Engineering Solutions & Electromagnetic Compatibility Services # FCC Part 15.247 & Industry Canada RSS-210 Limited Module Approval Application Report Test Lab: Applicant: Rhein Tech Laboratories, Inc. Tel: 703-689-0368 360 Herndon Parkway Fax: 703-689-2056 Suite 1400 www.rheintech.com Herndon, VA 20170 E-Mail: atcbinfo@rheintech.com TMI-USA, Inc. 11491 Sunset Hills Road; Suite 310 Reston, VA 20190 Contact: Guillaume Favre | • | | | | | | |--------------------------------------|---|--|-------------------|--|--| | FCC/IC ID | RMK-ZIGB1
10839A-ZIGB1 | Test Report Date | February 28, 2013 | | | | Platform | N/A | RTL Work Order # | 2013031 | | | | Model | RADIOZIGB1 | RTL Quote # | QRTL13-031A | | | | American National Standard Institute | | ls of Measurement of Radio-
Electronic Equipment in the | | | | | FCC Classification | DTS – Part 15 Digital Transmission System | | | | | | FCC Rule Part(s)/
Guidance | FCC Rules Part 15.247: Operation within the bands 920-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz Direct Sequence System (10-01-12) | | | | | | Industry Canada | RSS-210 Issue 8: Low Power License-Exempt Communications Devices RSS-Gen Issue 3; 2010: General Requirements and Information for the Certification of Radio Apparatus | | | | | | Digital Interface Information | Digital Interface was found to be compliant | | | | | | | | | | | | | Frequency Range
(MHz) | Output Power (W) Frequency Tolerance Emission Designato | | | | | | 2405 – 2480 | 0.002 | N/A | 1M51FXD | | | I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described in this test report. No modifications were made to the equipment during testing in order to achieve compliance with these standards. Furthermore, there was no deviation from, additions to, or exclusions from, the applicable parts of FCC Part 2, FCC Part 15, IC RSS-210, IC RSS-Gen and ANSI C63.4. Signature: Date: February 28, 2013 Typed/Printed Name: <u>Desmond A. Fraser</u> Position: <u>President</u> This report may not be reproduced, except in full, without the written approval of Rhein Tech Laboratories, Inc. and TMI-USA, Inc. The test results relate only to the item(s) tested. These tests are accredited and meet the requirements of ISO/IEC 17025 as verified by ANSI-ASQ National Accreditation Board/ACLASS. Refer to certificate and scope of accreditation AT-1445. Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 ## **Table of Contents** | 1 | Gene | eral Information | 5 | |----|--------|---|------| | | 1.1 | Scope | 5 | | | 1.2 | Description of EUT | | | | 1.3 | Test Facility | 5 | | | 1.4 | Related Submittal(s)/Grant(s) | 5 | | | 1.5 | Modifications | 5 | | 2 | Test | Information | 6 | | | 2.1 | Description of Test Modes | 6 | | | 2.2 | Exercising the EUT | | | | 2.3 | Test Result Summary | 6 | | | 2.4 | Test System Details | 7 | | | 2.5 | Configuration of Tested System | 7 | | 3 | Peak | : Output Power – FCC §15.247(b)(1); RSS-210 §A8.4(4) | 8 | | | 3.1 | Power Output Test Procedure | 8 | | | 3.2 | Power Output Test Data | 8 | | 4 | Com | pliance with the Band Edge – FCC §15.247(d); RSS-210 §2.2 | 9 | | | 4.1 | Band Edge Test Procedure | 9 | | | 4.2 | Restricted Band Edge Test Results | | | | 4.2.1 | Calculation of Lower Band Edge | . 10 | | | 4.2.2 | | | | 5 | Ante | nna Conducted Spurious Emissions – FCC §15.247(d); RSS-Gen | . 12 | | | 5.1 | Antenna Conducted Spurious Emissions Test Procedure | . 12 | | | 5.2 | Antenna Conducted Spurious Emissions Test Results | . 13 | | 6 | Powe | er Spectral Density – FCC §15.247(e); RSS-210 §A8.2 | . 16 | | | 6.1 | Power Spectral Density Test Procedure | . 16 | | | 6.2 | Power Spectral Density Test Data | . 16 | | 7 | Rest | ricted Band Emissions – FCC §15.209, RSS-210 §A8.5 | . 20 | | | 7.1 | Limits of Radiated Emissions Measurement | . 20 | | | 7.2 | Radiated Emissions Measurement Test Procedure | . 20 | | | 7.3 | Restricted Band Emissions Test Results | . 23 | | | 7.4 | Radiated Emissions Harmonics/Spurious Test Data – Cabinet Radiation with Antenna Port | | | | Termin | ated | . 25 | | 8 | AC C | Conducted Emissions - FCC §15.207; RSS-Gen §7.2.4: Conducted Limits | . 28 | | 9 | 6 dB | Bandwidth - FCC §15.247(a)(2); RSS-210 §A8.2 | . 28 | | | 9.1 | 6 db Bandwidth Test Procedure – Minimum 6 dB Bandwidth | . 28 | | | 9.2 | 6 dB Modulated Bandwidth Test Data | . 28 | | 11 | Conc | ducion | 22 | Table 9-2: Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 #### **Figure Index** Figure 2-1: **Table Index** Table 2-1: Table 2-2: Test Result Summary – FCC Part 15, Subpart C (Section 15.247)......6 Table 2-3: Table 3-1: Table 3-2: Power Output Test Data......8 Table 4-1: Band Edge Test Equipment9 Table 5-1: Table 6-1: Table 6-2: Table 7-1: Table 7-2: Table 7-3: Table 7-4: Table 7-5: Table 7-6: Table 7-7: Table 7-8: Radiated Emissions Harmonics/Spurious - 2405 MHz - Peak Detector; Stand-alone Table 7-9: Radiated Emissions Harmonics/Spurious - 2405 MHz - Average Detector: Stand-alone Table 7-10: Configuration 25 Radiated Emissions Harmonics/Spurious - 2440 MHz - Peak Detector; Stand-alone Table 7-11: Configuration 25 Table 7-12: Radiated Emissions Harmonics/Spurious - 2440 MHz - Average Detector; Stand-alone Radiated Emissions Harmonics/Spurious - 2480 MHz - Peak Detector; Stand-alone Table 7-13: Radiated Emissions Harmonics/Spurious - 2480 MHz - Average Detector; Stand-alone Table 7-14: Radiated Emissions Harmonics/Spurious - 2405 MHz - Peak Detector; Typical-Host 27 Table 7-15: Radiated Emissions Harmonics/Spurious - 2440 MHz - Peak Detector; Typical-Host27 Table 7-16: Radiated Emissions Harmonics/Spurious - 2480 MHz - Peak Detector: Typical-Host27 Table 7-17: Table 9-1: Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 ## **Plot Index** | | r Band Edge - 2405 MHz | | | | | | |---|--|------------|--|--|--|--| | | r Band Edge - 2480 MHz | | | | | | | | nna Conducted Spurious Emissions - 2405 MHz | | | | | | | | nna Conducted Spurious Emissions - 2440 MHz | | | | | | | | nna Conducted Spurious Emissions - 2480 MHz | | | | | | | | r Spectral Density - 2405 MHz | | | | | | | Plot 6-2: Power Spectral Density - 2440 MHz | | | | | | | | | r Spectral Density - 2480 MHz | | | | | | | Plot 9-1: 6 dB | Bandwidth - 2405 MHz | 29 | | | | | | | Bandwidth - 2440 MHz | | | | | | | Plot 9-3: 6 dB | Bandwidth - 2480 MHz | 31 | | | | | | | Appendix Index | | | | | | | | | | | | | | | | C Part 1.1307, 1.1310, 2.1091, 2.1093; IC RSS-Gen: RF Exposure | | | | | | | | ency Authorization Letter | | | | | | | | C Confidentiality Request Letter | | | | | | | | C Limited Modular Approval | | | | | | | Appendix E: IC | Letters | 37 | | | | | | | nadian Based Representative Attestation Letter | | | | | | | Appendix G: IC | Confidentiality Request Letter | | | | | | | | lustry Canada Limited Modular ApprovalLabel and Label Location | | | | | | | 1 1 | chnical Operational Description | | | | | | | | hematics | | | | | | | | ock Diagram | | | | | | | | nual | | | | | | | | st Photographs | | | | | | | | ernal Photographs | | | | | | | | ernal Photographs | | | | | | | Appendix 1 . Int | Sind Thotographs | | | | | | | | Photograph Index | | | | | | | Photograph 1: | Sample Host ID Label | <i>1</i> 1 | | | | | | | Radiated Testing –Typical Host | | | | | | | | Radiated Testing – Stand-alone Configuration | | | | | | | | Radiated Testing – Stand-aione Goringulation | | | | | | | | Top View | | | | | | | | Bottom View | | | | | | | | Top View | | | | | | | O 1 | Bottom View | | | | | | Rhein Tech Laboratories, Inc. 360 Herndon Parkway Suite 1400 Herndon, VA 20170 http://www.rheintech.com Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 #### 1 General Information ## 1.1 Scope This is an original certification application request for the TMI-USA, Inc. Model RADIOZIGB1. Applicable Standards: - FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz. - Industry Canada RSS-210: Low Power License-Exempt Communications Devices #### 1.2 Description of EUT | Equipment Under Test | Zigbee Transceiver | |------------------------|------------------------| | Model | RADIOZIGB1 | | Power Supply | TMI-Orion battery pack | | Modulation Type | DSSS | | Frequency Range | 2405 – 2480 MHz | | Antenna Connector Type | Coax Socket | | Antenna Type | External Omni | #### 1.3 Test Facility The open area test site and conducted measurement facility used to collect the radiated data is located at 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report and approved by the Federal Communications Commission to perform AC line conducted and radiated emissions testing (ANSI C63.4-2003). #### 1.4 Related Submittal(s)/Grant(s) This is an original certification application for LIMITED MODULAR APPROVAL for TMI-USA, Inc., Model RADIOZIGB1, FCC ID: RMK-ZIGB1, IC: 10839A-ZIGB1. #### 1.5 Modifications No modifications were made to the equipment during testing in order to achieve compliance with these standards. Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 #### 2 Test Information #### 2.1 Description of Test Modes In accordance with FCC 15.31(m), and because the EUT utilizes an operating band greater than 10 MHz, the following frequencies were tested: Table 2-1: Channels Tested | Channel | Frequency | |-------------|-----------| | Low (11) | 2405 | | Middle (18) | 2440 | | High (26) | 2480 | ## 2.2 Exercising the EUT The EUT was supplied with test firmware programmed with a high, mid, and low channel for testing. The EUT was tested in all three orthogonal planes in order to determine worst-case emissions. The EUT was provided with software to continuously transmit during testing. The carrier was also checked to verify that information was being transmitted. #### 2.3 Test Result Summary Table 2-2: Test Result Summary – FCC Part 15, Subpart C (Section 15.247) | Standard | Test | Pass/Fail
or N/A | |------------------|--------------------------------------|---------------------| | FCC 15.207 | AC Power Conducted Emissions | N/A | | FCC 15.209 | Radiated Emissions | Pass | | FCC 15.247(a)(2) | 6 dB Bandwidth | Pass | | FCC 15.247(b) | Maximum Peak Power Output | Pass | | FCC 15.247(d) | Antenna Conducted Spurious Emissions | Pass | | FCC 15.247(e) | Power Spectral Density | Pass | | FCC 15.247(d) | Band Edge Measurement | Pass | Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 ## 2.4 Test System Details The test samples were received on February 21, 2013. The FCC identifiers for all applicable equipment, plus descriptions of all cables used in the tested system, are identified in the following table. Table 2-3: Equipment Under Test | Part | Manufacturer | Model | Serial
Number | FCC ID | Cable
Description | RTL
Bar
Code | |--|---------------|------------|------------------|-----------|----------------------|--------------------| | VACQ III 2.4 GHz
Zigbee Transmitter | TMI-USA, Inc. | RADIOZIGB1 | N/A | RMK-ZIGB1 | N/A | 20861 | ## 2.5 Configuration of Tested System Figure 2-1: Configuration of System Under Test Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 ## 3 Peak Output Power - FCC §15.247(b)(1); RSS-210 §A8.4(4) #### 3.1 Power Output Test Procedure A conducted power measurement of the EUT was taken using a Rohde & Schwarz FSU spectrum analyzer automated channel power function integrating a 99% bandwidth auto-coupled using max hold and peak detector function. Table 3-1: Power Output Test Equipment | RTL
Asset # | Manufacturer | Model | Part Type | Serial Number | Calibration
Due Date | |----------------|--------------------|--------------|--------------------------|---------------|-------------------------| | 901581 | Rohde &
Schwarz | 1166.1660.50 | FSU Spectrum
Analyzer | 2001006 | 6/3/13 | ## 3.2 Power Output Test Data ## Table 3-2: Power Output Test Data | Channel | Frequency (MHz) | Peak Power
Conducted Output (dBm) | |---------|-----------------|--------------------------------------| | 11 | 2405 | 3.1 | | 18 | 2440 | 2.4 | | 26 | 2480 | 1.7 | **Test Personnel:** Daniel W. Baltzell Test Engineer Signature February 25, 2013 Date of Test ## 4 Compliance with the Band Edge - FCC §15.247(d); RSS-210 §2.2 ## 4.1 Band Edge Test Procedure The transmitter output was connected to its appropriate antenna. Peak and average radiated measurements were taken with a suitable span to encompass the peak of the fundamental. A delta measurement was performed from the highest peak in the restricted band to the peak of the fundamental, and subtracted from the field strength; the result was compared to the limit in the restricted band (54 dBuV/m). Table 4-1: Band Edge Test Equipment | RTL Asset # | Manufacturer | Model | Part Type | Serial
Number | Calibration
Due Date | |-------------|----------------------------|---------------|----------------------------------|--------------------|-------------------------| | 901581 | Rohde &
Schwarz | 1166.1660.50 | Spectrum Analyzer | 2001006 | 6/3/13 | | 900878 | Rhein Tech
Laboratories | AM3-1197-0005 | 3 meter antenna mast, polarizing | Outdoor
Range 1 | Not
Required | | 901242 | Rhein Tech
Laboratories | WRT-000-0003 | Wood rotating table | N/A | Not
Required | | 900772 | EMCO | 3161-02 | Horn Antenna
(2-4 GHz) | 9804-1044 | 4/19/14 | ## 4.2 Restricted Band Edge Test Results ## 4.2.1 Calculation of Lower Band Edge 92.3 dBuV/m is the field strength measurement, from which the delta measurement of 53.5 dB is subtracted (reference plots), resulting in a level of 38.8 dBuV/m. This level has a margin of 15.2 dB below the limit of 54 dBuV/m. Calculation: 92.3 dBuV/m - 53.5 dB - 54 dBuV/m = -15.2 dB Peak Field Strength of Lower Band Edge (1 MHz RBW/3 MHz VBW, Pk Det.) = 92.9 dBuV/m Average Field Strength of Lower Band Edge (1 MHz RBW/3 MHz VBW, Av Det.) = 92.3 dBuV/m Delta measurement = 53.5 dB Plot 4-1: Lower Band Edge - 2405 MHz Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 ## 4.2.2 Calculation of Upper Band Edge – 802.11b 91.3 dBuV/m is the field strength measurement, from which the delta measurement of 40.1 dB is subtracted (reference plots), resulting in a level of 51.2 dBuV/m. This level has a margin of 3.8 dB below the limit of 54 dBuV/m. Calculation: 91.3 dBuV/m - 40.1 dB - 54 dBuV/m = -3.8 dB Peak Field Strength of Upper Band Edge (1 MHz RBW/3 MHz VBW, Pk. Det.) = 91.6 dBuV/m Average Field Strength of Upper Band Edge (1 MHz RBW/3 MHz VBW, Av Det.) = 91.3 dBuV/m Delta measurement = 40.1 dB Plot 4-2: Upper Band Edge - 2480 MHz **Test Personnel:** Daniel W. Baltzell Test Engineer Daniel W. Balgell Signature February 25, 2013 Date of Test Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 ## 5 Antenna Conducted Spurious Emissions – FCC §15.247(d); RSS-Gen ## 5.1 Antenna Conducted Spurious Emissions Test Procedure Antenna spurious emissions per FCC 15.247(d) were measured from the EUT antenna port using a 50-ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 300 kHz. The modulated carrier was identified at the following frequencies: 2405 MHz, 2440 MHz and 2480 MHz. Table 5-1: Antenna Conducted Spurious Emissions Test Equipment | RTL Asset # | Manufacturer | Model | Part Type | Serial
Number | Calibration
Due Date | |-------------|--------------------|--------------|-------------------|------------------|-------------------------| | 901581 | Rohde &
Schwarz | 1166.1660.50 | Spectrum Analyzer | 2001006 | 6/3/13 | ## 5.2 Antenna Conducted Spurious Emissions Test Results ## Plot 5-1: Antenna Conducted Spurious Emissions - 2405 MHz Plot 5-2: Antenna Conducted Spurious Emissions - 2440 MHz Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 Plot 5-3: Antenna Conducted Spurious Emissions - 2480 MHz **Test Personnel:** Daniel W. Baltzell Test Engineer Signature February 25, 2013 Date of Test Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 ## 6 Power Spectral Density – FCC §15.247(e); RSS-210 §A8.2 #### 6.1 Power Spectral Density Test Procedure The power spectral density per FCC 15.247(e) was measured using a 50-ohm spectrum analyzer with the resolution bandwidth set at 3 kHz, the video bandwidth set at equal to or greater than 10 times the RBW, and the sweep time set at 500 seconds. The spectral lines were resolved for the modulated carriers at 2405 MHz, 2440 MHz, and 2480 MHz respectively. These levels are below the +8 dBm limit. See the power spectral density table and plots. Table 6-1: Power Spectral Density Test Equipment | RTL Asset # | Manufacturer | Model | Part Type | Serial
Number | Calibration
Due Date | |-------------|-----------------|--------------|-------------------|------------------|-------------------------| | 901581 | Rohde & Schwarz | 1166.1660.50 | Spectrum Analyzer | 2001006 | 6/3/13 | ## 6.2 Power Spectral Density Test Data Table 6-2: Power Spectral Density Test Data | Channel | Frequency (MHz) | RF Power Level (dBm) Maximum Limit +8dBm | | Pass/Fail | |---------|-----------------|--|---|-----------| | 11 | 2405 | -18.4 | 8 | Pass | | 18 | 2440 | -19.4 | 8 | Pass | | 26 | 2480 | -19.8 | 8 | Pass | Plot 6-1: Power Spectral Density - 2405 MHz Plot 6-2: Power Spectral Density - 2440 MHz Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 Plot 6-3: Power Spectral Density - 2480 MHz **Test Personnel:** Daniel W. Baltzell Test Engineer Signature February 25, 2013 Date of Test ## 7 Restricted Band Emissions – FCC §15.209, RSS-210 §A8.5 #### 7.1 Limits of Radiated Emissions Measurement | Frequency (MHz) | Field Strength (uV/m) | Measurement Distance (m) | |-----------------|-----------------------|--------------------------| | 0.009-0.490 | 2400/f (kHz) | 300 | | 0.490-1.705 | 2400/f (kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | As shown in 15.35(b), for frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any circumstances of modulation. #### 7.2 Radiated Emissions Measurement Test Procedure Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one and three meter distances. This was done in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to ensure that maximum emission amplitudes were attained. Final radiated emissions measurements were made on the three/ten-meter, open-field test site. The EUT was placed on a nonconductive turntable 0.8 meters above the ground plane. The spectrum was examined from 9 kHz to the 10th harmonic of the highest fundamental transmitter frequency (24.8 GHz). At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the emission's maximum level. Measurements were taken using both horizontal and vertical antenna polarizations. For frequencies between 30 and 1000 MHz, the spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the CISPR quasi-peak detection mode. For emissions above 1000 MHz, emissions are measured using the average detector function with a minimum resolution bandwidth of 1 MHz. No video filter less than 10 times the resolution bandwidth was used. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report. The EUT was terminated with a 50 ohm load to represent chassis emissions, an EIRP level was determined using the conducted measurements. Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 Table 7-1: Radiated Emissions Test Equipment | RTL Asset # | Manufacturer | Model | Part Type | Serial
Number | Calibration
Due Date | |-------------|----------------------------|-----------------------|------------------------------------|--------------------|-------------------------| | 900932 | Hewlett
Packard | 8449B OPT
H02 | Preamplifier
(1-26.5 GH)z | 3008A00505 | 7/14/13 | | 900772 | EMCO | 3161-02 | Horn Antenna
(2-4 GHz) | 9804-1044 | 4/19/14 | | 900321 | EMCO | 3161-03 | Horn Antenna
(4.0-8.2 GHz) | 9508-1020 | 4/19/14 | | 900323 | EMCO | 3160-07 | Horn Antenna
(8.2-12.4 GHz) | 9605-1054 | 4/19/14 | | 900356 | EMCO | 3160-08 | Horn Antenna
(12.4-18 GHz) | 9607-1044 | 4/19/14 | | 900325 | EMCO | 3160-9 | Horn Antenna
(18-26.5 GHz) | 9605-1051 | 4/19/14 | | 900151 | Rohde &
Schwarz | HFH2-Z2 | Loop Antenna
(9 kHz-30 MHz) | 827525/019 | 10/1/13 | | 901595 | Mini-Circuits | ZHL-4240V | Amplifier | H090293-5 | 2/17/14 | | 900878 | Rhein Tech
Laboratories | AM3-1197-
0005 | 3 meter antenna mast, polarizing | Outdoor
Range 1 | Not
Required | | 901242 | Rhein Tech
Laboratories | WRT-000-
0003 | Wood rotating table | N/A | Not
Required | | 901581 | Rohde &
Schwarz | 1166.1660.50 | Spectrum Analyzer | 2001006 | 6/3/13 | | 900791 | Chase | CBL6111B | Bilog Antenna
(30 MHz–2000 MHz) | N/A | 1/31/14 | | 901592 | Insulated Wire Inc. | KPS-1503-
3600-KPR | SMK RF Cables 20' | NA | 8/16/13 | | 901593 | Insulated Wire Inc. | KPS-1503-
360-KPR | SMK RF Cables 36" | NA | 8/16/13 | Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 The following data shows compliance with the emissions falling within the restricted bands. The "conducted" method from 558074 D01 DTS Meas Guidance v01 section 5.4.2 was utilized. The conducted emissions were converted to EIRP by adding a 2.2 dBi antenna gain (this is the worst case gain specified by <u>558074 D01 DTS Meas Guidance v01</u> since the actual EUT antenna gain is 2.2 dBi) and further converted to 3 m field strength and compared to the radiated limit using the following formula (logarithmic): $$E = EIRP - 20 \log (d) + 104.8$$ where: EIRP = the equivalent isotropic radiated power in dBm (conducted power + antenna gain) E = electric field strength in dBuV/m d = measurement distance in meters (3 m) For example, the first emission at 4810 MHz is calculated below: $$E = 2.2 \text{ dBi} - 60.2 \text{ dBm} - 20 \log (3) + 104.8 = 37.3 \text{ dBuV/m} @ 3 \text{ m}$$ Peak measurements were taken and compared to the 15.209 limit + 20 dB as specified by 15.35(b). Average levels were then calculated by using the maximum EUT duty cycle of 30%, and compared to the 15.209 limit: Correction: 20 $\log (0.3) = -10.5 \, dB$ Table 7-2: Antenna Conducted Spurious Emissions Test Equipment | RTL Asset # | Manufacturer | Model | Part Type | Serial
Number | Calibration
Due Date | |-------------|-----------------|--------------|-------------------|------------------|-------------------------| | 901581 | Rohde & Schwarz | 1166.1660.50 | Spectrum Analyzer | 2001006 | 6/3/13 | ## 7.3 Restricted Band Emissions Test Results Table 7-3: Restricted Band Emissions - 2405 MHz - Peak Detector | Emission
Frequency
(MHz) | Peak Analyzer
Reading
(dBm)
(1 MHz RBW/
10 MHz VBW) | Corrected with Antenna Factor (2.2 dBi) and converted to dBuV/m | Peak
Limit
(dBuV/m) | Peak
Margin
(dB) | |--------------------------------|---|---|---------------------------|------------------------| | 4810.0 | -60.2 | 37.3 | 74.0 | -36.7 | | 12025.0 | -86.6 | 10.8 | 74.0 | -63.2 | | 19240.0 | -86.2 | 11.2 | 74.0 | -62.8 | Table 7-4: Restricted Band Emissions - 2405 MHz - Calculated Average | Emission
Frequency
(MHz) | Average
(dBm)
(Peak – 30% duty cycle) | Corrected with Antenna Factor (2.2 dBi) and converted to dBuV/m) | Average
Limit
(dBuV/m) | Average
Margin
(dB) | |--------------------------------|---|--|------------------------------|---------------------------| | 4810.0 | -70.7 | 26.7 | 54.0 | -27.3 | | 12025.0 | -97.1 | 0.3 | 54.0 | -53.7 | | 19240.0 | -96.7 | 0.7 | 54.0 | -53.3 | Table 7-5: Restricted Band Emissions - 2440 MHz - Peak Detector | Emission
Frequency
(MHz) | Peak Analyzer
Reading
(dBm)
(1 MHz RBW/VBW) | Corrected with Antenna Factor (2.2 dBi) and converted to dBuV/m | Peak
Limit
(dBuV/m) | Peak
Margin
(dB) | |--------------------------------|--|---|---------------------------|------------------------| | 4880.0 | -47.0 | 50.4 | 74.0 | -23.6 | | 7320.0 | -66.1 | 31.3 | 74.0 | -42.7 | | 12200.0 | -77.0 | 20.4 | 74.0 | -53.6 | Table 7-6: Restricted Band Emissions - 2440 MHz - Calculated Average | Emission
Frequency
(MHz) | Average
(dBm)
(Peak – 30% duty cycle) | Corrected with Antenna Factor (2.2 dBi) and converted to dBuV/m | Average
Limit
(dBuV/m) | Average
Margin
(dB) | |--------------------------------|---|---|------------------------------|---------------------------| | 4880.0 | -57.5 | 39.9 | 54.0 | -14.1 | | 7320.0 | -76.6 | 20.8 | 54.0 | -33.2 | | 12200.0 | -87.5 | 9.9 | 54.0 | -44.1 | Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 Table 7-7: Restricted Band Emissions - 2480 MHz - Peak Detector | Emission
Frequency
(MHz) | Peak Analyzer
Reading
(dBm)
(1 MHz RBW/VBW) | Corrected with Antenna Factor (2.2 dBi) and converted to dBuV/m | Peak
Limit
(dBuV/m) | Peak
Margin
(dB) | |--------------------------------|--|---|---------------------------|------------------------| | 4960.0 | -43.1 | 54.3 | 74.0 | -19.7 | | 7440.0 | -67.7 | 29.7 | 74.0 | -44.3 | | 12400.0 | -76.4 | 21.0 | 74.0 | -53.0 | ## Table 7-8: Restricted Band Emissions - 2480 MHz - Calculated Average | Emission
Frequency
(MHz) | Average
(dBm)
(Peak – 30% duty cycle) | Corrected with
Antenna
Factor
(2.2 dBi) and
converted to
dBuV/m | Average
Limit
(dBuV/m) | Average
Margin
(dB) | |--------------------------------|---|--|------------------------------|---------------------------| | 4960.0 | -53.6 | 43.8 | 54.0 | -10.2 | | 7440.0 | -78.2 | 19.2 | 54.0 | -34.8 | | 12400.0 | -86.9 | 10.5 | 54.0 | -43.5 | **Test Personnel:** Daniel W. Baltzell Test Engineer Signature February 25, 2013 Date of Test ## 7.4 Radiated Emissions Harmonics/Spurious Test Data – Cabinet Radiation with Antenna Port Terminated Since we are using the "conducted" method for measuring restricted band emissions (per <u>558074 D01 DTS Meas Guidance v01</u> section 5.4.2), measurements for unwanted emissions radiated from the EUT cabinet are also required with the antenna port terminated with a load representing the impedance of the antenna. The data presented below is for cabinet radiation with the antenna port terminated. All measurements were found to be compliant. As this is an LMA application based on the module not having the required shielding per FCC 15.212(a)(1)(i), cabinet radiated emissions data is presented for both stand-alone and "typical host" configurations. Table 7-9: Radiated Emissions Harmonics/Spurious - 2405 MHz – Peak Detector; Stand-alone Configuration | Emission
Frequency
(MHz) | Peak Analyzer
Reading
(dBuV/m)
(1 MHz RBW/VBW) | Site
Correction
Factor
(dB/m) | Peak
Corrected
(dBuV/m) | Peak
Limit
(dBuV/m) | Margin
(dB) | |--------------------------------|---|--|-------------------------------|---------------------------|----------------| | 4810.0 | 63.1 | -5.0 | 58.1 | 74.0 | -15.9 | | 12025.0 | 56.2 | 2.7 | 58.9 | 74.0 | -15.1 | Table 7-10: Radiated Emissions Harmonics/Spurious - 2405 MHz – Average Detector; Stand-alone Configuration | Emission
Frequency
(MHz) | Average Analyzer
Reading
(dBuV/m)
(1 MHz RBW/VBW) | Site
Correction
Factor
(dB/m) | Average
Corrected
(dBuV/m) | Average
Limit
(dBuV/m) | Margin
(dB) | |--------------------------------|--|--|----------------------------------|------------------------------|----------------| | 4810.0 | 56.6 | -5.0 | 51.6 | 54.0 | -2.4 | | 12025.0 | 47.0 | 2.7 | 49.7 | 54.0 | -4.3 | Table 7-11: Radiated Emissions Harmonics/Spurious - 2440 MHz – Peak Detector; Stand-alone Configuration | Emission
Frequency
(MHz) | Peak Analyzer
Reading
(dBuV/m)
(1 MHz RBW/VBW) | Site
Correction
Factor
(dB/m) | Peak
Corrected
(dBuV/m) | Peak
Limit
(dBuV/m) | Margin
(dB) | |--------------------------------|---|--|-------------------------------|---------------------------|----------------| | 4880.0 | 64.5 | -5.0 | 59.5 | 74.0 | -14.5 | | 7320.0 | 56.2 | -3.1 | 53.1 | 74.0 | -20.9 | | 12200.0 | 46.0 | 3.4 | 49.4 | 74.0 | -24.6 | Table 7-12: Radiated Emissions Harmonics/Spurious - 2440 MHz – Average Detector; Stand-alone Configuration | Emission
Frequency
(MHz) | Average Analyzer
Reading
(dBuV/m)
(1 MHz RBW/VBW) | Site
Correction
Factor
(dB/m) | Average
Corrected
(dBuV/m) | Average
Limit
(dBuV/m) | Margin
(dB) | |--------------------------------|--|--|----------------------------------|------------------------------|----------------| | 4880.0 | 55.2 | -5.0 | 50.2 | 54.0 | -3.8 | | 7320.0 | 47.1 | -3.1 | 44.0 | 54.0 | -10.0 | | 12200.0 | 45.0 | 3.4 | 48.4 | 54.0 | -5.6 | Table 7-13: Radiated Emissions Harmonics/Spurious - 2480 MHz – Peak Detector; Stand-alone Configuration | Emission
Frequency
(MHz) | Peak Analyzer
Reading
(dBuV/m)
(1 MHz RBW/VBW) | Site
Correction
Factor
(dB/m) | Peak
Corrected
(dBuV/m) | Peak
Limit
(dBuV/m) | Margin
(dB) | |--------------------------------|---|--|-------------------------------|---------------------------|----------------| | 4960 | 64.3 | -5.6 | 58.7 | 74.0 | -15.3 | | 7440 | 57.3 | -3.4 | 53.9 | 74.0 | -20.1 | | 12400 | 56.4 | 3.3 | 59.7 | 74.0 | -14.3 | Table 7-14: Radiated Emissions Harmonics/Spurious - 2480 MHz – Average Detector; Stand-alone Configuration | Emission
Frequency
(MHz) | Average Analyzer
Reading
(dBuV/m)
(1 MHz RBW/VBW) | Site
Correction
Factor
(dB/m) | Average
Corrected
(dBuV/m) | Average
Limit
(dBuV/m) | Margin
(dB) | |--------------------------------|--|--|----------------------------------|------------------------------|----------------| | 4960 | 57.9 | -5.6 | 52.3 | 54.0 | -1.7 | | 7440 | 45.6 | -3.4 | 42.2 | 54.0 | -11.8 | | 12400 | 45.6 | 3.3 | 48.9 | 54.0 | -5.1 | Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 Table 7-15: Radiated Emissions Harmonics/Spurious - 2405 MHz – Peak Detector; Typical-Host | Emission
Frequency
(MHz) | Peak Analyzer
Reading
(dBuV/m)
(1 MHz RBW/VBW) | Site
Correction
Factor
(dB/m) | Peak
Corrected
(dBuV/m) | Average
Limit
(dBuV/m) | Margin
(dB) | |--------------------------------|---|--|-------------------------------|------------------------------|----------------| | 4810.0 | 34.6 | -5.0 | 29.6 | 54.0 | -24.4 | | 12025.0 | 34.4 | 2.7 | 37.1 | 54.0 | -16.9 | ^{*} peak measurement showing compliance with average limit Table 7-16: Radiated Emissions Harmonics/Spurious - 2440 MHz - Peak Detector; Typical-Host | Emission
Frequency
(MHz) | Peak Analyzer
Reading
(dBuV/m)
(1 MHz RBW/VBW) | Site
Correction
Factor
(dB/m) | Peak
Corrected
(dBuV/m) | Average
Limit
(dBuV/m) | Margin
(dB) | |--------------------------------|---|--|-------------------------------|------------------------------|----------------| | 4880.0 | 35.2 | -5.0 | 30.2 | 54.0 | -23.8 | | 7320.0 | 40.1 | -3.1 | 37.0 | 54.0 | -17.0 | | 12200.0 | 35.3 | 3.4 | 38.7 | 54.0 | -15.3 | ^{*} peak measurement showing compliance with average limit Table 7-17: Radiated Emissions Harmonics/Spurious - 2480 MHz – Peak Detector; Typical-Host | Emission
Frequency
(MHz) | Peak Analyzer
Reading
(dBuV/m)
(1 MHz RBW/VBW) | Site
Correction
Factor
(dB/m) | Peak
Corrected
(dBuV/m) | Average
Limit
(dBuV/m) | Margin
(dB) | |--------------------------------|---|--|-------------------------------|------------------------------|----------------| | 4960 | 35.1 | -5.6 | 29.5 | 54.0 | -24.5 | | 7440 | 34.4 | -3.4 | 31.0 | 54.0 | -23.0 | | 12400 | 35.1 | 3.3 | 38.4 | 54.0 | -15.6 | ^{*} peak measurement showing compliance with average limit **Test Personnel:** Daniel W. Baltzell Test Engineer Signature Daniel W. Bolgs January 29 & February 25, 2013 Dates of Test #### 8 AC Conducted Emissions - FCC §15.207; RSS-Gen §7.2.4: Conducted Limits No AC conducted tests are required since the device is solely battery powered. ## 9 6 dB Bandwidth - FCC §15.247(a)(2); RSS-210 §A8.2 #### 9.1 6 db Bandwidth Test Procedure - Minimum 6 dB Bandwidth The minimum 6 dB bandwidths per FCC 15.247(a)(2) were measured using a 50-ohm spectrum analyzer with the resolution bandwidth set at 100 kHz, and the video bandwidth set at 1 MHz. The device was modulated. The minimum 6 dB bandwidths are presented below. Table 9-1: 6 dB Bandwidth Test Equipment | RTL Asset # | Manufacturer | Model | Part Type | Serial
Number | Calibration
Due Date | |-------------|--------------------|--------------|-------------------|------------------|-------------------------| | 901581 | Rohde &
Schwarz | 1166.1660.50 | Spectrum Analyzer | 2001006 | 6/3/13 | #### 9.2 6 dB Modulated Bandwidth Test Data Table 9-2: 6 db Bandwidth Test Data – 802.11b | Channel | Frequency (MHz) | 6 dB Bandwidth
(MHz) | Minimum Limit
(kHz) | Pass/Fail | |---------|-----------------|-------------------------|------------------------|-----------| | 11 | 2405 | 1.51 | 500 | Pass | | 18 | 2440 | 1.50 | 500 | Pass | | 26 | 2480 | 1.51 | 500 | Pass | Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 Plot 9-1: 6 dB Bandwidth - 2405 MHz Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 Plot 9-2: 6 dB Bandwidth - 2440 MHz Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 Plot 9-3: 6 dB Bandwidth - 2480 MHz **Test Personnel:** Daniel W. Baltzell Test Engineer Signature February 25, 2013 Date of Test Client: TMI-USA, Inc. Model: RADIOZIGB1 Standards: FCC 15.247/IC RSS-210 ID's: RMK-ZIGB1/10839A-ZIGB1 Report #: 2013031 #### 10 Conclusion The data in this measurement report shows that the EUT as tested, TMI-USA, Inc. Model RADIOZIGB1, FCC ID: RMK-ZIGB1, IC: 10839A-ZIGB1, complies with all the applicable requirements of Parts 2 and 15 of the FCC Rules and Regulations, and IC RSS-210 and RSS-Gen for Limited Modular Approval.