

Report No. : SA161215C20

Applicant : SYSTEMS & TECHNOLOGY CORP.

Address : 18F-5, No.79, Hsin Tai Wu Road, Sec. 1, Hsichih, New Taipei City, Taiwan,

R.O.C.

Product : Personal Tracker

FCC ID : RLS-STAVL1520

Brand : CAREU

Model No. : P2-3G

Standards : FCC 47 CFR Part 2 (2.1093) / IEEE C95.1:1992 / IEEE Std 1528:2013

KDB 865664 D01 v01r04 / KDB 865664 D02 v01r02 KDB 447498 D01 v06 / KDB 941225 D01 v03r01

Sample Received Date : Feb. 15, 2016

Date of Testing : Feb. 03, 2017 ~ May 02, 2017

Lab Address : No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C.

Test Location : No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil, Kwei Shan Dist., Taoyuan City 33383, Taiwan (R.O.C)

CERTIFICATION: The above equipment have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch – Lin Kou Laboratories**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies.

Prepared By:

Rona Chen / Specialist

Approved By:

Gordon Lin / Assistant Manager

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report Format Version 5.0.0 Page No. : 1 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

Page No.

: 2 of 35

Issued Date : May 03, 2017

Table of Contents

Ke		Control Record		
1.	Sumr	mary of Maximum SAR Value		
2.	Desc	ription of Equipment Under Test		
3.		Measurement System		
	3.1	Definition of Specific Absorption Rate (SAR)	6	
	3.2	SPEAG DASY52 System		
		3.2.1 Robot		
		3.2.2 Probes	8	
		3.2.3 Data Acquisition Electronics (DAE)		
		3.2.4 Phantoms		
		3.2.5 Device Holder		
		3.2.6 System Validation Dipoles		
		3.2.7 Tissue Simulating Liquids		
	3.3	SAR System Verification		
	3.4	SAR Measurement Procedure	15	
		3.4.1 Area & Zoom Scan Procedure		
		3.4.2 Volume Scan Procedure		
		3.4.3 Power Drift Monitoring		
		3.4.4 Spatial Peak SAR Evaluation		
		3.4.5 SAR Averaged Methods		
4.	SAR	SAR Measurement Evaluation		
	4.1	EUT Configuration and Setting		
	4.2	EUT Testing Position		
		4.2.1 Body Exposure Conditions		
		4.2.2 Face Exposure Conditions		
		4.2.3 SAR Test Exclusion Evaluations	19	
		4.2.4 Simultaneous Transmission Possibilities	20	
	4.3	Tissue Verification		
	4.4	System Validation	20	
	4.5	System Verification	2 [,]	
	4.6	Maximum Output Power		
		4.6.1 Maximum Conducted Power	22	
		4.6.2 Measured Conducted Power Result	23	
	4.7	SAR Testing Results	24	
		4.7.1 SAR Test Reduction Considerations		
		4.7.2 SAR Results for Body Exposure Condition (Separation Distance is 0 cm Gap)		
		4.7.3 SAR Results for Face Exposure Condition (Separation Distance is 10 mm Gap)		
		4.7.4 SAR Measurement Variability	20	
		4.7.5 Simultaneous Multi-band Transmission Evaluation		
5.		ration of Test Equipment		
6.		urement Uncertainty		
7	Infor	mation on the Testing Laboratories	31	

Appendix A. SAR Plots of System Verification

Appendix B. SAR Plots of SAR Measurement

Appendix C. Calibration Certificate for Probe and Dipole

Appendix D. Photographs of EUT and Setup

Release Control Record

Reason for Change	Date Issued
Initial release	May 03, 2017

Report Format Version 5.0.0 Page No. : 3 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

1. Summary of Maximum SAR Value

Equipment Class	Mode	Highest Reported Body SAR _{1g} (0 cm Gap) (W/kg)	Highest Face SAR _{10g} Tested at 10 mm (W/kg)
	GSM850	0.63	0.08
DOD [GSM1900	1.19	0.15
PCB	WCDMA II	1.19	0.18
	WCDMA V	0.36	0.06
DTS	Bluetooth	N/A	N/A
Highest Simultaneous Transmission SAR		Body (W/kg)	Face (W/kg)
PCB + DTS		1.20	0.183

Note:

1. The SAR limit (Head & Body: SAR_{1g} 1.6 W/kg, Extremity: SAR_{10g} 4.0 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992.

Report Format Version 5.0.0 Page No. : 4 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

2. <u>Description of Equipment Under Test</u>

EUT Type	Personal Tracker
FCC ID	RLS-STAVL1520
Brand Name	CAREU
Model Name	P2-3G
Ix Frequency Bands (Unit: MHz)	GSM850 : 824.2 ~ 848.8 GSM1900 : 1850.2 ~ 1909.8 WCDMA Band II : 1852.4 ~ 1907.6 WCDMA Band V : 826.4 ~ 846.6 Bluetooth : 2402 ~ 2480
Il Inlink Modulations	GSM & GPRS : GMSK EDGE : 8PSK WCDMA : QPSK Bluetooth : GFSK
Maximum Tune-up Conducted Power	GSM850 : 26.50 GSM1900 : 23.50 WCDMA Band II : 20.0 WCDMA Band V : 20.0 Bluetooth : -8.00
Antenna Type	Fixed Internal Antenna
EUT Stage	Identical Prototype

Note:

1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.

List of Accessory:

	Brand Name	HELIX
Batterv	Model Name	HX-N3650-S2
Power Rating 3.7Vdc, 770mAh		3.7Vdc, 770mAh
	Туре	Li-ion
BT Module	Brand Name	CYPRESS
B i Wodule	Model Name	CYBLE-022001-00

Report Format Version 5.0.0 Page No. : 5 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

3. SAR Measurement System

3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SPEAG DASY52 System

DASY52 system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY52 software defined. The DASY52 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

Report Format Version 5.0.0 Page No. : 6 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

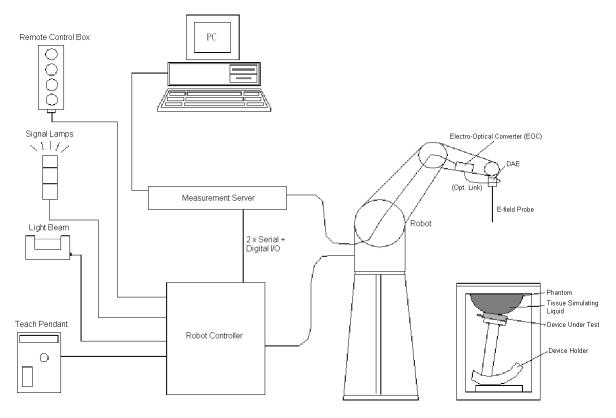
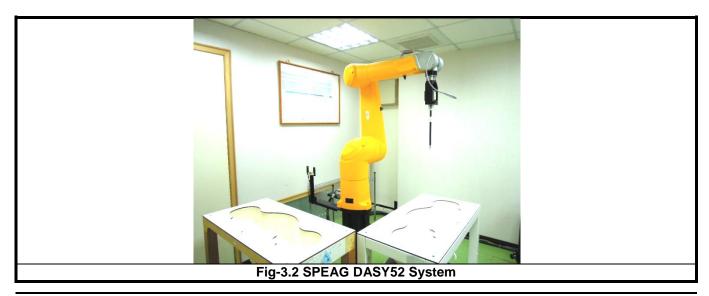



Fig-3.1 SPEAG DASY52 System Setup

3.2.1 Robot

The DASY52 systems use the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version of CS8c from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- · Jerk-free straight movements
- · Low ELF interference (the closed metallic construction shields against motor control fields)

Report Format Version 5.0.0 Page No. : 7 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

3.2.2 Probes

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Model	EX3DV4	
Construction	Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Model	ES3DV3	
Wiodei		
Construction	Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	
Frequency	10 MHz to 4 GHz Linearity: ± 0.2 dB	
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	5 μW/g to 100 mW/g Linearity: ± 0.2 dB	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm	

Model	ET3DV6	100
Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz to 2.3 GHz; Linearity: ± 0.2 dB	
Directivity	± 0.2 dB in TSL (rotation around probe axis) ± 0.4 dB in TSL (rotation normal to probe axis)	
Dynamic Range	5 μW/g to 100 mW/g; Linearity: ± 0.2 dB	
Dimensions	Overall length: 337 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm	

3.2.3 Data Acquisition Electronics (DAE)

Model	DAE3, DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)	D 111
Input Offset Voltage	< 5μV (with auto zero)	
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

Report Format Version 5.0.0 Page No. : 8 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

3.2.4 Phantoms

Model	Twin SAM	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.	
Material Vinylester, glass fiber reinforced (VE-GF)		İ
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	ı
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	Ī

Model	ELI
Construction	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.
Material	Vinylester, glass fiber reinforced (VE-GF)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm Minor axis: 400 mm
Filling Volume	approx. 30 liters

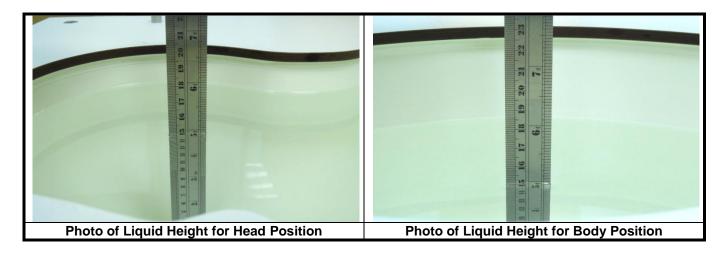
Report Format Version 5.0.0 Page No. : 9 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

3.2.5 Device Holder

Model	Mounting Device	-
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).	
Material	POM	

Model	Laptop Extensions Kit	
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.	
Material	POM, Acrylic glass, Foam	

3.2.6 System Validation Dipoles


Model	D-Serial	
Construction	Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	750 MHz to 5800 MHz	
Return Loss	> 20 dB	
Power Capability	> 100 W (f < 1GHz), > 40 W (f > 1GHz)	

Report Format Version 5.0.0 Page No. : 10 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

3.2.7 Tissue Simulating Liquids

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.

The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528, and KDB 865664 D01 Appendix A. For the body tissue simulating liquids, the dielectric properties are defined in KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer.

Report Format Version 5.0.0 Page No. : 11 of 35
Report No. : SA161215C20 Issued Date : May 03, 2017

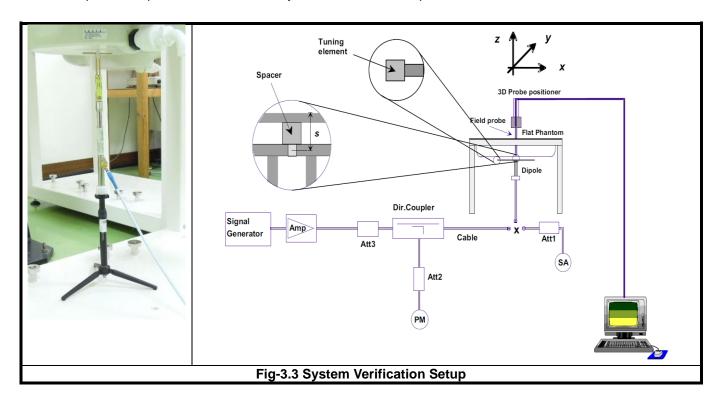
Table-3.1 Targets of Tissue Simulating Liquid

-		argets or rissue simu		D
Frequency (MHz)	Target Permittivity	Range of ±5%	Target Conductivity	Range of ±5%
	•	For Head	•	
750	41.9	39.8 ~ 44.0	0.89	0.85 ~ 0.93
835	41.5	39.4 ~ 43.6	0.90	0.86 ~ 0.95
900	41.5	39.4 ~ 43.6	0.97	0.92 ~ 1.02
1450	40.5	38.5 ~ 42.5	1.20	1.14 ~ 1.26
1640	40.3	38.3 ~ 42.3	1.29	1.23 ~ 1.35
1750	40.1	38.1 ~ 42.1	1.37	1.30 ~ 1.44
1800	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
1900	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2000	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2300	39.5	37.5 ~ 41.5	1.67	1.59 ~ 1.75
2450	39.2	37.2 ~ 41.2	1.80	1.71 ~ 1.89
2600	39.0	37.1 ~ 41.0	1.96	1.86 ~ 2.06
3500	37.9	36.0 ~ 39.8	2.91	2.76 ~ 3.06
5200	36.0	34.2 ~ 37.8	4.66	4.43 ~ 4.89
5300	35.9	34.1 ~ 37.7	4.76	4.52 ~ 5.00
5500	35.6	33.8 ~ 37.4	4.96	4.71 ~ 5.21
5600	35.5	33.7 ~ 37.3	5.07	4.82 ~ 5.32
5800	35.3	33.5 ~ 37.1	5.27	5.01 ~ 5.53
		For Body		
750	55.5	52.7 ~ 58.3	0.96	0.91 ~ 1.01
835	55.2	52.4 ~ 58.0	0.97	0.92 ~ 1.02
900	55.0	52.3 ~ 57.8	1.05	1.00 ~ 1.10
1450	54.0	51.3 ~ 56.7	1.30	1.24 ~ 1.37
1640	53.8	51.1 ~ 56.5	1.40	1.33 ~ 1.47
1750	53.4	50.7 ~ 56.1	1.49	1.42 ~ 1.56
1800	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
1900	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2000	53.3	50.6 ~ 56.0	1.52	1.44 ~ 1.60
2300	52.9	50.3 ~ 55.5	1.81	1.72 ~ 1.90
2450	52.7	50.1 ~ 55.3	1.95	1.85 ~ 2.05
2600	52.5	49.9 ~ 55.1	2.16	2.05 ~ 2.27
3500	51.3	48.7 ~ 53.9	3.31	3.14 ~ 3.48
5200	49.0	46.6 ~ 51.5	5.30	5.04 ~ 5.57
5300	48.9	46.5 ~ 51.3	5.42	5.15 ~ 5.69
5500	48.6	46.2 ~ 51.0	5.65	5.37 ~ 5.93
5600	48.5	46.1 ~ 50.9	5.77	5.48 ~ 6.06
5800	48.2	45.8 ~ 50.6	6.00	5.70 ~ 6.30
	-			

Report Format Version 5.0.0 Page No. : 12 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

The following table gives the recipes for tissue simulating liquids.

Table-3.2 Recipes of Tissue Simulating Liquid


Tissue Type	Bactericide	DGBE	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
H750	0.2	-	0.2	1.5	56.0	-	42.1	-
H835	0.2	-	0.2	1.5	57.0	-	41.1	-
H900	0.2	-	0.2	1.4	58.0	-	40.2	-
H1450	-	43.3	-	0.6	-	-	56.1	-
H1640	-	45.8	-	0.5	-	-	53.7	-
H1750	-	47.0	-	0.4	-	-	52.6	-
H1800	-	44.5	-	0.3	-	-	55.2	-
H1900	-	44.5	-	0.2	-	-	55.3	-
H2000	-	44.5	-	0.1	-	-	55.4	-
H2300	-	44.9	-	0.1	-	-	55.0	-
H2450	-	45.0	-	0.1	-	-	54.9	-
H2600	-	45.1	-	0.1	-	-	54.8	-
H3500	-	8.0	-	0.2	-	20.0	71.8	-
H5G	-	-		-	-	17.2	65.5	17.3
B750	0.2	-	0.2	0.8	48.8	-	50.0	-
B835	0.2	-	0.2	0.9	48.5	-	50.2	-
B900	0.2	-	0.2	0.9	48.2	-	50.5	-
B1450	-	34.0	-	0.3	-	-	65.7	-
B1640	-	32.5	-	0.3	-	-	67.2	-
B1750	-	31.0	-	0.2	-	-	68.8	-
B1800	-	29.5	-	0.4	-	-	70.1	-
B1900	-	29.5	-	0.3	-	-	70.2	-
B2000	-	30.0	-	0.2	-	-	69.8	-
B2300	-	31.0	-	0.1	-	-	68.9	-
B2450	-	31.4	-	0.1	-	-	68.5	-
B2600	-	31.8	-	0.1	-	-	68.1	-
B3500	-	28.8	-	0.1	-	-	71.1	-
B5G	-	-	-	-	-	10.7	78.6	10.7

Report Format Version 5.0.0 Page No. : 13 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

3.3 SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

Report Format Version 5.0.0 Page No. : 14 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

3.4 SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the DASY system
- (e) Record the SAR value

3.4.1 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below.

Items	<= 2 GHz	2-3 GHz	3-4 GHz	4-5 GHz	5-6 GHz
Area Scan (Δx, Δy)	<= 15 mm	<= 12 mm	<= 12 mm	<= 10 mm	<= 10 mm
Zoom Scan (Δx, Δy)	<= 8 mm	<= 5 mm	<= 5 mm	<= 4 mm	<= 4 mm
Zoom Scan (Δz)	<= 5 mm	<= 5 mm	<= 4 mm	<= 3 mm	<= 2 mm
Zoom Scan Volume	>= 30 mm	>= 30 mm	>= 28 mm	>= 25 mm	>= 22 mm

Note:

When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: <= 8 mm, 3-4GHz: <= 7 mm, 4-6GHz: <= 5 mm) may be applied.

3.4.2 Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

Report Format Version 5.0.0 Page No. : 15 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

3.4.3 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

3.4.4 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

3.4.5 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

Report Format Version 5.0.0 Page No. : 16 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

4. SAR Measurement Evaluation

4.1 EUT Configuration and Setting

<Connections between EUT and System Simulator>

For WWAN SAR testing, the EUT was linked and controlled by base station emulator (Agilent E5515C is used for GSM/WCDMA/CDMA, and Anritsu MT8820C is used for LTE). Communication between the EUT and the emulator was established by air link. The distance between the EUT and the communicating antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during SAR testing.

<Considerations Related to GSM / GPRS / EDGE for Setup and Testing>

The maximum multi-slot capability supported by this device is as below.

- 1. This EUT is class B device
- 2. This EUT supports GPRS multi-slot class 12 (max. uplink: 4, max. downlink: 4, total timeslots: 5)
- 3. This EUT supports EDGE multi-slot class 12 (max. uplink: 4, max. downlink: 4, total timeslots: 5)

For GSM850 frequency band, the power control level is set to 5 for GSM mode and GPRS (GMSK: CS1), and set to 8 for EDGE (GMSK: MCS1, 8PSK: MCS9). For GSM1900 frequency band, the power control level is set to 0 for GSM mode and GPRS (GMSK: CS1), and set to 2 for EDGE (GMSK: MCS1, 8PSK: MCS9).

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

<Considerations Related to WCDMA for Setup and Testing> Release 5 HSDPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH / HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors (β_c , β_d), and HS-DPCCH power offset parameters (Δ_{ACK} , Δ_{NACK} , Δ_{CQI}) are set according to values indicated in below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Report Format Version 5.0.0 Page No. : 17 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

Sub-test	βς	β _d	β _d (SF)	β _c / β _d	β _{hs} ⁽¹⁾	CM (dB) ⁽²⁾	MPR
1	2 / 15	15 / 15	64	2 / 15	4 / 15	0.0	0
2	12 / 15 ⁽³⁾	15 / 15 ⁽³⁾	64	12 / 15 ⁽³⁾	24 / 15	1.0	0
3	15 / 15	8 / 15	64	15 / 8	30 / 15	1.5	0.5
4	15 / 15	4 / 15	64	15 / 4	30 / 15	1.5	0.5

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{COI}=8\Leftrightarrow A_{hs}=\beta_{hs}$ / $\beta_{c}=30$ / 15 \Leftrightarrow $\beta_{hs}=30$ / 15 * β_{c} . Note 2: CM = 1 for β_{c} / $\beta_{d}=12$ / 15, β_{hs} / $\beta_{c}=24$ / 15.

Note 3: For subtest 2 the βc / βd ratio of 12 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to β_c = 11 / 15 and β_d = 15 / 15.

Release 6 HSUPA Data Devices

The 3G SAR test reduction procedure is applied to body SAR with 12.2 kbps RMC as the primary mode. Otherwise, body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode. Otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing. Due to inner loop power control requirements in HSPA, a communication test set is required for output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA are configured according to the β values indicated in below.

Sub-test	βς	βd	β _d (SF)	β _c / β _d	β _{hs} (1)	βec	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG (4) Index	E-TFCI
1	11 / 15 (3)	15 / 15 ⁽³⁾	64	11 / 15 (3)	22 / 15	209 / 225	1039 / 225	4	1	1.0	0.0	20	75
2	6 / 15	15 / 15	64	6 / 15	12 / 15	12 / 15	94 / 75	4	1	3.0	2.0	12	67
3	15 / 15	9 / 15	64	15 / 9	30 / 15	30 / 15	β _{ed1} : 47/15 β _{ed2} : 47/15	4	2	2.0	1.0	15	92
4	2 / 15	15 / 15	64	2 / 15	4 / 15	2 / 15	56 / 75	4	1	3.0	2.0	17	71
5	15 / 15 (4)	15 / 15 (4)	64	15 / 15 (4)	30 / 15	24 / 15	134 / 15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs} / \beta_c = 30 / 15 \Leftrightarrow \beta_{hs} = 30 / 15 * \beta_c$

Note 2: CM = 1 for β_c / β_d = 12 / 15, β_{hs} / β_c = 24 / 15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c / β_d ratio of 11 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10 / 15$ and $\beta_d = 15 / 15$.

Note 4: For subtest 5 the eta_c / eta_d ratio of 15 / 15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14 / 15$ and $\beta_d = 15 / 15$.

lote 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: Bed cannot be set directly; it is set by Absolute Grant Value

Report Format Version 5.0.0 Page No. : 18 of 35 Report No.: SA161215C20 Issued Date : May 03, 2017

4.2 EUT Testing Position

4.2.1 Body Exposure Conditions

For the EUT, SAR evaluation was tested in six positions which are Front Face, Rear Face, Top Side, Bottom Side, Right Side, and Left Side. In this position, the air gap between the EUT and the phantom is 0 cm.

4.2.2 Face Exposure Conditions

For the EUT that is held at a distance from the face of the user when transmitting. The device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 10 mm between the phantom surface and the device shall be used.

4.2.3 SAR Test Exclusion Evaluations

According to KDB 447498 D01, the SAR test exclusion condition is based on source-based time-averaged maximum conducted output power, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions. The SAR exclusion threshold is determined by the following formula.

1. For the test separation distance <= 50 mm

$$\frac{\text{Max. Tune up Power}_{(mW)}}{\text{Min. Test Separation Distance}_{(mm)}} \times \sqrt{f_{(GHz)}} \leq 3.0 \text{ for SAR-1g,} \leq 7.5 \text{ for SAR-10g}$$

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

2. For the test separation distance > 50 mm, and the frequency at 100 MHz to 1500 MHz

$$\left[\text{(Threshold at 50 mm in Step 1)} + \text{(Test Separation Distance} - 50 \text{ mm)} \times \left(\frac{f_{\text{(MHz)}}}{150} \right) \right]_{\text{(mW)}}$$

3. For the test separation distance > 50 mm, and the frequency at > 1500 MHz to 6 GHz [(Threshold at 50 mm in Step 1) + (Test Separation Distance -50 mm) \times 10]_(mW)

	Max.	Max.		Front Face			Rear Face			Left Side	
Mode	Tune-up Power (dBm)	Tune-up Power (mW)	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?
			5	0.1	No	5	0.1	No	7	0.0	No
				Right Side			Top Side			Bottom Side	<u> </u>
ВТ	-8.0	0.16	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?	Ant. to Surface (mm)	Calculated Result	Require SAR Testing?
			37	0.0	No	17	0.0	No	55	145 mW	No

Note:

- 1. When separation distance <= 50 mm and the calculated result shown in above table is <= 3.0 for SAR-1g exposure condition, or <= 7.5 for SAR-10g exposure condition, the SAR testing exclusion is applied.
- 2. When separation distance > 50 mm and the device output power is less than the calculated result (power threshold, mW) shown in above table, the SAR testing exclusion is applied.

Report Format Version 5.0.0 Page No. : 19 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

4.2.4 Simultaneous Transmission Possibilities

The simultaneous transmission possibilities for this device are listed as below.

Simultaneous TX Combination	Capable Transmit Configurations	Body Exposure Condition
1	GSM850 (Voice / Data) + BT (Data)	Yes
2	GSM1900 (Voice / Data) + BT (Data)	Yes
3	WCDMA II (Voice / Data) + BT (Data)	Yes
4	WCDMA V (Voice / Data) + BT (Data)	Yes

Note: This device does not support voice transmission capability.

4.3 Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

Test Date	Tissue Type	Frequency (MHz)	Liquid Temp. (℃)	Measured Conductivity (σ)	Measured Permittivity (ε _r)	Target Conductivity (σ)	Target Permittivity (ε _r)	Conductivity Deviation (%)	Permittivity Deviation (%)
Feb. 03, 2017	Body	835	23.5	0.997	55.088	0.97	55.2	2.78	-0.20
Feb. 03, 2017	Body	1900	23.3	1.582	51.541	1.52	53.3	4.08	-3.30
May 02, 2017	Head	835	23.5	0.912	42.671	0.90	41.5	1.33	2.82
May 02, 2017	Head	1900	23.3	1.459	40.940	1.40	40.0	4.21	2.35

Note:

The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within $\pm 5\%$ of the target values. Liquid temperature during the SAR testing must be within $\pm 2\%$.

4.4 System Validation

The SAR measurement system was validated according to procedures in KDB 865664 D01. The validation status in tabulated summary is as below.

Tout	Test Probe		Measured			Va	Validation for CW			Validation for Modulation		
Date	S/N	Calibration Point		Conductivity (σ)	Permittivity (ε _r)	Sensitivity Range	Probe Linearity	Probe Isotropy	Modulation Type	Duty Factor	PAR	
Feb. 03, 2017	3971	Body	835	0.997	55.088	Pass	Pass	Pass	GMSK	Pass	N/A	
Feb. 03, 2017	3971	Body	1900	1.582	51.541	Pass	Pass	Pass	GMSK	Pass	N/A	
May 02, 2017	3971	Head	835	0.912	42.671	Pass	Pass	Pass	GMSK	Pass	N/A	
May 02, 2017	3971	Head	1900	1.459	40.940	Pass	Pass	Pass	GMSK	Pass	N/A	

Report Format Version 5.0.0 Page No. : 20 of 35
Report No. : SA161215C20 Issued Date : May 03, 2017

4.5 System Verification

The measuring result for system verification is tabulated as below.

Test Date	Mode	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to 1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N	DAE S/N
Feb. 03, 2017	Body	835	9.57	2.50	10.00	4.49	4d121	3971	1277
Feb. 03, 2017	Body	1900	40.20	10.40	41.60	3.48	5d142	3971	1277
May 02, 2017	Head	835	9.40	2.35	9.40	0.00	4d121	3971	1431
May 02, 2017	Head	1900	40.20	9.93	39.72	-1.19	5d036	3971	1431

Note:

Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Report Format Version 5.0.0 Page No. : 21 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

4.6 Maximum Output Power

4.6.1 Maximum Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance is shown as below.

Mode	Maximum Burst-Ave	eraged Output Power	Maximum Frame-Averaged Output Power		
Wode	GSM850	GSM1900	GSM850	GSM1900	
GPRS (GMSK, 1Tx-slot)	26.50	23.50	17.50	14.50	
GPRS (GMSK, 2Tx-slot)	26.50	23.50	20.50	17.50	
GPRS (GMSK, 3Tx-slot)	26.50	23.50	22.24	19.24	
GPRS (GMSK, 4Tx-slot)	26.50	23.50	23.50	20.50	
EDGE (8PSK, 1Tx-slot)	26.50	23.50	17.50	14.50	
EDGE (8PSK, 2Tx-slot)	26.50	23.50	20.50	17.50	
EDGE (8PSK, 3Tx-slot)	26.00	23.50	21.74	19.24	
EDGE (8PSK, 4Tx-slot)	25.00	23.50	22.00	20.50	

Note:

- 1. SAR testing was performed on the maximum frame-averaged power mode.
- 2. The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below:

 Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8)

Mode	WCDMA Band II	WCDMA Band V
RMC 12.2K	20.0	20.0
HSDPA	20.0	20.0
HSUPA	20.0	20.0

Mode	2.4G Bluetooth
Bluetooth LE	-8.00

Report Format Version 5.0.0 Page No. : 22 of 35
Report No. : SA161215C20 Issued Date : May 03, 2017

4.6.2 Measured Conducted Power Result

The measuring conducted average power (Unit: dBm) is shown as below.

Band		GSM850		GSM1900						
Channel	128	189	251	512	661	810				
Frequency (MHz)	824.2	836.4	848.8	1850.2	1880.0	1909.8				
Maximum Burst-Averaged Output Power										
GPRS (GMSK, 1Tx-slot)	26.33	26.31	26.25	23.47	23.36	23.43				
GPRS (GMSK, 2Tx-slot)	26.31	26.29	26.23	23.46	23.35	23.42				
GPRS (GMSK, 3Tx-slot)	26.30	26.28	26.22	23.44	23.33	23.40				
GPRS (GMSK, 4Tx-slot)	26.29	26.27	26.21	23.42	23.31	23.38				
EDGE (8PSK, 1Tx-slot)	26.29	26.27	26.21	23.29	23.18	23.25				
EDGE (8PSK, 2Tx-slot)	26.27	26.25	26.19	23.27	23.16	23.23				
EDGE (8PSK, 3Tx-slot)	25.97	25.95	25.89	23.30	23.19	23.26				
EDGE (8PSK, 4Tx-slot)	24.83	24.81	24.75	23.27	23.16	23.23				

Band	V	WCDMA Band	II	WCDMA Band V			3GPP
Channel	9262	9400	9538	4132	4182	4233	MPR
Frequency (MHz)	1852.4	1880.0	1907.6	826.4	836.4	846.6	(dB)
RMC 12.2K	19.77	19.78	19.82	19.99	19.98	19.89	-
HSDPA Subtest-1	19.72	19.73	19.78	19.98	19.97	19.88	0
HSDPA Subtest-2	19.67	19.68	19.73	19.97	19.96	19.87	0
HSDPA Subtest-3	19.66	19.67	19.72	19.97	19.96	19.87	0.5
HSDPA Subtest-4	19.70	19.71	19.76	19.96	19.95	19.86	0.5
HSUPA Subtest-1	19.66	19.67	19.72	19.39	19.38	19.29	0
HSUPA Subtest-2	19.65	19.66	19.71	19.19	19.18	19.09	2
HSUPA Subtest-3	19.65	19.66	19.71	19.59	19.58	19.49	1
HSUPA Subtest-4	19.57	19.58	19.63	19.49	19.48	19.39	2
HSUPA Subtest-5	19.63	19.75	19.77	19.96	19.95	19.86	0

<Bluetooth>

Mode	Bluetooth LE						
Channel / Frequency (MHz)	0 (2402)	19 (2440)	39 (2480)				
Average Power	-8.77	-9.05	-8.43				

Report Format Version 5.0.0 Page No. : 23 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

4.7 SAR Testing Results

4.7.1 SAR Test Reduction Considerations

<KDB 447498 D01, General RF Exposure Guidance>

Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

- (1) ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- (2) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

<KDB 941225 D01, 3G SAR Measurement Procedures>

The mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

Report Format Version 5.0.0 Page No. : 24 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

SAR Results for Body Exposure Condition (Separation Distance is 0 cm Gap) 4.7.2

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)	
01	GSM850	GPRS12	Front Face	128	26.5	26.29	1.05	-0.09	0.597	<mark>0.63</mark>	
	GSM850	GPRS12	Rear Face	128	26.5	26.29	1.05	0.19	0.304	0.32	
	GSM850	GPRS12	Right Side	128	26.5	26.29	1.05	-0.12	0.060	0.06	
	GSM850	GPRS12	Left Side	128	26.5	26.29	1.05	0.17	0.397	0.42	
	GSM850	GPRS12	Top Side	128	26.5	26.29	1.05	0.08	0.486	0.51	
	GSM850	GPRS12	Bottom Side	128	26.5	26.29	1.05	0.06	0.042	0.04	
	GSM1900	GPRS12	Front Face	512	23.5	23.42	1.02	0.14	0.843	0.86	
	GSM1900	GPRS12	Front Face	661	23.5	23.31	1.04	-0.19	0.939	0.98	
02	GSM1900	GPRS12	Front Face	810	23.5	23.38	1.03	-0.01	1.16	<mark>1.19</mark>	
	GSM1900	GPRS12	Front Face	810	23.5	23.38	1.03	0.12	1.09	1.12	
	GSM1900	GPRS12	Rear Face	512	23.5	23.42	1.02	-0.08	0.494	0.50	
	GSM1900	GPRS12	Right Side	512	23.5	23.42	1.02	0.03	0.102	0.10	
	GSM1900	GPRS12	Left Side	512	23.5	23.42	1.02	0.02	0.392	0.40	
	GSM1900	GPRS12	Top Side	512	23.5	23.42	1.02	-0.09	0.879	0.90	
	GSM1900	GPRS12	Top Side	661	23.5	23.31	1.04	0.17	1.05	1.10	
	GSM1900	GPRS12	Top Side	810	23.5	23.38	1.03	-0.07	1.15	1.18	
	GSM1900	GPRS12	Bottom Side	512	23.5	23.42	1.02	0.1	0.071	0.07	
	WCDMA II	RMC12.2K	Front Face	9538	20.0	19.82	1.04	-0.16	1.12	1.17	
	WCDMA II	RMC12.2K	Front Face	9262	20.0	19.77	1.05	-0.14	1.11	1.17	
03	WCDMA II	RMC12.2K	Front Face	9400	20.0	19.78	1.05	0.05	1.13	<mark>1.19</mark>	
	WCDMA II	RMC12.2K	Front Face	9400	20.0	19.78	1.05	-0.15	1.07	1.13	
	WCDMA II	RMC12.2K	Rear Face	9538	20.0	19.82	1.04	0.07	0.648	0.68	
	WCDMA II	RMC12.2K	Right Side	9538	20.0	19.82	1.04	-0.04	0.151	0.16	
	WCDMA II	RMC12.2K	Left Side	9538	20.0	19.82	1.04	-0.04	0.490	0.51	
	WCDMA II	RMC12.2K	Top Side	9538	20.0	19.82	1.04	-0.19	1.10	1.15	
	WCDMA II	RMC12.2K	Top Side	9262	20.0	19.77	1.05	-0.02	1.06	1.12	
	WCDMA II	RMC12.2K	Top Side	9400	20.0	19.78	1.05	0.03	1.09	1.15	
	WCDMA II	RMC12.2K	Bottom Side	9538	20.0	19.82	1.04	0.19	0.1	0.10	
04	WCDMA V	RMC12.2K	Front Face	4132	20.0	19.99	1.00	-0.12	0.364	<mark>0.36</mark>	
	WCDMA V	RMC12.2K	Rear Face	4132	20.0	19.99	1.00	-0.01	0.178	0.18	
	WCDMA V	RMC12.2K	Right Side	4132	20.0	19.99	1.00	-0.03	0.005	0.01	
	WCDMA V	RMC12.2K	Left Side	4132	20.0	19.99	1.00	0.15	0.226	0.23	
	WCDMA V	RMC12.2K	Top Side	4132	20.0	19.99	1.00	-0.04	0.309	0.31	
	WCDMA V	RMC12.2K	Bottom Side	4132	20.0	19.99	1.00	0.05	0.003	0.00	

SAR Results for Face Exposure Condition (Separation Distance is 10 mm Gap) 4.7.3

Plot No.	Band	Mode	Test Position	Ch.	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaled SAR-1g (W/kg)
05	GSM850	GPRS12	Front Face	128	26.5	26.29	1.05	-0.02	0.076	<mark>0.08</mark>
06	GSM1900	GPRS12	Front Face	512	23.5	23.42	1.02	0.06	0.147	<mark>0.15</mark>
07	WCDMA II	RMC12.2K	Front Face	9538	20.0	19.82	1.04	0.08	0.173	<mark>0.18</mark>
08	WCDMA V	RMC12.2K	Front Face	4132	20.0	19.99	1.00	-0.02	0.059	<mark>0.06</mark>

Report Format Version 5.0.0 : 25 of 35 Page No.

Report No. : SA161215C20 Issued Date : May 03, 2017

4.7.4 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Band	Mode	Test Position	Ch.	Original Measured SAR-1g (W/kg)	1st Repeated SAR-1g (W/kg)	L/S Ratio	2nd Repeated SAR-1g (W/kg)	L/S Ratio	3rd Repeated SAR-1g (W/kg)	L/S Ratio
GSM1900	GPRS12	Front Face	810	1.16	1.09	1.06	N/A	N/A	N/A	N/A
WCDMA II	RMC12.2K	Front Face	9400	1.13	1.07	1.06	N/A	N/A	N/A	N/A

Report Format Version 5.0.0 Page No. : 26 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

4.7.5 Simultaneous Multi-band Transmission Evaluation

<Estimated SAR Calculation>

According to KDB 447498 D01, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR was estimated according to following formula to result in substantially conservative SAR values of <= 0.4 W/kg to determine simultaneous transmission SAR test exclusion.

$$\text{Estimated SAR} = \frac{\text{Max. Tune up Power}_{(mW)}}{\text{Min. Test Separation Distance}_{(mm)}} \times \frac{\sqrt{f_{(GHz)}}}{7.5}$$

If the minimum test separation distance is < 5 mm, a distance of 5 mm is used for estimated SAR calculation. When the test separation distance is > 50 mm, the 0.4 W/kg is used for SAR-1g.

Mode / Band	Frequency (GHz)	Max. Tune-up Power (dBm)	Test Position	Separation Distance (mm)	Estimated SAR (W/kg)
BT (DSS)	2.48	-8.0	Body	0	0.01
BT (DSS)	2.48	-8.0	Face	10	0.003

Note:

- 1. The separation distance is determined from the outer housing of the EUT to the user.
- 2. When standalone SAR testing is not required, an estimated SAR can be applied to determine simultaneous transmission SAR test exclusion.

Report Format Version 5.0.0 Page No. : 27 of 35
Report No. : SA161215C20 Issued Date : May 03, 2017

<SAR Summation Analysis>

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR_{1g} of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR_{1g} 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR_{1g} is greater than the SAR limit (SAR_{1g} 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis	
			Front Face	0.63	0.01	0.64	Σ SAR < 1.6, Not required	
			Rear Face	0.32	0.01	0.33	Σ SAR < 1.6, Not required	
	GSM850 +	Body	Right Side	0.06	0.01	0.07	Σ SAR < 1.6, Not required	
1			Left Side	0.42	0.01	0.43	Σ SAR < 1.6, Not required	
	BT (DSS)		Top Side	0.51	0.01	0.52	Σ SAR < 1.6, Not required	
				Bottom Side	0.04	0.01	0.05	Σ SAR < 1.6, Not required
		Face	Front Face	0.08	0.003	0.083	Σ SAR < 1.6, Not required	

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
	GSM1900		Front Face	1.19	0.01	1.20	Σ SAR < 1.6, Not required
			Rear Face	0.50	0.01	0.51	Σ SAR < 1.6, Not required
		Pody	Right Side	0.10	0.01	0.11	Σ SAR < 1.6, Not required
2	+	Body	Left Side	0.40	0.01	0.41	Σ SAR < 1.6, Not required
	BT (DSS)		Top Side	1.18	0.01	1.19	Σ SAR < 1.6, Not required
			0.01	0.08	Σ SAR < 1.6, Not required		
			Front Face	0.15	0.003	0.153	Σ SAR < 1.6, Not required

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis	
		WCDMA II + BT (DSS) Body + Bottom Side 1.19 Rear Face 0.68 Right Side 0.16 Left Side 0.51 Top Side 1.15 Bottom Side 0.10 Face Front Face 0.18	Front Face	1.19	0.01	1.20	Σ SAR < 1.6, Not required	
			Rear Face	0.68	0.01	0.69	Σ SAR < 1.6, Not required	
	WCDMA II		Right Side	0.16	0.01	0.17	Σ SAR < 1.6, Not required	
3	+		Бойу	Left Side	0.51	0.01	0.52	Σ SAR < 1.6, Not required
	BT (DSS)		0.01	1.16	Σ SAR < 1.6, Not required			
	Fac		Bottom Side	0.10	0.01	0.11	Σ SAR < 1.6, Not required	
			Front Face	0.18	0.003	0.183	Σ SAR < 1.6, Not required	

Report Format Version 5.0.0 Page No. : 28 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

No.	Conditions (SAR1 + SAR2)	Exposure Condition	Test Position	Max. SAR1	Max. SAR2	SAR Summation	SPLSR Analysis
		Rear Face 0.36 0.01	Front Face	0.36	0.01	0.37	Σ SAR < 1.6, Not required
			Rear Face	0.18	0.01	0.19	Σ SAR < 1.6, Not required
	WCDMA V		Right Side	0.01	0.01	0.02	Σ SAR < 1.6, Not required
4	+		Left Side	0.23	0.01	0.24	Σ SAR < 1.6, Not required
	BT (DSS)		0.01	0.32	Σ SAR < 1.6, Not required		
			Bottom Side	0.00	0.01	0.01	Σ SAR < 1.6, Not required
			Front Face	0.06	0.003	0.063	Σ SAR < 1.6, Not required

Test Engineer: Eric Wu, and Chiajui Fu

 Report Format Version 5.0.0
 Page No.
 : 29 of 35

 Report No.: SA161215C20
 Issued Date : May 03, 2017

5. Calibration of Test Equipment

Equipment	Manufacturer	Model	SN	Cal. Date	Cal. Interval	
System Validation Dipole	SPEAG	D835V2	4d121	Aug. 25, 2016	1 Year	
System Validation Dipole	SPEAG	D1900V2	5d142	Jun. 23, 2016	1 Year	
System Validation Dipole	SPEAG	D1900V2	5d036	Jan. 23, 2017	1 Year	
Decimatria E Field Broke	CDEAC	EV2DV4	2074	Mar. 23, 2016	1 Year	
Dosimetric E-Field Probe	SPEAG	EX3DV4	3971	Mar. 24, 2017	1 Year	
Data Acquisition Electronics	SPEAG	DAE4	1277	Jul. 22, 2016	1 Year	
Data Acquisition Electronics	SPEAG	DAE4	1431	Mar. 20, 2017	1 Year	
Wireless Communication Test Set	Agilent	E5515C	MY50260642	Nov. 19, 2015	2 Years	
Connector year American	Dec	FCI 6	400000	Mar. 25, 2016	1 Year	
Spectrum Analyzer	R&S	FSL6	102006	Mar. 27, 2017	1 Year	
ENA Series Network Analyzer	Agilent	E5071C	MY46214281	Jun. 13, 2016	1 Year	
MXG Analong Signal Generator	Agilent	N5181A	MY50143868	Jul. 07, 2016	1 Year	
Markan Cinnal Company	A i t	MO0740A	0004500077	Mar. 22, 2016	1 Year	
Vector Signal Generator	Anritsu	MG3710A	6201599977	Mar. 27, 2017	1 Year	
Power Meter	Anritsu	ML2495A	1218009	Jul. 06, 2016	1 Year	
Power Sensor	Anritsu	MA2411B	1207252	Jul. 06, 2016	1 Year	
Thermometer	YFE	YF-160A	150601220	May. 04, 2016	1 Year	

Report Format Version 5.0.0 Page No. : 30 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

6. Measurement Uncertainty

Source of Uncertainty	Uncertainty (± %)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (± %, 1g)	Standard Uncertainty (± %, 10g)	Vi
Measurement System								
Probe Calibration	6.0	Normal	1	1	1	6.0	6.0	8
Axial Isotropy	4.7	Rectangular	√3	√0.5	√0.5	1.9	1.9	8
Hemispherical Isotropy	9.6	Rectangular	√3	√0.5	√0.5	3.9	3.9	8
Boundary Effect	1.0	Rectangular	√3	1	1	0.6	0.6	8
Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	8
Detection Limits	0.25	Rectangular	√3	1	1	0.14	0.14	8
Probe Modulation Response	3.5	Rectangular	√3	1	1	2.0	2.0	8
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	8
Response Time	0.0	Rectangular	√3	1	1	0.0	0.0	8
Integration Time	1.7	Rectangular	√3	1	1	1.0	1.0	8
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	8
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	0.4	Rectangular	√3	1	1	0.2	0.2	8
Probe Positioning with Respect to Phantom	2.9	Rectangular	√3	1	1	1.7	1.7	8
Post-processing	2.0	Rectangular	√3	1	1	1.2	1.2	8
Test Sample Related								
Test Sample Positioning	3.9 / 2.06	Normal	1	1	1	3.9	2.1	35
Device Holder Uncertainty	2.9 / 4.1	Normal	1	1	1	2.9	4.1	11
Power Drift of Measurement	5.0	Rectangular	√3	1	1	2.9	2.9	8
Power Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	8
Phantom and Setup	_			_				
Phantom Uncertainty (Shape and Thickness Tolerances)	6.1	Rectangular	√3	1	1	3.5	3.5	8
Liquid Conductivity (Temperature Uncertainty)	3.24	Rectangular	√3	0.78	0.71	1.5	1.3	8
Liquid Conductivity (Measured)	2.88	Normal	1	0.78	0.71	2.2	2.0	43
Liquid Permittivity (Temperature Uncertainty)	1.13	Rectangular	√3	0.23	0.26	0.2	0.2	8
Liquid Permittivity (Measured)	2.50	Normal	1	0.23	0.26	0.6	0.7	54
Combined Standard Uncertainty		± 11.4 %	± 11.2 %					
Expanded Uncertainty (K=2)							± 22.4 %	

Head SAR Uncertainty Budget for Frequency Range of 300 MHz to 3 GHz

Report Format Version 5.0.0 Page No. : 31 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

Source of Uncertainty	Uncertainty (± %)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (± %, 1g)	Standard Uncertainty (± %, 10g)	Vi
Measurement System	_	_		_		_		
Probe Calibration	6.55	Normal	1	1	1	6.55	6.55	8
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	1.9	1.9	8
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	3.9	3.9	8
Boundary Effect	2.0	Rectangular	√3	1	1	1.2	1.2	8
Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	8
Detection Limits	0.25	Rectangular	√3	1	1	0.14	0.14	8
Probe Modulation Response	3.5	Rectangular	√3	1	1	2.0	2.0	8
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	8
Response Time	0.0	Rectangular	√3	1	1	0.0	0.0	8
Integration Time	1.7	Rectangular	√3	1	1	1.0	1.0	8
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	8
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	0.4	Rectangular	√3	1	1	0.2	0.2	8
Probe Positioning with Respect to Phantom	6.7	Rectangular	√3	1	1	3.9	3.9	8
Post-processing	4.0	Rectangular	√3	1	1	2.3	2.3	8
Test Sample Related	_							
Test Sample Positioning	3.9 / 2.06	Normal	1	1	1	3.9	2.1	35
Device Holder Uncertainty	2.9 / 4.1	Normal	1	1	1	2.9	4.1	11
Power Drift of Measurement	5.0	Rectangular	√3	1	1	2.9	2.9	8
Power Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	8
Phantom and Setup								
Phantom Uncertainty (Shape and Thickness Tolerances)	6.6	Rectangular	√3	1	1	3.8	3.8	8
Liquid Conductivity (Temperature Uncertainty)	3.24	Rectangular	√3	0.78	0.71	1.5	1.3	8
Liquid Conductivity (Measured)	2.88	Normal	1	0.78	0.71	2.2	2.0	43
Liquid Permittivity (Temperature Uncertainty)	1.13	Rectangular	√3	0.23	0.26	0.2	0.2	8
Liquid Permittivity (Measured)	2.50	Normal	1	0.23	0.26	0.6	0.7	54
Combined Standard Uncertainty						± 12.5 %	± 12.3 %	
Expanded Uncertainty (K=2)		± 25.0 %	± 24.6 %					

Head SAR Uncertainty Budget for Frequency Range of 3 GHz to 6 GHz

Report Format Version 5.0.0 Page No. : 32 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

Source of Uncertainty	Uncertainty (± %)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (± %, 1g)	Standard Uncertainty (± %, 10g)	Vi
Measurement System								
Probe Calibration	6.0	Normal	1	1	1	6.0	6.0	8
Axial Isotropy	4.7	Rectangular	√3	√0.5	√0.5	1.9	1.9	8
Hemispherical Isotropy	9.6	Rectangular	√3	√0.5	√0.5	3.9	3.9	8
Boundary Effect	1.0	Rectangular	√3	1	1	0.6	0.6	8
Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	8
Detection Limits	0.25	Rectangular	√3	1	1	0.14	0.14	∞
Probe Modulation Response	3.5	Rectangular	√3	1	1	2.0	2.0	8
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	8
Response Time	0.0	Rectangular	√3	1	1	0.0	0.0	8
Integration Time	1.7	Rectangular	√3	1	1	1.0	1.0	8
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	8
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	0.4	Rectangular	√3	1	1	0.2	0.2	8
Probe Positioning with Respect to Phantom	2.9	Rectangular	√3	1	1	1.7	1.7	8
Post-processing	2.0	Rectangular	√3	1	1	1.2	1.2	∞
Test Sample Related								
Test Sample Positioning	4.38 / 1.35	Normal	1	1	1	4.4	1.4	29
Device Holder Uncertainty	2.9 / 4.1	Normal	1	1	1	2.9	4.1	11
Power Drift of Measurement	5.0	Rectangular	√3	1	1	2.9	2.9	8
Power Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	8
Phantom and Setup								
Phantom Uncertainty (Shape and Thickness Tolerances)	7.2	Rectangular	√3	1	1	4.2	4.2	8
Liquid Conductivity (Temperature Uncertainty)	3.24	Rectangular	√3	0.78	0.71	1.5	1.3	8
Liquid Conductivity (Measured)	2.88	Normal	1	0.78	0.71	2.2	2.0	43
Liquid Permittivity (Temperature Uncertainty)	1.13	Rectangular	√3	0.23	0.26	0.2	0.2	8
Liquid Permittivity (Measured)	2.50	Normal	1	0.23	0.26	0.6	0.7	54
Combined Standard Uncertainty						± 11.8 %	± 11.3 %	
Expanded Uncertainty (K=2)	± 23.6 %	± 22.6 %						

Body SAR Uncertainty Budget for Frequency Range of 300 MHz to 3 GHz

Report Format Version 5.0.0 Page No. : 33 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

Source of Uncertainty	Uncertainty (± %)	Probability Distribution	Divisor	Ci (1g)	Ci (10g)	Standard Uncertainty (± %, 1g)	Standard Uncertainty (± %, 10g)	Vi
Measurement System								
Probe Calibration	6.55	Normal	1	1	1	6.55	6.55	_∞
Axial Isotropy	4.7	Rectangular	√3	0.7	0.7	1.9	1.9	8
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	0.7	3.9	3.9	8
Boundary Effect	2.0	Rectangular	√3	1	1	1.2	1.2	8
Linearity	4.7	Rectangular	√3	1	1	2.7	2.7	8
Detection Limits	0.25	Rectangular	√3	1	1	0.14	0.14	8
Probe Modulation Response	3.5	Rectangular	√3	1	1	2.0	2.0	8
Readout Electronics	0.3	Normal	1	1	1	0.3	0.3	8
Response Time	0.0	Rectangular	√3	1	1	0.0	0.0	8
Integration Time	1.7	Rectangular	√3	1	1	1.0	1.0	8
RF Ambient Conditions – Noise	3.0	Rectangular	√3	1	1	1.7	1.7	8
RF Ambient Conditions – Reflections	3.0	Rectangular	√3	1	1	1.7	1.7	8
Probe Positioner Mechanical Tolerance	0.4	Rectangular	√3	1	1	0.2	0.2	8
Probe Positioning with Respect to Phantom	6.7	Rectangular	√3	1	1	3.9	3.9	8
Post-processing	4.0	Rectangular	√3	1	1	2.3	2.3	8
Test Sample Related								
Test Sample Positioning	4.38 / 1.35	Normal	1	1	1	4.4	1.4	29
Device Holder Uncertainty	2.9 / 4.1	Normal	1	1	1	2.9	4.1	11
Power Drift of Measurement	5.0	Rectangular	√3	1	1	2.9	2.9	8
Power Scaling	0.0	Rectangular	√3	1	1	0.0	0.0	8
Phantom and Setup								
Phantom Uncertainty (Shape and Thickness Tolerances)	7.6	Rectangular	√3	1	1	4.4	4.4	8
Liquid Conductivity (Temperature Uncertainty)	3.24	Rectangular	√3	0.78	0.71	1.5	1.3	8
Liquid Conductivity (Measured)	2.88	Normal	1	0.78	0.71	2.2	2.0	43
Liquid Permittivity (Temperature Uncertainty)	1.13	Rectangular	√3	0.23	0.26	0.2	0.2	8
Liquid Permittivity (Measured)	2.50	Normal	1	0.23	0.26	0.6	0.7	54
Combined Standard Uncertainty						± 12.8 %	± 12.4 %	
Expanded Uncertainty (K=2)						± 25.6 %	± 24.8 %	

Body SAR Uncertainty Budget for Frequency Range of 3 GHz to 6 GHz

Report Format Version 5.0.0 Page No. : 34 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

7. Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Taiwan HwaYa EMC/RF/Safety Lab:

Add: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan, R.O.C.

Tel: 886-3-318-3232 Fax: 886-3-327-0892

Taiwan LinKo EMC/RF Lab:

Add: No. 47-2, 14th Ling, Chia Pau Vil., Linkou Dist., New Taipei City 244, Taiwan, R.O.C.

Tel: 886-2-2605-2180 Fax: 886-2-2605-1924

Taiwan HsinChu EMC/RF/Telecom Lab:

Add: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Vil., Chiung Lin Township, Hsinchu County 307, Taiwan, R.O.C.

Tel: 886-3-666-8565 Fax: 886-3-666-8323

Email: service.adt@tw.bureauveritas.com

Web Site: www.adt.com.tw

The road map of all our labs can be found in our web site also.

---END---

Report Format Version 5.0.0 Page No. : 35 of 35
Report No.: SA161215C20 Issued Date : May 03, 2017

Appendix A. SAR Plots of System Verification

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

Report Format Version 5.0.0 Issued Date : May 03, 2017

Report No. : SA161215C20

System Check_B835_170203

DUT: Dipole 835 MHz; Type: D835V2; SN: 4d121

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

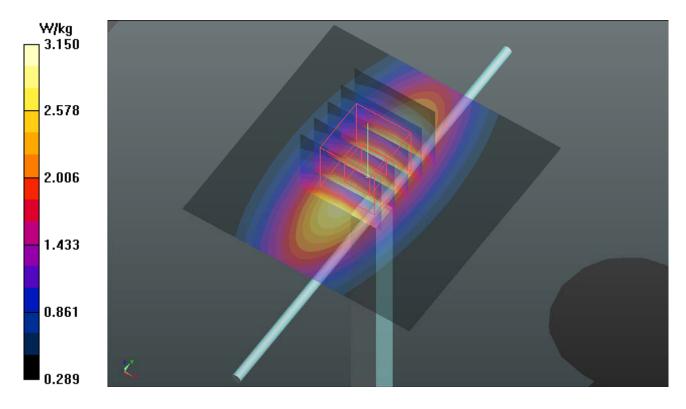
Medium: B07T10N3_0203 Medium parameters used: f = 835 MHz; $\sigma = 0.997$ S/m; $\varepsilon_r = 55.088$; $\rho =$

Date: 2017/02/03

 1000 kg/m^3

Ambient Temperature : 23.8 $^{\circ}$ C ; Liquid Temperature : 23.5 $^{\circ}$ C

DASY5 Configuration:


- Probe: EX3DV4 SN3971; ConvF(9.89, 9.89, 9.89); Calibrated: 2016/03/23;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2016/07/22
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.17 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 54.16 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.69 W/kg

SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.65 W/kg

SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.65 W/kg Maximum value of SAR (measured) = 3.15 W/kg

System Check_B1900_170203

DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d142

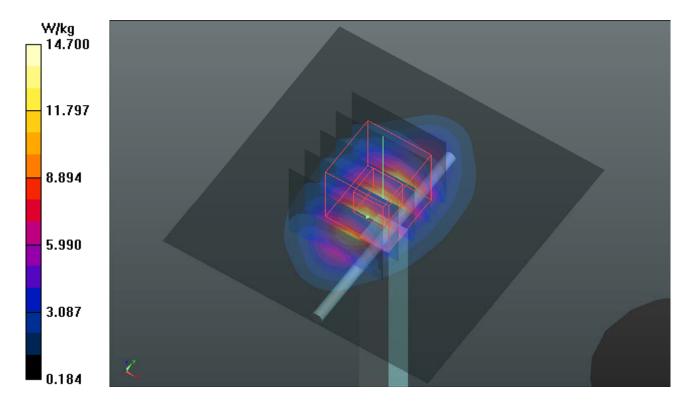
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: B16T20N2_0203 Medium parameters used: f = 1900 MHz; $\sigma = 1.582$ S/m; $\varepsilon_r = 51.541$; $\rho =$

Date: 2017/02/03

 1000 kg/m^3

Ambient Temperature : 23.7 °C; Liquid Temperature : 23.3 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3971; ConvF(7.85, 7.85, 7.85); Calibrated: 2016/03/23;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2016/07/22
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 15.0 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 97.91 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10.4 W/kg; SAR(10 g) = 5.42 W/kgMaximum value of SAR (measured) = 14.7 W/kg

System Check H835 170502

DUT: Dipole 835 MHz; Type: D835V2; SN: 4d121

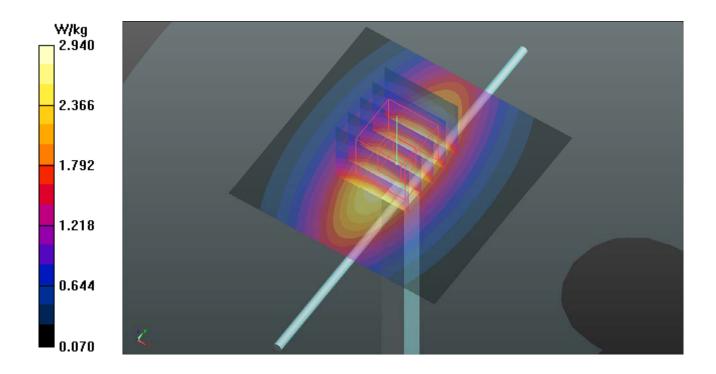
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: H07T10N1_0502 Medium parameters used: f = 835 MHz; $\sigma = 0.912$ S/m; $\varepsilon_r = 42.671$; $\rho =$

Date: 2017/05/02

 1000 kg/m^3

Ambient Temperature : 23.9 ℃; Liquid Temperature : 23.5 ℃


DASY5 Configuration:

- Probe: EX3DV4 SN3971; ConvF(10.67, 10.67, 10.67); Calibrated: 2017/03/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1431; Calibrated: 2017/03/20
- Phantom: Twin SAM Phantom 1496; Type: QD000P40CA;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.94 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 55.44 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.50 W/kg

SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.55 W/kgMaximum value of SAR (measured) = 3.13 W/kg

System Check_H1900_170502

DUT: Dipole 1900 MHz; Type: D1900V2; SN: 5d036

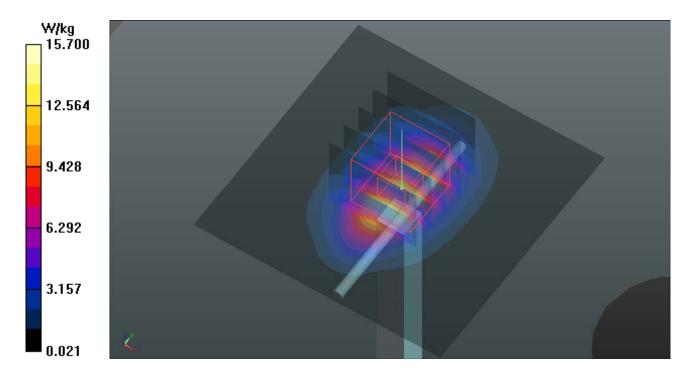
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: H16T20N2_0502 Medium parameters used: f = 1900 MHz; $\sigma = 1.459$ S/m; $\varepsilon_r = 40.94$; $\rho =$

Date: 2017/05/02

 1000 kg/m^3

Ambient Temperature: 23.7 °C; Liquid Temperature: 23.3 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3971; ConvF(8.59, 8.59, 8.59); Calibrated: 2017/03/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1431; Calibrated: 2017/03/20
- Phantom: Twin SAM Phantom 1496; Type: QD000P40CA;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 15.7 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 107.1 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.14 W/kgMaximum value of SAR (measured) = 15.7 W/kg

Appendix B. SAR Plots of SAR Measurement

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows.

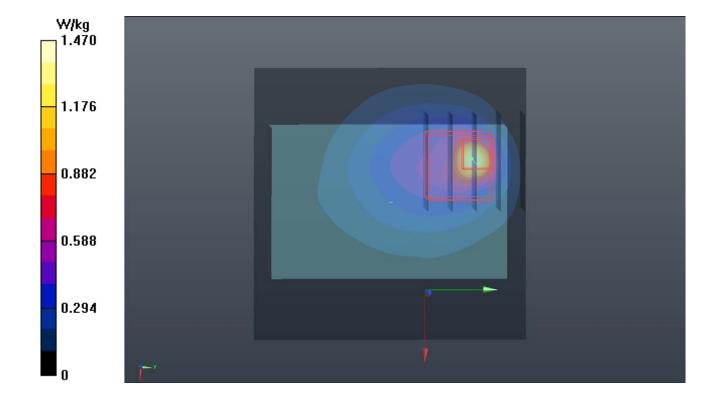
Report Format Version 5.0.0 Issued Date : May 03, 2017

Report No. : SA161215C20

P01 GSM850_GPRS12_Front Face_0cm_Ch128

DUT: 161215C20

Communication System: GPRS12; Frequency: 824.2 MHz; Duty Cycle: 1:2


Medium: B07T10N3_0203 Medium parameters used: f = 824.2 MHz; $\sigma = 0.987$ S/m; $\varepsilon_r = 55.191$; $\rho =$

Date: 2017/02/03

 1000 kg/m^3

Ambient Temperature : 23.8 °C; Liquid Temperature : 23.5 °C

- Probe: EX3DV4 SN3971; ConvF(9.89, 9.89, 9.89); Calibrated: 2016/03/23;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2016/07/22
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)
- Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.47 W/kg
- Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 38.23 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.92 W/kg SAR(1 g) = 0.597 W/kg; SAR(10 g) = 0.285 W/kg Maximum value of SAR (measured) = 1.05 W/kg

P02 GSM1900_GPRS12_Front Face_0cm_Ch810

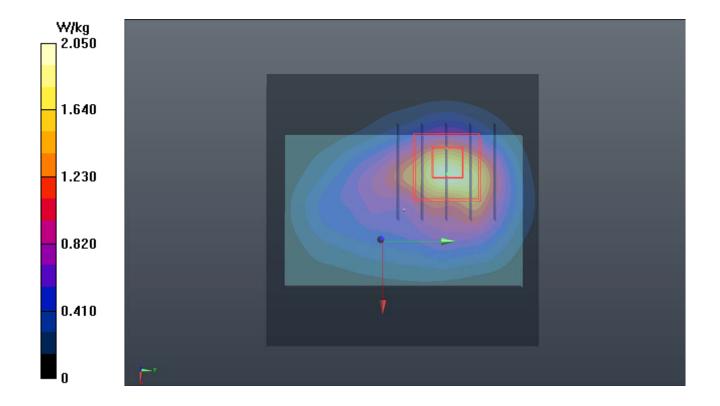
DUT: 161215C20

Communication System: GPRS12; Frequency: 1909.8 MHz; Duty Cycle: 1:2

Medium: B16T20N2_0203 Medium parameters used: f = 1910 MHz; $\sigma = 1.592$ S/m; $\epsilon_r = 51.514$; $\rho =$

Date: 2017/02/03

 1000 kg/m^3


Ambient Temperature: 23.7 °C; Liquid Temperature: 23.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3971; ConvF(7.85, 7.85, 7.85); Calibrated: 2016/03/23;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2016/07/22

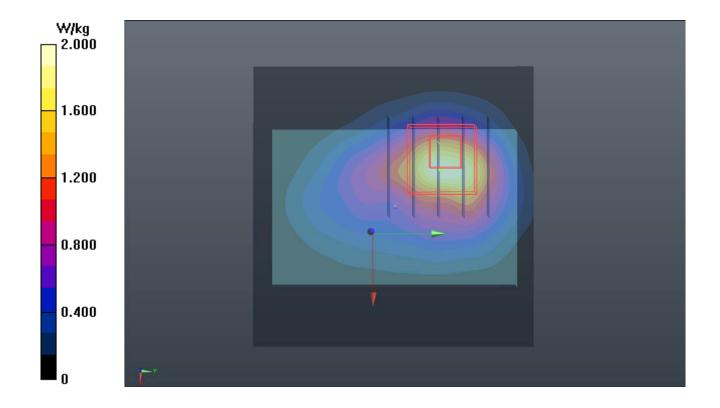
Maximum value of SAR (measured) = 1.68 W/kg

- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)
- Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.05 W/kg
- Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 35.86 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.27 W/kg SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.598 W/kg

P03 WCDMA II_RMC12.2K_Front Face_0cm_Ch9400

DUT: 161215C20

Communication System: WCDMA; Frequency: 1880 MHz; Duty Cycle: 1:1


Medium: B16T20N2_0203 Medium parameters used: f = 1880 MHz; $\sigma = 1.564$ S/m; $\varepsilon_r = 51.596$; $\rho =$

Date: 2017/02/03

 1000 kg/m^3

Ambient Temperature: 23.7 °C; Liquid Temperature: 23.3 °C

- Probe: EX3DV4 SN3971; ConvF(7.85, 7.85, 7.85); Calibrated: 2016/03/23;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2016/07/22
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)
- Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.00 W/kg
- Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 35.99 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 2.33 W/kg SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.616 W/kg Maximum value of SAR (measured) = 1.82 W/kg

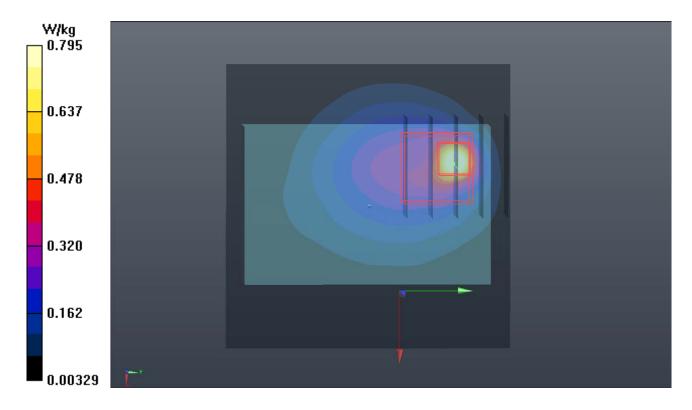
P04 WCDMA V_RMC12.2K_Front Face_0cm_Ch4132

DUT: 161215C20

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: B07T10N3_0203 Medium parameters used: f = 826.4 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 55.167$; $\rho =$

Date: 2017/02/03


 1000 kg/m^3

Ambient Temperature: 23.8°C; Liquid Temperature: 23.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN3971; ConvF(9.89, 9.89, 9.89); Calibrated: 2016/03/23;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1277; Calibrated: 2016/07/22
- Phantom: Twin SAM Phantom 1823; Type: QD000P40CD;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)
- Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.908 W/kg
- Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.57 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 1.16 W/kg SAR(1 g) = 0.364 W/kg; SAR(10 g) = 0.173 W/kg

SAR(1 g) = 0.364 W/kg; SAR(10 g) = 0.173 W/kg Maximum value of SAR (measured) = 0.795 W/kg

P05 GSM850_GPRS12_Front Face_1cm_Ch128

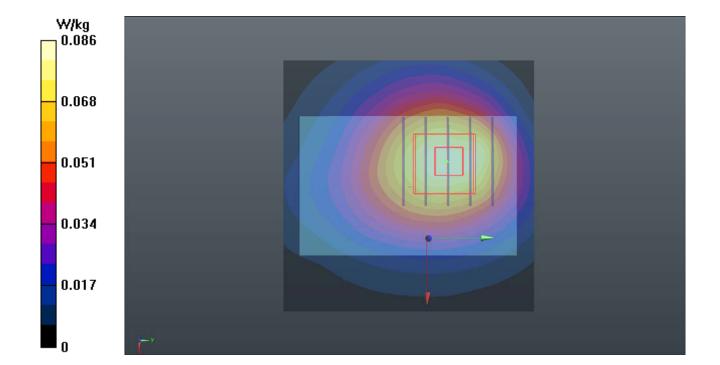
DUT: 161215C20

Communication System: GPRS12; Frequency: 824.2 MHz; Duty Cycle: 1:1.2

Medium: H07T10N1_0502 Medium parameters used: f = 824.2 MHz; $\sigma = 0.901$ S/m; $\varepsilon_r = 42.807$; $\rho =$

Date: 2017/05/02

 1000 kg/m^3


Ambient Temperature: 23.7 °C; Liquid Temperature: 23.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3971; ConvF(10.67, 10.67, 10.67); Calibrated: 2017/03/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1431; Calibrated: 2017/03/20

Maximum value of SAR (measured) = 0.0810 W/kg

- Phantom: Twin SAM Phantom 1496; Type: QD000P40CA;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)
- Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0855 W/kg
- Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.303 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.108 W/kg SAR(1 g) = 0.076 W/kg; SAR(10 g) = 0.051 W/kg

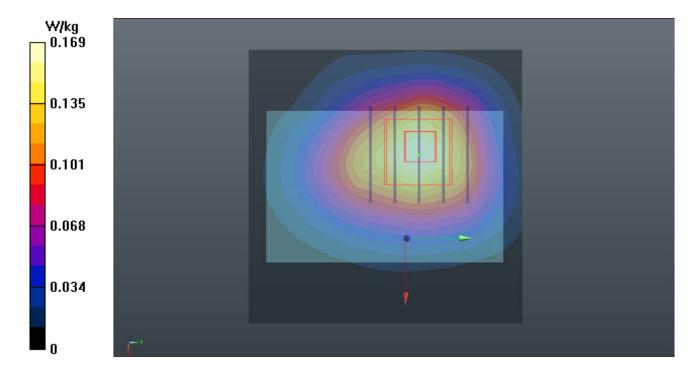
P06 GSM1900_GPRS12_Front Face_1cm_Ch512

DUT: 161215C20

Communication System: GPRS12; Frequency: 1850.2 MHz; Duty Cycle: 1:2

Medium: H16T20N2_0502 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.423$ S/m; $\epsilon_r = 40.874$; ρ

Date: 2017/05/02


 $= 1000 \text{ kg/m}^3$

Ambient Temperature : 23.7 °C; Liquid Temperature : 23.3 °C

DASY5 Configuration:

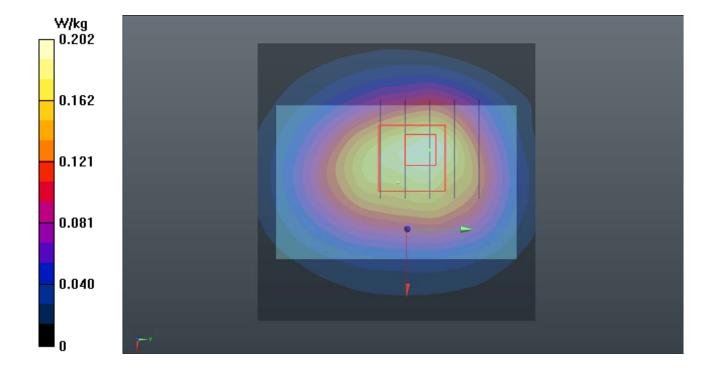
- Probe: EX3DV4 SN3971; ConvF(8.59, 8.59, 8.59); Calibrated: 2017/03/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1431; Calibrated: 2017/03/20
- Phantom: Twin SAM Phantom 1496; Type: QD000P40CA;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)
- Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.169 W/kg
- **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.47 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.245 W/kg SAR(1 g) = 0.147 W/kg; SAR(10 g) = 0.088 W/kg

SAR(1 g) = 0.147 W/kg; SAR(10 g) = 0.088 W/kgMaximum value of SAR (measured) = 0.155 W/kg

P07 WCDMA II_RMC12.2K_Front Face_1cm_Ch9538

DUT: 161215C20

Communication System: WCDMA; Frequency: 1907.6 MHz; Duty Cycle: 1:1


Medium: H16T20N2_0502 Medium parameters used: f = 1908 MHz; $\sigma = 1.466$ S/m; $\varepsilon_r = 40.927$; $\rho =$

Date: 2017/05/02

 1000 kg/m^3

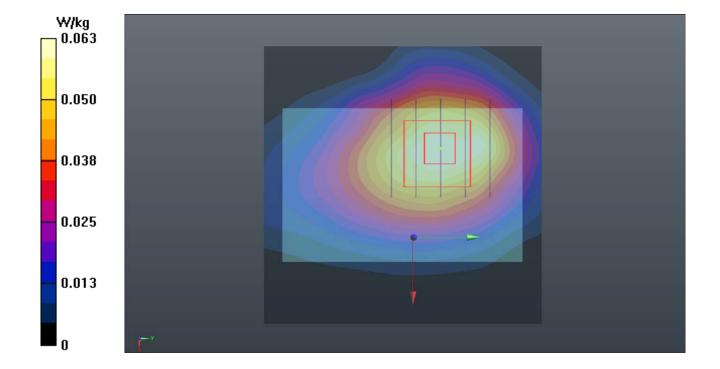
Ambient Temperature: 23.7 °C; Liquid Temperature: 23.3 °C

- Probe: EX3DV4 SN3971; ConvF(8.59, 8.59, 8.59); Calibrated: 2017/03/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1431; Calibrated: 2017/03/20
- Phantom: Twin SAM Phantom 1496; Type: QD000P40CA;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)
- Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.202 W/kg
- Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.90 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 0.290 W/kg SAR(1 g) = 0.173 W/kg; SAR(10 g) = 0.106 W/kg Maximum value of SAR (measured) = 0.184 W/kg

P08 WCDMA V_RMC12.2K_Front Face_1cm_Ch4132

DUT: 161215C20

Communication System: WCDMA; Frequency: 826.4 MHz; Duty Cycle: 1:1


Medium: H07T10N1_0502 Medium parameters used: f = 826.4 MHz; $\sigma = 0.904$ S/m; $\varepsilon_r = 42.777$; $\rho =$

Date: 2017/05/02

 1000 kg/m^3

Ambient Temperature: 23.7 °C; Liquid Temperature: 23.3 °C

- Probe: EX3DV4 SN3971; ConvF(10.67, 10.67, 10.67); Calibrated: 2017/03/24;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1431; Calibrated: 2017/03/20
- Phantom: Twin SAM Phantom 1496; Type: QD000P40CA;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7373)
- Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0626 W/kg
- Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.362 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.0890 W/kg SAR(1 g) = 0.059 W/kg; SAR(10 g) = 0.039 W/kg Maximum value of SAR (measured) = 0.0639 W/kg

