

Inter Lab

FCC Measurement/Technical Report on

WLAN / Blutooth Low Energy transceiver Parrot FC7100 (Module)

FCC ID RKXFC7100 IC: 5119A-FC7100

Report Reference: MDE PARRO 1426 FCCc

Test Laboratory:

Borsigstrasse 11 Germany 7Layers AG 40880 Ratingen

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Peter Mertel Vorstand • Board: Dr. H.-J. Meckelburg Dr. H. Ansorge

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT No.: DE 203159652 TAX No. 147/5869/0385

Table of Contents

O	Applied Standards and Test Summary	3
0.1	Technical Report Summary	3
0.2	FCC and IC Correlation Table	4
0.3	Measurement Summary	5
1	Administrative Data	9
1.1	Testing Laboratory	9
1.2	Project Data	9
1.3	Applicant Data	9
1.4	Manufacturer Data	9
2	Test object Data	10
2.1	General EUT Description	10
2.2	EUT Main components	11
2.3	Ancillary Equipment	11
2.4	Auxiliary Equipment	12
2.5	EUT Setups	12
2.6	Operating Modes	13
2.7	Special software used for testing	13
2.8	Product labelling	13
3	Test Results	14
3.1	Conducted emissions (AC power line)	14
3.2	Occupied bandwidth	17
3.3	Peak power output	22
3.4	Spurious RF conducted emissions	25
3.5	Spurious radiated emissions	28
3.6	Band edge compliance	33
3.7	Power density	38
4	Test Equipment	41
5	Photo Report	52
6	Setup Drawings	52

O Applied Standards and Test Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Digital Device / Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-13 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C - Intentional Radiators

- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS)Operating Under §15.247, 558074 D01 DTS Meas Guidance v03r02, 2014-06-05".

Instead of applying ANSI C63.4–1992 which is referenced in the FCC Public Note, the newer ANSI C63.4–2009 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.3 Measurement Summary.

0.2 FCC and IC Correlation Table

Correlation of measurement requirements for DTS devices (e.g. WLAN 2.4/5 GHz) equipment

The following tables show the correlation of measurement requirements for DTS (e.g. WLAN) equipment and Information Technology Equipment (ITE) from FCC and IC standards.

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 4: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-210 Issue 8: A8.2 (a)
Peak power output	§ 15.247 (b) (3), (4)	RSS-210 Issue 8: A8.4 (4)
Spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-210 Issue 8: A8.5
Spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 4: 6.13 / 8.9/8.10; RSS-210 Issue 8: A8.5
Band edge compliance	§ 15.247 (d)	RSS-210 Issue 8: A8.5
Power density	§ 15.247 (e)	RSS-210 Issue 8: A8.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 4: 8.3
Receiver spurious emissions	_	RSS-210 Issue 8: 2.3 RSS Gen Issue 4: 5 / 7 *)

^{*)} Receivers are exempted from certification besides if operating in stand-alone mode in the frequency range 30–960 MHz or if these are scanner receivers.

Information Technology Equipment (ITE)

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.107	ICES-003 Issue 5: 6.1
Spurious Radiated Emissions	§ 15.109	ICES-003 Issue 5: 6.2

0.3 Measurement Summary

FCC Part 15, Subpart C § 15.207

Conducted emissions (AC power line)

The measurement was performed according to ANSI C63.4

OP-Mode Setup Port **Final Result** Setup_03 passed op-mode 2b AC port

§ 15.247 (a) (1)

FCC Part 15, Subpart C

Occupied bandwidth

The measurement was performed according to FCC § 15.31

	•	5	
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_04	Temp.ant.connector	passed
op-mode 1g	Setup_04	Temp.ant.connector	passed
op-mode 1n2	Setup_04	Temp.ant.connector	passed
op-mode 1n4	Setup_04	Temp.ant.connector	passed
op-mode 1LE	Setup_01	Temp.ant.connector	passed
op-mode 2b	Setup_04	Temp.ant.connector	passed
op-mode 2g	Setup_04	Temp.ant.connector	passed
op-mode 2n2	Setup_04	Temp.ant.connector	passed
op-mode 2n4	Setup_04	Temp.ant.connector	passed
op-mode 2LE	Setup_01	Temp.ant.connector	passed
op-mode 3b	Setup_04	Temp.ant.connector	passed
op-mode 3g	Setup_04	Temp.ant.connector	passed
op-mode 3n2	Setup_04	Temp.ant.connector	passed
op-mode 3n4	Setup_04	Temp.ant.connector	passed
op-mode 3LE	Setup_01	Temp.ant.connector	passed

FCC Part 15, Subpart C § 15.247 (b) (1)

Peak power output

The measurement was performed according to FCC § 15.31

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_04	Temp.ant.connector	passed
op-mode 1g	Setup_04	Temp.ant.connector	passed
op-mode 1n2	Setup_04	Temp.ant.connector	passed
op-mode 1n4	Setup_04	Temp.ant.connector	passed
op-mode 1LE	Setup_01	Temp.ant.connector	passed
op-mode 2b	Setup_04	Temp.ant.connector	passed
op-mode 2g	Setup_04	Temp.ant.connector	passed
op-mode 2n2	Setup_04	Temp.ant.connector	passed
op-mode 2n4	Setup_04	Temp.ant.connector	passed
op-mode 2LE	Setup_01	Temp.ant.connector	passed
op-mode 3b	Setup_04	Temp.ant.connector	passed
op-mode 3g	Setup_04	Temp.ant.connector	passed
op-mode 3n2	Setup_04	Temp.ant.connector	passed
op-mode 3n4	Setup_04	Temp.ant.connector	passed
op-mode 3LE	Setup_01	Temp.ant.connector	passed

FCC Part 15, Subpart C

§ 15.247 (d), § 15.35 (b), § 15.207

Spurious conducted emissions

The measurement was performed according to ANSI C63.4

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_04	Temp.ant.connector	passed
op-mode 1g	Setup_04	Temp.ant.connector	passed
op-mode 1n2	Setup_04	Temp.ant.connector	passed
op-mode 1n4	Setup_04	Temp.ant.connector	passed
op-mode 1LE	Setup_01	Temp.ant.connector	passed
op-mode 2b	Setup_04	Temp.ant.connector	passed
op-mode 2g	Setup_04	Temp.ant.connector	passed
op-mode 2n2	Setup_04	Temp.ant.connector	passed
op-mode 2n4	Setup_04	Temp.ant.connector	passed
op-mode 2LE	Setup_01	Temp.ant.connector	passed
op-mode 3b	Setup_04	Temp.ant.connector	passed
op-mode 3g	Setup_04	Temp.ant.connector	passed
op-mode 3n2	Setup_04	Temp.ant.connector	passed
op-mode 3n4	Setup_04	Temp.ant.connector	passed
op-mode 3LE	Setup_01	Temp.ant.connector	passed

FCC Part 15, Subpart C § 15.247 (d), § 15.35 (b), § 15.209

Spurious radiated emissions

The measurement was performed according to ANSI C63.4

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_05	Enclosure	passed
op-mode 1g	Setup_05	Enclosure	passed
op-mode 2b	Setup_05	Enclosure	passed
op-mode 2g	Setup_05	Enclosure	passed
op-mode 3b	Setup_05	Enclosure	passed
op-mode 3g	Setup_05	Enclosure	passed
op-mode 1LE	Setup_02	Enclosure	N/P ¹⁾
op-mode 2LE	Setup_02	Enclosure	N/P ¹⁾
op-mode 3LE	Setup_02	Enclosure	N/P 1)

FCC Part 15, Subpart C § 15.247 (d)

Band edge compliance

The measurement was performed according to FCC § 15.31 / **ANSI C63.4**

711101 000.1			
OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_04	Temp.ant.connector	passed
op-mode 1g	Setup_04	Temp.ant.connector	passed
op-mode 1n2	Setup_04	Temp.ant.connector	passed
op-mode 1n4	Setup_04	Temp.ant.connector	passed
op-mode 1LE	Setup_01	Temp.ant.connector	passed
op-mode 2b	Setup_04	Temp.ant.connector	passed
op-mode 2g	Setup_04	Temp.ant.connector	passed
op-mode 2n2	Setup_04	Temp.ant.connector	passed
op-mode 2n4	Setup_04	Temp.ant.connector	passed
op-mode 2LE	Setup_01	Temp.ant.connector	passed
op-mode 3b	Setup_04	Temp.ant.connector	passed
op-mode 3g	Setup_04	Temp.ant.connector	passed
op-mode 3n2	Setup_04	Temp.ant.connector	passed
op-mode 3n4	Setup_04	Temp.ant.connector	passed
op-mode 3LE	Setup_01	Temp.ant.connector	passed
op-mode 1b	Setup_05	Enclosure	passed
op-mode 1g	Setup_05	Enclosure	passed
op-mode 1n2	Setup_05	Enclosure	passed
op-mode 1n4	Setup_05	Enclosure	passed
op-mode 1LE	Setup_02	Enclosure	N/P ¹⁾
op-mode 2b	Setup_05	Enclosure	passed
op-mode 2g	Setup_05	Enclosure	passed
op-mode 2n2	Setup_05	Enclosure	passed
op-mode 2n4	Setup_05	Enclosure	passed
op-mode 2LE	Setup_02	Enclosure	N/P ¹⁾
op-mode 3b	Setup_05	Enclosure	passed
op-mode 3g	Setup_05	Enclosure	passed
op-mode 3n2	Setup_05	Enclosure	passed
op-mode 3n4	Setup_05	Enclosure	passed
op-mode 3LE	Setup_02	Enclosure	N/P 1)

FCC Part 15, Subpart C

§ 15.247 (e)

Power density

The measurement was performed according to FCC § 15.31

OP-Mode	Setup	Port	Final Result
op-mode 1b	Setup_04	Temp.ant.connector	passed
op-mode 1g	Setup_04	Temp.ant.connector	passed
op-mode 1n2	Setup_04	Temp.ant.connector	passed
op-mode 1n4	Setup_04	Temp.ant.connector	passed
op-mode 1LE	Setup_01	Temp.ant.connector	passed
op-mode 2b	Setup_04	Temp.ant.connector	passed
op-mode 2g	Setup_04	Temp.ant.connector	passed
op-mode 2n2	Setup_04	Temp.ant.connector	passed
op-mode 2n4	Setup_04	Temp.ant.connector	passed
op-mode 2LE	Setup_01	Temp.ant.connector	passed
op-mode 3b	Setup_04	Temp.ant.connector	passed
op-mode 3g	Setup_04	Temp.ant.connector	passed
op-mode 3n2	Setup_04	Temp.ant.connector	passed
op-mode 3n4	Setup_04	Temp.ant.connector	passed
op-mode 3LE	Setup_01	Temp.ant.connector	passed

N/P Not performed:

1) The test was performed for the FHSS-report referenced by:

MDE_PARRO_1426_FCCa (mode: 1-DH1).

Please refer to this test report.

Responsible for	Responsible	
Accreditation Scope:	for Test Report:	

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG

Address Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716 .

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no.: DAkkS D-PL-12140-01-01

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka

Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Dipl.-Ing. Andreas Petz Dipl.-Ing. Marco Kullik

Report Template Version: 2014-11-21

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Daniel Gall

Employees who performed the tests: documented internally at 7Layers

Date of Test(s): 2014-09-16 to 2014-11-17

Date of Report: 2014-11-24

1.3 Applicant Data

Company Name: Parrot S.A.

Address: 174, quai de Jemmapes

75010 Paris France

Contact Person: Ms. Meryam ABOU EL ANOUAR

1.4 Manufacturer Data

Company Name: Please see applicant data

Address:

Contact Person:

2 Test object Data

2.1 General EUT Description

Equipment under Test: IEEE 802.11/b/g/n WLAN transceiver (2.4 GHz)

/ Blutooth Low Energy transceiver (2.4 GHz)

Type Designation: FC7100

Kind of Device: Module supporting these technologies:

(optional) 1) WLAN 2.4 GHz modes b/g/n, 20+40 MHz BW

2) WLAN 5 GHz modes a/n, 20+40 MHz BW 3) Bluetooth, normal and low energy mode

4) GPS receiver

Voltage Type: DC Voltage Level: 3.3 V

Tested Modulation Type: DBPSK; OFDM:BPSK; GFSK

General product description:

The WLAN Transceiver is operating in the 2.4 GHz ISM band using Direct Sequence Spread Spectrum (DSSS) Modulation and Orthogonal Frequency Division Multiplexing (OFDM).

The BT Transceiver is operating in the 2.4 GHz ISM band using Frequency Hopping Spread Spectrum (FHSS) Modulation, in Low Energy Mode operating in the 2.4 GHz ISM band using Direct Sequence Spread Spectrum (DSSS) Modulation.

Specific product description for the EUT:

The EUT is a dual band WLAN (802.11 a/b/g/n, 2.4 and 5 GHz) and Bluetooth module with one joint antenna connector for WLAN 2.4 GHz and Bluetooth, but simultaneous transmission is not possible and is managed by the module. In IEEE 802.11n mode it supports 20 MHz and 40 MHz bandwidth channels (both with MCS7), providing 72.2 Mbit/s, and 150 Mbit/s transfer data rates respectively.

The WLAN (Wireless Local Area Network) transceiver is operating in the 5 GHz band in the range 5.15 – 5.25 GHz and 5.725 – 5.850 GHz.

Additionally, it contains a GPS receiver.

The object of this test report is the WLAN and Bluetooth (low energy mode) transceiver, it was tested at 20 and 40 MHz channel bandwidth resp. at 1 MHz bandwidth.

TPC Supported N
Slave without Radar
Interference Detection N
Adaptive Mode Y
Non-adaptive Mode N

The EUT provides the following ports:

Ports

Enclosure
Data / DC port (system connector)
2.4 GHz Antenna (UFL connector)
5 GHz Antenna (UFL connector)
GPS Antenna (UFL connector)

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
EUT A (Code: DE1018007aa01)	BT LE (&WLAN) transceiver	FC7100	PF814000CA 4G000178	08	samus-0.0.13-20- g046b348
Remark: EUT A is e	quipped with a pe	ermanent antenna	connector (gain	= 2.2 dBi).	
EUT B WLAN FC7100 PF814000CA 08 samus-0.0.13-20- (Code: (&BT LE) 4G000170 g046b348 DE1018007ab01) transceiver Remark: EUT B is equipped with a permanent antenna connector (gain = 2.2 dBi).					

NOTE: The short description used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment, which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
_	_	_	-	_	_

2.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment, which is used temporarily to enable operational and control features especially used for the tests of the EUT, which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status
AUX1	Development Board	Parrot FC7100_EMC_MEZZ_ HW01	A8424/015	HW01	-
AUX2	External Antenna	Inverted-F, PIFA	_	-	_
AUX3	AC/DC laboratory power supply	Philips PE 1540 (40 V / 3 A)	WB2045	-	_
AUX4	Development Board	Parrot FC7100_EMC_WB_H W00	AFF1310-13	HW00	-

2.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
Setup_01	EUT A + AUX1	setup for conducted radio measurements, BT LE
Setup_02	EUT A + AUX1 + AUX2 +	setup for radiated measurements, BT LE
	AUX4	
Setup_03	EUT B + AUX1 to AUX4	setup for conducted emissions (AC power line) measurements
Setup_04	EUT B + AUX1	setup for conducted radio measurements, WLAN
Setup 05	EUT B + AUX1 + AUX2 +	setup for radiated measurements, WLAN
	AUX4	

2.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Data rate / frequency	2402	2412 /2422	2437	2440	2462	2480
b-mode, 1 Mbit/s	_	1b	2b	_	3b	-
g-mode, 6 Mbit/s	_	1g	2g	_	3g	_
n-Mode, 6.5 Mbit/s (MCS0), 20 MHz	_	1n2	2n2	_	3n2	_
n-Mode, 13 Mbit/s (MCS0), 40 MHz	_	1n4	2n4	_	3n4	_
BT LE mode, 1 Mbit/s	1LE	_	_	2LE	_	3LE

NOTE: Frequency 2422 MHz is used at 40 MHz bandwidth signals.

2.7 Special software used for testing

WLAN:

A tool which is called "Pulsar Shell" (an adb tool) is used to set the EUT into the desired WLAN test modes. Different commands can be entered via the "calibrator tool".

The LAN interface at AUX1 is used for this purpose.

The nominal power is set to +20 dBm, besides for the test case "band edge compliance" the power is set to +16 dBm for the mode 3n4 (40 MHz nominal bandwidth). A description is available from the applicant.

Bluetooth LE:

A tool called "Wxpyobus" is used which is running under Python v2.7 & 2.8. A description is available from the applicant.

2.8 Product labelling

2.8.1 FCC ID label

Please refer to the documentation of the applicant.

2.8.2 Location of the label on the EUT

Please refer to the documentation of the applicant.

3 Test Results

3.1 Conducted emissions (AC power line)

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C 63.4

3.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H}$ || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

- Detector: Peak - Maxhold

- Frequency range: 150 kHz - 30 MHz

Frequency steps: 5 kHzIF-Bandwidth: 9 kHz

- Measuring time / Frequency step: 20 ms

- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:
- Detector: Quasi-Peak
- IF Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

3.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Frequency Range (MHz) QP Limit (dBµV) AV Limit (dBµV) 0.15 - 0.566 to 56 56 to 46 0.5 - 556 46 5 - 30 60 50

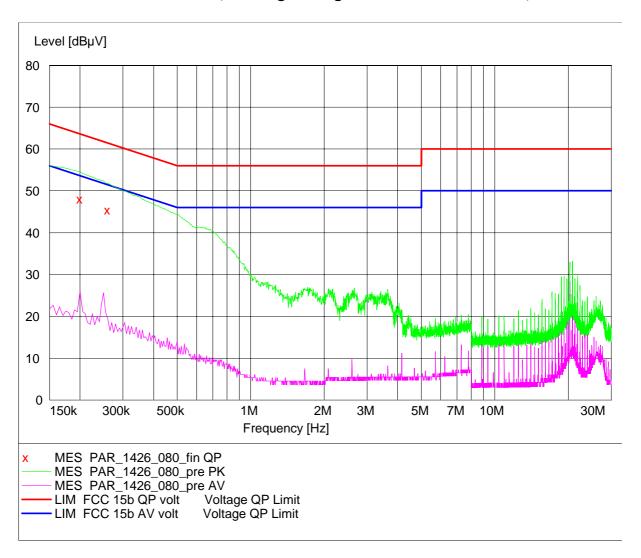
Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

3.1.3 Test Protocol

28 °C Temperature: Air Pressure: 1003 hPa Humidity: 37 %

Power line	Frequency MHz	Measured value QP dBµV	Measured value AV dBµV	QP Limit dBµV	AV Limit dBµV	Margin QP dB	Margin AV dB
N	0.20	48.1	_	63.6	-	15.5	-
N	0.26	45.4	-	61.4	_	16.0	_

Remark: Please see next sub-clause for the measurement plot. Mode b, 1 Mbit/s.


The chosen operating mode is selected as representative mode to generate "worst-case" conditions,

i.e. high power consumption.

The EUT is operated at 12 V DC while supplied by AUX3 which is connected to AC Mains at 120 V / 60 Hz.

3.1.4 Measurement Plot (showing the highest value, "worst case")

3.2 Occupied bandwidth

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.2.1 Test Description

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The results recorded were measured with the modulation which produce the worst-case (widest) occupied bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Resolution Bandwidth (RBW): 100 / 500 kHz (6 dB bandwidth / 99% bandwidth)
- Video Bandwidth (VBW): 300 kHz / 2 MHz (6 dB bandwidth / 99% bandwidth)
- Span: 30 / 50 or 60 MHz (for 20 / 40 MHz nominal bandwidth)
- Detector: Peak / Sample (6 dB bandwidth / 99% bandwidth)

3.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Used conversion factor: Output power (dBm) = 10 log (Output power (W) / 1mW)

3.2.3 Test Protocol

Temperature: 23 °C Air Pressure: 1010 hPa Humidity: 45 %

3.2.3.1 6 dB bandwidth

WLAN b-Mod	de; 20 MHz	z; 1 Mbit/s			
			6 dB		Margin to
	Channel	Frequency	Bandwidth	Limit	Limit
Band	No.	[MHz]	[MHz]	[MHz]	[MHz]
2.4 GHz ISM	1	2412	10.164	0.5	9.7
	6	2437	10.164	0.5	9.7
	11	2462	10.164	0.5	9.7

WLAN g-Mod	le; 20 MHz	z; 6 Mbit/s			
			6 dB		Margin to
	Channel	Frequency	Bandwidth	Limit	Limit
Band	No.	[MHz]	[MHz]	[MHz]	[MHz]
2.4 GHz ISM	1	2412	15.216	0.5	14.7
	6	2437	15.216	0.5	14.7
	11	2462	15.216	0.5	14.7

WLAN n-Mod	de; 20 MHz				
			6 dB		Margin to
	Channel	Frequency	Bandwidth	Limit	Limit
Band	No.	[MHz]	[MHz]	[MHz]	[MHz]
2.4 GHz ISM	1	2412	15.216	0.5	14.7
	6	2437	15.216	0.5	14.7
	11	2462	15.216	0.5	14.7

WLAN n-Mode; 40 MHz; 13 Mbit/s									
			6 dB		Margin to				
	Channel	Frequency	Bandwidth	Limit	Limit				
Band	No.	[MHz]	[MHz]	[MHz]	[MHz]				
2.4 GHz ISM	3	2422	35.231	0.5	34.7				
	6	2437	35.254	0.5	34.8				
	11	2462	35.261	0.5	34.8				

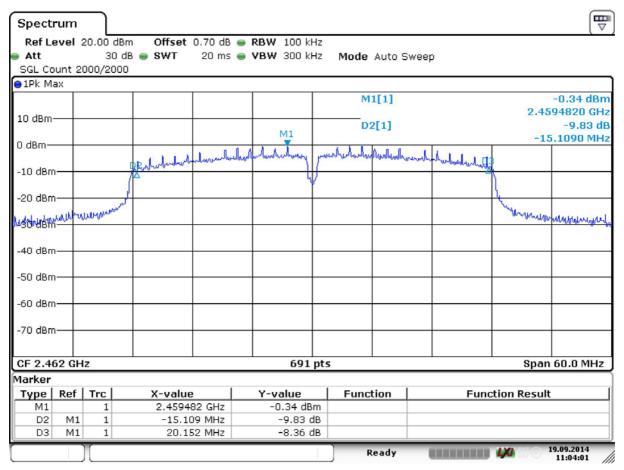
BT LE mode,	1 Mbit/s				
			6 dB		Margin to
	Channel	Frequency	Bandwidth	Limit	Limit
Band	No.	[MHz]	[MHz]	[MHz]	[MHz]
2.4 GHz ISM	0	2402	0.669	0.5	0.2
	19	2440	0.673	0.5	0.2
	39	2480	0.669	0.5	0.2

3.2.3.2 99% bandwidth

WLAN b-Mod	le; 20 MHz	z; 1 Mbit/s			
			99 %		Margin to
	Channel	Frequency	Bandwidth	Limit	Limit
Band	No.	[MHz]	[MHz]	[MHz]	[dB]
2.4 GHz ISM	1	2412	14.689	0.5	14.2
	6	2437	14.616	0.5	14.1
	11	2462	14.614	0.5	14.1

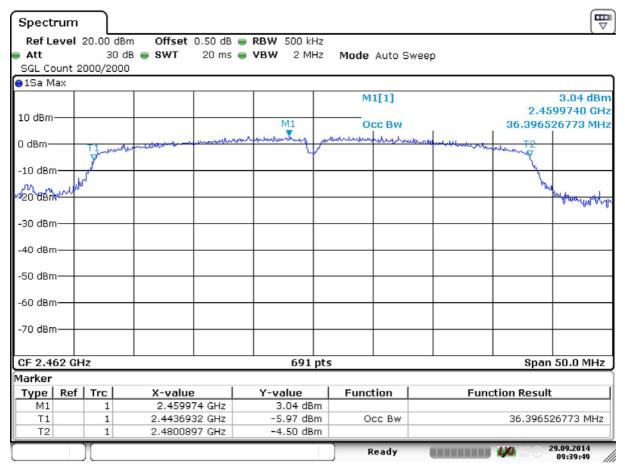
WLAN g-Mod	le; 20 MHz	z; 6 Mbit/s			
			99 %		Margin to
	Channel	Frequency	Bandwidth	Limit	Limit
Band	No.	[MHz]	[MHz]	[MHz]	[dB]
2.4 GHz ISM	1	2412	17.149	0.5	16.6
	6	2437	21.418	0.5	20.9
	11	2462	16.932	0.5	16.4

WLAN n-Mod	de; 20 MHz				
			99 %		Margin to
	Channel	Frequency	Bandwidth	Limit	Limit
Band	No.	[MHz]	[MHz]	[MHz]	[dB]
2.4 GHz ISM	1	2412	18.234	0.5	17.7
	6	2437	20.116	0.5	19.6
	11	2462	18.090	0.5	17.6


WLAN n-Mod	de; 40 MHz	z; 13 Mbit/s			
			99 %		Margin to
	Channel	Frequency	Bandwidth	Limit	Limit
Band	No.	[MHz]	[MHz]	[MHz]	[dB]
2.4 GHz ISM	3	2412	36.035	0.5	35.5
	6	2437	36.396	0.5	35.9
	11	2462	36.396	0.5	35.9

BT LE mode,	1 Mbit/s				
			99 %		Margin to
	Channel	Frequency	Bandwidth	Limit	Limit
Band	No.	[MHz]	[MHz]	[MHz]	[dB]
2.4 GHz ISM	0	2402	1.040	0.5	0.5
	19	2440	1.040	0.5	0.5
	39	2480	1.040	0.5	0.5

3.2.4 Measurement Plot (showing the highest value, "worst case")


a) 6 dB Bandwidth

Date: 19.SEP.2014 11:04:02

b) 99% Bandwidth

Date: 29.SEP.2014 09:39:48

3.3 Peak power output

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.3.1 Test Description

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:
- Detector: Peak

3.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

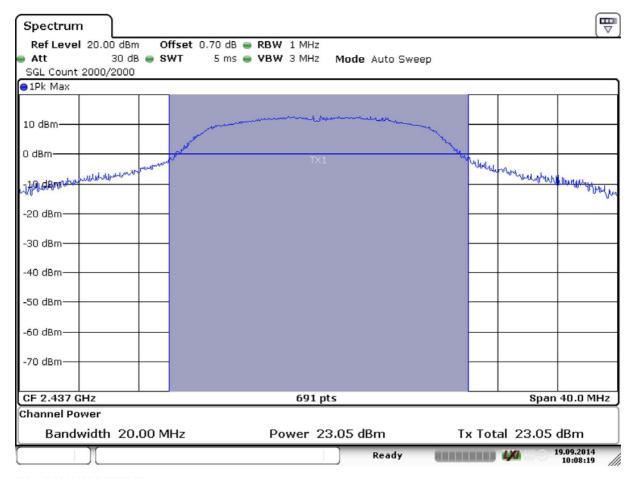
Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

3.3.3 Test Protocol

Temperature: 23 °C Air Pressure: 1010 hPa Humidity: 45 %

WLAN b-Mod	de; 20 MHz	; 1 Mbit/s				
			Peak		Margin to	
	Channel	Frequency	Power	Limit	Limit	E.I.R.P
Band	No.	[MHz]	[dBm]	[dBm]	[dB]	[dBm]
2.4 GHz ISM	1	2412	17.5	30.0	12.5	19.7
	6	2437	17.8	30.0	12.2	20.0
	11	2462	18.5	30.0	11.5	20.7

WLAN g-Mod	de; 20 MHz	z; 6 Mbit/s				
			Peak		Margin to	
	Channel	Frequency	Power	Limit	Limit	E.I.R.P
Band	No.	[MHz]	[dBm]	[dBm]	[dB]	[dBm]
2.4 GHz ISM	1	2412	20.1	30.0	9.9	22.3
	6	2437	23.1	30.0	7.0	25.3
	11	2462	21.1	30.0	8.9	23.3


WLAN n-Mod	de; 20 MHz	z; 6,5 Mbit/s				
			Peak		Margin to	
	Channel	Frequency	Power	Limit	Limit	E.I.R.P
Band	No.	[MHz]	[dBm]	[dBm]	[dB]	[dBm]
2.4 GHz ISM	1	2412	20.3	30.0	9.7	22.5
	6	2437	22.4	30.0	7.6	24.6
	11	2462	21.3	30.0	8.8	23.5

WLAN n-Mod	de; 40 MHz	z; 13 Mbit/s				
	Channel	Frequency	Peak Power	Limit	Margin to Limit	E.I.R.P
Band	No.	[MHz]	[dBm]	[dBm]	[dB]	[dBm]
2.4 GHz ISM	3	2422	18.4	30.0	11.7	20.6
	6	2437	21.0	30.0	9.0	23.2
	11	2462	21.3	30.0	8.7	23.5

BT LE mode,	1 Mbit/s					
			Peak		Margin to	
	Channel	Frequency	Power	Limit	Limit	E.I.R.P
Band	No.	[MHz]	[dBm]	[dBm]	[dB]	[dBm]
2.4 GHz ISM	0	2402	7.5	30.0	22.5	9.7
	19	2440	6.6	30.0	23.4	8.8
	39	2480	5.8	30.0	24.2	8.0

3.3.4 Measurement Plot (showing the highest value, "worst case")

Date: 19.SEP.2014 10:08:19

3.4 Spurious RF conducted emissions

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.4.1 Test Description

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

Detector: Peak-MaxholdFrequency range: 30 - 40000 MHz

Resolution Bandwidth (RBW): 100 kHz
Video Bandwidth (VBW): 300 kHz
Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 3.6). This value is used to calculate the 20 dBc limit.

3.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

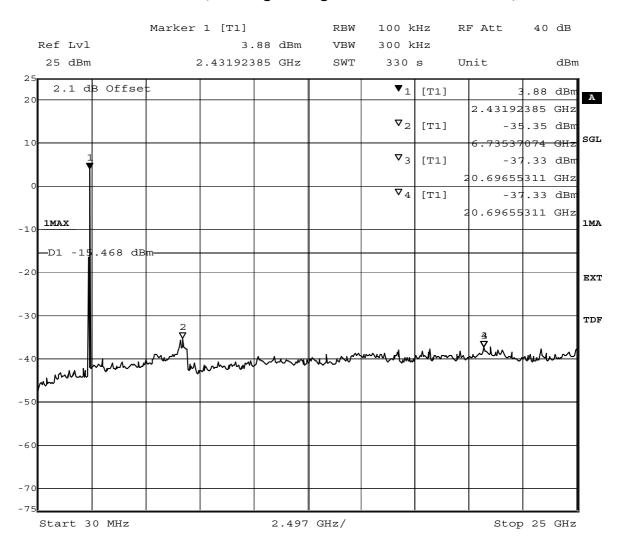
3.4.3 Test Protocol

Temperature: 23 °C Air Pressure: 1010 hPa Humidity: 45 %

WLAN b-I	Mode; 20 N	ИHz; 1 Mbit						
	Channel	Spurious	Spurious			Ref.		Margin
Channel	Freq.	Freq.	Level		RBW	Level	Limit	to Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dBm]	[dB]
1	2412			PEAK	100	5.9	-14.2	
6	2437			PEAK	100	5.9	-14.1	
11	2462			PEAK	100	6.4	-13.6	

WLAN g-I	Mode; 20 N	/IHz; 6 Mbit						
	Channel	Spurious	Spurious			Ref.		Margin
Channel	Freq.	Freq.	Level		RBW	Level	Limit	to Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dBm]	[dB]
1	2412	6735.4	-36.8	PEAK	100	2.2	-17.8	19.0
6	2437			PEAK	100	5.3	-14.7	
11	2462	6635.3	-36.6	PEAK	100	2.3	-17.7	19.0

WLAN n-l	WLAN n-Mode; 20 MHz; 6,5 Mbit/s							
	Channel	Spurious	Spurious			Ref.		Margin
Channel	Freq.	Freq.	Level		RBW	Level	Limit	to Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dBm]	[dB]
1	2412	6635.3	-36.5	PEAK	100	2.3	-17.7	18.8
6	2437	6735.4	-35.4	PEAK	100	4.5	-15.5	19.9
11	2462	6635.3	-36.5	PEAK	100	2.7	-17.3	19.2


WLAN n-l	WLAN n-Mode; 40 MHz; 13 Mbit/s							
	Channel	Spurious	Spurious			Ref.		Margin
Channel	Freq.	Freq.	Level		RBW	Level	Limit	to Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dBm]	[dB]
3	2422			PEAK	100	-0.8	-20.8	
6	2437			PEAK	100	-0.8	-20.8	
11	2462			PEAK	100	-1.1	-21.1	

BT LE mo	BT LE mode, 1 Mbit/s							
	Channel	Spurious	Spurious			Ref.		Margin
Channel	Freq.	Freq.	Level		RBW	Level	Limit	to Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dBm]	[dB]
0	2402			PEAK	100	3.4	-16.6	
19	2440			PEAK	100	4.0	-16.0	
39	2480			PEAK	100	6.6	-13.4	

Note: No (further) spurious emissions in the range 20 dB below the limit found.

3.4.4 Measurement Plot (showing the highest value, "worst case")

Title: spurious emissions Comment A: CH M: 2437 MHz Date: 16.SEP.2014 10:41:56

3.5 Spurious radiated emissions

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4

3.5.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software ES-K1 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is performed at 2 axes. A pre-check is performed while the EUT is powered from a DC power sourse.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber

Antenna distance: 10 mDetector: Peak-Maxhold

- Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

- Frequency steps: 0.1 kHz and 5 kHz - IF-Bandwidth: 0.2 kHz and 10 kHz

- Measuring time / Frequency step: 100 ms

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side

- Antenna distance: according to the Standard

- Detector: Quasi-Peak

- Frequency range: 0.009 - 30 MHz

- Frequency steps: measurement at frequencies detected in step 1

- IF-Bandwidth: 0.2 - 10 kHz

- Measuring time / Frequency step: 100 ms

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m
- Detector: Peak-Maxhold

- Frequency range: 30 - 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 μ s - Turntable angle range: -180° to 180°

Turntable step size: 90°
Height variation range: 1 – 3 m
Height variation step size: 2 m

- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: second measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step, the EMI test system has determined the following values for each frequency (of step 1):

- Frequency

- Azimuth value (of turntable)

- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°

- Antenna height: 0.5 m **Step 3:** final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 22.5° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 25 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: ± 22.5 ° around the determined value - Height variation range: ± 25 cm around the determined value

Step 4: final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:
- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support at 1.4 m height in the fully-anechoic chamber. The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact, that in this frequency range a double-ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

Detector: Peak, AverageIF Bandwidth = 1 MHz

For the data rate in mode n the test is performed as worst-case-check in order to verify that emissions have a comparable level as found at modes b and g. Typically, the measurement is performed in the frequency range 1 to 8 GHz but it depends on the emissions found during the test for the modes b and g. Please refer to the results for the used frequency range.

3.5.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

...

The same method of determining the conducted output power shall be used to determine the power spectral density.

3.5.3 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Calculated Limits(dBµV/m @10m)	Limits(dBµV/m @10m)
0.009 - 0.49	2400/F(kHz)	300 10	(48.5 - 13.8) + 59.1 dB	107.6 - 72.9
0.49 - 1.705	24000/F(kHz)	30 10	(48.9 - 23.0) + 19.1 dB	60.0 - 42.1
1.705 - 30	30	30 10	29.5 + 19.1 dB	48.6

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limit (dBµV/m)
30 - 88	100	3	40.0
88 - 216	150	3	43.5
216 - 960	200	3	46.0
above 960	500	3	54.0

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

3.5.4 Test Protocol

Temperature: 24-26 °C

Air Pressure: 1007–1023 hPa

Humidity: 41–50 %

WLAN	b-Mode;	20 MHz; 1	Mbit/s	Applied du	uty cycle c	orrection (A	NV) [dB]:	0.1
	Channel	Spurious	Spurious				Margin	
Ch.	Freq.	Freq.	Level	Detec-	RBW	Limit	to Limit	Limit
No.	[MHz]	[MHz]	[dBµV/m]	tor	[kHz]	[dBµV/m]	[dB]	Type
-	-	-	-	PEAK	1000	74.0	-	RB
-	-	-	-	AV	1000	54.0	-	RB

Note: No (further) spurious emissions in the range 20 dB below the limit found.

WLAN	g-Mode;	20 MHz; 6	Mbit/s	Applied do	uty cycle c	orrection (A	AV) [dB]:	0.7
Ch. No.	Channel Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	2390.0	66.1	PEAK	1000	74.0	7.9	RB
1	2412	2390.0	46.4	AV	1000	54.0	7.6	RB
6	2437	2381.0	54.3	PEAK	1000	74.0	19.7	RB
6	2437	2381.0	40.0	AV	1000	54.0	14.0	RB
6	2437	2385.5	54.9	PEAK	1000	74.0	19.1	RB
6	2437	2385.5	39.9	AV	1000	54.0	14.1	RB
6	2437	2389.5	55.7	PEAK	1000	74.0	18.3	RB
6	2437	2389.5	40.4	AV	1000	54.0	13.6	RB
6	2437	2485.0	56.2	PEAK	1000	74.0	17.8	RB
6	2437	2485.0	39.8	AV	1000	54.0	14.2	RB
11	2462	2483.5	64.4	PEAK	1000	74.0	9.6	RB
11	2462	2483.5	46.1	AV	1000	54.0	7.9	RB

Note: No (further) spurious emissions in the range 20 dB below the limit found.

The measurement was performed from 1 GHz up to 8 GHz because at pre-measurements no significant spurious emissions have been found outside this frequency range.

3.6 Band edge compliance

Standard FCC Part 15, Subpart C

The test was performed according to: ANSI C63.4-2009, FCC §15.31

3.6.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements:

1. Show compliance of the lower and higher band edge by a conducted measurement. For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room.

For the lower band edge the EUT is set to transmit as follows:

For a WLAN transmitter working in the 2.4 GHz band on lowest channel:

CH1 = 2412 MHz / CH3 = 2422 MHz for a channel bandwidth of 20 / 40 MHz.

The lower band edge is 2400 MHz for 2.4 GHz band transmitter.

For the higher band edge the EUT is set to transmit as follows:

For a WLAN transmitter working in the 2.4 GHz band on highest channel:

 $CH11 = 2462 \ MHz \ or \ CH13 = 2472 \ MHz \ / \ CH11 = 2462 \ MHz \ for a channel bandwidth of 20 / 40 \ MHz.$

The higher band edge is 2483.5 MHz for a 2.4 GHz band transmitter.

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW / VBW = 100 / 300 kHz
- 2. Showing compliance of the higher band edge falls in to restricted bands by a radiated measurement.

The radiated emissions measurements are performed in a typical installation configuration inside the fully anechoic chamber using a horn antenna at 1 m distance. EMI receiver settings for radiated measurement:

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

3.6.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the radiated measurement of the higher band edge connected to a restricted band the limit is "specified in Section 15.209(a)".

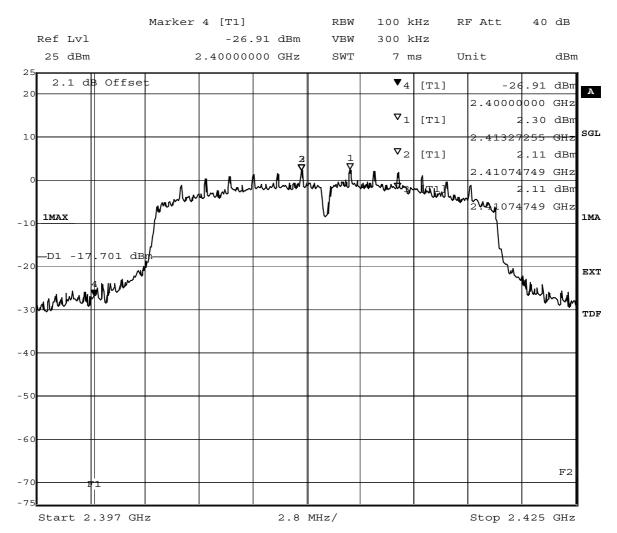
3.6.3 Test Protocol

3.6.3.1 Conducted measurement, lower and higher band edge

Temperature: 23 °C Air Pressure: 1009 hPa Humidity: 38 %

WLAN b-	Mode; 20							
	Channel		Spurious			Ref.	Limit	Margin
Channel	Freq.	BE Freq.	Level		RBW	Level	[dBµV	to Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	/m]	[dB]
1	2412	2400.0	-42.8	PEAK	100	5.9	-14.2	28.6
11	2462	2483.5	-42.8	PEAK	100	6.4	-13.6	29.2

WLAN g-	Mode; 20							
	Channel		Spurious			Ref.		Margin
Channel	Freq.	BE Freq.	Level		RBW	Level	Limit	to Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dBm]	[dB]
1	2412	2400.0	-28.3	PEAK	100	2.2	-17.8	10.5
11	2462	2483.5	-40.2	PEAK	100	2.3	-17.7	22.6


WLAN n-	Mode; 20							
	Channel		Spurious			Ref.		Margin
Channel	Freq.	BE Freq.	Level		RBW	Level	Limit	to Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dBm]	[dB]
1	2412	2400.0	-26.9	PEAK	100	2.3	-17.7	9.2
11	2462	2483.5	-38.4	PEAK	100	2.7	-17.3	21.1

WLAN n-	Mode; 40							
	Channel		Spurious			Ref.		Margin
Channel	Freq.	BE Freq.	Level		RBW	Level	Limit	to Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	[dBm]	[dB]
1	2412	2400.0	-33.4	PEAK	100	-3.4	-23.4	10.1
11	2462	2483.5	-27.7	PEAK	100	-1.1	-21.1	6.6

BT LE mo	ode, 1 Mbit							
	Channel		Spurious			Ref.	Limit	Margin
Channel	Freq.	BE Freq.	Level		RBW	Level	[dBµV	to Limit
No	[MHz]	[MHz]	[dBm]	Detector	[kHz]	[dBm]	/m1	[dB]
		F	[[[]	20.00.0.	L	[[]	7	[ab]
0	2402	2400.0	-52.4	PEAK	100	3.4	-16.6	35.8

3.6.3.2 Measurement Plot (showing the highest value, "worst case")

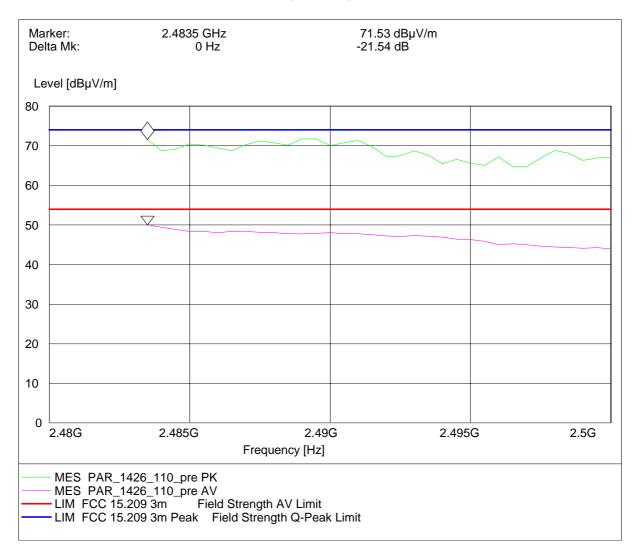
Title: Band Edge Compliance
Comment A: CH B: 2412 MHz
Date: 16.SEP.2014 09:59:30

3.6.3.3 Radiated measurement, higher band edge

Temperature: 24 - 26 °C Air Pressure: 1000 - 1007 hPa Humidity: 37 - 47 %

WLAN	b-Mode; 2	0 MHz; 1	Mbit/s	Applied of	luty cycle	correction	(AV) [dB]	0.1
	Channel	BE	Spurious				Margin	
Ch.	Freq.	Freq.	Level	Detec-	RBW	Limit	to Limit	Limit
No.	[MHz]	[MHz]	[dBµV/m]	tor	[kHz]	[dBµV/m]	[dB]	Type
	[1411 12]		[GDAA/111]	loi		[abpv/iii]	[GD]	ı ype
11	2462	2483.5	48.4	PEAK	1000	74.0	25.6	BE

WLAN	g-Mode; 2	0 MHz; 6	Mbit/s	Applied of	duty cycle	correction	(AV) [dB]	0.7
	Channel	BE	Spurious				Margin	
Ch.	Freq.	Freq.	Level	Detec-	RBW	Limit	to Limit	Limit
No.	[MHz]	[MHz]	[dBµV/m]	tor	[kHz]	[dBµV/m]	[dB]	Type
11	2462	2483.5	64.4	PEAK	1000	74.0	9.6	BE
11	2462	2483.5	46.1	AV	1000	54.0	7.9	BE


WLAN	n-Mode; 2	0 MHz; 6	,5 Mbit/s	Applied of	duty cycle	correction	(AV) [dB]	0.8
	Channel	BE	Spurious				Margin	
Ch.	Freq.	Freq.	Level	Detec-	RBW	Limit	to Limit	Limit
No.	[MHz]	[MHz]	[dBµV/m]	tor	[kHz]	[dBµV/m]	[dB]	Type
11	2462	2483.5	62.9	PEAK	1000	74.0	11.1	BE
11	2462	2483.5	43.7	AV	1000	54.0	10.3	BE

WLAN n-Mode; 40 MHz; 13 Mbit/s				Applied duty cycle correction (AV) [dB]				1.4
	Channel	BE	Spurious				Margin	
Ch.	Freq.	Freq.	Level	Detec-	RBW	Limit	to Limit	Limit
No.	[MHz]	[MHz]	[dBµV/m]	tor	[kHz]	[dBµV/m]	[dB]	Type
11	2462	2483.5	71.5	PEAK	1000	74.0	2.5	BE
11	2462	2483.5	51.4	AV	1000	54.0	2.6	BE

Note: For mode n-40 MHz the nominal output power is reduced to 16 dBm.

3.6.3.4 Measurement Plot (showing the highest value, "worst case")

3.7 Power density

Standard FCC Part 15, Subpart C

The test was performed according to: FCC §15.31

3.7.1 Test Description

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Detector: Peak-Maxhold

Resolution Bandwidth (RBW): 3 kHz
 Video Bandwidth (VBW): ≥ 3x RBW

- Sweep Time: Coupled

3.7.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

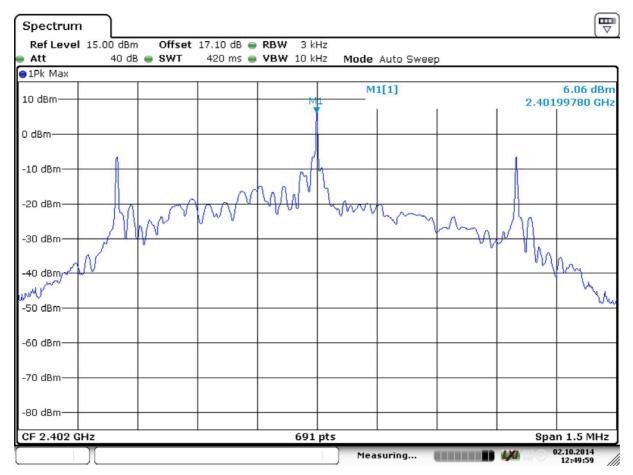
The same method of determining the conducted output power shall be used to determine the power spectral density.

3.7.3 Test Protocol

Temperature: 23 °C Air Pressure: 1010 hPa Humidity: 45 %

WLAN b-Mode; 20 MHz; 1 Mbit/s					
			Power	Limit	Margin to
	Channel	Frequency	Density	[dBm	Limit
Band	No.	[MHz]	[dBm/3kHz]	/3kHz]	[dB]
2.4 GHz ISM	1	2412	-7.7	8.0	15.7
	6	2437	-7.1	8.0	15.1
	11	2462	-7.4	8.0	15.4

WLAN g-Mode	; 20 MHz;	6 Mbit/s			
			Power	Limit	Margin to
	Channel	Frequency	Density	[dBm	Limit
Band	No.	[MHz]	[dBm/3kHz]	/3kHz]	[dB]
2.4 GHz ISM	1	2412	-11.4	8.0	19.4
	6	2437	-8.9	8.0	16.9
	11	2462	-11.2	8.0	19.2


WLAN n-Mode	; 20 MHz;	6,5 Mbit/s			
			Power	Limit	Margin to
	Channel	Frequency	Density	[dBm	Limit
Band	No.	[MHz]	[dBm/3kHz]	/3kHz]	[dB]
2.4 GHz ISM	1	2412	-11.4	8.0	19.4
	6	2437	-9.2	8.0	17.2
	11	2462	-11.2	8.0	19.2

WLAN n-Mode; 40 MHz; 13 Mbit/s					
	Channel	Frequency	Power Density	Limit [dBm	Margin to Limit
Band	No.	[MHz]	[dBm/3kHz]	/3kHz]	[dB]
2.4 GHz ISM	3	2422	-16.8	8.0	24.8
	6	2437	-14.0	8.0	22.0
	11	2462	-13.4	8.0	21.4

BT LE mode, 1	Mbit/s				
	Channal	Fraguanay	Power	Limit	Margin to Limit
	Channel	Frequency	Density	[dBm	
Band	No.	[MHz]	[dBm/3kHz]	/3kHz]	[dB]
2.4 GHz ISM	0	2402	6.1	8.0	1.9
	19	2440	4.9	8.0	3.1
	39	2480	4.1	8.0	3.9

3.7.4 Measurement Plot (showing the highest value, "worst case")

Date: 2.OCT.2014 12:49:59

4 Test Equipment

The calibration, hardware and software states are shown for the testing period.

Test Equipment Anechoic Chamber

Lab 1D: Lab 2

Manufacturer: Frankonia

Description: Anechoic Chamber for radiated testing

Type: 10.58x6.38x6.00 m³

Calibration DetailsLast ExecutionNext Exec.NSA (FCC)2014/01/092017/01/09

Single Devices for Anechoic Chamber

Single Device Name	Type	Serial Number	Manufacturer
Air compressor	none	-	Atlas Copco
Anechoic Chamber	10.58 x 6.38 x 6.00 m ³ Calibration Details	none	Frankonia Last Execution Next Exec.
	FCC listing 96716 3m Part15/18		2014/01/09 2017/01/08
Controller Maturo	MCU	961208	Maturo GmbH
EMC camera	CE-CAM/1	-	CE-SYS
EMC camera Nr.2	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter Universal 1A	BB4312-C30-H3	-	Siemens&Matsushita

Test Equipment Auxiliary Equipment for Conducted emissions

Lab ID: Lab 1

Manufacturer:Rohde & Schwarz GmbH & Co.KGDescription:EMI Conducted Auxiliary Equipment

Single Devices for Auxiliary Equipment for Conducted emissions

Single Device Name	Type	Serial Number	Manufacturer
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber&Suhner
Impedance Stabilization Network	ISN T800	36159	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/02/06 2016/02/28
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ENY41	100002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/03/01 2015/03/31
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN ST08	36292	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/10 2016/01/31

Test report Reference: MDE_PARRO_1426_FCCc Page 41 of 52

Single Devices for Auxiliary Equipment for Conducted emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Impedance Stabilization Network, Coupling Decoupling Network	ISN/CDN T8-Cat6	32187	Teseq GmbH
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/08 2016/01/31
One-Line V-Network	ESH 3-Z6	100489	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	standard calibration		2014/06/18 2017/11/30
One-Line V-Network	ESH 3-Z6	100570	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/11/25 2016/11/24
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standart Calibration		2013/03/01 2015/02/28
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/03/01 2015/02/28

Test Equipment Auxiliary Equipment for Radiated emissions

Lab ID: Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Auxiliary Equipment for Radiated emissions

· ·			
Single Device Name	Туре	Serial Number	Manufacturer
Antenna mast	AM 4.0	AM4.0/180/119205 13	5 Maturo GmbH
Biconical Broadband Antenna	SBA 9119	9119-005	Schwarzbeck
Biconical dipole	VUBA 9117 Calibration Details	9117-108	Schwarzbeck Last Execution Next Exec.
	Standard Calibration		2012/01/18 2015/01/17
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32-5P	849785	Miteq
Broadband Amplifier 1GHz-4GHz	AFS4-01000400-1Q-10P-4	-	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35-5P	896037	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2+W38.01 2	- Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A+UFB293C	W18.02-2+W38.02 2	2- Rosenberger Micro-Coax
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/05/18 2015/05/17
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz GmbH & Co. KG
	Calibration Details Standard Calibration		Last Execution Next Exec. 2012/06/26 2015/06/25
U: 1 B = E11		0042044	
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	WHKX 7.0/18G-8SS	09	Wainwright
Horn Antenna Schwarzbeck 15-26 GHz BBHA 9170	ВВНА 9170		
Logper. Antenna	HL 562 Ultralog	100609	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2012/12/18 2015/12/17
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz GmbH & Co. KG
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/10/27 2014/10/26
Pyramidal Horn Antenna 26,5 GHz	3160-09	00083069	EMCO Elektronik GmbH
Pyramidal Horn Antenna 40 GHz	3160-10	00086675	EMCO Elektronik GmbH

Test report Reference: MDE_PARRO_1426_FCCc

Single Devices for Auxiliary Equipment for Radiated emissions (continued)

Single Device Name	Туре	Serial Number	Manufacturer
Tilt device Maturo (Rohacell)	Antrieb TD1.5-10kg	TD1.5- 10kg/024/379070	Maturo GmbH 9

Test Equipment Auxiliary Test Equipment

Lab 1D: Lab 2, Lab 3
Manufacturer: see single devices

Description: Single Devices for various Test Equipment

Type: various Serial Number: none

Single Devices for Auxiliary Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
AC Power Source	Chroma 6404	64040001304	Chroma ATE INC.
Broadband Power Divide N (Aux)	r1506A / 93459	LM390	Weinschel Associates
Broadband Power Divide SMA	rWA1515	A855	Weinschel Associates
Digital Multimeter 03 (Multimeter)	Fluke 177	86670383	Fluke Europe B.V.
(,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03
Fibre optic link Satellite (Aux)	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver (Aux)	FO RS232 Link	182-018	Pontis
Isolating Transformer	LTS 604	1888	Thalheimer Transformatorenwerke GmbH
Notch Filter Ultra Stable (Aux)	WRCA800/960-6EEK	24	Wainwright
Signal Analyzer	FSV30	103005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2014/02/10 2016/02/09
Spectrum Analyser	FSP3	836722/011	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard		2012/06/13 2015/06/12
Spectrum Analyser	FSU26	200418	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/07/29 2015/07/28
Vector Signal Generator	SMIQ 03B	832492/061	Rohde & Schwarz GmbH & Co.KG

Test Equipment Digital Signalling Devices

Lab 1D: Lab 1, Lab 2, Lab 3

Description: Signalling equipment for various wireless technologies.

Single Devices for Digital Signalling Devices

Single Device Name	Туре	Serial Number	Manufacturer
Bluetooth Signalling Uni CBT	t CBT	100589	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/24 2014/11/23
CMW500	CMW500	107500	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/01/27 2016/01/26
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/28 2014/11/27
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz GmbH & Co. KG
	HW/SW Status		Date of Start Date of End
	K21 4v21, K22 4v21, K23 4v21, K24 4 K43 4v21, K53 4v21, K56 4v22, K57 4 K59 4v22, K61 4v22, K62 4v22, K63 4 K65 4v22, K66 4v22, K67 4v22, K68 4 Firmware: μP1 8v50 02.05.06	1v22, K58 4v22, 1v22, K64 4v22,	
Universal Radio Communication Tester	CMU 200	837983/052	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/12/07 2014/12/06
	HW/SW Status		Date of Start Date of End
	HW options: B11, B21V14, B21-2, B41, B52V14, B B54V14, B56V14, B68 3v04, B95, PCN SW options: K21 4v11, K22 4v11, K23 4v11, K24 4 K28 4v10, K42 4v11, K43 4v11, K53 4 K66 4v10, K68 4v10, Firmware: μP1 8v40 01.12.05	1CIA, U65V02 1v11, K27 4v10,	2007/01/02
	SW: K62, K69		2008/11/03
Vector Signal Generator	SMU200A	100912	Rohde & Schwarz GmbH & Co. KG

Test Equipment Emission measurement devices

Lab 1D: Lab 1, Lab 2

Description: Equipment for emission measurements

Serial Number: see single devices

Single Devices for Emission measurement devices

Single Device Name	Туре	Serial Number	Manufacturer
Personal Computer	Dell	30304832059	Dell
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Signal Generator	SMR 20	846834/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/06/24 2017/06/23
Spectrum Analyzer	ESIB 26	830482/004	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/07 2016/01/31
	HW/SW Status		Date of Start Date of End
	Firmware-Update 4.34.4 from 3.45	during calibration	2009/12/03

Test Equipment Multimeter 12

Lab ID:Lab 4, Lab 5Description:Ex-Tech 520Serial Number:05157876

Single Devices for Multimeter 12

Single Device Name	Туре	Serial Number	Manufacturer
Digital Multimeter 12 (Multimeter)	EX520	05157876	Extech Instruments Corp.
,	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/12/04 2015/12/03

Test report Reference: MDE_PARRO_1426_FCCc Page 46 of 52

Test Equipment Radio Lab Test Equipment

Lab ID: Lab 3

Description: Radio Lab Test Equipment

Single Devices for Radio Lab Test Equipment

Single Device Name	Туре	Serial Number	Manufacturer
Broadband Power Divide SMA	rWA1515	A856	Weinschel Associates
Coax Attenuator 10dB SMA 2W	4T-10	F9401	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3702	Weinschel Associates
Coax Attenuator 10dB SMA 2W	56-10	W3711	Weinschel Associates
Coax Cable Huber&Suhner	Sucotest 2,0m		Huber&Suhner
Coax Cable Rosenberger Micro Coax FA210A0010003030 SMA/SMA 1,0m	FA210A0010003030	54491-2	Rosenberger Micro-Coax
Power Meter	NRVD	828110/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
RF Step Attenuator RSP	RSP	833695/001	Rohde & Schwarz GmbH & Co.KG
Rubidium Frequency Standard	Datum, Model: MFS	5489/001	Datum-Beverly
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/07/03 2015/07/02
Sensor Head A	NRV-Z1	827753/005	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/05/13 2015/05/12
Signal Generator SME	SME03	827460/016	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2011/11/25 2014/11/24
Signal Generator SMP	SMP02	836402/008	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/05/06 2016/05/05
Spectrum Analyser	FSIQ26	840061/005	Rohde & Schwarz GmbH & Co. KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2013/02/12 2015/02/11

Test Equipment Regulatory Bluetooth RF Test Solution

Lab ID: Lab 4

Description: Regulatory Bluetooth RF Tests

Type: Bluetooth RF

Serial Number: 001

Single Devices for Regulatory Bluetooth RF Test Solution

Single Device Name	Туре	Serial Number	Manufacturer
ADU 200 Relay Box 7	Relay Box	A04380	Ontrak Control Systems Inc.
Bluetooth Signalling Unit CBT	: CBT	100302	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/08/29 2015/08/28
Power Meter NRVD	NRVD	832025/059	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/08/29 2015/08/28
Power Sensor NRV Z1 A	PROBE	832279/013	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/08/28 2015/08/27
Power Supply	NGSM 32/10	2725	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/20 2015/06/19
Rubidium Frequency Normal MFS	Datum MFS	002	Datum GmbH
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/21 2016/06/20

Test Equipment Shielded Room 02

Lab ID:Lab 1Manufacturer:Frankonia

Description: Shielded Room for conducted testing

Type: 12 qm Serial Number: none

Test Equipment Shielded Room 07

Lab ID: Lab 4, Lab 5

Description: Shielded Room 4m x 6m

Test report Reference: MDE_PARRO_1426_FCCc Page 48 of 52

Test Equipment T/A Logger 13

Lab ID:Lab 1, Lab 2, Lab 3Description:Lufft Opus10 TPRType:Opus10 TPRSerial Number:13936

Single Devices for T/A Logger 13

Single Device Name	Туре	Serial Number	Manufacturer
ThermoAirpressure Datalogger 13 (Environ)	Opus10 TPR (8253.00)	13936	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/06

Test Equipment T/H Logger 02

Lab ID:Lab 1Description:Lufft Opus10Serial Number:7489

Single Devices for T/H Logger 02

Single Device Name	Туре	Serial Number	Manufacturer
ThermoHygro Datalogge 02 (Environ)	rOpus10 THI (8152.00)	7489	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/06

Test Equipment T/H Logger 03

Lab ID:Lab 3Description:Lufft Opus10Serial Number:7482

Single Devices for T/H Logger 03

Single Device Name	Type	Serial Number	Manufacturer
ThermoHygro Datalogge 03 (Environ)	erOpus10 THI (8152.00)	7482	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/02/07 2015/02/06

Test Equipment T/H Logger 12

Lab 1D:Lab 2Description:Lufft Opus10Serial Number:12482

Single Devices for T/H Logger 12

Single Device Name	Type	Serial Number	Manufacturer
ThermoHygro DataloggerOpus10 THI (8152.00) 12 (Environ)		12482	Lufft Mess- und Regeltechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2013/01/07 2015/01/06

Test report Reference: MDE_PARRO_1426_FCCc Page 49 of 52

Test Equipment T/H Logger 15

Lab ID:Lab 4, Lab 5Description:Lufft Opus10Serial Number:13985

Single Devices for T/H Logger 15

Single Device Name Type Serial Number Manufacturer

ThermoHygro DataloggerOpus10 THI (8152.00)
15 (Environ)

Calibration Details
Customized calibration

Serial Number Manufacturer

Lufft Mess- und Regeltechnik GmbH

Last Execution Next Exec.

2013/01/07 2015/01/06

Test Equipment Temperature Chamber 01

Lab 1D: Lab 4, Lab 5

Manufacturer: see single devices

Description: Temperature Chamber KWP 120/70

Type: Weiss

Serial Number: see single devices

Single Devices for Temperature Chamber 01

Single Device Name	Туре	Serial Number	Manufacturer
Temperature Chamber Weiss 01	KWP 120/70	59226012190010	Weiss Umwelttechnik GmbH
	Calibration Details		Last Execution Next Exec.
	Customized calibration		2014/03/12 2016/03/11

Test Equipment Temperature Chamber 05

Lab ID: Lab 3

Manufacturer: see single devices

Description: Temperature Chamber VT4002

Type: Vötsch

Serial Number: see single devices

Single Devices for Temperature Chamber 05

Single Device Name Type Serial Number Manufacturer

Temperature Chamber Vötsch 05 Calibration Details Last Execution Next Exec.Customized calibration $Column{2}{c} 2014/03/11 2016/03/10$

Test report Reference: MDE_PARRO_1426_FCCc

Test Equipment WLAN RF Test Solution

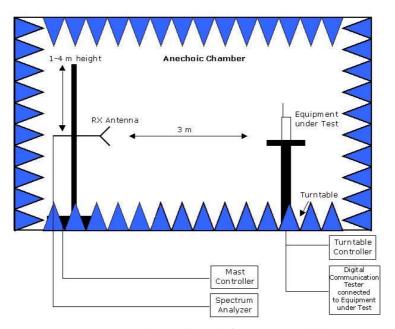
Lab 1D: Lab 5

Manufacturer: 7 layers AG

Description: Regulatory WLAN RF Tests

Type: WLAN RF Serial Number: 001

Single Devices for WLAN RF Test Solution


Single Device Name	Туре	Serial Number	Manufacturer
Arbitrary Waveform Generator	TGA12101	284482	
Power Meter NRVD	NRVD Calibration Details	832025/059	Last Execution Next Exec.
	Standard calibration		2014/08/29 2015/08/28
Power Sensor NRV Z1 A	PROBE	832279/013	
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/08/28 2015/08/27
Power Supply	NGSM 32/10 Calibration Details	2725	Last Execution Next Exec.
	Standard calibration		2013/06/20 2015/06/19
Rubidium Frequency Normal MFS	Datum MFS	002	Datum GmbH
Signal Analyser FSIQ26	1119.6001.26	832695/007	Rohde & Schwarz GmbH & Co.KG
Spectrum Analyser	FSU26	100136	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard Calibration		2014/01/06 2015/01/05
	HW/SW Status		Date of Start Date of End
	FSU FW Update to v4.61 SP3, K5 v4.60	and K73 v4.61	2011/12/05
Spectrum Analyser	FSU3	200046	Rohde & Schwarz GmbH & Co.KG
	Calibration Details		Last Execution Next Exec.
	Standard calibration		2014/07/01 2015/06/30
	HW/SW Status		Date of Start Date of End
	Firmware Version 4.51 SP1 Option FS-K72 4.50 SP1 Option FS-K73 4.50 SP1		2011/12/07
TOCT Switching Unit	Switching Unit	040107	7 layers, Inc.
Vector Signal Generator SMIQ03B	SMIQ03B	832870/017	
~	Calibration Details		Last Execution Next Exec.
	Standard calibration		2013/06/21 2016/06/20

5 Photo Report

Please refer to external report.

6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane.