

FCC Measurement/Technical Report on

NAR Compensor LTE-MBC-NAR-JLR

FCC ID: RK7MBC-NAR IC: 4774A-MBCNAR

Test Report Reference: MDE_MOLEX_1906_FCC01

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary / Signatures	5
2	Revision History	6
3	Administrative Data	7
3.1	Testing Laboratory	7
3.2	Project Data	7
3.3	Applicant Data	7
3.4	Manufacturer Data	8
4	Test object Data	9
4.1	General EUT Description	9
4.2	EUT Main components	9
4.3	Ancillary Equipment	9
4.4	Auxiliary Equipment	10
4.5	EUT Setups	10
4.6 4.7	Operating Modes Product labelling	10 11
4.7	Floddet labelling	11
5	Test Results	12
5.1	Maximum Power	12
5.2	Conducted Spurious Emissions	17
6	Test Equipment	23
7	Antenna Factors, Cable Loss and Sample Calculations	24
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	24
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	25
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	26
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	27
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	28
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	29
8	Measurement Uncertainties	30

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Wideband Consumer signal Booster.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 20, 22, 24, 27 (10-1-18 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 20, Commercial Mobiles Serviced

- § 20.21 Signal Boosters
- Part 22, Subpart H Cellular Radiotelephone Service

§ 22.905 – Channels for cellular service

- \$ 22.913 Effective radiated power limits
- § 22.917 Emission limitations for cellular equipment
- Part 24 E Personal Communication Services
- § 24.229 Frequencies
- § 24.232 Power and antenna height limits
- § 24.238 Emission limitations for Broadband PCS equipment

Part 27 – Miscellaneous Wireless Communication Services

- § 27.5 (b), (c) Frequencies
- \S 27.50 (b) (c) Power limits and duty cycle
- § 27.53 (c), (f), (g), (h) Emission limits

The tests were selected and performed with reference to the FCC Public Notice 935210 applying "Wideband Consumer Signal Booster Compliance Measurement Guidance" 935210 D03 v04r03, 2019-04-15.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Measurement	FCC reference	ISED reference
Anti-oscillation	§20.21(e)(8)(ii)(A) §20.21(e)(5)	RSS-131 Issue 3: 5.1.1.1
Gain control	§20.21(e)(8)(ii)(B)	RSS-131 Issue 3: 5.1.1.2
Power down	§20.21(e)(8)(i)(H)	RSS-131 Issue 3: 5.1.1.3
Interference avoidance for wireless subsystems	§20.21(e)(8)(ii)(C)	RSS-131 Issue 3: 5.1.1.4
Bidirectional capability	§20.21(e)(8)(i)(B)	RSS-131 Issue 3: 5.1.2
Noise limits	§20.21(e)(8)(i)(A)	RSS-131 Issue 3: 5.1.3.1
Gain limits	§20.21(e)(8)(i)(C)(1)	RSS-131 Issue 3: 5.1.3.2
Power limits	§20.21(e)(8)(i)(D)	RSS-131 Issue 3: 5.1.3.3
Out-of-band emission limits	§20.21(e)(8)(i)(E)	RSS-131 Issue 3: 5.1.3.4
Intermodulation limits	§20.21(e)(8)(i)(F)	RSS-131 Issue 3: 5.1.3.5
Transmit power off mode	§20.21(e)(8)(i)(H)	RSS-131 Issue 3: 5.1.3.6
Uplink inactivity	§20.21(e)(8)(i)(I)	RSS-131 Issue 3: 5.1.3.7

Correlation of measurement requirements for Wideband Consumer Signal Booster from FCC and ISED Canada

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 20 §20.21)(8)(i)(D) Pow 3) Bidirectiona			
Maximum Power				•-	
The measurement was performed accor	rding to KDB 9352	ling to KDB 935210 D03		Final Result	
OP-Mode	Setup	Date	FCC	IC	
Frequency Band, Direction, Signal Type	-				
Band 2, Downlink, Pulsed CW	S01_AA01	2019-10-01	Passed	Passed	
Band 2, Uplink, Pulsed CW	S01_AA01	2019-10-02	Passed	Passed	
Band 5, Downlink, Pulsed CW	S01_AA01	2019-10-01	Passed	Passed	
Band 5, Uplink, Pulsed CW	S01_AA01	2019-10-02	Passed	Passed	
47 CFR CHAPTER I FCC PART 20 §20.21	§ 2.1051 Sj terminals	ourious emissi	ons at an	tenna	
§20.21 Conducted Spurious Emissions	terminals		ons at an Final Re		
	terminals				
§20.21 Conducted Spurious Emissions The measurement was performed accor OP-Mode	terminals	210 D03	Final Re	esult	
§20.21 Conducted Spurious Emissions The measurement was performed accor OP-Mode Frequency Band, Direction	terminals rding to KDB 9352 Setup	210 D03 Date	Final Re	esult IC	
§20.21 Conducted Spurious Emissions The measurement was performed accor OP-Mode Frequency Band, Direction Band 2, Downlink	terminals rding to KDB 9352 Setup S01_AA01	210 D03 Date 2019-10-01	Final Re FCC Passed	esult IC Passed	

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY

Report version control					
Version	Release date	Change Description	Version validity		
initial	2019-10-15		valid		

COMMENT: Another version of this signal booster was already completely tested. The frequency to test for Maximum Power was taken from that report (MDE_NOVER_1615_FCCA_rev1).

The tests to perform for this version were chosen by the applicant.

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

(responsible for testing and report) Dipl.-Ing. Daniel Gall

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-01 D-PL-12140-01-02 D- PL-12140-01-03
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
ISED CAB Identifier	DE0007; ISED#: 3699A
Responsible for accreditation scope:	DiplIng. Marco Kullik
Report Template Version:	2019-06-18
3.2 PROJECT DATA	
Responsible for testing and report:	DiplIng. Daniel Gall
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2019-10-15
Testing Period:	2019-10-01 to 2019-10-02
3.3 APPLICANT DATA	
Company Name:	Molex CVS Dabendorf GmbH

Company Name: Molex CVS Dabendorf Gmbl Address: Märkische Straße 72 15806 Zossen Germany Contact Person: Ines Baufeld

3.4 MANUFACTURER DATA

Company Name:

Address:

Molex CVS Dabendorf GmbH

Märkische Straße 72 15806 Zossen Germany

Contact Person:

Ines Baufeld

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Consumer Signal Booster supporting bands 2,4, 5, 12, 13	
Product name	LTE-MBC-NAR-JLR	
Туре	-	
Declared EUT data by	the supplier	
General Product Description	The EUT is wideband consumer signal booster used in road vehicles.	
Booster Type	Mobile Wideband Consumer Signal Booster	
Booster Connection	Direct Contact Coupling (e.g. craddle type)	
Voltage Type	DC	
Voltage Level	14.0 V	
The EUT provides the following ports:	Donor Port: Input BS-Signal, Output MS-Signal Server Port: Input MS-Signal, Output BS-Signal DC Port	

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT A	DE1386007aa01	
Sample Parameter	Va	alue
Serial No.	FKW-00104.09.197E610032	
HW Version	002	
SW Version	0001	
Comment		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it.

But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
-	_	-

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AA01	EUT A	Conducted Setup

4.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

4.6.1 TEST CHANNELS

Band	Direction	Lower Frequency Band Edge [MHz]	Upper Frequency Band Edge [MHz]	Center Frequency [MHz]	Port
2	downlink	1930.00	1990.00	1960.00	Donor
5	downlink	869.00	894.00	881.50	Donor
2	uplink	1850.00	1910.00	1880.00	Server
5	uplink	824.00	849.00	836.50	Server

4.7 PRODUCT LABELLING

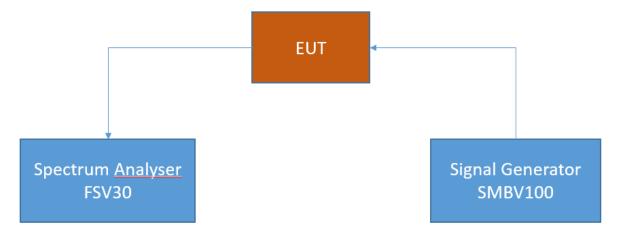
4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 MAXIMUM POWER


Standard

The test was performed according to: KDB 935210 D03

5.1.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power limits and requirements as specified in §§ 20.21(e)(8)(i)(D) and 20.21(e)(8)(i)(B) for wideband consumer signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.2; Maximum Power

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21(e)(8)(i)(D)

Power Limits. A booster's uplink power must not exceed 1 watt composite conducted power and equivalent isotropic radiated power (EIRP) for each band of operation. Composite downlink power shall not exceed 0.05 watt (17 dBm) conducted and EIRP for each band of operation. Compliance with power limits will use instrumentation calibrated in terms of RMS equivalent voltage.

FCC Part 20, § 20.21(e)(8)(i)(B)

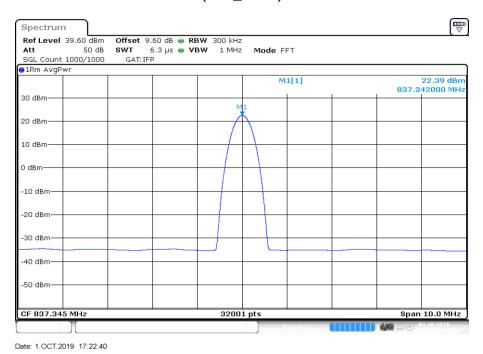
Bidirectional Capability. Consumer Boosters must be able to provide equivalent uplink and downlink gain and conducted uplink power output that is at least 0.05 watts. One-way consumer boosters (*i.e.*, uplink only, downlink only, uplink impaired, downlink impaired) are prohibited. Spectrum block filtering may be used provided the uplink filter attenuation is not less than the downlink filter attenuation, and where RSSI is measured after spectrum block filtering is applied referenced to the booster's input port for each band of operation.

5.1.3 TEST PROTOCOL

Ambient temperature:	25 °C
Air Pressure:	1010 hPa
Humidity:	40 %

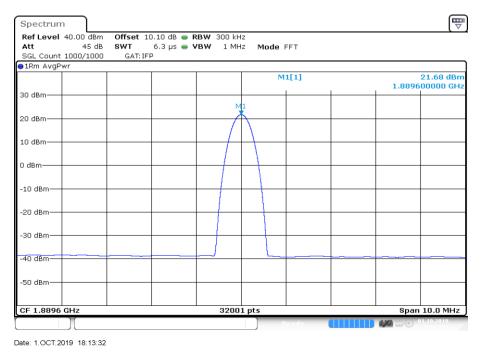
Band 2, dov	wnlink						-
Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power [dBm]	Lower Limit Output Power [dBm]	Upper Limit Output Power [dBm]	Margin to Lower Limit [dB]	Margin to Upper Limit [dB]
Pulsed CW	1949.060	-23.7	-2.6		17.0		19.6
Pulsed CW	1949.060	-21.7	-1.4		17.0		18.4
Pulsed CW	1949.060	-20.0	-0.6		17.0		17.6

Band 5, dov							
Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power [dBm]	Lower Limit Output Power [dBm]	Upper Limit Output Power [dBm]	Margin to Lower Limit [dB]	Margin to Upper Limit [dB]
Pulsed CW	880.5	-22.4	-1.8		17.0		18.8
Pulsed CW	880.5	-20.4	-0.6		17.0		17.6
Pulsed CW	880.5	-20.0	-0.4		17.0		17.4


Band 2, up	ink	-					
Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power [dBm]	Lower Limit Output Power [dBm]	Upper Limit Output Power [dBm]	Margin to Lower Limit [dB]	Margin to Upper Limit [dB]
Pulsed CW	1889.6	2.6	22.2	17.0	30.0	5.2	7.8
Pulsed CW	1889.6	4.6	22.2	17.0	30.0	5.2	7.8
Pulsed CW	1889.6	6.6	22.2	17.0	30.0	5.2	7.8
Pulsed CW	1889.6	8.6	22.1	17.0	30.0	5.1	7.9
Pulsed CW	1889.6	10.6	21.7	17.0	30.0	4.7	8.3
Pulsed CW	1889.6	12.6	22.2	17.0	30.0	5.2	7.8
Pulsed CW	1889.6	14.6	22.3	17.0	30.0	5.3	7.8
Pulsed CW	1889.6	16.6	21.8	17.0	30.0	4.8	8.2
Pulsed CW	1889.6	18.6	22.2	17.0	30.0	5.2	7.8
Pulsed CW	1889.6	20.6	22.2	17.0	30.0	5.2	7.8
Pulsed CW	1889.6	22.6	21.8	17.0	30.0	4.8	8.2
Pulsed CW	1889.6	23.0	21.9	17.0	30.0	4.9	8.1

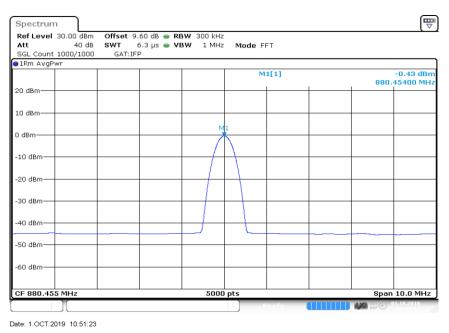
Band 5, upl	ink						
Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power [dBm]	Lower Limit Output Power [dBm]	Upper Limit Output Power [dBm]	Margin to Lower Limit [dB]	Margin to Upper Limit [dB]
Pulsed CW	837.3	2.6	22.9	17.0	30.0	5.9	7.1
Pulsed CW	837.3	4.6	22.7	17.0	30.0	5.7	7.3
Pulsed CW	837.3	6.6	22.8	17.0	30.0	5.8	7.2
Pulsed CW	837.3	8.6	22.7	17.0	30.0	5.7	7.3
Pulsed CW	837.3	10.6	22.9	17.0	30.0	5.9	7.1
Pulsed CW	837.3	12.6	22.5	17.0	30.0	5.5	7.6
Pulsed CW	837.3	14.6	22.5	17.0	30.0	5.5	7.5
Pulsed CW	837.3	16.6	22.8	17.0	30.0	5.8	7.2
Pulsed CW	837.3	18.6	22.4	17.0	30.0	5.4	7.6
Pulsed CW	837.3	20.6	22.9	17.0	30.0	5.9	7.1
Pulsed CW	837.3	22.6	22.4	17.0	30.0	5.4	7.6
Pulsed CW	837.3	23.0	22.7	17.0	30.0	5.7	7.3

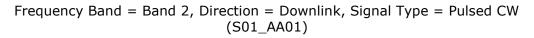
Remark: Please see next sub-clause for the measurement plot.

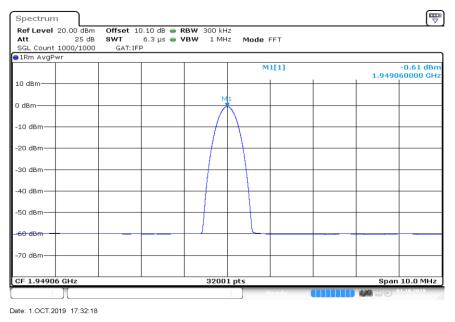


5.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Frequency Band = Band 5, Direction = Uplink, Signal Type = Pulsed CW (S01_AA01)

Input Level 18.6 dBm


Frequency Band = Band 2, Direction = Uplink, Signal Type = Pulsed CW (S01_AA01)


Input Power 10.6 dBm



Frequency Band = Band 5, Direction = Downlink, Signal Type = Pulsed CW (S01_AA01)

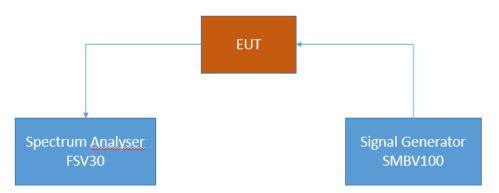
Input Level -20 dBm

Input level -20 dBm

5.1.5 TEST EQUIPMENT USED

- R&S TS8997

5.2 CONDUCTED SPURIOUS EMISSIONS


Standard

The test was performed according to: KDB 935210 D03

5.2.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission limits per § 2.1051

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.6; Conducted Spurious Emissions

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

FCC Part 20, § 20.21(e)(8)(i)(E)

Out of Band Emission Limits. Booster out of band emissions (OOBE) shall be at least 6 dB below the FCC's mobile emission limits for the supported bands of operation. Compliance to OOBE limits will utilize high peak-to-average CMRS signal types.

Part 22, Subpart H – Cellular Radiotelephone Service; Band 5 (Cellular)

§ 22 917 – Emission limitations for cellular equipment

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Part 24 E – Personal Communication Services

§ 24.238 – Emission limitations for Broadband PCS equipment; Band 2 (Broadband PCS)

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Part 27 – Miscellaneous Wireless Communication Services;

Band 4 (AWS-1) § 27.53 (h) – Emission limits

(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}$ (P) dB.

(2) *Additional protection levels.* Notwithstanding the foregoing paragraph (h)(1) of this section:

(i) Operations in the 2180-2200 MHz band are subject to the out-of-band emission requirements set forth in §27.1134 for the protection of federal government operations operating in the 2200-2290 MHz band.

(ii) For operations in the 2000-2020 MHz band, the power of any emissions below 2000 MHz shall be attenuated below the transmitter power (P) in watts by at least $70 + 10 \log_{10}(P) dB$. (iii) For operations in the 1915-1920 MHz band, the power of any emission between 1930-1995 MHz shall be attenuated below the transmitter power (P) in watts by at least $70 + 10 \log_{10}(P) dB$.

(iv) For operations in the 1995-2000 MHz band, the power of any emission between 2005-2020 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 $\log_{10}(P)$ dB.

Band 12 (Lower 700 MHz) § 27.53 (g) – Emission limits

For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed

Band 13 (Upper 700 MHz) § 27.53 (c), (f) – Emission limits

(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $76 + 10 \log (P) dB$ in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $65 + 10 \log (P) dB$ in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

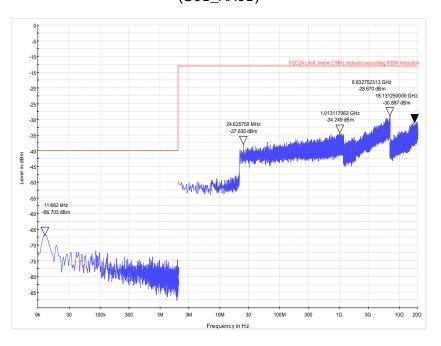
(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

5.2.3 TEST PROTOCOL

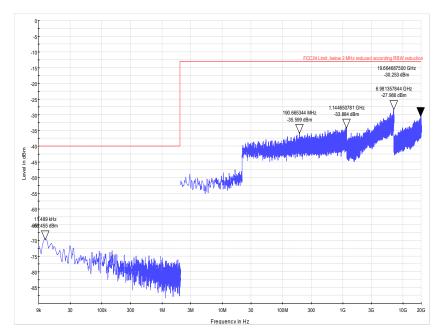
Ambient temperature:	25 °C
Air Pressure:	1010 hPa
Humidity:	40 %

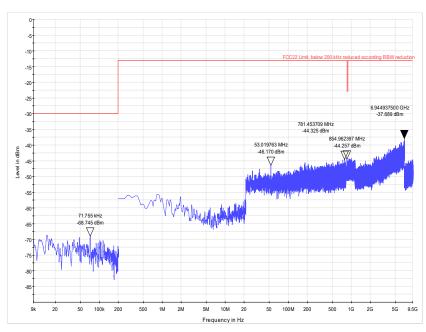
Band 2, dov	vnlink; Cente				
Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
6981.4	-28.0	PEAK	1000	-13.0	15.0

Band 5, dov					
Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
6973.9	-37.7	RMS	100	-13.0	24.7

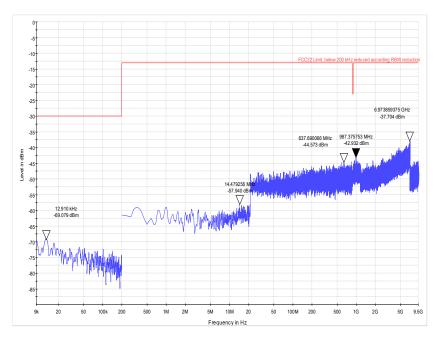

Band 2, upl					
Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
6932.8	-28.7	RMS	1000	-13.0	15.7

Band 5, upl					
Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
6944.9	-37.7	RMS	100	-13.0	24.7


Remark: Please see next sub-clause for the measurement plot.


5.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Frequency Band = Band 2, Direction = Uplink (S01_AA01)

Frequency Band = Band 2, Direction = Downlink (S01_AA01)



Frequency Band = Band 5, Direction = Uplink (S01_AA01)

Frequency Band = Band 5, Direction = Downlink (S01_AA01)

5.2.5 TEST EQUIPMENT USED

- R&S TS8997

6 TEST EQUIPMENT

1 R&S TS8997

EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
1.2	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2018-04	2020-04
1.3	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2018-04	2020-04
1.5	A8455-4	4 Way Power Divider (SMA)		-		
1.6	Opus10 THI (8152.00)	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	ID 7482	2019-06	2021-06
1.7	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10
1.8	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz	101158	2018-05	2021-05

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

			cable
		LISN	loss
		insertion	(incl. 10
		loss	dB
		ESH3-	atten-
Frequency	Corr.	Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

									I	
				cable	cable	cable	cable	distance	d _{Limit}	dused
				loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
	AF			inside	(outside	(switch	(to	(-40 dB/	distance	distance
	HFH-Z2)	Corr.	ch	amber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
	dB (1/m)	dB		dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6		0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6		0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6		0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6		0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5		0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5		0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5		0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5		0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4		0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4		0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4		0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3		0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3		0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3		0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3		0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3		0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3		0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2		0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1		0.4	0.1	0.3	0.1	-40	30	3

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{\text{Limit}} = 10 \text{ m})$

	·/								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

			· -						
						cable			
				cable		loss 3			
				loss 1		(switch			
				(relay +	cable	unit,			
	AF			cable	loss 2	atten-	cable		
	R&S			inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.		chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB		dB	dB	dB	dB		
1000	24.4	-19.4		0.99	0.31	-21.51	0.79		
2000	28.5	-17.4		1.44	0.44	-20.63	1.38		
3000	31.0	-16.1		1.87	0.53	-19.85	1.33		
4000	33.1	-14.7		2.41	0.67	-19.13	1.31		
5000	34.4	-13.7		2.78	0.86	-18.71	1.40		
6000	34.7	-12.7		2.74	0.90	-17.83	1.47		
7000	35.6	-11.0		2.82	0.86	-16.19	1.46		
/000	55.0	-11.0		2.02	0.00	-10.19	1.40		
							cable		
							loss 4		
				cable			(switch		
				loss 1	cable	cable	unit,		used
	AF			(relay	loss 2	loss 3	atten-	cable	for
	R&S			inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	HF907	Corr.		chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	_
3000	31.0	-23.4		0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3		0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7		0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2		0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8		0.66	2.82	0.86	-25.58	1.46	
/000	55.0	-19.0		0.00	2.02	0.00	-23.30	1.40	
[cable					
				loss 1	cable	cable	cable	cable	cable
	AF			(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S			inside	(High	(pre-	(inside	(outside	(to
Frequency	HF907	Corr.		chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	dB
7000	35.6	-57.3		0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3		0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3		0.68	0.65	-60.80	3.06	1.00	1.60
10000	37.5	-56.2		0.70	0.54	-61.91	3.28	1.20	1.67
11000	37.5	-55.3		0.70	0.54	-61.40	3.28	1.20	1.07
12000	37.5			0.80	0.81	-51.40	3.43	1.27	1.70
12000	37.6	-53.7							
		-53.5		0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3		0.91	0.53	-63.03	3.91	1.40	1.77
15000	40.9	-54.1		0.98	0.54	-61.05	4.02	1.44	1.83
16000	41.3	-54.1		1.23	0.49	-61.51	4.17	1.51	1.85
	42.8	-54.4		1.36	0.76	-62.36	4.34	1.53	2.00
17000 18000	44.2	-54.7		1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

					-		
. –			cable	cable	cable	cable	cable
							loss 5
			`		``	•	(to
3160-09	Corr.		chamber)	amp)	chamber)	unit)	receiver)
dB (1/m)	dB		dB	dB	dB	dB	dB
40.2	-23.5		0.72	-35.85	6.20	2.81	2.65
40.2	-23.2		0.69	-35.71	6.46	2.76	2.59
40.2	-22.0		0.76	-35.44	6.69	3.15	2.79
40.3	-21.3		0.74	-35.07	7.04	3.11	2.91
40.3	-20.3		0.72	-34.49	7.30	3.07	3.05
40.3	-19.9		0.78	-34.46	7.48	3.12	3.15
40.3	-19.1		0.87	-34.07	7.61	3.20	3.33
40.3	-19.1		0.90	-33.96	7.47	3.28	3.19
40.3	-18.7		0.89	-33.57	7.34	3.35	3.28
40.4	-19.0		0.87	-33.66	7.06	3.75	2.94
40.4	-19.5		0.88	-33.75	6.92	3.77	2.70
40.4	-19.3		0.90	-33.35	6.99	3.52	2.66
40.4	-19.8		0.88	-33.99	6.88	3.88	2.58
40.4	-19.5		0.91	-33.89	7.01	3.93	2.51
40.4	-19.3		0.88	-33.00	6.72	3.96	2.14
40.5	-20.4		0.89	-34.07	6.90	3.66	2.22
40.5	-21.3		0.86	-35.11	7.02	3.69	2.28
40.5	-21.1		0.90	-35.20	7.15	3.91	2.36
	40.2 40.2 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3	EMCO 3160-09 Corr. dB (1/m) dB 40.2 -23.5 40.2 -23.2 40.2 -23.2 40.2 -23.2 40.2 -23.2 40.3 -21.3 40.3 -20.3 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.4 -19.0 40.4 -19.5 40.4 -19.3 40.4 -19.3 40.4 -19.5 40.4 -19.3 40.4 -19.3 40.4 -19.3 40.5 -20.4	EMCO3160-09Corr.dB (1/m)dB40.2-23.540.2-23.240.3-21.340.3-20.340.3-19.940.3-19.140.3-19.140.3-19.140.4-19.040.4-19.540.4-19.840.4-19.540.4-19.540.5-20.440.5-21.3	AF loss 1 EMCO (inside 3160-09 Corr. (inside dB (1/m) dB dB 40.2 -23.5 0.72 40.2 -23.2 0.69 40.2 -22.0 0.76 40.3 -21.3 0.74 40.3 -20.3 0.72 40.3 -19.9 0.78 40.3 -19.1 0.87 40.3 -19.1 0.90 40.3 -19.1 0.90 40.4 -19.0 0.87 40.4 -19.5 0.88 40.4 -19.3 0.90 40.4 -19.3 0.91 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.5 -20.4 0.89	AF EMCOloss 1 (inside (inside (pre- chamber)3160-09Corr.dB (1/m)dB40.2-23.540.2-23.240.2-23.240.2-22.040.3-21.340.3-20.340.3-19.940.3-19.140.3-19.140.3-19.140.3-19.140.3-19.140.4-19.040.4-19.540.4-19.540.4-19.540.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.4-19.340.5-20.440.5-20.40.86-35.11	AF EMCOIoss 1 (inside (inside chamber)Ioss 2 (pre- amp)Ioss 3 (inside chamber)dB (1/m)dBdBdBdB40.2-23.50.72-35.856.2040.2-23.20.69-35.716.4640.2-22.00.76-35.446.6940.3-20.30.72-34.497.3040.3-19.90.78-34.467.4840.3-19.10.87-34.077.6140.3-19.10.87-34.077.6140.3-19.10.87-33.577.3440.4-19.00.88-33.576.9240.4-19.30.90-33.356.9940.4-19.30.90-33.897.0140.4-19.30.88-33.006.7240.4-19.30.88-33.006.7240.5-20.40.89-34.076.9040.5-20.40.88-33.006.7240.5-20.40.88-33.006.7240.5-21.30.86-35.117.02	AF EMCOIoss 1 (inside

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	3	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

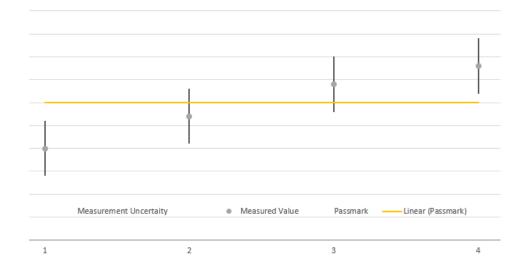
 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case(s)	Parameter	Uncertainty
7.12 - Radiated Spurious Emissions	Power	± 5.5 dB
7.1 -Authorized Frequency Band 7.10 - Occupied Bandwidth (99%)	Power Frequency	± 2.9 dB ± 11.2 kHz
 7.2 - Maximum Power 7.3 - Maximum Booster Gain 7.4 - Intermodulation 7.7.1 - Maximum TX Power Noise, 7.7.2 - Variable Uplink Noise 7.8 - Uplink Inactivity 7.9.1 - Variable Gain, 	Power	± 2.2 dB
7.9.2 - Variable Uplink Gain Timing 7.11.2 - Oscillation Shutdown 7.11.3 - Oscillation Mitigation	Power Time	± 2.2 dB ± 1 x 10 ⁻⁴ s ± 120 x 10 ⁻³ s
7.5 - Out-of-band emissions 7.6 - Conducted Spurious Emissions	Power Frequency	± 2.2 dB ± 11.2 kHz

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.