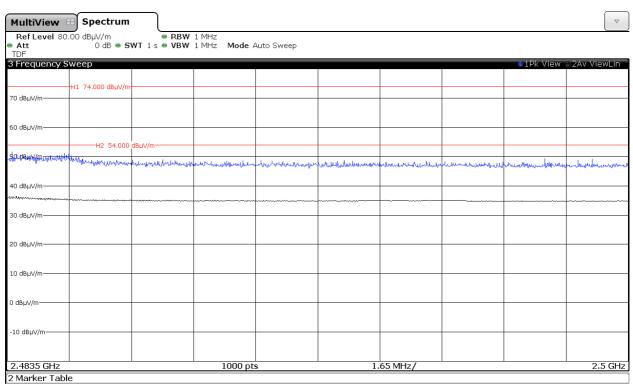


(This plot is valid for all modulation modes).



CHANNEL: Highest

Modulation: GFSK



Modulation: Π/4-DQPSK

Modulation: 8-DPSK

