

InterLab FCC Measurement/Technical Report on

Parrot ASTEROID Tablet SAMOS 5 Handheld Transmitter

Report Reference: MDE_PARRO_1233_FCCg

Test Laboratory: Borsigstr. 11 Germany 7Layers AG 40880 Ratingen

Note: The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Ralf Mertens Vorstand • Board: Dr. H.-J. Meckelburg

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

0	Sum	nmary	3
).1).2	Technical Report Summary Measurement Summary	3 4
1	Adm	ninistrative Data	5
1	.1 .2 .3	Testing Laboratory Project Data Applicant Data	5 5 5
2	Test	t object Data	6
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes Product labeling	6 7 7 7 8 8
3	Test	t Results	9
	8.1 8.2 8.3 8.4	Duty cycle measurement (based on dwell time measurement) Spurious radiated emissions Peak power output Occupied bandwidth	9 11 17 18
4	Test	t Equipment	19
5	Pho	to Report	25
6	Setu	up Drawings	29
7	Ann	ex measurement plots	30
7	7.1 7.2 7.3	Duty cycle measurement (based on dwell time measurement) Radiated emissions (f < 30 MHz), restricted bands Occupied bandwidth	30 32 34

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Periodic operation in the band above 70 MHz)

Applicable FCC Rules

Edition of FCC Rules: 10-1-11

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15. The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.231 Periodic operation in the band 40.66-40.70 MHz, above 70 MHz

Note: none

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subpart C § 15.207						
Conducted emis	ssions (AC power line)					
The measureme	ent was performed acc	cording to ANSI C63.4	2009			
OP-Mode	Setup	Port	Final Result			
		AC Port (power line)	N/A			
FCC Part 15, S	Subpart C	§ 15.231				
Duty cycle mea	surement (based on d	lwell time measurement)				
		cording to FCC § 15.31	10-1-11 Edition			
OP-Mode	Setup	Port	Final Result			
op-mode 1	Setup_a01	Enclosure	passed			
FCC Part 15, S	Subpart C	§ 15.231				
Spurious Radiat						
The measureme	ent was performed acc	cording to ANSI C63.4	2009			
OP-Mode	Setup	Port	Final Result			
op-mode 2	Setup_a01	Enclosure	passed			
FCC Part 15, S	Subpart C	§ 15.231				
Peak power out	put					
The measureme	ent was performed acc	cording to ANSI C63.4	2009			
OP-Mode	Setup	Port	Final Result			
op-mode 2	Setup_a01	Enclosure	passed			
FCC Part 15, S	Subpart C	§ 15.231				
Occupied Bandy						
The measureme	ent was performed acc	cording to FCC § 15.31	10-1-11 Edition			
The measureme						
OP-Mode	Setup	Port	Final Result			
	Setup Setup_a01	Port Enclosure	Final Result passed			

N/A not applicable (the EUT is powered by DC)

This test report replaces the test report MDE_PARRO_1233_FCCf.

Responsible for Accreditation Scope: Responsible for Test Report:

1 Administrative Data

1.1 Testing Laboratory

Company I	Name:
-----------	-------

7Layers AG

Address

Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

The test facility is also accredited by the following accreditation organisation: Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Andreas Petz
Report Template Version:	2012-03-14

1.2 Project Data

Responsible for testing and report:	DiplIng. Marco Kullik
Date of Test(s):	2012-08-09 to 2012-11-02
Date of Report:	2012-12-20

1.3 Applicant Data

Company Name:

Address:

Phone:

E-Mail:

Fax:

Parrot S.A.

174 quai de Jemmapes 75010 Paris France

Mr. Salem Boushabi

Contact Person:

+33 (0) 1 48 03 74 07 +33 (0) 1 48 03 74 00 salem.boushabi@parrot.com

2 Test object Data

2.1 General EUT Description

Equipment under Test	Parrot ASTEROID Tablet
Type Designation:	SAMOS 5 Handheld Transmitter
Kind of Device:	433.92 MHz transmitter
(optional)	
Voltage Type:	DC
Voltage level:	3.0 V (internal battery)
Repeated Operation:	No
The EUT is part of a security	No
or safety system:	

General product description:

The EUT is a wireless handheld transmitter (non-periodic operation in the band above 70 MHz). The operating frequency is 433.92 MHz.

Specific product description for the EUT:

The EUT is a handheld transmitter which uses 75 kHz FSK modulation. The transmitter can be activated manually by different switches. The deactivation time after release of the switch shall be shorter than 5 s.

The EUT provides the following ports:

Ports

Enclosure

The main components of the EUT are listed and described in Chapter2.2.

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A	Parrot	SAMOS 5	PI020397D2	7	1.8	-
(Code:	ASTEROID	Handheld	2E000017			
CX480d01)	Tablet	Transmitter				
Remark: EUT	A is equipped w	ith an integral a	ntenna (gain=	-25.0 dBi).		
EUT B	Parrot	SAMOS 5	PI020397D2	7	1.8	-
(Code:	ASTEROID	Handheld	2E000031			
CX480h01)	Tablet	Transmitter				
Remark: EUT I	B is equipped w	ith an integral a	ntenna (gain=	-25.0 dBi).		
EUT C	Parrot	SAMOS 5	PI020397D2	7	1.8	-
(Code:	ASTEROID	Handheld	2E000031			
CX480hi01)	Tablet	Transmitter				
Remark: EUT	C is equipped w	ith an integral a	ntenna (gain=	-25.0 dBi).		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short	Equipment	Туре	HW Status	SW Status	Serial no.	FCC ID
Description	under Test	Designation				

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial no.	HW Status	SW Status	FCC ID
_	_	-	_	-	-	-

2.5 EUT Setups

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_a01	EUT A	Sample with continuous modulation, external power supply
Setup_b01	EUT B	Unmodified sample, internal battery
Setup_c01	EUT C	CW Sample (433,92 MHz – FSK/2), internal battery

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	periodic operation	Transmitter is sending a pulsed FSK signal
op-mode 2	continuous modulated operation	Transmitter is sending a continuous modulated
		signal. Special op mode for test purpose only.
op-mode 3	continuous unmodulated operation	Transmitter is sending a continuous
		unmodulated signal. Special op mode for test
		purpose only.

2.7 Product labeling

2.7.1 FCC ID label

Please refer to the documentation of the applicant.

2.7.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Duty cycle measurement (based on dwell time measurement)

Standard FCC Part 15, 10-1-11 Edition Subpart C

The test was performed according to: FCC §15.35, §15.231

3.1.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the dwell time measurements. For analyzer settings please see measurement plots in annex.

3.1.2 Test Limits

Depending on the function of the EUT different paragraphs of FCC §15.231 apply:

Either

(a)(1): A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

Or

(a)(2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

And

(a) (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

Otherwise

(e) Intentional radiators may operate at a periodic rate exceeding that specified in paragraph (a) of this section and may be employed for any type of operation [...]. In addition, [...] the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

This test is also performed to determine the pulse train of the transmitter and calculate the correction factor for pulse modulated transmitters according to FCC §15.35. This factor is used as a correction factor for the field strength measurements, both for Spurious radiated emissions and Peak power output.

3.1.3 Test Protocol

Temperature:	24 °C
Air Pressure:	992 hPa
Humidity:	37 %

Op. Mode	Setup	Port
op-mode 1	Setup_b01	Enclosure

a) Determine the total duration of a transmission within 100 ms:

Duty cycle = ((L1*N1) + (L2*N2) + ... + (Ln*Nn)) / 100 ms or T, whichever is less Correction factor = 20 * LOG (Duty cycle) [dB]

Step 1	Holdover time	Less than 5s
Step 2	Cycle to determine the on/off ratio within a cycle (period T)	100.0 ms
Step 3	Sweep of a data word to determine the on time within a data word (L1-LN).	L1 = 7.6 ms L2 = 7.8 ms L3 = 7.4 ms L4 =8.2 ms L5 = 7.0 ms
Step 4	Determine the number of pulses (N1-NN). First range (trigger delay = 0 ms).	N1 = 2 N2 = 1 N3 = 1 N4 = 1 N5 = 1

Calculation of Duty Cycle / Correction Factor:

If T > 100 ms => T:= 100 ms; L1 = 7.6 ms; L2 = 7.8 ms; ; L3 = 7.4 ms; L4 = 8.2 ms; L5 = 7.0 ms N1 = 2; N2 = 1; ; N3 = 1; N4 = 1; N5 = 1 Duty cycle = ((2*7.6) + (1*7.8) + (1*7.4) + (1*8.2) + (1*7.0)) / 100 = 0.456Correction factor = 20*LOG(0.456) = -6.8 dB

b) Determine the period of periodic re-transmission, if any, or cease (deactivation) time: Period of re-transmission T_R = 0s Deactivation after T_C = 517 ms [worst case, measured time after transmit button pushed], Limit: $\leq 5~s$

3.1.4 Test result: Duty cycle / correction factor

FCC Part 15, Subpart C	Op. Mode	Result	
	op-mode 1	passed	

3.2 Spurious radiated emissions

Standard FCC Part 15, 10-1-11 Edition Subpart C

The test was performed according to: FCC §15.31, ANSI C 63.4, 2009

3.2.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2009. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S.

1. Measurement up to 30 MHz

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2009. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 10 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 and 0.15 30 MHz
- Frequency steps: 0.1 kHz and 5 kHz
- IF–Bandwidth: 0.2 kHz and 10 kHz
- Measuring time / Frequency step: 10 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 200 Hz 10 kHz
- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Detector: Peak-Maxhold
- Frequency range: 30 1000 MHz
- Frequency steps: 60 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 µs

- Turntable angle range: -180 to 180°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -180 to 180°
- Turntable step size: 45°
- Height variation range: 1 4 m
- Height variation step size: 0.5 m
- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)
- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by $+/- 22.5^{\circ}$ around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -22.5° to $+22.5^{\circ}$ around the determined value

- Height variation range: -0.25 m to +0.25 m around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak(< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only. Important EMI receiver settings:

- Detector: Peak, Average

- RBW = 1 MHz, VBW = 3 MHz

3.2.2 Test Requirements / Limits

1) A radiated emission test is relating to the fundamental frequency. a) Either for "non-periodic" operation of the EUT as defined in §15.231(a) the limits for the average field strength apply according to FCC Part 15, Subpart C, §15.231(b):

For fundamental frequency (MHz)	Limit Fundamental (dBµV/m)	Limit Spurious (dBµV/m)
40.66 - 40.70	67.0	47.0
70 – 130	67.0	47.0
130 – 174	67.0 – 71.5	47.0 – 51.5 ^{*)}
174 – 260	71.5	51.5
260 – 470	71.5 – 81.9	51.5 – 61.9 ^{*)}
above 470	81.9	61.9

b) Or for "periodic" operation of the EUT the limits for the average field strength apply according to FCC Part 15, Subpart C, §15.231(e):

For fundamental frequency (MHz)	Limit Fundamental (dBµV/m)	Limit Spurious (dBµV/m)
40.66 - 40.70	60.0	40.0
70 – 130	54.0	34.0
130 – 174	54.0 - 63.5	34.0 – 43.5 ^{*)}
174 – 260	63.5	43.5
260 – 470	63.5 - 74.0	43.5 – 54.0 ^{*)}
above 470	74.0	54.0

*) linear interpolation

2) A radiated emission test applies to harmonic/spurs that fall in the restricted bands as listed in § 15.205(a). The maximum permitted QP (< 1 GHz) and Average (> 1GHz) field strength is listed in § 15.209(a):

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Calculate Limit(dBµV/m @10m)	Limit (dBµV/m) @10m
0.009 - 0.49	2400/F (kHz)	300	(48.5 – 13.8) + 30 dB	78.5 – 46.8
0.49 - 1.705	24000/F (kHz)	30	(48.9 – 23.0) + 10 dB	58.9 - 33.0
1.705 – 30	30	30	29.5 + 10 dB	39.5

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limit (dBµV/m
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

§15.35(c):

[...] when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted [...].

§15.231(b)(3)

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator.

Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasipeak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

Interpretation of the test laboratory:

The last subordinate clause of §15.231(b)(3) is overruled by §15.205/209, therefore within the restricted bands the limits defined at §15.205/209 and outside the restricted bands the limits defined at §15.231(b) resp. §15.231(e) are applied.

3.2.3 Test Protocol

3.2.3.1 Measurement up to 30 MHz

Temperature:	24 °C
Air Pressure:	996 hPa
Humidity:	36 %

Op. Mode	e Setu	p Po			rt				
op-mode 2 Setup_a01			End	closure					
Polari- sation	Frequency MHz	Corrected value dBµV/m			Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Margin to limit dB	Margin to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
0°		-			-				
90°		_			_				

Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed.

Op-Mode 2 used as worst case operating mode, the OUT switches between the two CW carriers of the FSK modulation.

3.2.3.2 Measurement 30 MHz – 1 GHz

Temperature:	23 °C
Air Pressure:	991 hPa
Humidity:	38 %

Op. Mode	Setup	Port	
op-mode 3	Setup_c01	Enclosure	

Polarisation	Frequency MHz	Corrected value dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Margin to limit dB	Margin to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal		-	-	-	-	-	-	-	-

Remark: No (further) spurious emissions in the range 20 dB below the limit found. The test was performed in the frequency range from 30 MHz to 1 GHz. For this test an EUT sending a CW signal was used. The values listed above include the correction factor of the test system and the duty cycle determined by the test "Duty cycle measurement (based on dwell time measurement)".

3.2.3.3 Measurement above 1 GHz

Temperature:	24 °C
Air Pressure:	996 hPa
Humidity:	36 %

Op. Mode	Setup	Port
op-mode 2	Setup_a01	Enclosure

Polarisation	Frequency MHz	Corrected value dBµV/m		Limit dBµV∕ m	Limit dBµV⁄ m	Limit dBµV⁄ m	Margin to limit dB	Margin to limit dB	
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal		-			-				

Remark: No (further) spurious emissions in the range 20 dB below the limit found. The test was performed in the frequency range from 1 GHz to 5.0 GHz. For this test an EUT sending a continuous signal was used. The values listed above include the correction factor of the test system and the duty cycle determined by the test "Duty cycle measurement (based on dwell time measurement)".

Op-Mode 2 used as worst case operating mode, the OUT switches between the two CW carriers of the FSK modulation.

3.2.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result	
	op-mode 2	passed	
	op-mode 3	passed	

3.3 Peak power output

Standard FCC Part 15, 10-1-11 Edition Subpart C

The test was performed according to: FCC §15.31, §15.231, ANSI C 63.4, 2009

3.3.1 Test Description

Please refer to sub-clause 3.2.1.

3.3.2 Test Limits

Please refer to sub-clause 3.2.2.

3.3.3 Test Protocol

Temperature:24 °CAir Pressure:37 hPaHumidity:992 %

Op. Mode	Setup	Port	
op-mode 3	Setup_c01	Enclosu	ire
Output power	Limit	Frequency	Remarks
dBµV∕m	dBµV∕m	MHz	
80.4	80.82	434	Maximum radiated field strength at
			fundamental frequency (CW signal)

3.3.4 Test result: Peak power output

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 3	passed

3.4 Occupied bandwidth

Standard FCC Part 15, 10-1-11 Edition Subpart C

The test was performed according to: FCC §15.231

3.4.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

For analyzer settings please see measurement plots in annex.

3.4.2 Test Limits

FCC Part 15, Subpart C, §15.231(c)
The maximum 20 dB bandwidth of a transmitter operating at a frequency range:
70 to 900 MHz is 0.25% of the centre frequency
above 900 MHz is 0.5% of the centre frequency

3.4.3 Test Protocol

Temperature:	24 °C
Air Pressure:	992 hPa
Humidity:	37 %

Op. Mode	Setup	Port	
op-mode 2	Setup_b01	Enclosure	
		1	

20 dB bandwidth kHz	Limit kHz	Remarks
74.7	1084.8	The limit is calculated as $433.92 \text{ MHz} * 0.25\% = 1084.8 \text{ kHz}.$

Remark: Please see annex for the measurement plots. For information: The 99% Bandwidth is 79.18 kHz.

3.4.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2	passed

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:	Lab 1
Manufacturer:	Frankonia
Description:	Anechoic Chamber for radiated testing
Туре:	10.58x6.38x6.00 m ³

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ <i>Calibration Details</i>	none	Frankonia Last Execution Next Exec.
	FCC listing 96716 3m Part15/18 IC listing 3699A-1 3m		2011/01/112014/01/102011/02/072014/02/06
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID:	Lab 1
Description:	Equipment for emission measurements
Serial Number:	see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical dipole	VUBA 9117 Calibration Details	9117-108	Schwarzbeck Last Execution Next Exec.
	Standard Calibration		2008/10/27 2013/10/26
	Standard Calibration		2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
	Calibration Details		Last Execution Next Exec.
	Path Calibration		2012/05/24 2012/11/23
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
	Calibration Details		Last Execution Next Exec.
	Path Calibration		2012/05/24 2012/11/23
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
	Calibration Details		Last Execution Next Exec.
	Path Calibration		2012/05/24 2012/11/23
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.0 2	01- Kabel Kusch
	Calibration Details		Last Execution Next Exec.

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
	Path Calibration		2012/05/24 2012/11/23
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02 2	- Rosenberger Micro-Coax
	Calibration Details		Last Execution Next Exec.
	Path Calibration		2012/05/24 2012/11/23
	Path Calibration		2012/05/24 2012/11/23
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/05/18 2015/05/17
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/06/26 2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK Calibration Details	9942011	Trilithic Last Execution Next Exec.
	Path Calibration		2012/05/24 2012/11/23
High Pass Filter	5HC2700/12750-1.5-KK Calibration Details	9942012	Trilithic Last Execution Next Exec.
	Path Calibration		2012/05/24 2012/11/23
High Pass Filter	5HC3500/12750-1.2-KK Calibration Details	200035008	Trilithic Last Execution Next Exec.
	Path Calibration		2012/05/24 2012/11/23
High Pass Filter	WHKX 7.0/18G-8SS Calibration Details	09	Wainwright Last Execution Next Exec.
	Path Calibration		2012/05/24 2012/11/23
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	BBHA 9170		
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/10/27 2014/10/26
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID:	Lab 1, Lab 2
Manufacturer:	see single devices
Description:	Single Devices for various Test Equipment
Type:	various
Serial Number:	none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide N (Aux)	er1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	erWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2011/10/19 2013/10/18
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab ID: Description: Lab 1, Lab 2 Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Unit CBT	CBT	100589	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/24 2014/11/23
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Initial factory calibration HW/SW Status		2012/01/26 2014/01/25 Date of Start Date of End
	Firmware: V.2.01.25 3G : KC42x 11.48.02, 12.16.0 LTE: KC501 1.7.0 up to 2.0.0 KC503 1.7.2 up to 2.0.0 KC506 1.9.8 up to 2.0.0 KC507 1.7.0 KC508 1.8.5 up to 2.0.0 KC551 1.4.9 up to 2.0.0 KC553 1.7.0 up to 2.0.0 KC556 2.0.0 KC571 1.8.5 up to 2.0.0 KC572 1.8.5 up to 2.0.0	0	2012/07/03
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/05/26 2013/05/25
	HW/SW Status		Date of Start Date of End
	Hardware: B11, B21V14, B21-2, B41, B52V14, B5: B53-2, B56V14, B68 3v04, PCMCIA, U6 Software: K21 4v21, K22 4v21, K23 4v21, K24 4v K43 4v21, K53 4v21, K56 4v22, K57 4v K59 4v22, K61 4v22, K62 4v22, K63 4v K65 4v22, K66 4v22, K67 4v22, K68 4v Firmware: µP1 8v50 02.05.06	5V04 /21, K42 4v21, /22, K58 4v22, /22, K64 4v22,	2007/07/16
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
communication rester	Calibration Details		Last Execution Next Exec.
	Standard calibration HW/SW Status		2011/12/07 2014/12/06 Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14, B53 B54V14, B56V14, B68 3v04, B95, PCM0 SW options: K21 4v11, K22 4v11, K23 4v11, K24 4v K28 4v10, K42 4v11, K43 4v11, K53 4v K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	CIA, U65V02 211, K27 4v10,	2007/01/02

Test Equipment Emission measurement devices

Lab ID:	Lab 1
Description:	Equipment for emission measurements
Serial Number:	see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2012/05/22 2013/05/21
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2012/05/21 2013/05/20
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	standard calibration		2011/05/12 2014/05/11
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2011/12/05 2013/12/04
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45 de	uring calibration	2009/12/03

Test Equipment Radio Lab Test Equipment

Lab ID:Lab 2Description:Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide SMA	rWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Rosenberger Micro-Coax
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2012/05/22 2013/05/21
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFL	2689/001	Datum-Beverly
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2012/06/21 2013/06/20
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2012/05/21 2013/05/20
Signal Generator	SMY02	829309/018	Rohde & Schwarz GmbH & Co KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/04 2014/11/03
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co KG
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/02/10 2013/02/09
Temperature Chamber Vötsch 03	VT 4002	58566002150010	Vötsch
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2012/03/12 2014/03/11

5 Photo Report

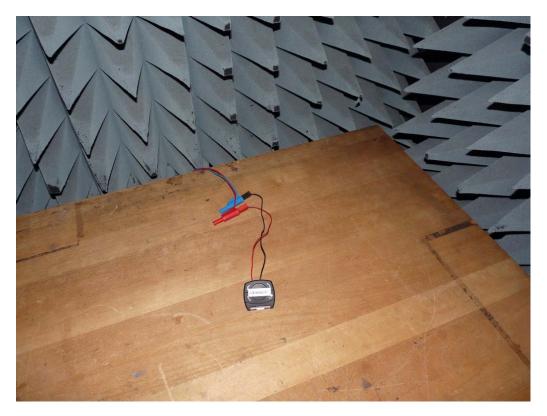


Photo 1: Test setup for radiated measurements, 9 kHz - 30 MHz

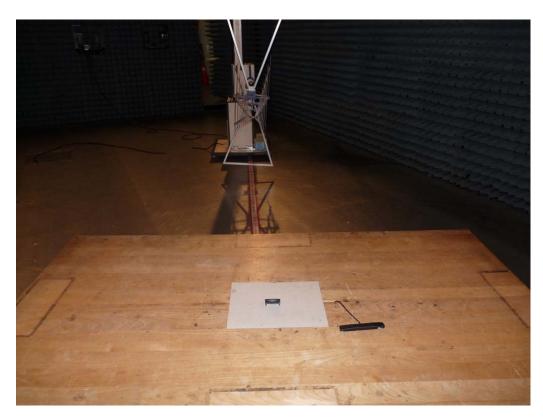


Photo 2: Test setup for radiated measurements, 30 MHz – 1 GHz

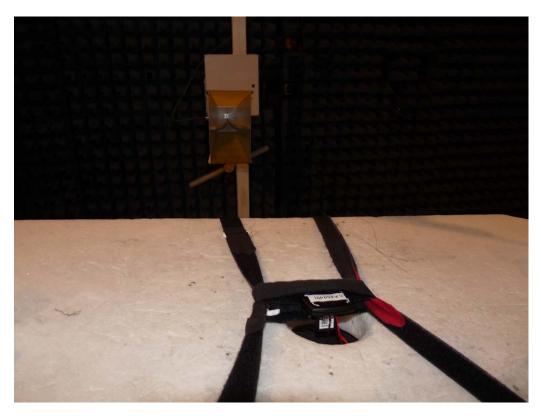


Photo 3: Test setup for radiated measurements, above 1 GHz

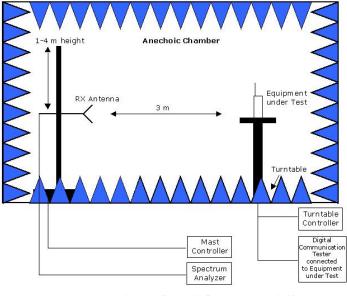
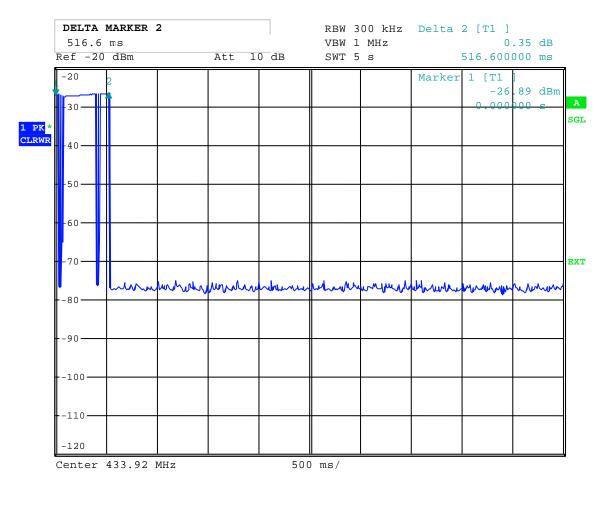


Photo 4: EUT (front)

6 Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

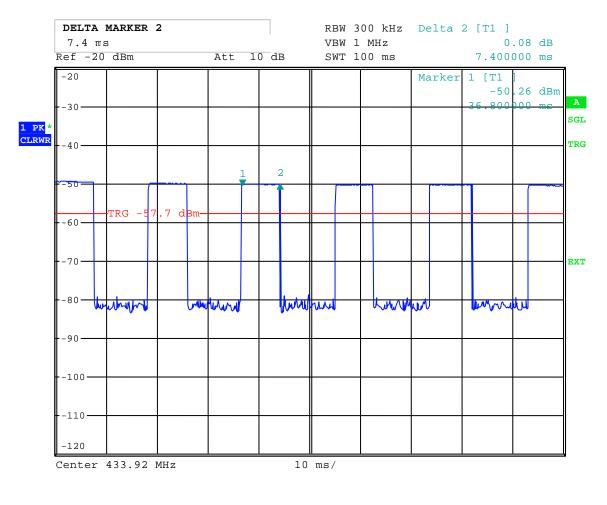
Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.



7 Annex measurement plots

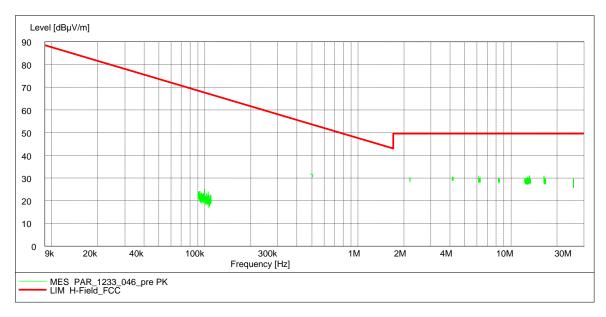
7.1 Duty cycle measurement (based on dwell time measurement)

Op.	Mode
0	mada 1

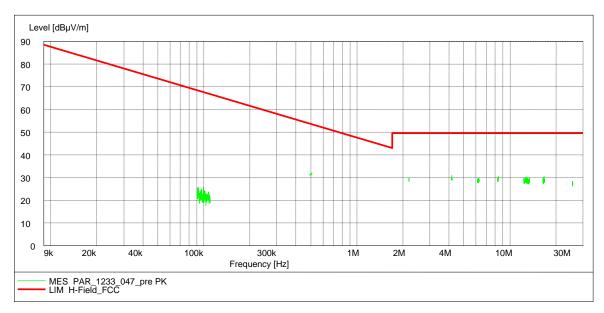

Op-mode 1

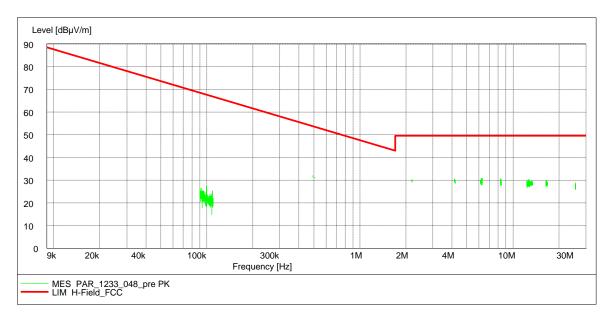
Comment: Date: 2.NOV.2012 11:36:35

Step 1: Holdover time, T_C, worst case scenario

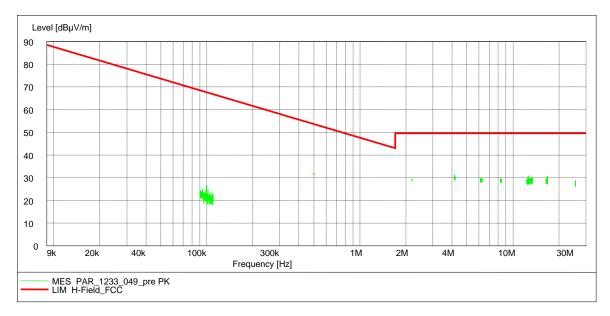


Comment: Date: 2.NOV.2012 14:36:32


Step 2: 100 ms sweep, example plot (for L3) to show, how L1 –L5 was determined.

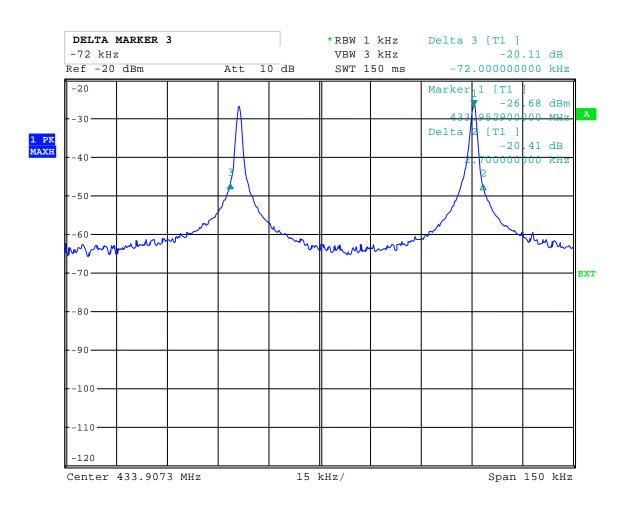

7.2 Radiated emissions (f < 30 MHz), restricted bands

Antenna position 0°, EUT position front side



Antenna position 90°, EUT position front side

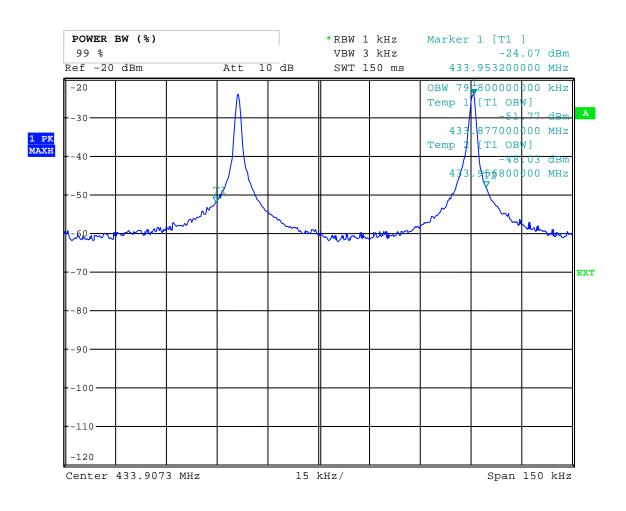
Antenna position 0°, EUT position right side


Antenna position 90°, EUT position right side

7.3 Occupied bandwidth

7.3.1 Occupied bandwidth operating mode 1

Op. Mode20 dB bandwidthop-mode 1


Comment: Date: 2.NOV.2012 12:09:18

Op. Mode

99% bandwidth

op-mode 1

Comment: Date: 2.NOV.2012 12:06:03