Inter**Lab** # FCC Measurement/Technical Report on # Parrot RnB4c Car Radio with Bluetooth Report Reference: MDE_PARRO_1003_FCCa #### **Test Laboratory:** 7 layers AG Borsigstrasse 11 40880 Ratingen Germany email: info@7Layers.de #### Note The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory. 7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Markus Becker Vorstand • Board: Dr. H.-J. Meckelburg Wilfried Klassmann Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385 # **Table of Contents** | U | Su | mmary | 3 | |---|--|---|--| | | 0.1
0.2 | Technical Report Summary
Measurement Summary | 3
4 | | 1 | Ad | ministrative Data | 7 | | | | Testing Laboratory Project Data Applicant Data Manufacturer Data | 7
7
7
7 | | 2 | Tes | st object Data | 8 | | | 2.1
2.2
2.3
2.4
2.5
2.6
2.7 | General EUT Description EUT Main components Ancillary Equipment Auxiliary Equipment EUT Setups Operating Modes Product labelling | 8
9
9
10
10 | | 3 | Tes | st Results | 11 | | | 3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8 | Occupied bandwidth Peak power output Spurious RF conducted emissions Spurious radiated emissions Band edge compliance Dwell time Channel separation Number of hopping frequencies | 11
14
17
20
26
30
32
34 | | 4 | Tes | st Equipment | 35 | | 5 | Ph | oto Report | 42 | | 6 | Se | tup Drawings | 45 | | 7 | An | nex measurement plots | 46 | | | 7.1
7.2
7.3
7.4
7.5
7.6
7.7 | Occupied bandwidth Peak power output Band edge compliance conducted and Spurious RF conducted emissions Band edge compliance radiated Radiated emissions (f < 30 MHz) Dwell time Channel separation Number of hopping frequencies | 46
55
64
82
85
87
88 | #### 0 Summary #### 0.1 Technical Report Summary #### Type of Authorization Certification for an Intentional Radiator (Frequency Hopping Spread Spectrum). #### **Applicable FCC Rules** Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-09 Edition) and 15 (10-1-09 Edition). The following subparts are applicable to the results in this test report. Part 2, Subpart J - Equipment Authorization Procedures, Certification Part 15, Subpart C – Intentional Radiators § 15.201 Equipment authorization requirement § 15.207 Conducted limits § 15.209 Radiated emission limits; general requirements § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz #### Note: The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000. Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.4-2003 is applied. #### **Summary Test Results:** The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary. ## 0.2 Measurement Summary | FCC Part 15, Sub | part C | § 15.207 | | | |---------------------------|--------------------------------------|--------------------------|----------------------|--| | Conducted emission | ns (AC power line) | | | | | The measurement v OP-Mode | was performed accord
Setup | ling to ANSI C63.4 Port | 2003
Final Result | | | oous | оо. ц р | AC Port (power line) | N/A | | | FCC Part 15, Subj | part C | § 15.247 (a) (1) | | | | Occupied bandwidtl | า | | | | | The measurement v | was performed accord | ing to FCC § 15.31 | 10-1-09 Edition | | | OP-Mode | Setup | Port | Final Result | | | op-mode 1 | Setup_b01 | Temp ant.connector | passed | | | op-mode 2 | Setup_b01 | Temp ant.connector | passed | | | op-mode 3 | Setup_b01 | Temp ant.connector | passed | | | op-mode 6 | Setup_b01 | Temp ant.connector | passed | | | op-mode 7 | Setup_b01 | Temp ant.connector | passed | | | op-mode 8 | Setup_b01 | Temp ant.connector | passed | | | op-mode 10 | Setup_b01 | Temp ant.connector | passed | | | op-mode 11 | Setup_b01 | Temp ant.connector | passed | | | op-mode 12 | Setup_b01 | Temp ant.connector | passed | | | FCC Part 15, Subj | oart C | § 15.247 (b) (1) | | | | Peak power output | | | | | | The measurement v | was performed accord | ing to FCC § 15.31 | 10-1-09 Edition | | | OP-Mode | Setup | Port | Final Result | | | op-mode 1 | Setup_b01 | Temp ant.connector | passed | | | op-mode 2 | Setup_b01 | Temp ant.connector | passed | | | op-mode 3 | Setup_b01 | Temp ant.connector | passed | | | op-mode 6 | Setup_b01 | Temp ant.connector | passed | | | op-mode 7 | Setup_b01 | Temp ant.connector | passed | | | op-mode 8 | Setup_b01 | Temp ant.connector | passed | | | op-mode 10 | Setup_b01 | Temp ant.connector | passed | | | op-mode 11 | Setup_b01 | Temp ant.connector | passed | | | op-mode 12 | Setup_b01 | Temp ant.connector | passed | | | FCC Part 15, Subj | part C | § 15.247 (d) | _ | | | Spurious RF conduc | cted emissions | | | | | The measurement v | was performed accord | ing to FCC § 15.31 | 10-1-09 Edition | | | OP-Mode | Setup | Port | Final Result | | | op-mode 1 | Setup_b01 | Temp ant.connector | passed | | | op-mode 2 | Setup_b01 | Temp ant.connector | passed | | | op-mode 3 | Setup_b01 | Temp ant.connector | passed | | | op-mode 6 | Setup_b01 | Temp ant.connector | passed | | | op-mode 7 | Setup_b01 | Temp ant.connector | passed | | | op-mode 8 | Setup_b01 | Temp ant.connector | passed | | | op-mode 10 | Setup_b01 | Temp ant.connector | passed | | | op-mode 11 | Setup_b01 | Temp ant.connector | passed | | | op-mode 12 | Setup_b01 | Temp ant.connector | passed | | | | | - | | | #### FCC Part 15, Subpart C § 15.247 (d), § 15.35 (b), § 15.209 Spurious radiated emissions | The measurement v | ing to ANSI C63.4 | 2003 | | |-------------------|-------------------|-----------|--------------| | OP-Mode | Setup | Port | Final Result | | op-mode 1 | Setup_a01/a02 | Enclosure | passed | | op-mode 2 | Setup_a01/a02 | Enclosure | passed | | op-mode 3 | Setup_a01/a02 | Enclosure | passed | | op-mode 6 | Setup_a01/a02 | Enclosure | passed | | op-mode 7 | Setup_a01/a02 | Enclosure | passed | | op-mode 8 | Setup_a01/a02 | Enclosure | passed | | op-mode 10 | Setup_a01/a02 | Enclosure | passed | | op-mode 11 | Setup_a01/a02 | Enclosure | passed | | op-mode 12 | Setup_a01/a02 | Enclosure | passed | #### FCC Part 15, Subpart C § 15.247 (d) Band edge compliance 10-1-09 Edition / The measurement was performed according to FCC § 15.31 (10-1-09 Edition) / ANSI C63.4 (2003) 2003 esult | Setup | Port | Final Re | |-----------|---|--| | Setup_b01 | Temp ant.connector | passed | | Setup_b01 | Temp ant.connector | passed | | Setup_a01 | Enclosure | passed | | Setup_b01 | Temp ant.connector | passed | | Setup_b01 | Temp ant.connector | passed | | Setup_a01 | Enclosure | passed | | Setup_b01 | Temp ant.connector | passed | | Setup_b01 | Temp ant.connector | passed | | Setup_a01 | Enclosure | passed | | | Setup_b01 Setup_b01 Setup_a01 Setup_b01 Setup_b01 Setup_a01 Setup_b01 Setup_b01 Setup_b01 | Setup_b01 Temp ant.connector Setup_b01 Temp ant.connector Setup_a01 Enclosure Setup_b01 Temp ant.connector Setup_b01 Temp ant.connector Setup_a01 Enclosure Setup_b01 Temp ant.connector Setup_b01 Temp ant.connector Setup_b01 Temp ant.connector | FCC Part 15, Subpart C § 15.247 (a) (1) (iii) § 15.247 (a) (1) § 15.247 (a) (iii) Dwell time The measurement was performed according to FCC § 15.31 OP-Mode op-mode 2 Setup Setup_b01 Port 10-1-09 Edition Final Result Temp ant.connector passed FCC Part 15, Subpart C Channel separation The measurement was performed according to FCC § 15.31 10-1-09 Edition OP-Mode op-mode 4 Setup Setup_b01 Port Final Result Temp ant.connector passed FCC Part 15, Subpart C Number of hopping frequencies The measurement was performed according to FCC § 15.31 10-1-09 Edition OP-Mode op-mode 4 Setup Setup_b01 Port Final Result Temp ant.connector passed N/A not applicable (the EUT is powered by DC) 7 layers AG, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0 Accreditation Scope: la d'alec Responsible for Test Report: ## 1 Administrative Data | 1 | . ' | 1 | Te | esti | ing | Lab | ora | to | ry | 1 | |---|-----|---|----|------|-----|-----|-----|----|----|---| |---|-----|---|----|------|-----|-----|-----|----|----|---| | 1.1 Testing Laboratory | | |--|---| | Company Name: | 7 Layers AG | | Address | Borsigstr. 11
40880 Ratingen
Germany | | This facility has been fully described in a under the registration number 96716. | report submitted to the FCC and accepted | | The test facility is also accredited by the - Deutscher Akkreditierungs Rat | following accreditation organisation:
DAR-Registration no. DGA-PL-192/99-02 | | Responsible for Accreditation Scope: | DiplIng. Bernhard Retka
DiplIng. Robert Machulec
DiplIng. Thomas Hoell
DiplIng. Andreas Petz | | Report Template Version: | 2010-04-19 | | 1.2 Project Data | | | Responsible for
testing and report: | DiplIng. Carsten Steinröder | | Date of Test(s):
Date of Report: | 2010-04-13 to 2010-04-23
2010-04-30 | | 1.3 Applicant Data | | | Company Name: | PARROT S.A. | | Address: | 174, quai de Jemmapes
75010 Paris
France | | Contact Person: | Mr. Vincent Leblanc | | 1.4 Manufacturer Data | | | Company Name: | please see applicant data | | Address: | | | Contact Person: | | ### 2 Test object Data #### 2.1 General EUT Description **Equipment under Test** Bluetooth transceiver **Type Designation:** Parrot RnB4c Kind of Device: Car Radio with Bluetooth (optional) Voltage Type: DC (car) Voltage level: 12V **Modulation Type:** GFSK, 8DPSK, $\pi/4$ DQPSK #### General product description: Bluetooth is a short-range radio link intended to be a cable replacement between portable and/or fixed electronic devices. Bluetooth operates in the unlicensed ISM Band at 2.4 GHz. In the US a band of 83.5 MHz width is available. In this band, the Bluetooth technology defines 79 RF channels spaced 1 MHz (2402 - 2480 MHz). The actual RF channel is chosen from a pseudo-random hopping sequence through the 79 channels. A channel is occupied for a defined amount of time slots, with a nominal slot length of 625 µs. The maximum time slot length on one channel is defined by the packet type and is 0.625 ms for DH1 packets, 1.875 ms for DH3 and 3.125 ms for DH5. The nominal hop rate is 1600 hops/s for DH1, 1600/3 for DH3 and 1600/5 for DH5. All frequencies are equally used. The maximum nominal average time of occupancy is 0.4 s within a period of 79*0.4 seconds. The basic data rate of 1 Mbps uses GFSK modulation and the enhanced data rate uses PSK modulation. For the enhanced data rate of 3 Mbps 8DPSK modulation and of 2 Mbps $\pi/4$ DQPSK modulation is used. #### The EUT provides the following ports: #### **Ports** Temp antenna connector Enclosure System connectors The main components of the EUT are listed and described in Chapter 2.2. #### 2.2 EUT Main components #### Type, S/N, Short Descriptions etc. used in this Test Report | Short
Description | Equipment
under Test | Type
Designation | Serial No. | HW Status | SW Status | Date of
Receipt | |----------------------|-------------------------|---------------------|----------------|------------|-----------|--------------------| | EUT A | Bluetooth | Parrot RnB4c | - | 01 | Alpha 3 | 2010-04-12 | | (Code: | transceiver | | | | | | | CX150b01) | | | | | | | | Remark: EUT | A is equipped w | ith an integral ar | ntenna (gain = | -0.5 dBi). | | | | EUT B | Bluetooth | Parrot RnB4c | - | 01 | Alpha 3 | 2010-04-12 | | (Code: | transceiver | | | | | | | CX150a01) | | | | | | | | Remark: EUT | B is equipped w | ith a temporary | antenna conne | ctor. | | | | EUT C | Bluetooth | Parrot RnB4c | - | 01 | Alpha 3 | 2010-04-12 | | (Code: | transceiver | | | | | | | CX150c02) | | | | | | | | Remark: EUT | C is equipped w | ith an integral ar | ntenna (gain = | -0.5 dBi). | | | NOTE: The short description is used to simplify the identification of the EUT in this test report. #### 2.3 Ancillary Equipment For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results. | Short | Equipment | Type | Serial no. | HW Status | SW Status | FCC ID | |-------------|------------|-------------|------------|------------------|-----------|--------| | Description | under Test | Designation | | | | | | | | | | | | | #### 2.4 Auxiliary Equipment For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results. | Short | Equipment | Type | Serial no. | HW Status | SW Status | FCC ID | |-------------|------------|-------------|------------|-----------|-----------|----------| | Description | under Test | Designation | | | | | | | | | | | | <u>.</u> | #### 2.5 EUT Setups This chapter describes the combination of EUTs and ancillary equipment used for testing. | Setup No. | Combination of EUTs | Description | |-----------|---------------------|----------------------------------| | Setup_a01 | EUT A | setup for radiated measurements | | Setup_b01 | EUT B | setup for conducted measurements | | Setup_a02 | EUT C | setup for radiated measurements | #### 2.6 Operating Modes This chapter describes the operating modes of the EUTs used for testing. | Op. Mode | Description of Operating Modes | Remarks | |------------|---------------------------------------|---| | op-mode 1 | The EUT transmits on 2402 MHz | Loopback mode, basic data rate 1 Mbps | | op-mode 2 | The EUT transmits on 2441 MHz | Loopback mode, basic data rate 1 Mbps | | op-mode 3 | The EUT transmits on 2480 MHz | Loopback mode, basic data rate 1 Mbps | | op-mode 4 | The EUT is in Hopping mode | The EUT is hopping on 79 channels, | | | | basic data rate 1 Mbps | | | | | | op-mode 6 | The EUT transmits on 2402 MHz | Loopback mode, enhanced data rate 3 Mbps | | op-mode 7 | The EUT transmits on 2441 MHz | Loopback mode, enhanced data rate 3 Mbps | | op-mode 8 | The EUT transmits on 2480 MHz | Loopback mode, enhanced data rate 3 Mbps | | | | | | op-mode 10 | The EUT transmits on 2402 MHz | Loopback mode, enhanced data rate, 2 Mbps | | op-mode 11 | The EUT transmits on 2441 MHz | Loopback mode, enhanced data rate, 2 Mbps | | op-mode 12 | The EUT transmits on 2480 MHz | Loopback mode, enhanced data rate, 2 Mbps | | | | · · · · · · · · · · · · · · · · · · · | #### 2.7 Product labelling #### 2.7.1 FCC ID label Please refer to the documentation of the applicant. #### 2.7.2 Location of the label on the EUT Please refer to the documentation of the applicant. #### 3 Test Results #### 3.1 Occupied bandwidth Standard FCC Part 15, 10-1-09 Edition Subpart C The test was performed according to: FCC §15.31 #### 3.1.1 Test Description The Equipment Under Test (EUT) was setup to perform the occupied bandwidth measurements. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produces the worst-case (widest) occupied bandwidth. The resolution bandwidth for measuring the reference level and the occupied bandwidth was 30 kHz. The EUT was connected to the spectrum analyzer via a short coax cable. #### 3.1.2 Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. #### Implication by the test laboratory: Since the Bluetooth technology defines a fixed channel separation of 1 MHz this design parameter defines the maximum allowed occupied bandwidth depending on the EUT's output power: - 1. Under the provision that the system operates with an output power not greater than 125 mW (21.0 dBm): - Implicit Limit: Max. 20 dB BW = 1.0 MHz / 2/3 = 1.5 MHz - 2. If the system output power exceeds 125 mW (21.0 dBm): Implicit Limit: Max. 20 dB BW = 1.0 MHz Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW) The measured output power of the system is below 125 mW (21.0 dBm). For the results, please refer to the related chapter of this report. Therefore the limit is determined as 1.5 MHz. #### 3.1.3 Test Protocol Temperature: 23 °C Air Pressure: 1019 hPa Humidity: 34 % Op. Mode Setup Port op-mode 1 Setup_b01 Temp ant.connector | 20 dB bandwidth
MHz | Remarks | |------------------------|---------| | 0.890 | | Remark: Please see annex for the measurement plot. Op. ModeSetupPortop-mode 2Setup_b01Temp ant.connector | 20 dB bandwidth
MHz | Remarks | |------------------------|---------| | 0.884 | _ | Remark: Please see annex for the measurement plot. Op. ModeSetupPortop-mode 3Setup_b01Temp ant.connector | 20 dB bandwidth | Remarks | |-----------------|---------| | 8.41.1— | | | MHz | | | 0.884 | _ | Remark: Please see annex for the measurement plot. Op. ModeSetupPortop-mode 6Setup_b01Temp ant.connector | 20 dB bandwidth
MHz | Remarks | |------------------------|---------| | 1.203 | _ | Remark: Please see annex for the measurement plot. Op. ModeSetupPortop-mode 7Setup_b01Temp ant.connector | 20 dB bandwidth | Remarks | |-----------------|--------------| | MHz | | | 1.227 | - | Remark: Please see annex for the measurement plot. | Op. Mode | Setup | Port | |-----------|-----------|--------------------| | op-mode 8
| Setup_b01 | Temp ant.connector | | 20 dB bandwidth
MHz | Remarks | |------------------------|--------------| | 1.191 | - | Remark: Please see annex for the measurement plot. | Op. Mode | Setup | Port | |------------|-----------|--------------------| | op-mode 10 | Setup_b01 | Temp ant.connector | | 20 dB bandwidth
MHz | Remarks | |------------------------|---------| | 1.252 | - | Remark: Please see annex for the measurement plot. | Op. Mode | Setup | Port | |------------|-----------|--------------------| | op-mode 11 | Setup_b01 | Temp ant.connector | | 20 dB bandwidth
MHz | Remarks | |------------------------|---------| | 1.258 | T | Remark: Please see annex for the measurement plot. | Op. Mode | Setup | Port | |------------|-----------|--------------------| | op-mode 12 | Setup_b01 | Temp ant.connector | | 20 dB bandwidth
MHz | Remarks | |------------------------|---------| | 1.258 | _ | Remark: Please see annex for the measurement plot. #### 3.1.4 Test result: Occupied bandwidth FCC Part 15, Subpart C | Op. Mode | Result | | |------------|--------|--| | op-mode 1 | passed | | | op-mode 2 | passed | | | op-mode 3 | passed | | | op-mode 6 | passed | | | op-mode 7 | passed | | | op-mode 8 | passed | | | op-mode 10 | passed | | | op-mode 11 | passed | | | op-mode 12 | passed | | | | | | #### 3.2 Peak power output Standard FCC Part 15, 10-1-09 Edition Subpart C The test was performed according to: FCC §15.31 #### 3.2.1 Test Description The Equipment Under Test (EUT) was set up to perform the output power measurements. The resolution bandwidth for measuring the output power was set to 3 MHz. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss. #### 3.2.2 Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (b) (1) - (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: - (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW) ==> Maximum Output Power: 30 dBm #### 3.2.3 Test Protocol Temperature: 23 °C Air Pressure: 1019 hPa Humidity: 34 % Op. Mode Setup Port op-mode 1 Setup_b01 Temp.ant.connector | Output power
dBm | | Remarks | |---------------------|------|--| | | 2.16 | The EIRP including antenna gain (-0.5 dBi) is 1.66 dBm | Remark: Please see annex for the measurement plot. Op. Mode Setup Port op-mode 2 Setup_b01 Temp.ant.connector | Output power
dBm | Remarks | |---------------------|--| | 2.36 | The EIRP including antenna gain (-0.5 dBi) is 1.86 dBm | Remark: Please see annex for the measurement plot. Op. Mode Setup Port op-mode 3 Setup_b01 Temp.ant.connector | Output power Remarks dBm | | |--------------------------|--| | 1.11 | The EIRP including antenna gain (-0.5 dBi) is 0.61 dBm | Remark: Please see annex for the measurement plot. Op. Mode Setup Port op-mode 6 Setup_b01 Temp.ant.connector | Output power
dBm | Remarks | |---------------------|--| | 2.14 | The EIRP including antenna gain (-0.5 dBi) is 1.64 dBm | Remark: Please see annex for the measurement plot. Op. Mode Setup Port op-mode 7 Setup_b01 Temp.ant.connector | Output power
dBm | Remarks | |---------------------|--| | 2.18 | The EIRP including antenna gain (-0.5 dBi) is 1.68 dBm | Remark: Please see annex for the measurement plot. Op. Mode Setup Port op-mode 8 Setup_b01 Temp.ant.connector | Output power
dBm | Remarks | |---------------------|--| | 1.00 | The EIRP including antenna gain (-0.5 dBi) is 0.50 dBm | Remark: Please see annex for the measurement plot. Test report Reference: MDE_PARRO_1003_FCCa Page 15 of 89 | Op. Mode | Setup | Port | |------------|-----------|--------------------| | op-mode 10 | Setup_b01 | Temp.ant.connector | | Output power Remarks | | |----------------------|--| | 1.13 | The EIRP including antenna gain (-0.5 dBi) is 0.63 dBm | Remark: Please see annex for the measurement plot. | Op. Mode | Setup | Port | |------------|-----------|--------------------| | op-mode 11 | Setup_b01 | Temp.ant.connector | | Output power
dBm | | Remarks | |---------------------|------|--| | | 1.38 | The EIRP including antenna gain (-0.5 dBi) is 0.88 dBm | Remark: Please see annex for the measurement plot. | Op. Mode | Setup | Port | |------------|-----------|--------------------| | op-mode 12 | Setup_b01 | Temp.ant.connector | | Ī | Output power
dBm | Remarks | |---|---------------------|---| | Ī | 0.30 | The EIRP including antenna gain (-0.5 dBi) is -0.20 dBm | Remark: Please see annex for the measurement plot. #### 3.2.4 Test result: Peak power output | FCC | Part | 15, | Subpart | С | |-----|-------------|-----|---------|---| | Op. Mode | Result | |------------|--------| | op-mode 1 | passed | | op-mode 2 | passed | | op-mode 3 | passed | | op-mode 6 | passed | | op-mode 7 | passed | | op-mode 8 | passed | | op-mode 10 | passed | | op-mode 11 | passed | | op-mode 12 | passed | #### 3.3 Spurious RF conducted emissions Standard FCC Part 15, 10-1-09 Edition Subpart C The test was performed according to: FCC §15.31 #### 3.3.1 Test Description The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings: - Detector: Peak-Maxhold Frequency range: 30 – 25000 MHz Resolution Bandwidth (RBW): 100 kHz Video Bandwidth (VBW): 300 kHz - Sweep Time: 330 s The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.5). This value is used to calculate the 20 dBc limit. #### 3.3.2 Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. #### 3.3.3 Test Protocol Temperature: 23 °C Air Pressure: 1019 hPa Humidity: 34 % Op. Mode Setup Port op-mode 1 Setup_b01 Temp ant.connector | Frequency | Corrected measurement value dBm | Reference value | Limit | Delta to limit | |-----------|---------------------------------|-----------------|-------|----------------| | MHz | | dBm | dBm | dB | | = | - | 2.3 | -17.7 | = | Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot. Op. ModeSetupPortop-mode 2Setup_b01Temp ant.connector | Frequency
MHz | Corrected
measurement value
dBm | Reference value
dBm | Limit
dBm | Delta to limit
dB | |------------------|---------------------------------------|------------------------|--------------|----------------------| | - | - | 2.16 | -17.84 | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot. Op. ModeSetupPortop-mode 3Setup_b01Temp ant.connector | Frequency
MHz | Corrected measurement value dBm | Reference value
dBm | Limit
dBm | Delta to limit
dB | |------------------|---------------------------------|------------------------|--------------|----------------------| | - | - | 0.96 | -19.04 | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot. Op. ModeSetupPortop-mode 6Setup_b01Temp ant.connector | Frequency
MHz | Corrected
measurement value
dBm | Reference value
dBm | Limit
dBm | Delta to limit
dB | |------------------|---------------------------------------|------------------------|--------------|----------------------| | - | - | -0.11 | -20.11 | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot. Op. ModeSetupPortop-mode 7Setup_b01Temp ant.connector | Frequency
MHz | Corrected
measurement value
dBm | Reference value
dBm | Limit
dBm | Delta to limit
dB | |------------------|---------------------------------------|------------------------|--------------|----------------------| | - | - | -0.23 | -20.23 | = | Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot. | Op. Mode | Setup | Port | |-----------|-----------|--------------------| | op-mode 8 | Setup_b01 | Temp ant.connector | | Frequency | Corrected measurement value dBm | Reference value | Limit | Delta to limit | |-----------|---------------------------------|-----------------|--------|----------------| | MHz | | dBm | dBm | dB | | - | - | 0.74 | -19.26 | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot. | Op. Mode | Setup | Port | |------------|-----------|--------------------| | op-mode 10 | Setup_b01 | Temp ant.connector | | Frequency | Corrected measurement value dBm | Reference value | Limit | Delta to limit | |-----------|---------------------------------|-----------------|--------|----------------| | MHz | | dBm | dBm | dB | | - | - | -0.99 | -20.99 | - | Remark: No (further) spurious emissions in the range 20 dB below the limit
found. Please see annex for the measurement plot. | Op. Mode | Setup | Port | |------------|-----------|--------------------| | op-mode 11 | Setup_b01 | Temp ant.connector | | Frequency | Corrected measurement value dBm | Reference value | Limit | Delta to limit | |-----------|---------------------------------|-----------------|--------|----------------| | MHz | | dBm | dBm | dB | | - | - | -0.71 | -20.71 | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot. | Op. Mode | Setup | Port | |------------|-----------|--------------------| | op-mode 12 | Setup_b01 | Temp ant.connector | | Frequency | Corrected measurement value dBm | Reference value | Limit | Delta to limit | |-----------|---------------------------------|-----------------|--------|----------------| | MHz | | dBm | dBm | dB | | - | - | -1.90 | -21.90 | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot. #### 3.3.4 Test result: Spurious RF conducted emissions | FCC Part 15, Subpart C | Op. Mode | Result | |------------------------|------------|--------| | | op-mode 1 | passed | | | op-mode 2 | passed | | | op-mode 3 | passed | | | op-mode 6 | passed | | | op-mode 7 | passed | | | op-mode 8 | passed | | | op-mode 10 | passed | | | op-mode 11 | passed | | | op-mode 12 | passed | #### 3.4 Spurious radiated emissions Standard FCC Part 15, 10-1-09 Edition Subpart C The test was performed according to: ANSI C 63.4, 2003 #### 3.4.1 Test Description The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0×2.0 m in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. #### 1. Measurement up to 30 MHz The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table in the anechoic chamber. The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S. The Loop antenna HFH2-Z2 is used. Step 1: pre-measurement - Anechoic chamber - Antenna distance: 10 m - Detector: Peak-Maxhold - Frequency range: 0.009 0.15 and 0.15 30 MHz - Frequency steps: 0.1 kHz and 5 kHz - IF-Bandwidth: 0.2 kHz and 10 kHz - Measuring time / Frequency step: 100 ms Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### Step 2: final measurement For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level. - Open area test side - Antenna distance: according to the Standard - Detector: Quasi-Peak - Frequency range: 0.009 30 MHz - Frequency steps: measurement at frequencies detected in step 1 - IF-Bandwidth: 200 Hz 10 kHz - Measuring time / Frequency step: 100 ms #### 2. Measurement above 30 MHz and up to 1 GHz Step 1: Preliminary scan Preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1: - Detector: Peak-Maxhold - Frequency range: 30 1000 MHz - Frequency steps: 60 kHzIF-Bandwidth: 120 kHz - Measuring time / Frequency step: 100 µs (BT Timing 1.25 ms) Test report Reference: MDE_PARRO_1003_FCCa - Turntable angle range: -180 to 180° - Turntable step size: 90° - Height variation range: $1-3\ m$ - Height variation step size: $2\ m$ - Polarisation: Horizontal + Vertical Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### Step 2: second measurement For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency. - Detector: Peak - Maxhold - Measured frequencies: in step 1 determined frequencies IF – Bandwidth: 120 kHzMeasuring time: 100 ms - Turntable angle range: -180 to 180° - Turntable step size: 45° Height variation range: 1 – 4 m Height variation step size: 0.5 m Polarisation: horizontal + vertical After this step the EMI test system has determined the following values for each frequency (of step 1): - Frequency - Azimuth value (of turntable) - Antenna height The last two values have now the following accuracy: - Azimuth value (of turntable): 45° - Antenna height: 0.5 m #### Step 3: final measurement In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency. For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by +/- 22.5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted. - Detector: Peak - Maxhold - Measured frequencies: in step 1 determined frequencies IF – Bandwidth: 120 kHzMeasuring time: 100 ms - Turntable angle range: -22.5° to + 22.5° around the determined value - Height variation range: -0.25 m to + 0.2 5m around the determined value Step 4: final measurement with QP detector With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4: - Detector: Quasi-Peak (< 1 GHz) - Measured frequencies: in step 1 determined frequencies IF – Bandwidth: 120 kHzMeasuring time: 1 s #### 3. Measurement above 1 GHz The following modifications apply to the measurement procedure for the frequency range above 1 GHz: The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only. EMI receiver settings: - Detector: Peak, Average - RBW = VBW = 100 kHz After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement. For the enhanced data rate packets the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at basic data rate. Typically, the measurement for these packets is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the basic data rate. Please refer to the results for the used frequency range. #### 3.4.2 Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (d) ... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limit(dBµV/m @10m) | |------------------|--------------|--------------------------|---------------------| | 0.009 - 0.49 | 2400/F(kHz) | 300 | Limit (dBµV/m)+30dB | | 0.49 - 1.705 | 24000/F(kHz) | 30 | Limit (dBµV/m)+10dB | | 1.705 - 30 | 30 | 30 | Limit (dBµV/m)+10dB | | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limit (dBµV/m) | |------------------|--------------|--------------------------|----------------| | 30 - 88 | 100 | 3 | 40.0 | | 88 - 216 | 150 | 3 | 43.5 | | 216 - 960 | 200 | 3 | 46.0 | | above 960 | 500 | 3 | 54.0 | #### §15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m) #### 3.4.3 Test Protocol Temperature: 25 °C Air Pressure: 1014 hPa Humidity: 32 % #### 3.4.3.1 Measurement up to 30 MHz | Op. Mode | Setup | Port | |-----------|-----------|-----------| | op-mode 1 | Setup_a02 | Enclosure | | Polari-
sation | Frequency
MHz | Corrected value
dBµV/m | | | Limit
dBµV/
m | Limit
dBµV/
m | Limit
dBµV/
m | Delta to
limit
dB | Delta to
limit
dB | |-------------------|------------------|---------------------------|------|----|---------------------|---------------------|---------------------|-------------------------|-------------------------| | | | QP | Peak | AV | QP | Peak | AV | QP/Peak | AV | | O° | - | - | - | - | - | - | - | - | - | | 90° | - | - | - | - | _ | - | - | - | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found therefore step 2 was not performed. #### 3.4.3.2 Measurement above 30 MHz | Op. Mode | Setup | Port | |-----------|----------------------|-----------| | op-mode 1 | Setup_a01 1GHz-25GHz | Enclosure | | | Setup_a02 30MHz-1GHz | | | Polari-
sation | Frequency
MHz | Corrected value
dBµV/m | | | Limit
dBµV/
m | Limit
dBµV/
m | Limit
dBµV/
m | Delta to
limit
dB | Delta
to
limit
dB | |--------------------------|------------------|---------------------------|------|----|---------------------|---------------------|---------------------|-------------------------|-------------------------| | | | QP | Peak | AV | QP | Peak | AV | QP/Peak | AV | | Vertical +
horizontal | - | - | - | - | - | - | - | - | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. | Op. Mode | Setup | Port | |-----------|----------------------|-----------| | op-mode 1 | Setup_a01 1GHz-25GHz | Enclosure | | | Setup_a02 30MHz-1GHz | | | Polari-
sation | Frequency
MHz | | Corrected value
dBµV/m | | | Limit
dBµV/
m | Limit
dBµV/
m | Delta to
limit
dB | Delta to
limit
dB | |--------------------------|------------------|----|---------------------------|----|----|---------------------|---------------------|-------------------------|-------------------------| | | | QP | Peak | AV | QP | Peak | AV | QP/Peak | AV | | Vertical +
horizontal | - | - | - | - | - | - | - | - | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. Op. Mode Setup Port op-mode 3 Setup_a01 1GHz-25GHz Enclosure Setup_a02 30MHz-1GHz | Polari-
sation | Frequency
MHz | | Corrected value
dBµV/m | | | Limit
dBµV/
m | Limit
dBµV/
m | Delta to
limit
dB | Delta to
limit
dB | |--------------------------|------------------|----|---------------------------|----|----|---------------------|---------------------|-------------------------|-------------------------| | | | QP | Peak | AV | QP | Peak | AV | QP/Peak | AV | | Vertical +
horizontal | - | - | - | - | - | - | - | - | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. Op. Mode Setup Port op-mode 6 Setup_a01 Enclosure | Polari-
sation | Frequency
MHz | Corrected value dBµV/m QP Peak AV | | Limit
dBµV/
m | Limit
dBµV/
m | Limit
dBµV/
m | Delta to
limit
dB | Delta to
limit
dB | | |--------------------------|------------------|------------------------------------|---|---------------------|---------------------|---------------------|-------------------------|-------------------------|------| | Vertical +
horizontal | - | - | - | - AV | QP
- | Peak
- | AV
- | QP/Peak | - AV | Remark: No (further) spurious emissions in the range 20 dB below the limit found. The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3. Op. ModeSetupPortop-mode 7Setup_a01Enclosure | Polari-
sation | Frequency
MHz | Corrected value
dBµV/m | | Limit
dBµV/
m | Limit
dBµV/
m | Limit
dBµV/
m | Delta to
limit
dB | Delta to
limit
dB | | |--------------------------|------------------|---------------------------|------|---------------------|---------------------|---------------------|-------------------------|-------------------------|----| | | | QP | Peak | AV | QP | Peak | AV | QP/Peak | AV | | Vertical +
horizontal | - | - | - | - | - | - | - | - | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3. Op. ModeSetupPortop-mode 8Setup_a01Enclosure | Polari-
sation | Frequency
MHz | | Corrected value
dBµV/m | | Limit
dBµV/
m | Limit
dBµV/
m | Limit
dBµV/
m | Delta to
limit
dB | Delta to
limit
dB | |--------------------------|------------------|----|---------------------------|----|---------------------|---------------------|---------------------|-------------------------|-------------------------| | | | QP | Peak | AV | QP | Peak | AV | QP/Peak | AV | | Vertical +
horizontal | - | - | - | - | - | - | - | - | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3. | Op. Mode | Setup | Port | | |------------|-----------|-----------|--| | on-mode 10 | Setup a01 | Enclosure | | | Polari-
sation | Frequency
MHz | | Corrected value
dBµV/m | | | Limit
dBµV/
m | Limit
dBµV/
m | Delta to
limit
dB | Delta to
limit
dB | |--------------------------|------------------|----|---------------------------|----|----|---------------------|---------------------|-------------------------|-------------------------| | | | QP | Peak | AV | QP | Peak | AV | QP/Peak | AV | | Vertical +
horizontal | - | - | - | - | - | - | - | - | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3. | Op. Mode | Setup | Port | |------------|-----------|-----------| | op-mode 11 | Setup a01 | Enclosure | | Ī | Polari-
sation | Frequency
MHz | | Corrected value
dBµV/m | | Limit
dBµV/
m | Limit
dBµV/
m | Limit
dBµV/
m | Delta to
limit
dB | Delta to
limit
dB | |---|--------------------------|------------------|----|---------------------------|----|---------------------|---------------------|---------------------|-------------------------|-------------------------| | | | | QP | Peak | AV | QP | Peak | AV | QP/Peak | AV | | Ī | Vertical +
horizontal | - | - | - | - | - | - | - | - | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3. | Op. Mode | Setup | Port | | |------------|-----------|-----------|--| | op-mode 12 | Setup_a01 | Enclosure | | | Polari-
sation | Frequency
MHz | Cor | Corrected value
dBµV/m | | Limit
dBµV/
m | Limit
dBµV/
m | Limit
dBµV/
m | Delta to
limit
dB | Delta to
limit
dB | |--------------------------|------------------|-----|---------------------------|----|---------------------|---------------------|---------------------|-------------------------|-------------------------| | | | QP | Peak | AV | QP | Peak | AV | QP/Peak | AV | | Vertical +
horizontal | - | - | - | - | - | - | - | - | - | Remark: No (further) spurious emissions in the range 20 dB below the limit found. The measurement was performed from 1 GHz up to 8 GHz because no significant spurious emissions were found outside this frequency range in op-mode 1, 2 and 3. #### 3.4.4 Test result: Spurious radiated emissions | FCC Part 15, Subpart C | Op. Mode | Result | | |------------------------|------------|--------|--| | | op-mode 1 | passed | | | | op-mode 2 | passed | | | | op-mode 3 | passed | | | | op-mode 6 | passed | | | | op-mode 7 | passed | | | | op-mode 8 | passed | | | | op-mode 10 | passed | | | | op-mode 11 | passed | | | | op-mode 12 | passed | | #### 3.5 Band edge compliance Standard FCC Part 15, 10-1-09 Edition Subpart C The test was performed according to: ANSI C 63.4, 2003 FCC §15.31 #### 3.5.1 Test Description The procedure to show compliance with the band edge requirement is divided into two measurements: 1. Show compliance of the lower band edge by a conducted measurement and 2. show compliance of the higher band edge by a radiated and conducted measurement. For the first measurement the EUT is set to transmit on the lowest channel (2402 MHz). The lower band edge is 2400 MHz. Analyzer settings: - Detector: Peak - RBW= 100 kHz - VBW= 300 kHz For the second measurement the EUT is set to transmit on the highest channel (2480 MHz). The higher band edge is 2483.5 MHz. Analyzer settings for conducted measurement: Detector: PeakRBW= 100 kHzVBW= 300 kHz Analyzer settings for radiated measurement: Detector: Peak, AverageRBW = VBW = 100 kHz #### 3.5.2 Test Requirements / Limits FCC Part 15.247 (d) "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. . . . Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))." For the measurement of the **lower band edge** the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..." For the measurement of the **higher band edge** the limit is "specified in Section 15.209(a)". #### 3.5.3 Test Protocol # 3.5.3.1 Lower band edge Conducted measurement Temperature: 23 °C Air Pressure: 1019 hPa Humidity: 34 % Op. Mode Setup Port op-mode 1 Setup_b01 Temp ant.connector | Frequency | Measured value | Reference value | Limit | Delta to limit | |-----------|----------------|-----------------|-------|----------------| | MHz | dBm | dBm | dBm | dB | | 2400.00 | -57.41 | 2.3 | -17.7 | 39.71 | Remark: Please see annex for the measurement plot. Op. Mode Setup Port op-mode 6 Setup_b01 Temp ant.connector Frequency Measured value Reference value Limit Delta to limit | Frequency | Measured value | Reference value | Limit | Delta to limit | |-----------|----------------|-----------------|--------|----------------| | MHz | dBm | dBm | dBm | dB | | 2400.00 |
-53.18 | -0.11 | -20.11 | 33.07 | Remark: Please see annex for the measurement plot. Op. Mode Setup Port op-mode 10 Setup_b01 Temp ant.connector | Frequency | Measured value | Reference value | Limit | Delta to limit | |-----------|----------------|-----------------|--------|----------------| | MHz | dBm | dBm | dBm | dB | | 2400.00 | -54.01 | -0.99 | -20.99 | 33.02 | Remark: Please see annex for the measurement plot. #### 3.5.3.2 Higher band edge #### **Conducted measurement** Temperature: 23 °C Air Pressure: 1019 hPa Humidity: 34 % Op. Mode Port Setup op-mode 3 Setup_b01 Temp ant.connector | Frequency | Measured value | Reference value | Limit | Delta to limit | |-----------|----------------|-----------------|--------|----------------| | MHz | dBm | dBm | dBm | dB | | 2483.50 | -62.79 | 0.96 | -19.04 | -62.79 | Remark: Please see annex for the measurement plot. | Op. Mode | Setup | Port | | | |----------------------------------|-----------|------------------------|--------------|----------------------| | op-mode 8 | Setup_b01 | Temp ant.co | onnector | | | Frequency Measured value MHz dBm | | Reference value
dBm | Limit
dBm | Delta to limit
dB | | 2483 50 | -63 77 | 0.74 | -10.26 | 11 51 | Remark: Please see annex for the measurement plot. | Op. Mode | Setup | Port | | | |------------|----------------|--------------------|--------|----------------| | op-mode 12 | Setup_b01 | Temp ant.connector | | | | | | | | | | Frequency | Measured value | Reference value | Limit | Delta to limit | | MHz | dBm | dBm | dBm | dB | | 2483.50 | -63.94 | -1.90 | -21.90 | 42.04 | Remark: Please see annex for the measurement plot. #### Radiated measurement Temperature: 25 °C Air Pressure: 1014 hPa Humidity: 32 % Op. Mode Setup Port op-mode 3 Setup_a01 Enclosure | Frequency
MHz | Polarisation | Corrected value
dBµV/m | | Limit
Peak | Limit
AV | Delta to
Peak | Delta to AV
limit | |------------------|--------------------------|---------------------------|-------|---------------|-------------|------------------|----------------------| | | | Peak | AV | dBµV/m | dBµV/m | limit/dB | dB | | 2483.50 | Vertical +
horizontal | 48.90 | 37.00 | 74.00 | 54.00 | 25.10 | 17.00 | Remark: Please see annex for the measurement plot. Op. ModeSetupPortop-mode 8Setup_a01Enclosure | Frequency
MHz | Polarisation | | ed value
V/m | Limit
Peak | Limit
AV | Delta to
Peak | Delta to AV
limit | |------------------|--------------------------|-------|-----------------|---------------|-------------|------------------|----------------------| | | | Peak | AV | dBµV/m | dBµV/m | limit/dB | dB | | 2483.50 | Vertical +
horizontal | 49.19 | 37.12 | 74.00 | 54.00 | 24.81 | 16.88 | Remark: Please see annex for the measurement plot. Op. ModeSetupPortop-mode 12Setup_a01Enclosure | Frequency
MHz | Polarisation | Corrected value
dBµV/m | | Limit
Peak | Limit
AV | Delta to
Peak | Delta to AV
limit | |------------------|--------------------------|---------------------------|-------|---------------|-------------|------------------|----------------------| | | | Peak | AV | dBμV/m | dBµV/m | limit/dB | dB | | 2483.50 | Vertical +
horizontal | 49.05 | 37.01 | 74.00 | 54.00 | 24.95 | 16.99 | Remark: Please see annex for the measurement plot. #### 3.5.4 Test result: Band edge compliance FCC Part 15, Subpart C O | Op. Mode | Result | |------------|--------| | op-mode 1 | passed | | op-mode 3 | passed | | op-mode 6 | passed | | op-mode 8 | passed | | op-mode 10 | passed | | op-mode 12 | passed | #### 3.6 Dwell time Standard FCC Part 15, 10-1-09 Edition Subpart C The test was performed according to: FCC §15.31 #### 3.6.1 Test Description The Equipment Under Test (EUT) was set up to perform the dwell time measurements. The EUT was connected to the spectrum analyzer via a short coax cable. The dwell time is calculated by: Dwell time = time slot length * hop rate / number of hopping channels * 31.6 s #### with: - hop rate = 1600 * 1/s for DH1 packets = $1600 s^{-1}$ - hop rate = 1600/3 * 1/s for DH3 packets = $533.33 s^{-1}$ - hop rate = 1600/5 * 1/s for DH5 packets = $320 s^{-1}$ - number of hopping channels = 79 - 31.6 s = 0.4 seconds multiplied by the number of hopping channels = 0.4 s * 79 The highest value of the dwell time is reported. #### 3.6.2 Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (a) (1) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds. #### 3.6.3 Test Protocol Temperature: 23 °C Air Pressure: 1019 hPa Humidity: 34 % Op. Mode Setup Port op-mode 2 Setup_b01 Temp ant.connector | Packet type | Time slot length | Dwell time | Dwell time | |-------------|------------------|---|------------| | | ms | | ms | | DH5 | 2.926 | time slot length *
1600/5 /79 * 31.6 | 374.53 | Remark: Please see annex for the measurement plots. #### 3.6.4 Test result: Dwell time | FCC Part 15, Subpart C | Op. Mode | Result | |------------------------|-----------|--------| | | op-mode 2 | passed | #### 3.7 Channel separation Standard FCC Part 15, 10-1-09 Edition Subpart C The test was performed according to: FCC §15.31 #### 3.7.1 Test Description The Equipment Under Test (EUT) was set up to perform the channel separation measurements. The channel separation is independent from the modulation pattern. The EUT was connected to spectrum analyzer via a short coax cable. Analyzer settings: - Detector: Peak-Maxhold - Span: 3 MHz - Centre Frequency: a mid frequency of the 2.4 GHz ISM band Resolution Bandwidth (RBW): 30 kHzVideo Bandwidth (VBW): 100 kHz - Sweep Time: Coupled #### 3.7.2 Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (a) (1) Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. #### 3.7.3 Test Protocol Temperature: 23 °C Air Pressure: 1019 hPa Humidity: 34 % Op. Mode Setup Port op-mode 4 Setup_b01 Temp ant.connector | Channel separation MHz | Remarks | |------------------------|---------| | 1.000 | - | Remark: Please see annex for the measurement plot. #### 3.7.4 Test result: Channel separation | FCC Part 15, Subpart C | Op. Mode | Result | |------------------------|-----------|--------| | | op-mode 4 | passed | #### 3.8 Number of hopping frequencies Standard FCC Part 15, 10-1-09 Edition Subpart C The test was performed according to: FCC §15.31 #### 3.8.1 Test Description The Equipment Under Test (EUT) was set up to perform the number of hopping frequencies measurement. The number of hopping frequencies is independent from the modulation pattern. The EUT was connected to spectrum analyzer via a short coax cable. Analyzer settings: Detector: Peak-MaxholdCentre frequency: 2442 MHzFrequency span: 84 MHz Resolution Bandwidth (RBW): 100 kHzVideo Bandwidth (VBW): 300 kHz - Sweep Time: Coupled #### 3.8.2 Test Requirements / Limits FCC Part 15, Subpart C, §15.247 (a) (iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. #### 3.8.3 Test Protocol Temperature: 23 °C Air Pressure: 1019 hPa Humidity: 34 % | Op. Mode | Setup | Port | |-----------|-----------|--------------------| | op-mode 4 | Setup_b01 | Temp ant.connector | | Number of hopping
channels | Remarks | |-------------------------------|---------| | 79 | - | Remark: Please see annex for the measurement plot. #### 3.8.4 Test result: Number of hopping frequencies | FCC Part 15, Subpart C | Op. Mode | Result | |------------------------|-----------|--------| | | op-mode 4 | passed | ## 4 Test Equipment #### 1 Test Equipment Details #### 1.1 List of Used Test Equipment The calibration, hardware and software states are shown for the testing period. #### **Test Equipment Anechoic Chamber** Lab ID:Lab 1Manufacturer:Frankonia Description: Anechoic Chamber for radiated testing *Type:* 10.58x6.38x6 Calibration Details Last Execution Next Exec. IC renewal 2009/01/21 2011/01/20 FCC renewal 2009/01/07 2011/01/06 #### Single Devices for Anechoic Chamber | Single Device Name | Туре | Serial Number | Manufacturer | |-----------------------|---|-------------------------|--| | Air compressor | none | - | Atlas Copco | | Anechoic Chamber | 10.58 x 6.38 x 6 Calibration Details FCC listing 96716 3m Part15/18 | none | Frankonia <i>Last Execution Next Exec.</i> 2009/01/07 2011/01/06 | | | ANSI C64.3 NSA | | 2009/01/21 2011/01/20 | | Controller Innco 2000 | CO 2000 | CO2000/328/124
406/L | 70 Innco innovative constructions
GmbH | | EMC camera | CE-CAM/1 | - | CE-SYS | | EMC camera Nr.2 | CCD-400E | 0005033 | Mitsubishi | | Filter ISDN | SDN B84312-C110-E1 Siemens&Matsushita | | Siemens&Matsushita | | Filter Universal 1A | Filter Universal 1A BB4312-C30-H3 - Siemens&Matsus | | Siemens&Matsushita | #### Test Equipment
Auxiliary Equipment for Radiated emissions Lab ID: Lab 1 Description: Equipment for emission measurements Serial Number: see single devices #### Single Devices for Auxiliary Equipment for Radiated emissions | Broadband Amplifier 18MHz-26GHz Broadband Amplifier 1GHz-4GHz Broadband Amplifier 30MHz-18GHz | AS 620 P VUBA 9117 Calibration Details Standard Calibration JS4-18002600-32-5P | 9117108 | HD GmbH
Schwarzbeck
Last Execution
2008/10/27 | Next Exec. | |---|--|------------------|--|---------------------------| | Broadband Amplifier 18MHz-26GHz Broadband Amplifier 1GHz-4GHz Broadband Amplifier 30MHz-18GHz | Calibration Details Standard Calibration | 9117108 | Last Execution | Next Exec. | | Broadband Amplifier 18MHz-26GHz Broadband Amplifier 1GHz-4GHz Broadband Amplifier 30MHz-18GHz | | | 2008/10/27 | | | 18MHz-26GHz Broadband Amplifier 1GHz-4GHz Broadband Amplifier 30MHz-18GHz | JS4-18002600-32-5P | | 2000/10/2/ | 2013/10/26 | | Broadband Amplifier 1GHz-4GHz Broadband Amplifier 30MHz-18GHz | | 849785 | Miteq | | | Broadband Amplifier 1GHz-4GHz Broadband Amplifier 30MHz-18GHz | Calibration Details | | Last Execution | Next Exec. | | 1GHz-4GHz Broadband Amplifier 30MHz-18GHz | Path Calibration | | 2009/11/16 | 2010/05/15 | | Broadband Amplifier 30MHz-18GHz | AFS4-01000400-1Q-10P-4 | - | Miteq | | | Broadband Amplifier
30MHz-18GHz | Calibration Details | | Last Execution | Next Exec. | | 30MHz-18GHz | Path Calibration | | 2009/11/16 | 2010/05/15 | | | JS4-00101800-35-5P | 896037 | Miteq | | | İ | Calibration Details | | Last Execution | Next Exec. | | | Path Calibration | | 2009/11/16 | 2010/05/15 | | Cable "ESI to EMI Antenna" | EcoFlex10 | W18.01-2+W38.01- | Kabel Kusch | | | | Calibration Details | | Last Execution | Next Exec. | | i | Path Calibration | | 2009/11/16 | 2010/05/15 | | Cable "ESI to Horn
Antenna" | UFB311A+UFB293C | W18.02-2+W38.02- | Rosenberger Mi | cro-Coax | | | Calibration Details | | Last Execution | Next Exec. | | I | Path Calibration | | 2009/11/16 | 2010/05/15 | | Double-ridged horn | HF 906 | 357357/001 | Rohde & Schwa
KG | rz GmbH & Co. | | | Calibration Details | | Last Execution | Next Exec. | | : | Standard Calibration | | 2009/04/16 | 2012/04/15 | | Double-ridged horn | HF 906 | 357357/002 | Rohde & Schwa
KG | rz GmbH & Co. | | | Calibration Details | | Last Execution | Next Exec. | | : | Standard Calibration | | 2009/04/28 | 2012/04/27 | | Dreheinheit | DE 325 | | HD GmbH | | | 3 | 4HC1600/12750-1.5-KK
<i>Calibration Details</i> | 9942011 | Trilithic
Last Execution | Next Exec. | | i | Path Calibration | | 2009/11/16 | 2010/05/15 | | 3 | 5HC2700/12750-1.5-KK
Calibration Details | 9942012 | Trilithic
Last Execution | Next Exec. | | i | Path Calibration | | 2009/11/16 | 2010/05/15 | | • | 5HC3500/12750-1.2-KK | 200035008 | Trilithic Last Execution | Next Exec. | | | Calibration Details | | 2009/11/16 | 2010/05/15 | | Logper. Antenna | Path Calibration | | J = 1. 1. 1. 1 | | | 1 | | 830547/003 | Rohde & Schwa | rz GmbH & Co. | | ; | Path Calibration | 830547/003 | | rz GmbH & Co. Next Exec. | Test report Reference: MDE_PARRO_1003_FCCa #### Single Devices for Auxiliary Equipment for Radiated emissions (continued) | Single Device Name | Туре | Serial Number | Manufacturer | |------------------------------------|---------------------|---------------|----------------------------------| | Loop Antenna | HFH2-Z2 | 829324/006 | Rohde & Schwarz GmbH & Co.
KG | | | Calibration Details | | Last Execution Next Exec. | | | DKD calibration | | 2008/10/07 2011/10/06 | | Pyramidal Horn Antenna
26,5 GHz | 3160-09 | 00083069 | EMCO Elektronik GmbH | | Pyramidal Horn Antenna
40 GHz | 3160-10 | 00086675 | EMCO Elektronik GmbH | ## **Test Equipment Auxiliary Test Equipment** Lab ID: Lab 1 Manufacturer: see single devices Description: Single Devices for various Test Equipment Type: various Serial Number: none #### **Single Devices for Auxiliary Test Equipment** | Single Device Name | Туре | Serial Number | Manufacturer | |---|----------------------|---------------|---| | AC Power Source | Chroma 6404 | 64040001304 | Chroma ATE INC. | | Broadband Power Divide N (Aux) | r1506A / 93459 | LM390 | Weinschel Associates | | Broadband Power Divide SMA | rWA1515 | A855 | Weinschel Associates | | Digital Multimeter 01
(Multimeter) | Voltcraft M-3860M | IJ096055 | Conrad Electronics | | Digital Multimeter 03 (Multimeter) | Fluke 177 | 86670383 | Fluke Europe B.V. | | , | Calibration Details | | Last Execution Next Exec. | | | Standard calibration | | 2009/10/07 2011/10/06 | | Digital Oscilloscope
[SA2] (Aux) | TDS 784C | B021311 | Tektronix GmbH | | Fibre optic link Satellite (Aux) | FO RS232 Link | 181-018 | Pontis | | Fibre optic link
Transceiver (Aux) | FO RS232 Link | 182-018 | Pontis | | Isolating Transformer | LTS 604 | 1888 | Thalheimer
Transformatorenwerke GmbH | | Notch Filter Ultra Stable (Aux) | WRCA800/960-6EEK | 24 | Wainwright | | Spectrum Analyser | FSP3 | 836722/011 | Rohde & Schwarz GmbH & Co.
KG | | | Calibration Details | | Last Execution Next Exec. | | | DKD calibration | | 2008/10/06 2011/10/05 | ## **Test Equipment Digital Signalling Devices** Lab ID: Lab 1 Description: Signalling equipment for various wireless technologies. #### **Single Devices for Digital Signalling Devices** | Single Device Name | Туре | Serial Number | Manufacturer | |---|--|----------------------------------|----------------------------------| | Bluetooth Signalling UniCBT | t CBT | 100589 | Rohde & Schwarz GmbH & Co.
KG | | | Calibration Details | | Last Execution Next Exec. | | | Standard Calibration | | 2008/08/14 2011/08/13 | | Digital Radio
Communication Tester | CMD 55 | 831050/020 | Rohde & Schwarz GmbH & Co.
KG | | | Calibration Details | | Last Execution Next Exec. | | | Standard calibration | | 2008/10/07 2010/10/06 | | Digital Radio Test Set | 6103E | 2359 | Racal Instruments, Ltd. | | Universal Radio
Communication Tester | CMU 200 | 102366 | Rohde & Schwarz GmbH & Co.
KG | | | Calibration Details | | Last Execution Next Exec. | | | Standard calibration | | 2009/02/16 2011/02/15 | | | HW/SW Status | | Date of Start Date of End | | | Software:
K21 4v21, K22 4v21, K23 4v21, K24 4
K43 4v21, K53 4v21, K56 4v22, K57 4
K59 4v22, K61 4v22, K62 4v22, K63 4
K65 4v22, K66 4v22, K67 4v22, K68 4
Firmware:
µP1 8v50 02.05.06 | v22, K58 4v22,
v22, K64 4v22, | | | Universal Radio | CMU 200 | 837983/052 | Rohde & Schwarz GmbH & Co.
KG | | Communication Tester | Calibration Details | | Last Execution Next Exec. | | | Standard calibration | | 2008/12/01 2011/11/30 | | | HW/SW Status | | Date of Start Date of End | | | HW options: B11, B21V14, B21-2, B41, B52V14, B5 B54V14, B56V14, B68 3v04, B95, PCM SW options: K21 4v11, K22 4v11, K23 4v11, K24 4 K28 4v10, K42 4v11, K43 4v11, K53 4 K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05 | CIA, U65V02
v11, K27 4v10, | 2007/01/02 | | | SW:
K62, K69 | | 2008/11/03 | | Vector Signal Generator | SMU200A | 100912 | Rohde & Schwarz GmbH & Co.
KG | | | | | | | | Calibration Details | | Last Execution Next Exec. | #### Test Equipment Emission measurement devices Lab ID: Lab 1 Description: Equipment for emission measurements Serial Number: see single devices #### Single Devices for Emission measurement devices | Single Device Name | Туре | Serial Number | Manufacturer | |--------------------|----------------------|---------------|----------------------------------| | Personal Computer | Dell | 30304832059 | Dell | | Signal Generator | SMR 20 | 846834/008 | Rohde & Schwarz GmbH & Co.
KG | | | Calibration Details | | Last Execution Next Exec. | | | Standard Calibration | | 2007/12/05 2010/12/04 | | Spectrum Analyzer | ESIB 26 | 830482/004 | Rohde & Schwarz GmbH & Co.
KG | | | Calibration Details | | Last Execution Next Exec. | | | Standard Calibration | | 2009/12/03 2011/12/02 | #### **Test Equipment Multimeter 12** Lab ID:Lab 2Description:Ex-Tech 520Serial Number:05157876 #### Single Devices for Multimeter 12 | Single Device Name | Туре | Serial Number | Manufacturer | |---------------------------------------|----------------------|---------------|---------------------------| | Digital Multimeter 12
(Multimeter) | EX520 | 05157876 | Extech Instruments Corp. | | | Calibration Details | | Last Execution Next Exec. | | | Standard calibration | | 2009/10/07 2010/10/06 | | | Standard calibration | | 2009/10/07 2011/10/06 | | | | | | Test report Reference: MDE_PARRO_1003_FCCa ## **Test Equipment Regulatory Bluetooth RF Test Solution** Lab ID: Lab 2 Description: Regulatory Bluetooth RF Tests Type: Bluetooth RF Serial Number: 001 #### Single Devices for Regulatory Bluetooth RF Test Solution | Single Device Name | Туре | Serial Number | Manufacturer | |--------------------------------------|----------------------|---------------|------------------------------| | ADU 200 Relay Box 7 | Relay Box | A04380 | Ontrak Control Systems Inc. | | Bluetooth Signalling Unit | t 1153.9000.35 | 100302 | Rohde & Schwarz GmbH & Co.KG | | | Calibration Details | | Last Execution Next Exec. | | | Standard Calibration | | 2009/08/06 2010/08/05 | | | Standard Calibration | | 2009/04/28 2010/04/27 | | Power Meter NRVD | 857.8008.02 | 832025/059 | | | | Calibration Details | | Last Execution Next Exec. | | | Standard Calibration
 | 2009/06/23 2010/06/22 | | Power Sensor NRV Z1 A | 828.3018.03 | 832279/013 | | | | Calibration Details | | Last Execution Next Exec. | | | Standard Calibration | | 2009/06/23 2010/06/22 | | Power Supply | NGSM 32/10 | 2725 | | | | Calibration Details | | Last Execution Next Exec. | | | Standard Calibration | | 2009/04/28 2010/04/27 | | Rubidium Frequency
Normal MFS | 828.3018.03 | 002 | Datum GmbH | | | Calibration Details | | Last Execution Next Exec. | | | Standard Calibration | | 2009/06/23 2010/06/22 | | Signal Analyser FSIQ26 | 1119.6001.26 | 832695/007 | Rohde & Schwarz GmbH & Co.KG | | | Calibration Details | | Last Execution Next Exec. | | | Standard Calibration | | 2009/06/24 2011/06/23 | | Signal Generator | SMP03 | 833680/003 | Rohde & Schwarz GmbH & Co.KG | | | Calibration Details | | Last Execution Next Exec. | | | Standard Calibration | | 2009/06/23 2012/06/22 | | Vector Signal Generator
SMIQ03B B | 1125.5555.03 | 832870/017 | | | | Calibration Details | | Last Execution Next Exec. | | | Standard | | 2007/05/24 2010/05/23 | #### **Test Equipment Shielded Room 07** Lab ID: Lab 2 Description: Shielded Room 4m x 6m #### Test Equipment T/H Logger 04 Lab ID:Lab 2Description:Lufft Opus10Serial Number:7481 #### Single Devices for T/H Logger 04 | Single Device Name | Type | Serial Number | Manufacturer | |---------------------------------------|------------------------|---------------|--------------------------------------| | ThermoHygro Datalogge
04 (Environ) | erOpus10 THI (8152.00) | 7481 | Lufft Mess- und Regeltechnik
GmbH | | | Calibration Details | | Last Execution Next Exec. | | | Standard calibration | | 2009/01/23 2011/01/22 | #### Test Equipment Temperature Chamber 01 Lab ID: Lab 2 Manufacturer: see single devices Description: Temperature Chamber KWP 120/70 Type: Weiss Serial Number: see single devices #### Single Devices for Temperature Chamber 01 | Single Device Name | Туре | Serial Number | Manufacturer | |---------------------------------|----------------------|----------------|---------------------------| | Temperature Chamber
Weiss 01 | KWP 120/70 | 59226012190010 | Weiss Umwelttechnik GmbH | | | Calibration Details | | Last Execution Next Exec. | | | Specific calibration | | 2010/03/16 2011/03/15 | # 5 Photo Report Photo 1: Test setup for radiated measurements (Enclosure, below 30 MHz) Photo 2: Test setup for radiated measurements (Enclosure, 30 MHz to 1 GHz) Photo 3: Test setup for radiated measurements (Enclosure, above 1 GHz) Photo 4: EUT (front side) Photo 5: EUT (rear side) # 6 Setup Drawings <u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used. ## **Drawing 1:** Setup in the Anechoic chamber: Measurements below 1 GHz: Semi-anechoic, conducting ground plane. Measurements above 1 GHz: Fully-anechoic, absorbers on all surfaces ## 7 Annex measurement plots ## 7.1 Occupied bandwidth ## 7.1.1 Occupied bandwidth operating mode 1 #### Op. Mode Title: 20dB Bandwidth Comment A: CH B: 2402 MHz; 20dB bandwidth (kHz):890.4 Date: 15.APR.2010 13:37:21 ## 7.1.2 Occupied bandwidth operating mode 2 #### Op. Mode op-mode 2 Title: 20dB Bandwidth Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):884.4 Date: 15.APR.2010 13:58:17 ## 7.1.3 Occupied bandwidth operating mode 3 #### Op. Mode op-mode 3 Title: 20dB Bandwidth Comment A: CH T: 2480 MHz; 20dB bandwidth (kHz):884.4 Date: 15.APR.2010 14:17:02 ## 7.1.4 Occupied bandwidth operating mode 6 #### Op. Mode op-mode 6 Title: 20dB Bandwidth Comment A: CH B: 2402 MHz; 20dB bandwidth (kHz):1203 Date: 16.APR.2010 06:42:09 ## 7.1.5 Occupied bandwidth operating mode 7 #### Op. Mode op-mode 7 Title: 20dB Bandwidth Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):1227 Date: 16.APR.2010 06:58:36 ## 7.1.6 Occupied bandwidth operating mode 8 #### Op. Mode op-mode 8 Title: 20dB Bandwidth Comment A: CH T: 2480 MHz; 20dB bandwidth (kHz):1191 Date: 16.APR.2010 08:07:22 ## 7.1.7 Occupied bandwidth operating mode 10 #### Op. Mode op-mode 10 Title: 20dB Bandwidth Comment A: CH B: 2402 MHz; 20dB bandwidth (kHz):1251.6 Date: 15.APR.2010 14:50:42 ## 7.1.8 Occupied bandwidth operating mode 11 #### Op. Mode op-mode 11 Title: 20dB Bandwidth Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):1257.6 Date: 15.APR.2010 15:08:19 ## 7.1.9 Occupied bandwidth operating mode 12 #### Op. Mode op-mode 12 Title: 20dB Bandwidth Comment A: CH T: 2480 MHz; 20dB bandwidth (kHz):1257.6 Date: 15.APR.2010 15:25:41 ## 7.2 Peak power output ## 7.2.1 Peak power output operating mode 1 #### Op. Mode op-mode 1 Title: Peak outputpower Power Comment A: CH B: 2402 MHz Date: 15.APR.2010 13:37:47 ## 7.2.2 Peak power output operating mode 2 ## Op. Mode op-mode 2 Title: Peak outputpower Power Comment A: CH M: 2441 MHz Date: 15.APR.2010 13:58:44 ## 7.2.3 Peak power output operating mode 3 ## Op. Mode op-mode 3 Title: Peak outputpower Power Comment A: CH T: 2480 MHz Date: 15.APR.2010 14:17:28 ## 7.2.4 Peak power output operating mode 6 ## Op. Mode op-mode 6 Title: Peak outputpower Power Comment A: CH B: 2402 MHz Date: 16.APR.2010 06:42:35 ## 7.2.5 Peak power output operating mode 7 ## Op. Mode op-mode 7 Title: Peak outputpower Power Comment A: CH M: 2441 MHz Date: 16.APR.2010 06:59:03 ## 7.2.6 Peak power output operating mode 8 ## Op. Mode op-mode 8 Title: Peak outputpower Power Comment A: CH T: 2480 MHz Date: 16.APR.2010 08:07:48 ## 7.2.7 Peak power output operating mode 10 ## Op. Mode op-mode 10 Title: Peak outputpower Power Comment A: CH B: 2402 MHz Date: 15.APR.2010 14:51:09 ## 7.2.8 Peak power output operating mode 11 ## Op. Mode op-mode 11 Title: Peak outputpower Power Comment A: CH M: 2441 MHz Date: 15.APR.2010 15:08:46 ## 7.2.9 Peak power output operating mode 12 ## Op. Mode op-mode 12 Title: Peak outputpower Power Comment A: CH T: 2480 MHz Date: 15.APR.2010 15:26:08 # 7.3 Band edge compliance conducted and Spurious RF conducted emissions #### 7.3.1 Band edge compliance conducted operating mode 1 #### Op. Mode op-mode 1 Title: Band Edge Compliance Comment A: CH B: 2402 MHz Date: 15.APR.2010 13:22:17 (determination of reference value for spurious emissions measurement) ## 7.3.2 Spurious RF conducted emissions operating mode 1 #### Op. Mode op-mode 1 Title: spurious emissions Comment A: CH B: 2402 MHz Date: 15.APR.2010 13:33:55 (spurious emissions measurement) ## 7.3.3 Spurious RF conducted emissions operating mode 2 #### Op. Mode op-mode 2 Title: Band Edge Compliance Comment A: CH M: 2441 MHz Date: 15.APR.2010 13:43:21 (determination of reference value for spurious emissions measurement) Title: spurious emissions Comment A: CH M: 2441 MHz Date: 15.APR.2010 13:54:59 (spurious emissions measurement) ## 7.3.4 Band edge compliance conducted operating mode 3 #### Op. Mode op-mode 3 Title: Band Edge Compliance Comment A: CH T: 2480 MHz Date: 15.APR.2010 14:03:01 (determination of reference value for spurious emissions measurement) ## 7.3.5 Spurious RF conducted emissions operating mode 3 #### Op. Mode op-mode 3 Title: spurious emissions Comment A: CH T: 2480 MHz Date: 15.APR.2010 14:13:39 (spurious emissions measurement) ## 7.3.6 Band edge compliance conducted operating mode 6 #### Op. Mode Title: Band Edge Compliance Comment A: CH B: 2402 MHz Date: 16.APR.2010 06:27:22 (determination of reference value for spurious emissions measurement) ## 7.3.7 Spurious RF conducted emissions operating mode 6 #### Op. Mode op-mode 6 Title: spurious emissions Comment A: CH B: 2402 MHz Date: 16.APR.2010 06:39:00 (spurious emissions measurement) ## 7.3.8 Spurious RF conducted emissions operating mode 7 #### Op. Mode op-mode 7 Title: Band Edge Compliance Comment A: CH M: 2441 MHz Date: 16.APR.2010 06:43:59 (determination of reference value for spurious emissions measurement) Title: spurious emissions Comment A: CH M: 2441 MHz Date: 16.APR.2010 06:55:37 # 7.3.9 Band edge compliance conducted operating mode 8 ## Op. Mode op-mode 8 Title: Band Edge Compliance Comment A: CH T: 2480 MHz Date: 16.APR.2010 07:52:37 (determination of reference value for spurious emissions measurement) ## 7.3.10 Spurious RF conducted emissions operating mode 8 #### Op. Mode op-mode 8 Title: spurious emissions Comment A: CH T: 2480 MHz Date: 16.APR.2010 08:04:16 ## 7.3.11 Band edge compliance conducted operating mode 10 #### Op. Mode 600 kHz/ Title: Band Edge Compliance Comment A: CH B: 2402 MHz Start 2.397 GHz Date: 15.APR.2010 14:35:58 (determination of reference value for spurious emissions measurement) Stop 2.403 GHz ## 7.3.12 Spurious RF conducted emissions operating mode 10 #### Op. Mode op-mode 10 Title: spurious emissions Comment A: CH B: 2402 MHz Date: 15.APR.2010 14:47:36 ## 7.3.13 Spurious RF conducted emissions operating mode 11 ## Op. Mode Title: Band Edge Compliance Comment A: CH M: 2441 MHz Date: 15.APR.2010 14:53:44 (determination of reference value for spurious emissions measurement) Title: spurious emissions Comment A: CH M: 2441 MHz Date: 15.APR.2010 15:05:22 ## 7.3.14 Band edge compliance conducted operating mode 12 #### Op. Mode op-mode 12 Title: Band Edge Compliance Comment A: CH T: 2480 MHz Date: 15.APR.2010 15:11:00 (determination of reference value for spurious emissions measurement) ## 7.3.15 Spurious RF conducted emissions operating mode 12 #### Op. Mode op-mode 12 Title: spurious emissions Comment A: CH T: 2480 MHz Date: 15.APR.2010 15:22:39 ## 7.4 Band edge compliance radiated ## 7.4.1 Band edge compliance radiated operating mode 3 #### Op. Mode op-mode 3 Radiated measurement (higher band edge) ## 7.4.2 Band edge compliance radiated operating mode 8 ## Op. Mode op-mode 8 Radiated measurement (higher band edge) ## 7.4.3 Band edge compliance radiated operating mode 12 ## Op. Mode op-mode 12 Radiated measurement (higher band edge) # 7.5 Radiated emissions (f < 30 MHz) # Op. Mode op-mode 1 Antenna position 90° EUT position front side Antenna position 90° EUT position right side ## Op. Mode op-mode 1 Antenna position 0° EUT position front side Antenna position
0° EUT position right side #### 7.6 Dwell time ## Op. Mode Dwell time Title: Comment A: CH M: 2441 MHz 15.APR.2010 14:23:34 Date: # 7.7 Channel separation ## Op. Mode op-mode 4 Title: Number of hopping frequencies Comment A: CH H: Hopping Date: 15.APR.2010 14:30:45 # 7.8 Number of hopping frequencies ## Op. Mode op-mode 4 Title: Number of hopping frequencies Comment A: CH H: Hopping Date: 15.APR.2010 14:33:43