

Inter**Lab**

FCC Measurement/Technical Report on

WLAN transceiver in Parrot BEBOP DRONE 2

FCC ID: RKXMYKONOS3

IC: 5119A-MYKONOS3

Report Reference: MDE_PARRO_1531_FCCa

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350

Geschäftsführer/ Managing Director: Dr. Harald Ansorge Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

U	Applied Standards and Test Summary	3
0.1	Technical Report Summary	3
0.2	FCC and IC Correlation Table	4
0.3	Measurement Summary	5
1	Administrative Data	8
1.1	Testing Laboratory	8
1.2	,	8
1.3	11	8
1.4	Manufacturer Data	8
2	Test object Data	9
2.1	General EUT Description	9
2.2	·	10
2.3		10
2.4 2.5		11 11
2.6		12
2.7		12
2.8	·	12
3	Test Results	13
3.1	Occupied bandwidth	13
3.2		15
3.3	Spurious radiated emissions	17
3.4	Band edge compliance	22
4	Measurement Uncertainty	26
5	Test Equipment	27
6	Setup Drawings	34
7	Photo Report	35

O Applied Standards and Test Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C - Intentional Radiators

- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS)Operating Under §15.247, 558074 D01 DTS Meas Guidance v03r03, 2015-06-09".

ANSI C63.10-2013 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.3 Measurement Summary.

Test report Reference: MDE_PARRO_1531_FCCa

Page 3 of 35

0.2 FCC and IC Correlation Table

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 1: 5.2 (1)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 1: 5.4 (4)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-247 Issue 1: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 1: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 1: 5.2 (2)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	_	_

0.3 Measurement Summary

FCC Part 15, Subpart C § 15.207

Conducted emissions (AC power line)

The measurement was performed according to ANSI C63.10

Final Result Setup **OP-Mode** Port AC port N/A

FCC Part 15, Subpart C

§ 15.247 (a) (1) Occupied bandwidth

The measurement was performed according to ANSI C63.10 **OP-Mode** Setup Port

op-mode 1g	Setup_01	Temp.ant.connector	N/P
op-mode 1n	Setup_01	Temp.ant.connector	N/P
op-mode 2g	Setup_01	Temp.ant.connector	Passed (1)
op-mode 2n	Setup_01	Temp.ant.connector	Passed (1)
op-mode 3g	Setup_01	Temp.ant.connector	N/P
op-mode 3n	Setup 01	Temp.ant.connector	N/P

FCC Part 15, Subpart C § 15.247 (b) (1)

Peak power output

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Port	Final Result
op-mode 1g	Setup_01	Temp.ant.connector	Passed
op-mode 1n	Setup_01	Temp.ant.connector	N/P
op-mode 2g	Setup_01	Temp.ant.connector	Passed
op-mode 2n	Setup_01	Temp.ant.connector	N/P
op-mode 3g	Setup_01	Temp.ant.connector	Passed
op-mode 3n	Setup_01	Temp.ant.connector	N/P
op-mode 1n+	Setup_01	Temp.ant.connector	Passed
op-mode 2n+	Setup_01	Temp.ant.connector	Passed
op-mode 3n+	Setup_01	Temp.ant.connector	Passed

FCC Part 15, Subpart C

§ 15.247 (d), § 15.35 (b), § 15.207

Final Result

Spurious conducted emissions

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Port	Final Result
op-mode 1g	Setup_01	Temp.ant.connector	N/P
op-mode 1n	Setup_01	Temp.ant.connector	N/P
op-mode 2g	Setup_01	Temp.ant.connector	N/P
op-mode 2n	Setup_01	Temp.ant.connector	N/P
op-mode 3g	Setup_01	Temp.ant.connector	N/P
op-mode 3n	Setup 01	Temp.ant.connector	N/P

FCC Part 15, Subpart C

§ 15.247 (d), § 15.35 (b), § 15.209

Spurious radiated emissions

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Port	Final Result
op-mode 1g	Setup_02	Enclosure	Passed
op-mode 2g	Setup_02	Enclosure	Passed
op-mode 3g	Setup_02	Enclosure	Passed
op-mode 1n	Setup_02	Enclosure	N/P
op-mode 2n	Setup_02	Enclosure	N/P
op-mode 3n	Setup_02	Enclosure	N/P
op-mode 1n+	Setup_02	Enclosure	Passed
op-mode 2n+	Setup_02	Enclosure	Passed
op-mode 3n+	Setup_02	Enclosure	Passed

FCC Part 15, Subpart C § 15.247 (d)

Band edge compliance

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Port	Final Result
op-mode 1g	Setup_01	Temp.ant.connector	N/P
op-mode 1n	Setup_01	Temp.ant.connector	N/P
op-mode 3g	Setup_01	Temp.ant.connector	N/P
op-mode 3n	Setup_01	Temp.ant.connector	N/P
op-mode 1n+	Setup_01	Temp.ant.connector	N/P
op-mode 3n+	Setup_01	Temp.ant.connector	N/P
op-mode 3g	Setup_02	Enclosure	Passed
op-mode 3n	Setup_02	Enclosure	N/P
op-mode 3n+	Setup_02	Enclosure	Passed

FCC Part 15, Subpart C

§ 15.247 (e)

Power density

The measurement was performed according to ANSI C63.10

OP-Mode	Setup	Port	Final Result
op-mode 1g	Setup_01	Temp.ant.connector	N/P
op-mode 1n	Setup_01	Temp.ant.connector	N/P
op-mode 2g	Setup_01	Temp.ant.connector	N/P
op-mode 2n	Setup_01	Temp.ant.connector	N/P
op-mode 3g	Setup_01	Temp.ant.connector	N/P
op-mode 3n	Setup_01	Temp.ant.connector	N/P
op-mode 1n+	Setup_01	Temp.ant.connector	N/P
op-mode 2n+	Setup_01	Temp.ant.connector	N/P
op-mode 3n+	Setup_01	Temp.ant.connector	N/P

not applicable (the EUT is powered by DC) N/A

N/P not performed

6dB BW tested only (1)

Not all tests which are applicable to the EUT have been performed. A previous hardware version of this EUT has already been completely tested.

The scope of this test report is to demonstrate the effects on the EUTs behaviour due to the hardware modifications.

Test report of the original Hardware version: MDE_PARRO_1430_FCCa

Responsible for	Responsible	
Accreditation Scope:	for Test Report:	

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7layers GmbH

Address Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted

under the registration number: 96716.

This facility has been fully described in a report submitted to the IC and accepted

under the registration number: Site# 3699A-1

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka

Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Andreas Petz Dipl.-Ing. Marco Kullik

Report Template Version: 2015-09-28

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Daniel Gall

Date of Test(s): 2015-09-28 to 2015-10-26

Date of Report: 2015-11-06

1.3 Applicant Data

Company Name: Parrot S.A.

Address: 174 quai de Jemmapes

75010 Paris France

Contact Person: Mr. Imad Benyacoub

1.4 Manufacturer Data

Company Name: Please see applicant data

Address:

Contact Person:

2 Test object Data

2.1 General EUT Description

Equipment under Test: IEEE 802.11a/g/n/ac WLAN transceiver

Type Designation: Parrot BEBOP DRONE 2 **Kind of Device:** Quadricopter wifi controlled

(optional)

Voltage Type: DC **Voltage Level:** 12.0 V

Tested Modulation Type: DBPSK; OFDM:BPSK; OFDM:64-QAM

General product description:

The EUT is a RC toy (quadcopter drone) that includes a video camera and a WLAN access point as well as four electric motors. It can fly and is remotely controlled by the user via a Wi-Fi link, by the ways of a smartphone or a tablet.

Specific product description for the EUT:

The EUT is a dual band WLAN (802.11 2.4 GHz g/n and 5 GHz a/n/ac) access point. In IEEE 802.11n and ac mode it supports 20 MHz bandwidth channels (SISO and MIMO), providing 72.2 / 86.7 Mbit/s, and 144.4 / 173.4 Mbit/s transfer data rates respectively.

The WLAN (Wireless Local Area Network) transceiver is operating in the 5 GHz band in the range 5.15 – 5.25 GHz and 5.725 – 5.825 GHz. ("new rules" 5.850 GHz)

The object of this test report are the 2.4 GHz g/n modes of the WLAN transceiver.

The EUT provides the following ports:

Ports

Enclosure USB Data port

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	
EUT A	WLAN	Parrot BEBOP	PF726003P15I	HW02	6.37.114.64	
(Code:	transceiver	DRONE 2	000458			
DE1018015aa01)						
Remark: EUT A is	equipped with a te	mporary antenna	connector.			
EUT B	WLAN	Parrot BEBOP	PF726003P15I	HW02	6.37.114.64	
(Code:	transceiver	DRONE 2	000480			
DE1018015ab02)						
Remark: EUT B is equipped with two dual-band integral antennae with different antenna gain:						
Antenna1	Antenna1: 2.7 dBi in 2.4 GHz and 3.3 dBi (SB1) / 2.6 dBi (SB3) in 5 GHz band,					
	: 2.7 dBi in 2.4 GI					

NOTE: The short description used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment, which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
ANC1	_	_	-	-	_

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment, which is used temporarily to enable operational and control features especially used for the tests of the EUT, which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short	Equipment under	Type Designation	Serial No.	HW	SW
Description	Test			Status	Status
AUX1	USB cable	_	=	=	_

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
Setup_01	EUT A	setup for conducted radio measurements
Setup 02	EUT B + AUX1	setup for radiated measurements

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

2.6.1 Test Channels

	2.4 GHz ISM				
	2400 - 2483.5 MHz				
20 MHz Test Channels:	Bottom				
Channel:	1	6	11		
Frequency [MHz]	2412 2437 2462				

2.6.2 Datarates

Data rate / frequency	2412	2437	2462
g-mode, 6 Mbit/s	1g	2g	3g
n-Mode, 72.2 Mbit/s (MCS7)	1n	2n	3n
n-Mode, MIMO, 144.4 Mbit/s (MCS15)	1n+	2n+	3n+

2.7 Special software used for testing

In the engineering mode provided for the tests, the EUT can be controlled by an external computer using a terminal program. With script files provided by the applicant, data rate, antenna port, RF power level and duty cycle can be set.

2.8 Product labelling

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Occupied bandwidth

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.10

3.1.1 Test Description

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: 30 MHz (for 20 MHz nominal bandwidth)
- Detector: Peak / Sample (6 dB bandwidth / 99% bandwidth)

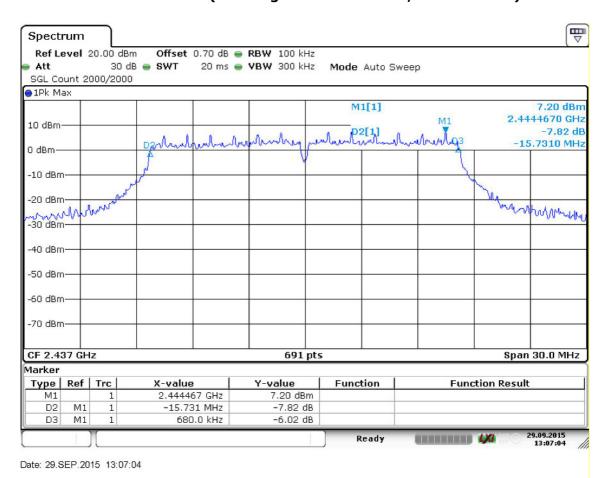
3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

3.1.3 Test Protocol


Temperature: 23 °C Air Pressure: 1008 hPa Humidity: 40 %

3.1.3.1 6 dB bandwidth

WLAN g-Mo	de; 20 Mi				
Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	6	2437	16.411	0.5	15.9

WLAN n-Mo	de; 20 Mi				
Chann Band No.		Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz		2.42=	1 - 0 10	0.5	4= 0
ISM	6	2437	17.843	0.5	17.3

3.1.4 Measurement Plot (showing the lowest value, "worst case")

3.2 Peak power output

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.10

3.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

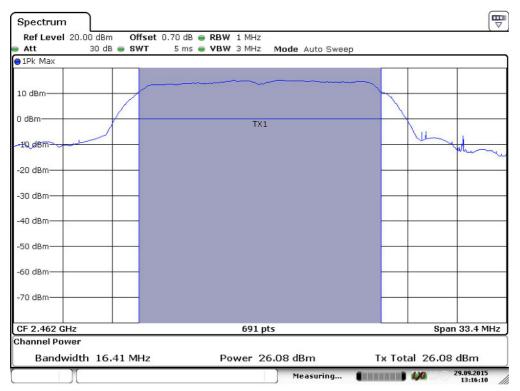
Analyzer settings:
- Detector: Peak

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz and 2400-2483.5 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$


3.2.3 Test Protocol

Temperature: 23 °C Air Pressure: 1008 hPa Humidity: 40 %

WLAN g-Mode	WLAN g-Mode; 20 MHz; 6 Mbit/s					
Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	26.1	30.0	3.9	28.8
	6	2437	26.0	30.0	4.0	28.7
	11	2462	26.1	30.0	3.9	28.8

WLAN n-M	lode; 2	TX1	TX2					
Band	Ch. No.	Freq.	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	ANT1	ANT2	EIRP [dBm]
2.4 GHz								
ISM	1	2412	27.7	30.0	2.3	24.8	24.6	30.4
	6	2437	27.9	30.0	2.1	25.2	24.6	30.6
	11	2462	28.0	30.0	2.0	25.1	24.8	30.7

3.2.4 Measurement Plot (showing the highest value, "worst case")

Date: 29.SEP.2015 13:16:10

3.3 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.10

3.3.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is performed while the EUT is powered from a DC power sourse.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

Frequency steps: 0.1 kHz and 5 kHzIF-Bandwidth: 0.2 kHz and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 – 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 0.2 - 10 kHz

- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold

- Frequency range: 30 - 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 μs - Turntable angle range: -180° to 180°

- Turntable step size: 90°
- Height variation range: 1

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step, the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m **Step 3:** final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 22.5° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 25 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: ± 22.5 ° around the determined value - Height variation range: ± 25 cm around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:
- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact, that in this frequency range a double-ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

Detector: Peak, AverageIF Bandwidth = 1 MHz

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Calculated Limits(dBµV/m @10m)	Limits(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300 → 10	(48.5 - 13.8) + 59.1 dB	107.6 - 72.9
0.49 - 1.705	24000/F(kHz)	30 → 10	(33.8 - 23.0) + 19.1 dB	52.9 - 42.1
1.705 - 30	30	30 → 10	29.5 + 19.1 dB	48.6

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit ($dB\mu V/m$) = 20 log (Limit ($\mu V/m$)/1 $\mu V/m$)

3.3.3 Test Protocol

Temperature: 23–24 °C Air Pressure: 1009–1012 hPa Humidity: 37–41 %

WLAN g-Mode; 20 MHz; 6 Mbit/s				Applied d	uty cycle	correction (AV) [dB]:	0.1
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	162.9	20.9	QP	120	43.5	22.6	RB
1	2412	2389.6	66.3	PEAK	1000	74.0	7.7	RB
1	2412	2389.8	47.5	AV	1000	54.0	6.5	RB
1	2412	2490.3	57.4	PEAK	1000	74.0	16.6	RB
1	2412	2490.8	45.8	AV	1000	54.0	8.2	RB
6	2437	2351.8	54.2	PEAK	1000	74.0	19.8	RB
6	2437	2360.2	44.0	AV	1000	54.0	10.0	RB
6	2437	4872.9	60.0	PEAK	1000	74.0	14.0	RB
6	2437	4876.5	45.2	AV	1000	54.0	8.8	RB
11	2462	2384.6	55.0	PEAK	1000	74.0	19.0	RB
11	2462	2383.0	45.0	AV	1000	54.0	9.0	RB
11	2462	4922.7	60.4	PEAK	1000	74.0	13.6	RB
11	2462	4927.1	48.0	AV	1000	54.0	6.0	RB

Note: No (further) spurious emissions in the range 20 dB below the limit found.

The results of the pre-test with peak detector have been similar for all three transmit frequencies in the frequency range 30–1000 MHz and independent from the transmit frequency. Therefore the final test applying the QP-(quasi-peak-)detector was performed only for one transmit frequency. The measurement was performed from 30 MHz up to 24 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

WLAN	l n-Mode;	20 MHz;	144.4 Mbit	/s Appli	ied duty c	ycle correcti	on (AV) [c	IB]: 2.7
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	2389.6	73.8	PEAK	1000	74.0	0.2	RB
1	2412	2389.6	53.8	AV	1000	54.0	0.2	RB
1	2412	2493.0	59.5	PEAK	1000	74.0	14.5	RB
1	2412	2493.5	48.2	AV	1000	54.0	5.8	RB
1	2412	4825.2	58.4	PEAK	1000	74.0	15.6	RB
1	2412	4822.9	46.6	AV	1000	54.0	7.4	RB
6	2437	2362.4	41.4	PEAK	1000	74.0	32.6	RB
6	2437	2364.6	43.4	AV	1000	54.0	10.6	RB
6	2437	4883.0	61.1	PEAK	1000	74.0	12.9	RB
6	2437	4873.1	49.4	AV	1000	54.0	4.6	RB
11	2462	2383.7	71.7	PEAK	1000	74.0	2.3	RB
11	2462	2383.4	43.4	AV	1000	54.0	10.6	RB
11	2462	4923.8	63.5	PEAK	1000	74.0	10.5	RB
11	2462	4923.2	51.5	AV	1000	54.0	2.5	RB

Note: No (further) spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

3.4 Band edge compliance

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.10-2013, FCC §15.31

3.4.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement. For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room.

For the lower band edge the EUT is set to transmit as follows:

For a WLAN transmitter working in the 2.4 GHz band on lowest channel:

 $CH1 = 2412 \, MHz / CH3 = 2422 \, MHz$ for a channel bandwidth of 20 / 40 MHz.

The lower band edge is 2400 MHz for 2.4 GHz band transmitter.

For the higher band edge the EUT is set to transmit as follows:

For a WLAN transmitter working in the 2.4 GHz band on highest channel:

CH11 = 2462 MHz or CH13 = 2472 MHz / CH11= 2462 MHz for a channel bandwidth of 20 / 40 MHz.

The higher band edge is 2483.5 MHz for a 2.4 GHz band transmitter.

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW / VBW = 100 / 300 kHz
- 2. Showing compliance of the higher band edge falls in to restricted bands by a radiated measurement.

The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 1 m distance. EMI receiver settings for radiated measurement:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

3.4.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".

3.4.3 Test Protocol

3.4.3.1 Radiated measurement, higher band edge

Temperature: 23-24 °C

Air Pressure: 1009–1012 hPa Humidity: 37–41 %

WLAN	g-Mode;	20 MHz;	6 Mbit/s	Applied d	uty cycle	correction (AV) [dB]:	0.1
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	65.7	PEAK	1000	74.0	8.3	BE
11	2462	2483.5	49.3	AV	1000	54.0	4.7	BE

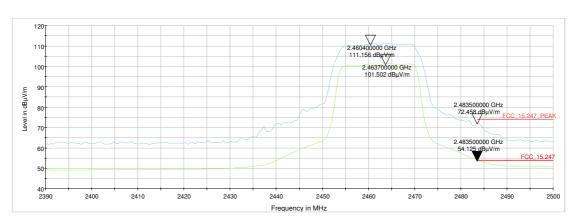
Results of delta-marker method

WLAN	WLAN n-Mode; 20 MHz; 144.4 Mbit/s Applied duty cycle correction (AV) [dB]:				2.7			
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
11	2462	2483.5	71.7	PEAK	1000	74.0	2.3	BE
11	2462	2483.5	54.0	AV	1000	54.0	0.0	BE

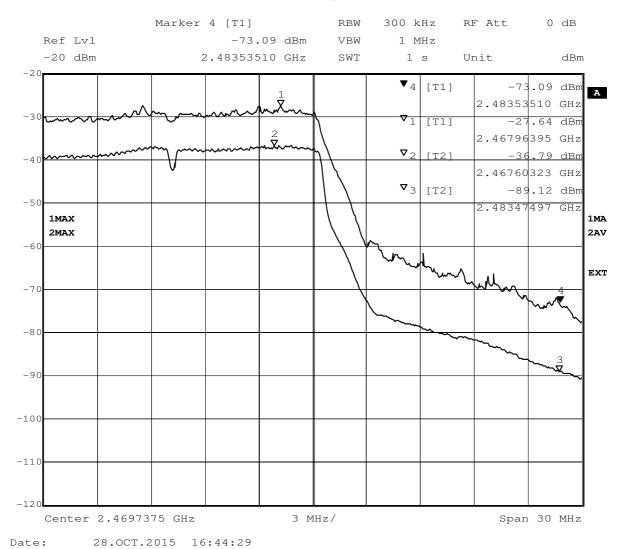
Results of Spurious radiated emissions measurement

Delta Marker for mode g:

WLAN	g-Mode; 2	20 MHz; 6	Mbit/s			
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Funda-mental Level [dBm]	Detec-tor	RBW [kHz]	Calculated Band Edge Level [dBµV/m]
11	2462	2483.5	111.2	PEAK	1000	65.7
11	2462	2483.5	101.5	AV	1000	49.2


Relative Results

Holati	o modulio					
Ch. No.	Ch. Center Freq. [MHz]	Span [MHz]	Set RBW ≥ than [kHz]	Set VBW ≥ than [kHz]	Funda- mental Level [dBm]	Delta Level @ Band Edge [dB]
11	2462	30.0	300	1000	-27.6	45.5
11	2462	30.0	300	1000	-36.8	52.3


Test report Reference: MDE_PARRO_1531_FCCa Page 24 of 35

3.4.3.2 Measurement Plot (showing the highest value, "worst case")

Delta-marker Radiated pre measurement

Delta-marker relative measurement

4 Measurement Uncertainty

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

5 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:Lab 1Manufacturer:Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

NSA (FCC) 2014/01/09 2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	$10.58 \times 6.38 \times 6.00 \text{ m}^3$ FCC listing 96716 3m Part15/18	none	Frankonia 2014/01/09 2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 1

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/119205 13	Maturo GmbH
Antenna mast	AS 620 P	620/37	HD GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck Mess-Elektronik OHG
Biconical dipole	VUBA 9117	9117-108	Schwarzbeck Mess-Elektronik OHG
Broadband Amplifier 1 GHz - 4 GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 18 GHz - 26 GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 30 MHz - 18 GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01-	- Kabel Kusch
Cable "ESI to Horn Antenna"	SucoFlex	W18.02-2+W38.02- 2	HUBER+SUHNER
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02- 2	Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG

Test report Reference: MDE_PARRO_1531_FCCa Page 27 of 35

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
	Standard Calibration		2015/06/23 2018/06/22
Double-ridged horn	HF 907	102444	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2015/05/11 2018/05/10
Double-ridged horn- duplicated 2015-07-15 10:47:55	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/18000-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26.5 GHz BBHA 9170	ввна 9170	BBHA9170262	Schwarzbeck Mess-Elektronik OHG
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna (upgraded)	HL 562 Ultralog new biconicals	830547/003	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2015/06/30 2018/06/29
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	DKD Calibration		2014/11/27 2017/11/27
Standard Gain / Pyramidal Horn Antenna 26.5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Standard Gain / Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/3790709	Maturo GmbH

Test Equipment Auxiliary Test Equipment

Lab ID: Lab 1, Lab 2
Manufacturer: see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divider1506A / 93459 N (Aux)		LM390	Weinschel Associates
Broadband Power DividerWA1515 SMA		A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03
Digital Multimeter 13 (Clamp Meter)	Fluke 325	31270091WS	FLUKE
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2014/02/10 2016/02/09
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG
Spectrum Analyzer	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	DKD calibration		2015/06/23 2018/06/22
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab ID: Lab 1, Lab 2

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Unit	t CBT	100589	Rohde & Schwarz GmbH & Co. KG
	Standart calibration		2015/01/21 2018/01/19
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2014/01/27 2016/01/26
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
	DKD calibration		2014/12/02 2017/12/01
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	HW/SW Status		Date of Start Date of End
	Software: K21 4v21, K22 4v21, K23 4v21, K24 4 K43 4v21, K53 4v21, K56 4v22, K57 4 K59 4v22, K61 4v22, K62 4v22, K63 4 K65 4v22, K66 4v22, K67 4v22, K68 4 Firmware: µP1 8v50 02.05.06	v22, K58 4v22, v22, K64 4v22,	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
communication rester	DKD calibration HW/SW Status		2014/12/03 2017/12/02 Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14, B5 B54V14, B56V14, B68 3v04, B95, PCM SW options: K21 4v11, K22 4v11, K23 4v11, K24 4 K28 4v10, K42 4v11, K43 4v11, K53 4 K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05 SW: K62, K69	CIA, U65V02 v11, K27 4v10,	2007/01/02
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co.

KG

Test Equipment Emission measurement devices

Lab ID: Lab 1

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
EMI Receiver / Spectru Analyzer	m ESR 7	101424	Rohde & Schwarz
, -	Calibration Details		Last Execution Next Exec.
	Initial Factory Calibration		2014/11/13 2016/11/12
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2015/05/11 2016/05/10
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2015/05/11 2016/05/10
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2014/06/24 2017/06/23
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Standard Calibration		2014/01/07 2016/01/31
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45	during calibration	2009/12/03
Spectrum Analyzer	FSW 43 Calibration Details	103779	Rohde & Schwarz Last Execution Next Exec.
	Initial Factory Calibration		2014/11/17 2016/11/16

Test Equipment Multimeter 03

Lab ID:Lab 1, Lab 2Description:Fluke 177Serial Number:86670383

Single Devices for Multimeter 03

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
(1 1 1 1 1)	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03

Test report Reference: MDE_PARRO_1531_FCCa Page 31 of 35

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 2

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide	erWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberge Micro Coax FA210A0010003030 SMA/SMA 1,0m	r FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2015/05/11 2016/05/10
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
Stallualu	Standard calibration		2015/06/25 2016/06/24
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Standard calibration		2015/05/11 2016/05/10
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/12/02 2017/12/01
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyzer	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration after reparation		2015/04/02 2017/04/01

Test Equipment T/A Logger 13

Lab ID:Lab 1, Lab 2Description:Lufft Opus10 TPRType:Opus10 TPRSerial Number:13936

Single Devices for T/A Logger 13

Single Device Name	Туре	Serial Number	Manufacturer	
ThermoAirpressure Datalogger 13 (Environ	Opus10 TPR (8253.00))	13936	Lufft Mess- un GmbH	d Regeltechnik
	Customized calibration		2015/02/27	2017/02/26

Test Equipment T/H Logger 03

Lab ID:Lab 2Description:Lufft Opus10Serial Number:7482

Single Devices for T/H Logger 03

Single Device Name Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 03 (Environ)	7482	Lufft Mess- und Regeltechnik GmbH
Customized calibration		2015/02/27 2017/02/26

Test Equipment T/H Logger 12

Lab ID:Lab 1Description:Lufft Opus10Serial Number:12482

Single Devices for T/H Logger 12

Single Device Name Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 12 (Environ)	12482	Lufft Mess- und Regeltechnik GmbH
Customized calibration		2015/03/10 2017/03/09

Test Equipment Temperature Chamber 05

Lab ID: Lab 2

Manufacturer: see single devices

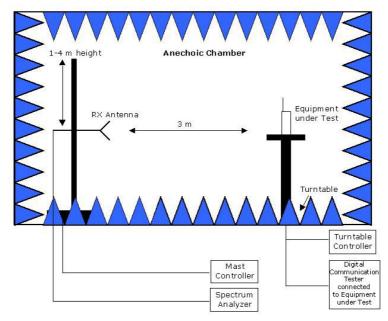
Description: Temperature Chamber VT4002

Type: Vötsch

Serial Number: see single devices

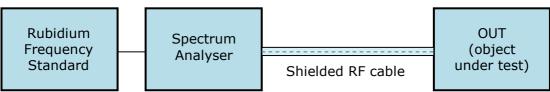
Single Devices for Temperature Chamber 05

Single Device Name	Туре	Serial Number	Manufacturer	
Temperature Chamber Vötsch 05	VT 4002	58566080550010	Vötsch	
VOCSCII OS	Customized calibration		2014/03/11	2016/03/10


Test report Reference: MDE_PARRO_1531_FCCa Page 33 of 35

Additional equipment Spurious radiated emissions >1GHz

Instrument/Ancillary	Туре	Manufacturer	Serial No.
Antenna Mast	PAS 2.5-10 kg	Maturo GmbH	-
Antenna Mast	ASP 1.2/1.8-10 kg	Maturo GmbH	-
Switching Unit	KRE-4056 KRE-4057	MTS Systemtechnik	018009-0010 018010-0010
Turn table	TT 1.5 WI	Maturo GmbH	-
Turn unit	TD 1.5-10 kg	Maturo GmbH	
Fully Anechoic Chamber	8,8x4,6x4,1 m ³	Albatross Projects	_


6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.

Drawing 2: Setup for conducted radio tests.

7 Photo Report

Please refer to external report.