

Inter Lab

FCC Measurement/Technical Report on

WLAN transceiver
Parrot MINIDRONES Jumping Sumo
Parrot Jumping Sumo

FCC ID: RKXJUMPINGSUMO IC: 5119A-JUMPINGSUMO

Report Reference: MDE_PARRO_1418_FCCa

Test Laboratory:

Borsigstrasse 11 Germany 7Layers AG 40880 Ratingen

Note

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H.-J. Meckelburg Dr. H. Ansorge

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

O Ap	plied Standards and Test Summary	3
0.1	Technical Report Summary	3
0.2	FCC and IC Correlation Table	4
0.3	Measurement Summary	5
1 Ad	Iministrative Data	8
1.1	Testing Laboratory	8
1.2	Project Data	8
1.3	Applicant Data	8
1.4	Manufacturer Data	8
2 Te	st object Data	9
2.1	General EUT Description	9
2.2	EUT Main components	10
2.3	Ancillary Equipment	10
2.4	Auxiliary Equipment	11
2.5	EUT Setups	11
2.6	Operating Modes	12
2.7	Special software used for testing	12
2.8	Product labelling	12
3 Te	st Results	13
3.1	Occupied bandwidth	13
3.2	Peak power output	17
3.3	Spurious RF conducted emissions	20
3.4	Spurious radiated emissions	23
3.5	Band edge compliance	29
3.6	Power density	35
4 Te	st Equipment	38
5 Ph	oto Report	49
6 Se	tup Drawings	49

O Applied Standards and Test Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requi	irement	ľ
--	---------	---

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS)Operating Under §15.247, 558074 D01 DTS Meas Guidance v03r02, 2014-06-05".

Instead of applying ANSI C63.4–1992 which is referenced in the FCC Public Note, the newer ANSI C63.4–2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.3 Measurement Summary.

Test report Reference: MDE_PARRO_1418_FCCa

0.2 FCC and IC Correlation Table

Correlation of measurement requirements for DTS devices (e.g. WLAN 2.4/5 GHz) equipment

The following tables show the correlation of measurement requirements for DTS (e.g. WLAN) equipment and Information Technology Equipment (ITE) from FCC and IC standards.

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 3: 7.2.4
Occupied bandwidth	§ 15.247 (a) (2)	RSS-210 Issue 8: A8.2 (a)
Peak power output	§ 15.247 (b) (3), (4)	RSS-210 Issue 8: A8.4 (4)
Spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A8.5
Spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 3: 6; RSS-210 Issue 8: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210 Issue 8: A8.5
Power density	§ 15.247 (e)	RSS-210 Issue 8: A8.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 3: 7.1.2
Receiver spurious emissions	_	RSS-210 Issue 8: 2.3 RSS Gen Issue 3: 6 *)

^{*)} Receivers which are part of Transceivers are exempted with respect to Notice 2012-DRS0126.

Information Technology Equipment (ITE)

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.107	ICES-003 Issue 5: 6.1
Spurious Radiated Emissions	§ 15.109	ICES-003 Issue 5: 6.2

0.3 Measurement Summary

FCC Part 15, Subpart C § 15.207						
	ons (AC power line)					
	was performed accord	ding to ANSI C63.4	2009			
OP-Mode	Setup	Port	Final Result			
-	_	AC port	N/A			
FCC Part 15, Sub	part C	§ 15.247 (a) (1)				
Occupied bandwid		<u> </u>				
	was performed accord	ding to FCC § 15.31	10-1-13 Edition			
OP-Mode	Setup	Port	Final Result			
op-mode 1g	Setup_02	Temp.ant.connector	Passed			
op-mode 1n	Setup_02	Temp.ant.connector	Passed			
op-mode 2g	Setup_02	Temp.ant.connector	Passed			
op-mode 2n	Setup_02	Temp.ant.connector	Passed			
op-mode 3g	Setup_02	Temp.ant.connector	Passed			
op-mode 3n	Setup_02	Temp.ant.connector	Passed			
FCC Part 15 Sub	nart C	§ 15.247 (b) (1)				
Peak power output						
	was performed accord	ling to ECC § 15 31	10-1-13 Edition			
OP-Mode	Setup	Port	Final Result			
op-mode 1g	Setup_02	Temp.ant.connector	Passed			
op-mode 2g	Setup_02	Temp.ant.connector	Passed			
op-mode 3g	Setup_02	Temp.ant.connector	Passed			
op-mode 1n+	Setup_02	Temp.ant.connector	Passed			
op-mode 2n+	Setup_02	Temp.ant.connector	Passed			
op-mode 3n+	Setup_02	Temp.ant.connector	Passed			
FCC Dowt 15 Sub	mort C	6 1E 247 (d) 6 1E 1	DE (b) S 1E 207			
FCC Part 15, Sub Spurious conducte		§ 15.247 (d), § 15.3	35 (b), § 15.207			
•	was performed accord	Ning to ANSI C62 1	2009			
OP-Mode	Setup	Port	Final Result			
op-mode 1g	Setup Setup_02	Temp.ant.connector	Passed			
op-mode 19	Setup_02 Setup_02	Temp.ant.connector	Passed			
op-mode 2g	Setup_02 Setup_02	Temp.ant.connector	Passed			
op-mode 2g	Setup_02 Setup_02	Temp.ant.connector	Passed			
op-mode 3g	Setup_02 Setup_02	Temp.ant.connector	Passed			
op-mode 3n	Setup_02 Setup_02	Temp.ant.connector	Passed			
op-mode sn	36tup_02	remp.ant.connector	rasseu			

FCC Part 15, Subpart C § 15.247 (d), § 15.35 (b), § 15.209

	emissions

The measurement was performed according to ANSI C63.4 2009			
OP-Mode	Setup	Port	Final Result
op-mode 1g	Setup_01	Enclosure	Passed
op-mode 2g	Setup_01	Enclosure	Passed
op-mode 3g	Setup_01	Enclosure	Passed
op-mode 1n+	Setup_01	Enclosure	Passed
op-mode 2n+	Setup_01	Enclosure	Passed
op-mode 3n+	Setup_01	Enclosure	Passed

FCC Part 15, Subpart C § 15.247 (d)

Band edge compliance

The measurement	10-1-13 Edition /		
ANSI C63.4	2009		
OP-Mode	Setup	Port	Final Result
op-mode 1g	Setup_02	Temp.ant.connector	Passed
op-mode 1n	Setup_02	Temp.ant.connector	Passed
op-mode 3g	Setup_02	Temp.ant.connector	Passed

op-mode rg	Setup_02	remp.ant.connector	Passed
op-mode 1n	Setup_02	Temp.ant.connector	Passed
op-mode 3g	Setup_02	Temp.ant.connector	Passed
op-mode 3n	Setup_02	Temp.ant.connector	Passed
op-mode 3g	Setup_01	Enclosure	Passed
op-mode 3n+	Setup_01	Enclosure	Passed

FCC Part 15, Subpart C § 15.247 (e)

Power density

The measurement	10-1-13 Edition		
OP-Mode	Setup	Port	Final Result
op-mode 1g	Setup_02	Temp.ant.connector	Passed
op-mode 2g	Setup_02	Temp.ant.connector	Passed
op-mode 3g	Setup_02	Temp.ant.connector	Passed
op-mode 1n+	Setup_02	Temp.ant.connector	Passed
op-mode 2n+	Setup_02	Temp.ant.connector	Passed
op-mode 3n+	Setup_02	Temp.ant.connector	Passed

not applicable (the EUT is powered by DC, transmitter is automatically switched N/A off when connected to USB)

Note: Pre-Tests showed that the output power for mode n and n+ is approx. identical. Therefore tests have been reported either in one of both modes, as worst-case in respect to each test case.

Responsible for	Responsible	
Accreditation Scope:	 for Test Report:	

1 Administrative Data

1.1 Testing Laboratory

1.1 Testing Laboratory	
Company Name:	7 Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany
This facility has been fully described in a under the registration number 96716.	report submitted to the FCC and accepted
The test facility is also accredited by the Laboratory accreditation no.:	following accreditation organisation: DAkkS D-PL-12140-01-01
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Thomas Hoell DiplIng. Andreas Petz DiplIng. Marco Kullik
Report Template Version:	2014-07-23
1.2 Project Data	
Responsible for testing and report:	DiplIng. Andreas Petz
Date of Test(s): Date of Report:	2014-06-04 to 2014-07-28 2014-08-01
1.3 Applicant Data	
Company Name:	Parrot S.A.
Address:	174 quai de jemmapes 75010 Paris France
Contact Person:	Mr. Salem Boushabi
1.4 Manufacturer Data	
Company Name:	Please see applicant data
Address:	
Contact Person:	

2 Test object Data

2.1 General EUT Description

Equipment under Test: IEEE 802.11g/n WLAN transceiver **Type Designation:** Parrot MINIDRONES Jumping Sumo

Kind of Device: RC toy

(optional)

Voltage Type: AC (primary voltage of charger) / DC

(secondary voltage and Li-Po rechargeable

battery voltage)

Voltage Level: AC: 120 V (auxiliary); DC 5.0 / 3.7 V

Tested Modulation Type: OFDM: BPSK; OFDM: 64-QAM

General product description:

The EUT is a RC toy (rolling robot) that includes a video camera and a WLAN access point as well as an electric motor and a speaker. It can drive using its wheels or also jump and is remotely controlled by the user via a Wi-Fi link, by the way of a smartphone or a tablet.

Specific product description for the EUT:

The EUT is a dual band WLAN (802.11 2.4 GHz g/n and 5 GHz a/n) access point. In IEEE 802.11n mode it supports 20 MHz bandwidth channels (both with MCS15), providing 72.2 Mbit/s, and 150 Mbit/s transfer data rates respectively. The object of this test report is the WLAN transceiver.

The EUT provides the following ports:

Ports

Enclosure USB/DC port

The main components of the EUT are listed and described in Chapter 2.2.

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status		
EUT A	WLAN	Parrot	PS724000D24	DV2	0.21.1		
(Code:	transceiver	MINIDRONES	E000083	(DB_HW04;			
DE1018002ac01)		Jumping Sumo		MB_07)			
Remark: EUT A is e	Remark: EUT A is equipped with a temporary antenna connector and temporary power supply cables.						
EUT B	WLAN	Parrot	PS724000D24	DV2	0.21.1		
(Code:	transceiver	MINIDRONES	E000073	(DB_HW04;			
DE1018002aa01)		Jumping Sumo		MB_07)			
Remark: EUT B is e	Remark: EUT B is equipped with two dual-band integral antennae with different antenna gain:						
Antenna1	: 1.3 dBi in 2.4 GH	Iz and 2.6 dBi in 5	GHz band,				
Antenna2	Antenna2: 2.7 dBi in 2.4 GHz and 3.2 dBi in 5 GHz band.						

NOTE: The short description used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment, which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
ANC1	LISB cable	_	_		

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment, which is used temporarily to enable operational and control features especially used for the tests of the EUT, which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
_	_	_	_	_	_

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
Setup_01	EUT B + ANC1	setup for radiated measurements
Setup_02	EUT A	setup for conducted radio measurements

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

2.6.1 Test Channels

2.4 GHz ISM band (2400 - 2483.5 MHz)	Bottom	Middle	Тор
Channel No.	1	6	11
Frequency / MHz	2412	2437	2462

COMMENT: Subband 3 not tested according to §15c247!

2.6.2 Datarates

SISO:

WLAN g-Mode; 20 MHz; 6 Mbit/s	
WLAN n-Mode; 20 MHz; 72.2 Mbit/s	

MIMO:

WLAN n-Mode; 20 MHz; 150 Mbit/s

2.6.3 Abbreviations of operating modes used for tests

Data rate / frequency	2412	2437	2462
g-mode, 6 Mbit/s	1g	2g	3g
n-Mode, 72.2 Mbit/s (MCS7)	1n	2n	3n
n-Mode, 150 Mbit/s (MCS15)	1n+	2n+	3n+

2.7 Special software used for testing

In the engineering mode provided for the tests, the EUT can be controlled by an external computer where a terminal program runs. Using the terminal emulation, remote control of the EUT is possible when running script files that i.e. will command the EUT to transmit at the desired data rate, antenna port, RF power level and duty cycle. Nominal power is set to a value of: mode g: +15 dBm, mode n: +14 dBm.

2.8 Product labelling

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

Test report Reference: MDE_PARRO_1418_FCCa

3 Test Results

3.1 Occupied bandwidth

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.1.1 Test Description

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (widest) occupied bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: 30 MHz
- Detector: Peak / Sample (6 dB bandwidth / 99% bandwidth)

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

Test report Reference: MDE_PARRO_1418_FCCa

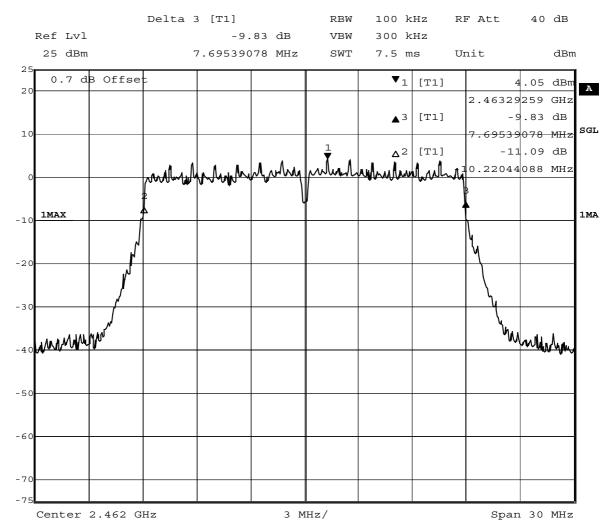
3.1.3 Test Protocol

Temperature: 23 °C Air Pressure: 1010 hPa Humidity: 45 %

3.1.3.1 6 dB bandwidth

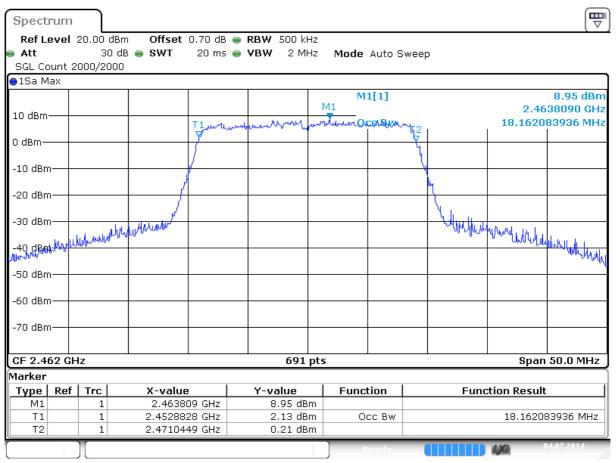
WLAN g-Mo	de; 20 MF				
Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz	1	2412	16.293	0.5	15.8
	6	2437	16.293	0.5	15.8
	11	2462	16.112	0.5	15.6

WLAN n-Mo					
Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz	1	2412	17.916	0.5	17.4
	6	2437	17.796	0.5	17.3
	11	2462	17.916	0.5	17.4


3.1.3.2 99% bandwidth

WLAN g-Mo					
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]	Limit [MHz]	Margin to Limit [dB]
2.4 GHz	1	2412	17.366	0.5	16.9
	6	2437	17.366	0.5	16.9
	11	2462	17.366	0.5	16.9

WLAN n-Mo					
Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]	Limit [MHz]	Margin to Limit [dB]
2.4 GHz	1	2412	18.017	0.5	17.5
	6	2437	18.162	0.5	17.7
	11	2462	18.162	0.5	17.7


3.1.4 Measurement Plot (showing the highest value, "worst case")

Date: 2.JUL.2014 08:46:34

6 dB bandwidth, op-mode 3n

Date: 4 JUL.2014 08:08:07

99% bandwidth, op-mode 3n

3.2 Peak power output

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:
- Detector: RMS

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz: 1 watt.

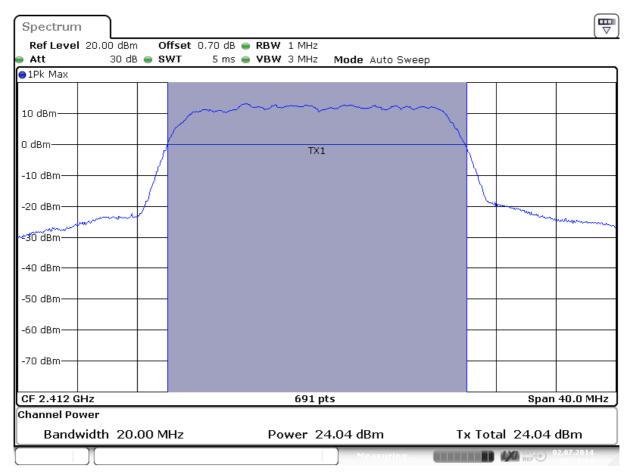
==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)

3.2.3 Test Protocol

Temperature: 23 °C Air Pressure: 1010 hPa Humidity: 45 %

3.2.3.1 SISO-mode, measured at antenna 1


WLAN g-Mo	ode; 20 MF					
Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.F [dBm]
2.4 GHz	1	2412	23.3	30.0	6.7	24.6
	6	2437	23.5	30.0	6.5	24.8
	11	2462	23.3	30.0	6.7	24.6

3.2.3.2 MIMO-mode, measured at antenna 1 and 2

WLAN n	-Mode;	20 MHz	; 150 Mbit		TX1	TX1	TX1	TX1		
					Margin					
			Peak		to					
	Ch.	Freq.	Power	Limit	Limit					EIRP
Band	No.	[MHz]	[dBm]	[dBm]	[dB]	ANT1	ANT2	N/A	N/A	[dBm]
2.4 GHz	1	2412	26.1	30.0	3.9	24.0	21.9	-99.0	-99.0	28.0
	6	2437	26.1	30.0	3.9	23.8	22.2	-99.0	-99.0	28.0
	11	2462	26.0	30.0	4.0	23.8	22.1	-99.0	-99.0	28.0

3.2.4 Measurement Plot (showing the highest value, "worst case")

Date: 2 JUL.2014 09:50:04

3.3 Spurious RF conducted emissions

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Detector: Peak-MaxholdFrequency range: 30 – 40000 MHz

Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz
Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.5). This value is used to calculate the 20 dBc limit.

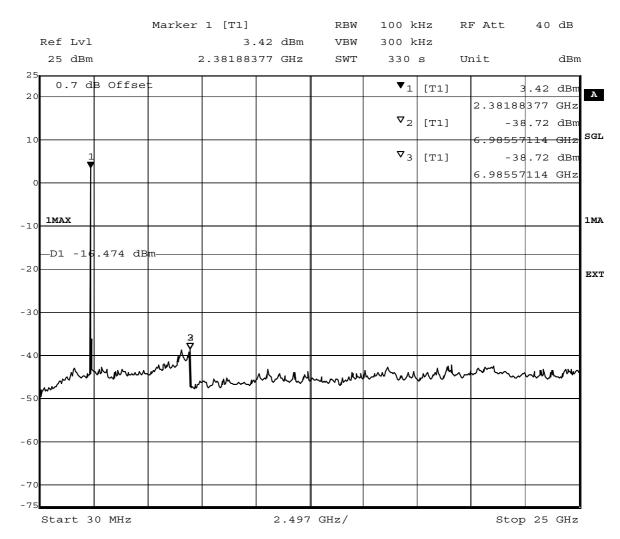
3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

3.3.3 Test Protocol

Temperature: 23 °C Air Pressure: 1010 hPa Humidity: 45 %


WLAN g-N	WLAN g-Mode; 20 MHz; 6 Mbit/s							
	Channel							Margin
	Center	Spurious	Spurious			Ref.		to
Channel	Freq.	Freq.	Level		RBW	Level	Limit	Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dBm]	[dB]
1	2412			PEAK	100	4.1	-15.9	
6	2437			PEAK	100	4.4	-15.6	
11	2462			PEAK	100	4.8	-15.2	

WLAN n-N	/lode; 20 MH							
Channel No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412			PEAK	100	3.5	-16.5	
6	2437			PEAK	100	4.5	-15.5	
11	2462			PEAK	100	4.4	-15.6	

Note: No (further) spurious emissions in the range 20 dB below the limit found.

3.3.4 Measurement Plot (showing the highest value, "worst case")

Title: spurious emissions
Comment A: CH B: 2412 MHz
Date: 1.JUL.2014 15:41:23

3.4 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.4.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is performed while the EUT is powered from a DC power sourse.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

Frequency steps: 0.1 kHz and 5 kHzIF-Bandwidth: 0.2 kHz and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 - 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 0.2 - 10 kHz

- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

Antenna distance: 3 mDetector: Peak-Maxhold

- Frequency range: 30 - 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 μs
Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step, the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 22.5° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 25 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF – Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: \pm 22.5 ° around the determined value - Height variation range: \pm 25 cm around the determined value

Test report Reference: MDE_PARRO_1418_FCCa

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact, that in this frequency range a double-ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

• • •

The same method of determining the conducted output power shall be used to determine the power spectral density.

3.4.3 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)		surement ance (m)	Calculated Limits(dBµV/m @10m)	Limits(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300	59.1 dB	(48.5 – 13.8) + 30 dB	78.5 – 43.8
0.49 - 1.705	24000/F(kHz)	30	19.1 dB	(48.9 – 23.0) + 10 dB	58.9 – 33.0
1.705 – 30	30	30	19.1 dB	29.5 + 10 dB	39.5

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limit (dBµV/m)
30 – 88	100	3	40.0
88 – 216	150	3	43.5
216 – 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

3.4.4 Test Protocol

Temperature: 23-27 °C

Air Pressure: 1000-1009 hPa

Humidity: 33–39 %

WLAN	g-Mode;	20 MHz; 6	Mbit/s	Applied du	uty cycle c	orrection (A	V) [dB]:	0.3
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	114.2	29.1	QP	120	43.5	14.4	RB
1	2412	270.4	41.5	QP	120	46.0	4.5	RB
1	2412	2390.0	63.3	PEAK	1000	74.0	10.7	RB
1	2412	2713.0	53.2	PEAK	1000	74.0	20.9	RB
1	2412	3618.0	42.9	PEAK	1000	74.0	31.1	RB
1	2412	18091.0	46.3	PEAK	1000	74.0	27.7	RB
1	2412	2390.0	43.5	AV	1000	54.0	10.5	RB
1	2412	2713.0	46.1	AV	1000	54.0	7.9	RB
1	2412	3618.0	40.3	AV	1000	54.0	13.7	RB
1	2412	18091.0	40.4	AV	1000	54.0	13.6	RB
6	2437	3655.0	42.2	PEAK	1000	74.0	31.8	RB
6	2437	7312.0	49.4	PEAK	1000	74.0	24.6	RB
6	2437	18278.0	43.9	PEAK	1000	74.0	30.1	RB
6	2437	3655.0	39.4	AV	1000	54.0	14.6	RB
6	2437	7312.0	34.3	AV	1000	54.0	19.7	RB
6	2437	18278.0	37.9	AV	1000	54.0	16.1	RB
11	2462	2483.0	66.8	PEAK	1000	74.0	7.2	RB
11	2462	3693.0	41.5	PEAK	1000	74.0	32.5	RB
11	2462	7389.0	48.8	PEAK	1000	74.0	25.2	RB
11	2462	18551.0	46.3	PEAK	1000	74.0	27.7	RB
11	2462	2483.0	47.0	AV	1000	54.0	7.0	RB
11	2462	3693.0	38.2	AV	1000	54.0	15.8	RB
11	2462	7389.0	34.4	AV	1000	54.0	19.6	RB
11	2462	18551.0	39.3	AV	1000	54.0	14.7	RB

Note: No (further) spurious emissions in the range 20 dB below the limit found.

The results of the pre-test with peak detector have been similar for all three transmit frequencies in the frequency range 30–1000 MHz and independent from the transmit frequency. Therefore the final test applying the QP-(quasi-peak-)detector was perfomed only for the transmit frequency 2412 MHz.

WLAN	n-Mode;	20 MHz; 1	50 Mbit/s	Applied du	uty cycle c	orrection (A	AV) [dB]:	2.9
Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	2390.0	63.2	PEAK	1000	74.0	10.8	RB
1	2412	3618.0	42.3	PEAK	1000	74.0	31.7	RB
1	2412	4824.0	46.4	PEAK	1000	74.0	27.7	RB
1	2412	2390.0	47.7	AV	1000	54.0	6.3	RB
1	2412	3618.0	41.7	AV	1000	54.0	12.3	RB
1	2412	4824.0	35.8	AV	1000	54.0	18.2	RB
6	2437	3655.0	41.3	PEAK	1000	74.0	32.7	RB
6	2437	4881.0	45.0	PEAK	1000	74.0	29.0	RB
6	2437	7312.0	45.9	PEAK	1000	74.0	28.1	RB
6	2437	3655.0	40.6	AV	1000	54.0	13.4	RB
6	2437	4881.0	34.4	AV	1000	54.0	19.6	RB
6	2437	7312.0	36.3	AV	1000	54.0	17.7	RB
11	2462	2484.0	65.1	PEAK	1000	74.0	8.9	RB
11	2462	3693.0	40.2	PEAK	1000	74.0	33.8	RB
11	2462	4928.0	46.0	PEAK	1000	74.0	28.0	RB
11	2462	7389.0	45.8	PEAK	1000	74.0	28.3	RB
11	2462	2484.0	49.3	AV	1000	54.0	4.7	RB
11	2462	3693.0	39.1	AV	1000	54.0	14.9	RB
11	2462	4928.0	35.1	AV	1000	54.0	18.9	RB
11	2462	7389.0	36.4	AV	1000	54.0	17.6	RB

Note:

No (further) spurious emissions in the range 20 dB below the limit found. The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

3.5 Band edge compliance

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4-2009, FCC §15.31

3.5.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement. For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room.

For the lower band edge the EUT is set to transmit as follows:

For a WLAN transmitter working in the 2.4 GHz band on lowest channel:

CH1 = 2412 MHz / CH3 = 2422 MHz for a channel bandwidth of 20 / 40 MHz.

The lower band edge is 2400 MHz for 2.4 GHz band transmitter.

For the higher band edge the EUT is set to transmit as follows:

For a WLAN transmitter working in the 2.4 GHz band on highest channel:

 $CH11 = 2462 \ MHz \ or \ CH13 = 2472 \ MHz \ / \ CH11 = 2462 \ MHz \ for a channel bandwidth of 20 / 40 \ MHz.$

The higher band edge is 2483.5 MHz for a 2.4 GHz band transmitter.

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW / VBW = 100 / 300 kHz
- 2. Showing compliance of the higher band edge falls in to restricted bands by a radiated measurement.

The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 1 m distance. EMI receiver settings for radiated measurement:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

3.5.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

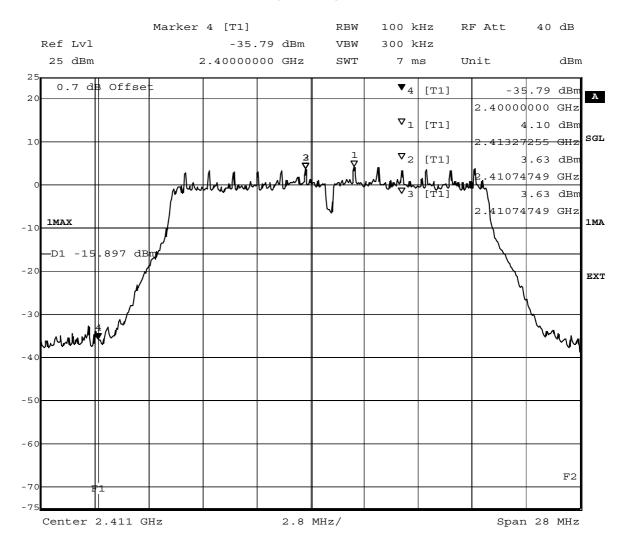
Test report Reference: MDE_PARRO_1418_FCCa

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".

3.5.3 Test Protocol

3.5.3.1 Conducted measurement, lower and higher band edge


Temperature: 23 °C Air Pressure: 1009 hPa Humidity: 38 %

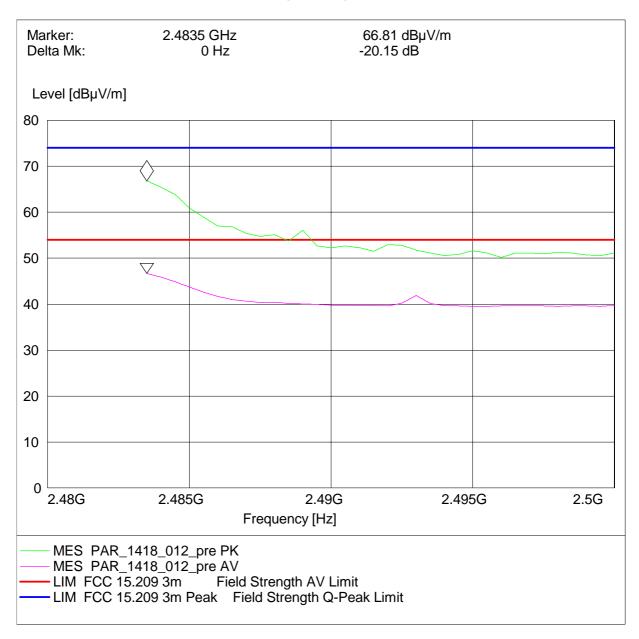
WLAN g	-Mode; 20 N							
	Channel		Spuriou					
	Center		S			Ref.		Margin
Channe	Frequency	Frequency	Level		RBW	Level	Limit	to Limit
l No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dBm]	[dB]
1	2412	2400.0	-35.8	PEAK	100	4.1	-15.9	19.9
11	2462	2483.5	-42.4	PEAK	100	4.8	-15.2	27.2

WLAN n-	·Mode; 20 Mi							
	Channel							
	Center		Spurious			Ref.		Margin
Channel	Frequency	Frequency	Level		RBW	Level	Limit	to Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dBm]	[dB]
1	2412	2400.0	-37.2	PEAK	100	3.5	-16.5	20.7

3.5.3.2 Measurement Plot (showing the highest value, "worst case")

Title: Band Edge Compliance
Comment A: CH B: 2412 MHz
Date: 1.JUL.2014 12:03:49

3.5.3.3 Radiated measurement, higher band edge


Temperature: 23 °C Air Pressure: 1009 hPa Humidity: 38 %

WLAN	/LAN g-Mode; 20 MHz; 6 Mbit/s							
	Ch.	Band						
	Center	Edge	Spurious				Margin	
Ch.	Freq.	Freq.	Level	Detec-	RBW	Limit	to Limit	Limit
No	[MHz]	[MHz]	[dBµV/m]	tor	[kHz]	[dBµV/m]	[dB]	Type
11	2462	2483.5	66.8	PEAK	1000	74.0	7.2	BE
1.1	2102	2400.0	00.0	1				

WLAN	n-Mode;	20 MHz;	150 Mbit/s					
	Ch.	Band						
	Center	Edge	Spurious				Margin	
Ch.	Freq.	Freq.	Level	Detec-	RBW	Limit	to Limit	Limit
No	[MHz]	[MHz]	[dBµV/m]	tor	[kHz]	[dBµV/m]	[dB]	Type
11	2462	2483.5	65.1	PEAK	1000	74.0	8.9	BE
11	2462	2483.5	46.5	AV	1000	54.0	7.5	BE

3.5.3.4 Measurement Plot (showing the highest value, "worst case")

3.6 Power density

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.6.1 Test Description

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Resolution Bandwidth (RBW): 3 kHzVideo Bandwidth (VBW): 30 kHz

- Sweep Time: Coupled

3.6.2 Test Requirements / Limits

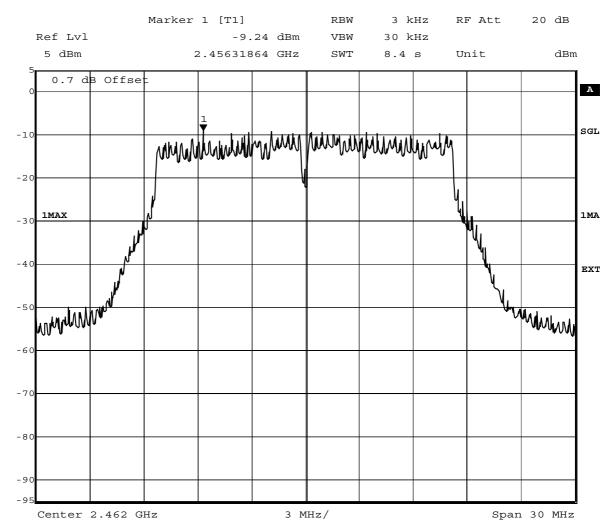
FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

. . .

The same method of determining the conducted output power shall be used to determine the power spectral density.

3.6.3 Test Protocol


Temperature: 23 °C Air Pressure: 1010 hPa Humidity: 45 %

WLAN g-Mode	e; 20 MHz ;	6 Mbit/s			
			Power		Margin
	Channel	Frequency	Density	Limit	to Limit
Band	No.	[MHz]	[dBm/3kHz]	[dBm/3kHz]	[dB]
2.4 GHz ISM	1	2412	-10.0	8.0	18.0
	6	2437	-9.6	8.0	17.6
	11	2462	-9.2	8.0	17.2

WLAN n-Mode; 20 MHz; 150 Mbit/s						Power 1	Power 2
	Ch.	Freq.	Power Density [dBm/	Limit [dBm/	Margin to Limit		
Band	No.	[MHz]	3kHz]	3kHz]	[dB]	ANT1	ANT2
2.4 GHz ISM	1	2412	-9.0	8.0	17.0	-10.7	-13.9
	6	2437	-8.8	8.0	16.8	-10.9	-13.0
	11	2462	-8.8	8.0	16.8	-10.5	-13.8

3.6.4 Measurement Plot (showing the highest value, "worst case")

Title: Power Density
Comment A: CH T: 2462 MHz;
Date: 1.JUL.2014 14:20:53

4 Test Equipment

List of Used Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab ID:Lab 2Manufacturer:Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

 Calibration Details
 Last Execution
 Next Exec.

 NSA (FCC)
 2014/01/09
 2017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Туре	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ Calibration Details	none	Frankonia Last Execution Next Exec.
	FCC listing 96716 3m Part15/18		2014/01/09 2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Conducted emissions

Lab ID: Lab 1

Manufacturer:Rohde & Schwarz GmbH & Co.KGDescription:EMI Conducted Auxiliary Equipment

Single Devices for Auxiliary Equipment for Conducted emissions

Single Device Name	Туре	Serial Number	Manufacturer
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber&Suhner
Impedance Stabilization Network	ISN T800	36159	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/02/06 2016/02/28
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ENY41	100002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/03/01 2015/03/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ST08	36292	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/10 2016/01/31

Test report Reference: MDE_PARRO_1418_FCCa Page 38 of 49

Single Devices for Auxiliary Equipment for Conducted emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN T8-Cat6	32187	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/08 2016/01/31
One-Line V-Network	ESH 3-Z6	100489	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	standard calibration		2014/06/18 2017/11/30
One-Line V-Network	ESH 3-Z6	100570	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/11/25 2016/11/24
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standart Calibration		2013/03/01 2015/02/28
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/03/01 2015/02/28

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/119205 13	5 Maturo GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck
Biconical dipole	VUBA 9117 Calibration Details	9117-108	Schwarzbeck Last Execution Next Exec.
	Standard Calibration		2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01 2	- Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02 2	- Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/05/18 2015/05/17
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/06/26 2015/06/25
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	ВВНА 9170		
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/10/27 2014/10/26
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/379070	Maturo GmbH 9

Test Equipment Auxiliary Test Equipment

Lab ID:Lab 2, Lab 3Manufacturer:see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.
Broadband Power Divide N (Aux)	er1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	erWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2014/02/10 2016/02/09
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2012/06/13 2015/06/12
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/07/29 2014/07/28
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab 1, Lab 2, Lab 3

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Uni CBT	t CBT	100589	Rohde & Schwarz GmbH & Co KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/24 2014/11/23
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/27 2016/01/26
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/28 2014/11/27
Jniversal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co KG
	HW/SW Status		Date of Start Date of End
	Software: K21 4v21, K22 4v21, K23 4v21 K43 4v21, K53 4v21, K56 4v22 K59 4v22, K61 4v22, K62 4v22 K65 4v22, K66 4v22, K67 4v22 Firmware: µP1 8v50 02.05.06	, K57 4v22, K58 4v22, , K63 4v22, K64 4v22,	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co
communication rester	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/12/07 2014/12/06
	HW/SW Status		Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52' B54V14, B56V14, B68 3v04, B9 SW options: K21 4v11, K22 4v11, K23 4v11 K28 4v10, K42 4v11, K43 4v11 K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05 SW:	95, PCMCIA, U65V02 , K24 4v11, K27 4v10,	2007/01/02
	K62, K69	100010	
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co

Test report Reference: MDE_PARRO_1418_FCCa

KG

Test Equipment Emission measurement devices

Lab 1D: Lab 1, Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/07 2016/01/31
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45 du	uring calibration	2009/12/03

Test Equipment Multimeter 12

Lab ID:Lab 4, Lab 5Description:Ex-Tech 520Serial Number:05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 3

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide SMA	rWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/24 2014/07/02
	Standard calibration		2014/07/03 2015/07/02
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/02/12 2015/02/11

Test Equipment Regulatory Bluetooth RF Test Solution

Lab ID: Lab 4

Description: Regulatory Bluetooth RF Tests

Type: Bluetooth RF

Serial Number: 001

Single Devices for Regulatory Bluetooth RF Test Solution

Single Device Name	Туре	Serial Number	Manufacturer
ADU 200 Relay Box 7	Relay Box	A04380	Ontrak Control Systems Inc.
Bluetooth Signalling Unit	t CBT	100302	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/08/28 2014/08/27
Power Meter NRVD	NRVD Calibration Details	832025/059	Last Execution Next Exec.
	Standard calibration		2013/08/26 2014/08/25
Power Sensor NRV Z1 A	PROBE	832279/013	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/08/28 2014/08/27
Power Supply	NGSM 32/10	2725	Last Francistics - Novit Francis
	Calibration Details Standard calibration		Last Execution Next Exec. 2013/06/20 2015/06/19
	Standard calibration		2013/06/20 2015/06/19
Rubidium Frequency Normal MFS	Datum MFS	002	Datum GmbH
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/08/27 2014/08/26
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/21 2016/06/20

Test Equipment Shielded Room 02

Lab ID:Lab 1Manufacturer:Frankonia

Description: Shielded Room for conducted testing

Type: 12 qm Serial Number: none

Test Equipment Shielded Room 07

Lab ID: Lab 4, Lab 5

Description: Shielded Room 4m x 6m

Test Equipment T/A Logger 13

Lab ID:Lab 1, Lab 2, Lab 3Description:Lufft Opus10 TPRType:Opus10 TPRSerial Number:13936

Single Devices for T/A Logger 13

Single Device Name	Туре	Serial Number	Manufacturer
ThermoAirpressure Datalogger 13 (Environ)	Opus10 TPR (8253.00)	13936	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/06

Test Equipment T/H Logger 02

Lab 1D:Lab 1Description:Lufft Opus10Serial Number:7489

Single Devices for T/H Logger 02

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogge 02 (Environ)	erOpus10 THI (8152.00)	7489	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/06

Test Equipment T/H Logger 03

Lab ID:Lab 3Description:Lufft Opus10Serial Number:7482

Single Devices for T/H Logger 03

Single Device Name	Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 03 (Environ)		7482	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/06

Test Equipment T/H Logger 12

Lab ID:Lab 2Description:Lufft Opus10Serial Number:12482

Single Devices for T/H Logger 12

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 12 (Environ)		12482	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/01/07 2015/01/06

Test report Reference: MDE_PARRO_1418_FCCa Page 46 of 49

Test Equipment T/H Logger 15

Lab ID: Lab 4, Lab 5 Description: Lufft Opus10 Serial Number: 13985

Single Devices for T/H Logger 15

Single Device Name	Type	Serial Number	Manufacturer
ThermoHygro Datalogge 15 (Environ)	erOpus10 THI (8152.00)	13985	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/01/07 2015/01/06

Test Equipment Temperature Chamber 01

Lab 4, Lab 5 Manufacturer: see single devices

Description: Temperature Chamber KWP 120/70

Weiss Type:

see single devices Serial Number:

Single Devices for Temperature Chamber 01

Single Device Name	Type	Serial Number	Manufacturer
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2014/03/12 2016/03/11

Test Equipment Temperature Chamber 05

Lab ID: Lab 3

Manufacturer: see single devices

Description: Temperature Chamber VT4002

Type: Vötsch

Serial Number: see single devices

Single Devices for Temperature Chamber 05

Single Device Name	Туре	Serial Number	Manufacturer
Temperature Chamber Vötsch 05	VT 4002	58566080550010	Vötsch
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2014/03/11 2016/03/10

Test Equipment WLAN RF Test Solution

Lab 5

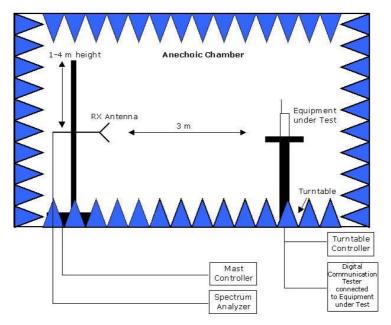
Manufacturer: 7 layers AG

Description: Regulatory WLAN RF Tests

Type: WI AN RF Lab 5

Serial Number: 001

Single Devices for WLAN RF Test Solution


Single Device Name	Туре	Serial Number	Manufacturer
Arbitrary Waveform Generator	TGA12101	284482	
Power Meter NRVD	NRVD Calibration Details	832025/059	Last Execution Next Exec.
	Standard calibration		2013/08/26 2014/08/25
Power Sensor NRV Z1 A	PROBE	832279/013	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/08/28 2014/08/27
Power Supply	NGSM 32/10 Calibration Details	2725	Last Execution Next Exec.
	Standard calibration		2013/06/20 2015/06/19
Rubidium Frequency Normal MFS	Datum MFS	002	Datum GmbH
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/08/27 2014/08/26
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG
Spectrum Analyser	FSU26	100136	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/06 2015/01/05
	HW/SW Status		Date of Start Date of End
	FSU FW Update to v4.61 SP3, K5 v4.60	0 and K73 v4.61	2011/12/05
Spectrum Analyser	FSU3	200046	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/20 2014/06/19
	HW/SW Status		Date of Start Date of End
	Firmware Version 4.51 SP1 Option FS-K72 4.50 SP1 Option FS-K73 4.50 SP1		2011/12/07
TOCT Switching Unit	Switching Unit	040107	7 layers, Inc.
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/21 2016/06/20

5 Photo Report

Please refer to external report.

6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.