APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

Report No.: T110825210-RP1

EUT Specification

EUT	Wireless Module
Frequency band (Operating)	 \Box WLAN: 2.412GHz ~ 2.462GHz \Box WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz \Box WLAN: 5.745GHz ~ 5.825GHz \Box Others
Device category	☐ Portable (<20cm separation) ☐ Mobile (>20cm separation) ☐ Others
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm²) ☐ General Population/Uncontrolled exposure (S=1mW/cm²)
Antenna diversity	☐ Single antenna ☐ Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity
Max. output power	IEEE 802.11b mode: 21.47 dBm (140.28 mW) IEEE 802.11g mode: 25.64 dBm (366.43 mW) IEEE 802.11n HT 20 MHz mode: 27.19 dBm (523.60 mW) IEEE 802.11n HT 40 MHz mode: 25.54 dBm (358.09 mW)
Antenna gain (Max)	IEEE 802.11b/g mode 2.39 dBi (Numeric gain: 1.73) MIMO mode 2.39 dBi + 10 log (2) = 5.4 dBi (Numeric gain: 3.46)
Evaluation applied	
Remark: The maximum output power is 27.19dBm (523.60mW) at 2442MHz (with 3.46 numeric antenna gain.)	

TEST RESULTS

No non-compliance noted.

Report No.: T110825210-RP1

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where

d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

IEEE 802.11b mode:

EUT output power = 140.28 mW

Numeric Antenna gain = 1.73

 \rightarrow Power density = 0.04829 mW/cm²

IEEE 802.11g mode:

EUT output power = 366.43 mW

Numeric Antenna gain = 1.73

 \rightarrow Power density = 0.12615 mW/cm²

IEEE 802.11n HT 20 MHz mode:

EUT output power = 523.60 mW

Numeric Antenna gain = 3.46

 \rightarrow Power density = 0.36051 mW/cm²

IEEE 802.11n HT 40 MHz mode:

EUT output power = 358.09 mW

Numeric Antenna gain = 3.46

 \rightarrow Power density = 0.24655 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)

Report No.: T110825210-RP1