

FCC Measurement/Technical Report on

NAR Compensor

FCC ID: RK7MBC-NAR IC: 4774A-MBCNAR

Test Report Reference: MDE_NOVER_1615_FCCa_REV1

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1	Applied Standards and Test Summary	4
1.1	Applied Standards	4
1.2	FCC-IC Correlation Table	5
1.3	Measurement Summary / Signatures	6
2	Administrative Data	15
2.1	Testing Laboratory	15
2.2	Project Data	15
2.3	Applicant Data	15
2.4	Manufacturer Data	15
3	Test object Data	16
3.1	General EUT Description	16
3.2	EUT Main components	17
3.3	Ancillary Equipment	17
3.4	Auxiliary Equipment	17
3.5	EUT Setups	18
3.6	Operating Modes	18
3.7	Product labelling	18
4	Test Results	19
4.1	Authorized Frequency Band	19
4.2	Maximum Power	27
4.3	Maximum Booster Gain	36
4.4	Intermodulation	39
4.5	Out-of-band Emission	47
4.6	Conducted Spurious Emissions	62
4.7	Maximum Transmitter Noise Power	73
4.8	Variable Uplink Noise Timing	81
4.9	Uplink Inactivity	86
	Variable Booster Gain	90
	Variable Uplink Gain Timing	95
	Occupied Bandwidth	100
_	Oscillation Restart	113
	Oscillation Shutdown or Mitigation	118
4.15	Radiated Spurious Emissions	123
5	Test Equipment	134
6	Antenna Factors, Cable Loss and Sample Calculations	137
6.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	137
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	138

6.4 6.5	Antenna R&S HL562 (30 MHz – 1 GHz) Antenna R&S HF907 (1 GHz – 18 GHz) Antenna EMCO 3160-09 (18 GHz – 26.5 GHz) Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	139 140 141 142
7	Measurement Uncertainties	143
8	Photo Report	143

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for a Wideband Consumer signal Booster.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 20, 22, 24, 27 (10-1-15 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 20, Commercial Mobiles Services

§ 20.21 Signal Boosters

Part 22, Subpart H – Cellular Radiotelephone Service

§ 22.905 – Channels for cellular service

\$ 22.913 – Effective radiated power limits

§ 22.917 – Emission limitations for cellular equipment

Part 24 E – Personal Communication Services

§ 24.229 - Frequencies

§ 24.232 – Power and antenna height limits

§ 24.238 – Emission limitations for Broadband PCS equipment

Part 27 – Miscellaneous Wireless Communication Services

§ 27.5 (b), (c) - Frequencies § 27.50 (b) (c) - Power limits and duty cycle § 27.53 (c) (f) (g) (b) - Emission limits

§ 27.53 (c), (f), (g), (h) – Emission limits

The tests were selected and performed with reference to the FCC Public Notice 935210 applying "Wideband Consumer Signal Booster Compliance Measurement Guidance" 935210 D03 v04, 2016-02-12.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for Wideband Consumer Signal Booster from FCC and ISED Canada

Measurement	FCC reference	ISED reference
Anti-oscillation	§20.21(e)(8)(ii)(A) §20.21(e)(5)	RSS-131 Issue 3: 5.1.1.1
Gain control	§20.21(e)(8)(ii)(B)	RSS-131 Issue 3: 5.1.1.2
Power down	§20.21(e)(8)(i)(H)	RSS-131 Issue 3: 5.1.1.3
Interference avoidance for wireless subsystems	§20.21(e)(8)(ii)(C)	RSS-131 Issue 3: 5.1.1.4
Bidirectional capability	§20.21(e)(8)(i)(B)	RSS-131 Issue 3: 5.1.2
Noise limits	§20.21(e)(8)(i)(A)	RSS-131 Issue 3: 5.1.3.1
Gain limits	§20.21(e)(8)(i)(C)(1)	RSS-131 Issue 3: 5.1.3.2
Power limits	§20.21(e)(8)(i)(D)	RSS-131 Issue 3: 5.1.3.3
Out-of-band emission limits	§20.21(e)(8)(i)(E)	RSS-131 Issue 3: 5.1.3.4
Intermodulation limits	§20.21(e)(8)(i)(F)	RSS-131 Issue 3: 5.1.3.5
Transmit power off mode	§20.21(e)(8)(i)(H)	RSS-131 Issue 3: 5.1.3.6
Uplink inactivity	§20.21(e)(8)(i)(I)	RSS-131 Issue 3: 5.1.3.7

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 20 §20.21	§ 20.21 (e)(3) Frequenc	y Bands
Authorized Frequency Band The measurement was performed according to KDB 935210 D03		Final Resu	ult
OP-Mode Frequency Band, Direction	Setup	FCC	IC
Band 12, Downlink	S01_AA01	Performed	Performed
Band 12, Uplink	S01_AA01	Performed	Performed
Band 13, Downlink	S01_AA01	Performed	Performed
Band 13, Uplink	S01_AA01	Performed	Performed
Band 2, Downlink	S01_AA01	Performed	Performed
Band 2, Uplink	S01_AA01	Performed	Performed
Band 4, Downlink	S01_AA01	Performed	Performed
Band 4, Uplink	S01_AA01	Performed	Performed
Band 5, Downlink	S01_AA01	Performed	Performed
Band 5, Uplink	S01_AA01	Performed	Performed
47 CFR CHAPTER I FCC PART 20 §20.21	§ 20.21 (e)(8)(i)(D) Pov	wer Limits;

§ 20.21 (e)(8)(i)(B) Bidirectional Capability

Maximum Power			
The measurement was performed according to KDB 935210 D03		Final Result	
OP-Mode Frequency Band, Direction, Signal Type	Setup	FCC	IC
Band 12, Downlink, AWGN	S01_AA01	Passed	Passed
Band 12, Downlink, Pulsed CW	S01_AA01	Passed	Passed
Band 12, Uplink, AWGN	S01_AA01	Passed	Passed
Band 12, Uplink, Pulsed CW	S01_AA01	Passed	Passed
Band 13, Downlink, AWGN	S01_AA01	Passed	Passed
Band 13, Downlink, Pulsed CW	S01_AA01	Passed	Passed
Band 13, Uplink, AWGN	S01_AA01	Passed	Passed
Band 13, Uplink, Pulsed CW	S01_AA01	Passed	Passed
Band 2, Downlink, AWGN	S01_AA01	Passed	Passed
Band 2, Downlink, Pulsed CW	S01_AA01	Passed	Passed
Band 2, Uplink, AWGN	S01_AA01	Passed	Passed
Band 2, Uplink, Pulsed CW	S01_AA01	Passed	Passed
Band 4, Downlink, AWGN	S01_AA01	Passed	Passed
Band 4, Downlink, Pulsed CW	S01_AA01	Passed	Passed
Band 4, Uplink, AWGN	S01_AA01	Passed	Passed
Band 4, Uplink, Pulsed CW	S01_AA01	Passed	Passed
Band 5, Downlink, AWGN	S01_AA01	Passed	Passed
Band 5, Downlink, Pulsed CW	S01_AA01	Passed	Passed
Band 5, Uplink, AWGN	S01_AA01	Passed	Passed
Band 5, Uplink, Pulsed CW	S01_AA01	Passed	Passed

47 CFR CHAPTER I FCC PART 20 §20.21

§ 20.21 (e)(8)(i)(C)(2) Booster Gain Limits; § 20.21 (e)(8)(i)(B) Bidirectional Capability

Maximum Booster Gain			
The measurement was performed according to KDB 935210 D03		Final Result	
	<u> </u>		
OP-Mode Frequency Band, Direction, Signal Type	Setup	FCC	IC
	CO1 4401	Passed	Passed
Band 12, Downlink, AWGN	S01_AA01		
Band 12, Downlink, Pulsed CW	S01_AA01	Passed	Passed
Band 12, Uplink, AWGN	S01_AA01	Passed	Passed
Band 12, Uplink, Pulsed CW	S01_AA01	Passed	Passed
Band 13, Downlink, AWGN	S01_AA01	Passed	Passed
Band 13, Downlink, Pulsed CW	S01_AA01	Passed	Passed
Band 13, Uplink, AWGN	S01_AA01	Passed	Passed
Band 13, Uplink, Pulsed CW	S01_AA01	Passed	Passed
Band 2, Downlink, AWGN	S01_AA01	Passed	Passed
Band 2, Downlink, Pulsed CW	S01_AA01	Passed	Passed
Band 2, Uplink, AWGN	S01_AA01	Passed	Passed
Band 2, Uplink, Pulsed CW	S01_AA01	Passed	Passed
Band 4, Downlink, AWGN	S01_AA01	Passed	Passed
Band 4, Downlink, Pulsed CW	S01_AA01	Passed	Passed
Band 4, Uplink, AWGN	S01_AA01	Passed	Passed
Band 4, Uplink, Pulsed CW	S01_AA01	Passed	Passed
Band 5, Downlink, AWGN	S01_AA01	Passed	Passed
Band 5, Downlink, Pulsed CW	S01_AA01	Passed	Passed
Band 5, Uplink, AWGN	S01_AA01	Passed	Passed
Band 5, Uplink, Pulsed CW		Passed	Passed

47 CFR CHAPTER I FCC PART 20 §20.21

§ 20.21 (e)(8)(i)(F) Intermodulation Limits

Intermodulation			
The measurement was performed according to KDB 935210 D03		Final Result	
OP-Mode Frequency Band, Direction, Input Power	Setup	FCC	IC
Band 12, Downlink, AGC	S01_AA01	Passed	Passed
Band 12, Uplink, AGC		Passed	Passed
Band 12, Uplink, AGC+10dB	S01_AA01	Passed	Passed
Band 13, Downlink, AGC	S01_AA01	Passed	Passed
Band 13, Uplink, AGC	S01_AA01	Passed	Passed
Band 13, Uplink, AGC+10dB	S01_AA01	Passed	Passed
Band 2, Downlink, AGC	S01_AA01	Passed	Passed
Band 2, Uplink, AGC	S01_AA01	Passed	Passed
Band 2, Uplink, AGC+10dB	S01_AA01	Passed	Passed
Band 4, Downlink, AGC	S01_AA01	Passed	Passed
Band 4, Uplink, AGC	S01_AA01	Passed	Passed
Band 4, Uplink, AGC+10dB	S01_AA01	Passed	Passed
Band 5, Downlink, AGC	S01_AA01	Passed	Passed
Band 5, Uplink, AGC	S01_AA01	Passed	Passed
Band 5, Uplink, AGC+10dB	S01_AA01	Passed	Passed

47 CFR CHAPTER I FCC PART 20 §20.21

§ 20.21 (e)(8)(i)(E) Out-of-bands Limits

Out-of-band Emission			
The measurement was performed according to KDB 93521	.0 D03	Final Re	sult
OP-Mode Frequency Band, Direction, Signal Type, Band Edge	Setup	FCC	IC
Band 12, Downlink, CDMA, lower	S01_AB01	Passed	Passed
Band 12, Downlink, CDMA, upper	S01_AB01	Passed	Passed
Band 12, Downlink, GSM, lower	S01_AB01	Passed	Passed
Band 12, Downlink, GSM, upper	S01_AB01	Passed	Passed
Band 12, Downlink, LTE, lower	S01_AB01	Passed	Passed
Band 12, Downlink, LTE, upper	S01_AB01	Passed	Passed
Band 12, Uplink, CDMA, lower	S01_AB01	Passed	Passed
Band 12, Uplink, CDMA, upper	S01_AB01	Passed	Passed
Band 12, Uplink, GSM, lower	S01_AB01	Passed	Passed
Band 12, Uplink, GSM, upper	S01_AB01	Passed	Passed
Band 12, Uplink, LTE, lower	S01_AB01	Passed	Passed
Band 12, Uplink, LTE, upper	S01_AB01	Passed	Passed
Band 13, Downlink, CDMA, lower	S01_AB01	Passed	Passed
Band 13, Downlink, CDMA, upper	S01_AB01	Passed	Passed
Band 13, Downlink, GSM, lower	S01_AB01	Passed	Passed
Band 13, Downlink, GSM, upper	S01_AB01	Passed	Passed
Band 13, Downlink, LTE, lower	S01_AB01	Passed	Passed
Band 13, Downlink, LTE, upper	S01_AB01	Passed	Passed

Band 13, Uplink, CDMA, lower Band 13, Uplink, CDMA, upper Band 13, Uplink, GSM, lower Band 13, Uplink, GSM, upper Band 13, Uplink, LTE, lower Band 13, Uplink, LTE, upper Band 2, Downlink, CDMA, lower Band 2, Downlink, CDMA, upper Band 2, Downlink, GSM, lower Band 2, Downlink, GSM, upper Band 2, Downlink, LTE, lower Band 2, Downlink, LTE, upper Band 2, Uplink, CDMA, lower Band 2, Uplink, CDMA, upper Band 2, Uplink, GSM, lower Band 2, Uplink, GSM, upper Band 2, Uplink, LTE, lower Band 2, Uplink, LTE, upper Band 4, Downlink, CDMA, lower Band 4, Downlink, CDMA, upper Band 4, Downlink, GSM, lower Band 4, Downlink, GSM, upper Band 4, Downlink, LTE, lower Band 4, Downlink, LTE, upper Band 4, Uplink, CDMA, lower Band 4, Uplink, CDMA, upper Band 4, Uplink, GSM, lower Band 4, Uplink, GSM, upper Band 4, Uplink, LTE, lower Band 4, Uplink, LTE, upper Band 5, Downlink, CDMA, lower Band 5, Downlink, CDMA, upper Band 5, Downlink, GSM, lower Band 5, Downlink, GSM, upper Band 5, Downlink, LTE, lower Band 5, Downlink, LTE, upper Band 5, Uplink, CDMA, lower Band 5, Uplink, CDMA, upper Band 5, Uplink, GSM, lower Band 5, Uplink, GSM, upper Band 5, Uplink, LTE, lower Band 5, Uplink, LTE, upper

S01_AB01	Passed	Passed
S01_AB01	Passed	Passed

47 CFR CHAPTER I FCC PART 20 §20.21

§ 2.1051 Spurious emissions at antenna terminals

Conducted Spurious Emissions The measurement was performed according to KDB 935210 D03			Final Result	
OP-Mode Frequency Band, Direction	Setup	FCC	IC	
Band 12, Downlink	S01_AB01	Passed	Passed	
Band 12, Uplink	S01_AB01	Passed	Passed	
Band 13, Downlink	S01_AB01	Passed	Passed	
Band 13, Uplink	S01_AB01	Passed	Passed	
Band 2, Downlink	S01_AB01	Passed	Passed	
Band 2, Uplink	S01_AB01	Passed	Passed	
Band 4, Downlink	S01_AB01	Passed	Passed	
Band 4, Uplink	S01_AB01	Passed	Passed	
Band 5, Downlink	S01_AB01	Passed	Passed	
Band 5, Uplink	S01_AB01	Passed	Passed	

47 CFR CHAPTER I FCC PART 20 §20.21 § 20.21 (e)(8)(i)(A) Noise Limits; § 20.21 (e)(8)(i)(H) Transmitter Power Off Mode

Maximum Transmitter Noise Power			
The measurement was performed according to KDB 935210 D03		Final Result	
OP-Mode	Setup	FCC	IC
Frequency Band, Direction, Signal Type Band 12, Downlink, None	S01_AB01	Passed	Passed
Band 12, Uplink, AWGN DL	S01_AB01	Passed	Passed
Band 12, Uplink, None	S01_AB01	Passed	Passed
Band 13, Downlink, None	S01_AB01	Passed	Passed
Band 13, Uplink, AWGN DL	S01_AB01	Passed	Passed
Band 13, Uplink, None	S01_AB01	Passed	Passed
Band 2, Downlink, None	S01_AB01	Passed	Passed
Band 2, Uplink, AWGN DL	S01_AB01	Passed	Passed
Band 2, Uplink, None	S01_AB01	Passed	Passed
Band 4, Downlink, None	S01_AB01	Passed	Passed
Band 4, Uplink, AWGN DL	S01_AB01	Passed	Passed
Band 4, Uplink, None	S01_AB01	Passed	Passed
Band 5, Downlink, None	S01_AB01	Passed	Passed
Band 5, Uplink, AWGN DL	S01_AB01	Passed	Passed
Band 5, Uplink, None	S01_AB01	Passed	Passed

Final Result

47 CFR CHAPTER I FCC PART 20 §20.21

§ 20.21 (e)(8)(i)(A) Noise Limits; § 20.21 (e)(8)(i)(H) Transmitt<u>er Power Off Mode</u>

Variable Uplink Noise Timing The measurement was performed according to KDB 935210 D03

OP-Mode Frequency Band, Direction	Setup	FCC	IC
Band 12, Uplink	S01_AB01	Passed	Passed
Band 13, Uplink	S01_AB01	Passed	Passed
Band 2, Uplink	S01_AB01	Passed	Passed
Band 4, Uplink	S01_AB01	Passed	Passed
Band 5, Uplink	S01_AB01	Passed	Passed

47 CFR CHAPTER I FCC PART 20 §20.21	§ 20.21 (e)(8)(i)(I) Uplink Inactivity		plink
Uplink Inactivity			
The measurement was performed according to KDB	935210 D03	Final Re	esult
OP-Mode	Setup	FCC	IC
Frequency Band, Direction			
Band 12, Uplink	S01_AB01	Passed	Passed
Band 13, Uplink	S01_AB01	Passed	Passed
Band 2, Uplink	S01_AB01	Passed	Passed
Band 4, Uplink	S01_AB01	Passed	Passed
Band 5, Uplink	S01_AB01	Passed	Passed

47 CFR CHAPTER I FCC PART 20 §20.21

§ 20.21 (e)(8)(i)(C)(1) Booster Gain Limits, § 20.21 (e)(8)(i)(H) Transmit Power Off Mode

Variable Booster Gain The measurement was performed according to KDB 935210 D03 Final Result				
OP-Mode Frequency Band, Direction	Setup	FCC	IC	
Band 12, Uplink	S01_AB01	Passed	Passed	
Band 13, Uplink	S01_AB01	Passed	Passed	
Band 2, Uplink	S01_AB01	Passed	Passed	
Band 4, Uplink	S01_AB01	Passed	Passed	
Band 5, Uplink	S01_AB01	Passed	Passed	

47 CFR CHAPTER I FCC PART 20 §20.21

§ 20.21 (e)(8)(i)(C)(1) Booster Gain Limits; § 20.21 (e)(8)(i)(H) Transmit Power Off Mode

		240	
Variable Uplink Gain Timing The measurement was performed according to KD	035210 003	Final Re	ocult
The measurement was performed according to KE	0 933210 003		suit
OP-Mode	Setup	FCC	IC
Frequency Band, Direction	-		
Band 12, Uplink	S01_AB01	Passed	Passed
Band 13, Uplink	S01_AB01	Passed	Passed
Band 2, Uplink	S01_AB01	Passed	Passed
Band 4, Uplink	S01_AB01	Passed	Passed
Band 5, Uplink	S01_AB01	Passed	Passed

47 CFR CHAPTER I FCC PART 20 §20.21 § 2.1049 Occupied Bandwidth			ndwidth
Occupied Bandwidth			
The measurement was performed according to KDB	935210 D03	Final Re	esult
OP-Mode	Setup	FCC	IC
Frequency Band, Direction, Signal Type			_
Band 12, Downlink, CDMA	S01_AB01	Passed	Passed
Band 12, Downlink, GSM	S01_AB01	Passed	Passed
Band 12, Downlink, LTE	S01_AB01	Passed	Passed
Band 12, Uplink, CDMA	S01_AB01	Passed	Passed
Band 12, Uplink, GSM	S01_AB01	Passed	Passed
Band 12, Uplink, LTE	S01_AB01	Passed	Passed
Band 13, Downlink, CDMA	S01_AB01	Passed	Passed
Band 13, Downlink, GSM	S01_AB01	Passed	Passed
Band 13, Downlink, LTE	S01_AB01	Passed	Passed
Band 13, Uplink, CDMA	S01_AB01	Passed	Passed
Band 13, Uplink, GSM	S01_AB01	Passed	Passed
Band 13, Uplink, LTE	S01_AB01	Passed	Passed
Band 2, Downlink, CDMA	S01_AB01	Passed	Passed
Band 2, Downlink, GSM	S01_AB01	Passed	Passed
Band 2, Downlink, LTE	S01_AB01	Passed	Passed
Band 2, Uplink, CDMA	S01_AB01	Passed	Passed
Band 2, Uplink, GSM	S01_AB01	Passed	Passed
Band 2, Uplink, LTE	S01_AB01	Passed	Passed
Band 4, Downlink, CDMA	S01_AB01	Passed	Passed
Band 4, Downlink, GSM	S01_AB01	Passed	Passed
Band 4, Downlink, LTE	S01_AB01	Passed	Passed
Band 4, Uplink, CDMA	S01_AB01	Passed	Passed
Band 4, Uplink, GSM	S01_AB01	Passed	Passed
Band 4, Uplink, LTE	S01_AB01	Passed	Passed
Band 5, Downlink, CDMA	S01_AB01	Passed	Passed
Band 5, Downlink, GSM	S01_AB01	Passed	Passed
Band 5, Downlink, LTE	S01_AB01	Passed	Passed

Band 5, Uplink, CDMA	S01_AB01	Passed	Passed
Band 5, Uplink, GSM	S01_AB01	Passed	Passed
Band 5, Uplink, LTE	S01_AB01	Passed	Passed

47 CFR CHAPTER I FCC PART 20 §20.21

§ 20.21 (e)(8)(ii)(A) Ant-Oscillation, § 20.21 (e)(5) Anti-Oscillation

Oscillation Restart The measurement was performed according to KDB 9352.	10 002	Final Re	
The measurement was performed according to KDB 9552.	10 003		suit
OP-Mode	Setup	FCC	IC
Frequency Band, Direction	_		
Band 12, Downlink	S01_AA01	Passed	Passed
Band 12, Uplink	S01_AA01	Passed	Passed
Band 13, Downlink	S01_AA01	Passed	Passed
Band 13, Uplink	S01_AA01	Passed	Passed
Band 2, Downlink	S01_AA01	Passed	Passed
Band 2, Uplink	S01_AA01	Passed	Passed
Band 4, Downlink	S01_AA01	Passed	Passed
Band 4, Uplink	S01_AA01	Passed	Passed
Band 5, Downlink	S01_AA01	Passed	Passed
Band 5, Uplink	S01_AA01	Passed	Passed

47 CFR CHAPTER I FCC PART 20 §20.21

§ 20.21 (e)(8)(ii)(A) Ant-Oscillation, § 20.21 (e)(5) Anti-Oscillation

	<u>g 20.21 (e)(</u>	J) AIILI-OSCI	nation	
Oscillation Shutdown or Mitigation				
The measurement was performed according to KDB 935210 D03		Final Result		
	Catur	FCC	IC	
OP-Mode	Setup	FCC	IC	
Frequency Band, Direction				
Band 12, Downlink	S01_AA01	Passed	Passed	
Band 12, Uplink	S01_AA01	Performed	Performed	
Remark: Input power too low for start of amplification				
Band 13, Downlink	S01_AA01	Passed	Passed	
Band 13, Uplink	S01_AA01	Performed	Performed	
Remark: Input power too low for start of amplification				
Band 2, Downlink	S01_AA01	Passed	Passed	
Band 2, Uplink	S01_AA01	Performed	Performed	
Remark: Input power too low for start of amplification	_			
Band 4, Downlink	S01_AA01	Passed	Passed	
Band 4, Uplink	S01_AA01	Performed	Performed	
Remark: Input power too low for start of amplification				
Band 5, Downlink	S01_AA01	Passed	Passed	
Band 5, Uplink	S01_AA01	Performed	Performed	
Remark: Input power too low for start of amplification				

47 CFR CHAPTER I FCC PART 20 §20.21	§ 2.1053 Field strength of Spurious Radiation		
Radiated Spurious Emissions			
The measurement was performed according to KDB 9	935210 D03	Final Re	esult
OP-Mode Frequency Band, Direction	Setup	FCC	IC
Band 12, Downlink	S01_AB01	Passed	Passed
Band 12, Uplink	S01_AB01	Passed	Passed
Band 13, Downlink	S01_AB01	Passed	Passed
Band 13, Uplink	S01_AB01	Passed	Passed
Band 2, Downlink	S01_AB01	Passed	Passed
Band 2, Uplink	S01_AB01	Passed	Passed
Band 4, Downlink	S01_AB01	Passed	Passed
Band 4, Uplink	S01_AB01	Passed	Passed
Band 5, Downlink	S01_AB01	Passed	Passed
Band 5, Uplink	S01_AB01	Passed	Passed

N/A: Not applicable N/P: Not performed

Revision History

Report version control			
Version	Release date	Change Description	Version validity
initial	2017-02-15		valid
REV1	2017-03-13	 Zoomed plots for Band 13 in test case "Spurious emissions at antenna terminal" added Typo errors in the test description of test cases: "Spurious emissions at antenna terminal" "Occupied Bandwidth "Field strength of Spurious Radiation removed 	valid

(responsible for accreditation scope) Dipl.-Ing. Marco Kullik

2 ADMINISTRATIVE DATA

2.1 TESTING LABORATORY

Company Name:

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

This facility has been fully described in a report submitted to the FCC and accredited under the test firm registration number 929146.

The corresponding FCC Designation Number is: DE0015

This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-00
------------------------------	------------------------

Responsible for accreditation scope:	DiplIng. Marco Kullik

Report Template Version: 2016-06-07

2.2 PROJECT DATA

Responsible for testing and report:	DiplIng. Daniel Gall
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2017-03-13
Testing Period:	2016-12-13 to 2017-01-19

2.3 APPLICANT DATA

Company Name:

Address:

Märkische Str. 72 15806 Zossen Germany

Laird Dabendorf GmbH

Contact Person:

Mr. Raimo Jacobi

2.4 MANUFACTURER DATA

Company Name:

Please see applicant

Address:

Contact Person:

3 TEST OBJECT DATA

3.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Consumer Signal Booster supporting bands 2 ,4, 5, 12, 13	
Product name	LTE-MBC-NAR	
Туре	-	
Declared EUT data by	the supplier	
General Product Description	The EUT is wideband consumer signal booster used in road vehicles.	
Booster Type	Mobile Wideband Consumer Signal Booster	
Booster Connection	Direct Contact Coupling (e.g. craddle type)	
MSCL Value	7 dB	
Voltage Type	DC	
Voltage Level	14.0 V	
Maximum Output Donor Port [Uplink]:	28.5 dBm (conducted power)	
Maximum Output Server Port [Downlink]:	2.0 dBm (conducted power)	
Maximum Gain [Uplink]	22.5 dB	
Maximum Gain [Downlink]	22.5 dB	
The EUT provides the following ports:	Donor Port: Input BS-Signal, Output MS-Signal Server Port: Input MS-Signal, Output BS-Signal DC Port	

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
DE1010008aa01	aa01	1st test sample
Sample Parameter		Value
Serial No:	FKW-00125.11.1600000043	
HW Version	004	
SW Version	0005	
Comment		

Sample Name	Sample Code	Description
DE1010008ab01	ab01	2nd test sample
Sample Parameter		Value
Serial No:	FKW-00125.11.1600000040	
HW Version	004	
SW Version	0005	
Comment		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

3.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N)	Description
-	-	-

3.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AB01	DE1010008ab01	
S01_AA01	DE1010008aa01	

3.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

3.6.1TEST CHANNELS

Band	Direction	Lower Frequency Band Edge [MHz]	Upper Frequency Band Edge [MHz]	Center Frequency [MHz]	Port
2	downlink	1930.00	1990.00	1960.00	Donor
4	downlink	2110.00	2155.00	2132.50	Donor
5	downlink	869.00	894.00	881.50	Donor
12	downlink	728.00	746.00	737.00	Donor
13	downlink	746.00	756.00	751.00	Donor
2	uplink	1850.00	1910.00	1880.00	Server
4	uplink	1710.00	1755.00	1732.50	Server
5	uplink	824.00	849.00	836.50	Server
12	uplink	698.00	716.00	707.00	Server
13	uplink	777.00	787.00	782.00	Server

3.7 PRODUCT LABELLING

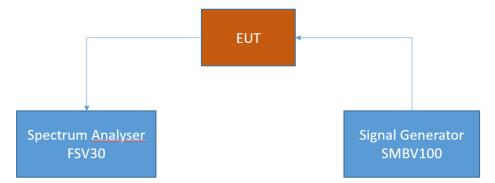
3.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

3.7.2 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant.

4 TEST RESULTS

4.1 AUTHORIZED FREQUENCY BAND


Standard

The test was performed according to: KDB 935210 D03

4.1.1TEST DESCRIPTION

This test case is intended to confirm that the signal booster only operates on the CMRS frequency bands authorized for use by the NPS. In addition, this test will identify the frequency at which the maximum gain is realized within each CMRS operational band, which then serves as a basis for subsequent tests.

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.1; Authorized Frequency Band Verification

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.1.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21 (e)(3) Frequency Bands

For this test case exists no applicable limit.

4.1.3TEST PROTOCOL

Ambient temperature Air Pressure: Humidity:	: 23 °C 1010 hPa 30 %	
1	30 %	
Band 2, downlink		
Frequency	Frequency [MHz]	Output Power [dBm]
Frequency Lower Band Edge	Frequency [MHz] 1930.000	Output Power [dBm] -4.9

Band 4, downlink

Frequency	Frequency [MHz]	Output Power [dBm]
Lower Band Edge	2110.000	-4.8
Highest Power	2131.303	-3.6
Upper Band Edge	2155.000	-4.6

Band 5, downlink

Frequency	Frequency [MHz]	Output Power [dBm]
Lower Band Edge	869.000	-5.0
Highest Power	880.455	-3.7
Upper Band Edge	894.000	-6.0

Band 12, downlink

Bana 12, aominina		
Frequency	Frequency [MHz]	Output Power [dBm]
Lower Band Edge	728.000	-4.3
Highest Power	740.200	-1.3
Upper Band Edge	746.000	-4.3

Band 13, downlink

Frequency	Frequency [MHz]	Output Power [dBm]
Lower Band Edge	746.000	-1.2
Highest Power	751.750	0.7
Upper Band Edge	756.000	-1.2

Band 2, uplink

Frequency	Frequency [MHz]	Output Power [dBm]	
Lower Band Edge	1850.000	19.2	
Highest Power	1889.612	20.2	
Upper Band Edge	1910.000	16.1	

Band 4, uplink

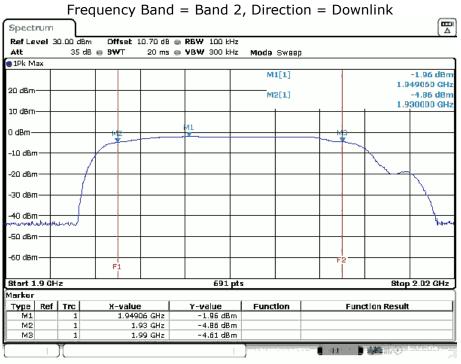
Frequency	Frequency [MHz]	Output Power [dBm]	
Lower Band Edge	1710.000	16.0	
Highest Power	1750.203	17.3	
Upper Band Edge	1755.000	17.0	

Band 5, uplink

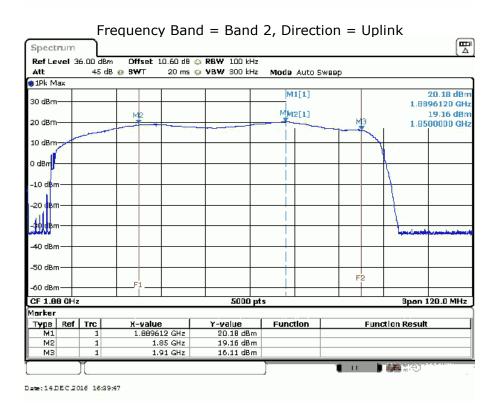
Bana 57 apinin				
Frequency	Frequency [MHz]	Output Power [dBm]		
Lower Band Edge	824.000	17.5		
Highest Power	837.345	18.5		
Upper Band Edge	849.000	15.9		

Band 12, uplink

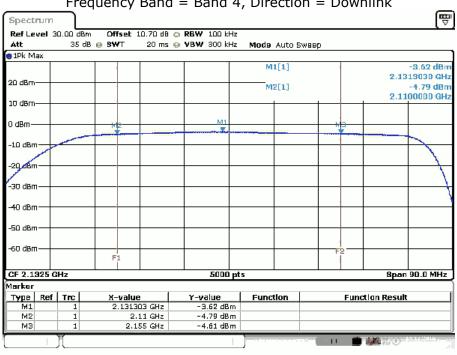
Frequency	Frequency [MHz]	Output Power [dBm]		
Lower Band Edge	698.000	15.7		
Highest Power	705.700	18.0		
Upper Band Edge	716.000	16.2		


Band 13, uplink

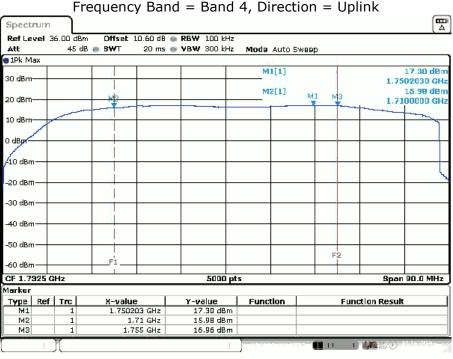
2 ana 20, apini				
Frequency	Frequency [MHz]	Output Power [dBm]		
Lower Band Edge	777.000	16.8		
Highest Power	782.350	18.1		
Upper Band Edge	787.000	17.7		



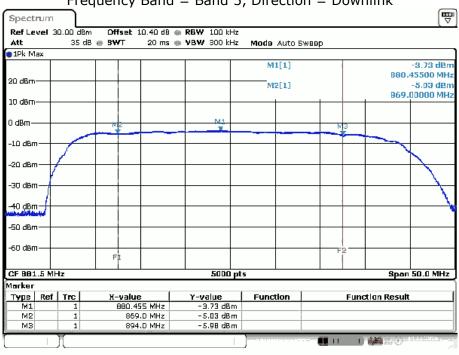
Remark: Please see next sub-clause for the measurement plot.


4.1.4MEASUREMENT PLOTS

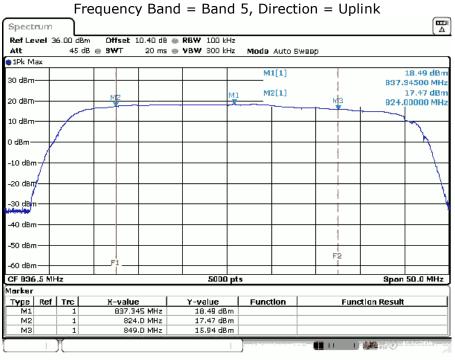
Date: 13 DEC 2016 18:03:47

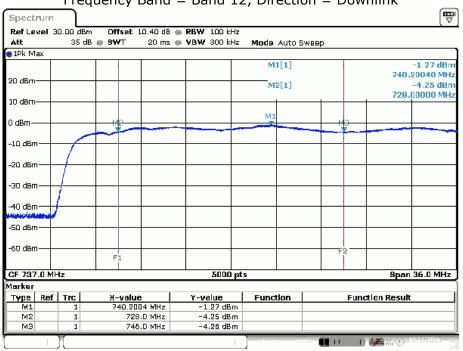


Frequency Band = Band 4, Direction = Downlink

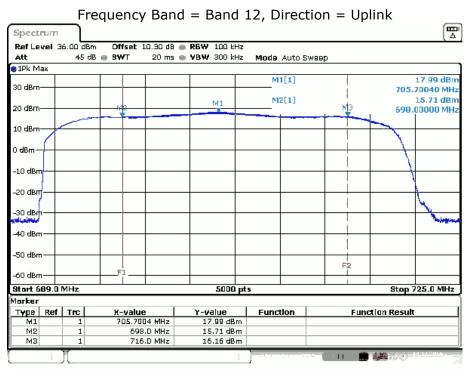

Date: 14DEC 2016 09:54:36

Frequency Band = Band 4, Direction = Uplink


Date: 14DEC 2016 16:04:20


Frequency Band = Band 5, Direction = Downlink

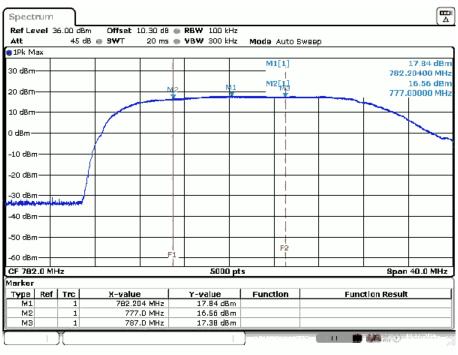
Date: 14DEC 2016 10:04:33


Date: 14DEC 2016 12:46:23

Frequency Band = Band 12, Direction = Downlink

Date:14DEC.2016 10:16:34

Date:14DEC.2016 12:27:16


Spectrum								
Ref Level			8 🜰 RBW 100 kHz					
Att	35 dB	3.⊜ 9₩ T 20.m	s 🍥 VBW 300 kHz	Mode Auto S	маер			
∎1Pk Max								
				M2[1]		-1.24 dBn 746.00000 MH		
20 dBm				M1[1]		0.56 dBn		
				TOTAL A		751.75000 MH		
10 dBm								
		M2		M1	мз			
0 uBm								
-10 dBm								
-10 060								
-20 dBm —								
20 00								
-30 dBm —								
-40 dBm								
-50 dBm —								
-60 dBm		F1			F2			
CF 751.0 M	Hz		5000 pt	5		Spon 20.0 MHz		
larker								
	Trc	X-value	Y-value	Function	Funct	lan Result		
M1	1	751.75 MHz						
M2 M3	1	746.D MHz 756.D MHz						
1912		730.D MH2	- 1,22 UDIII					

Frequency Band = Band 13, Direction = Downlink

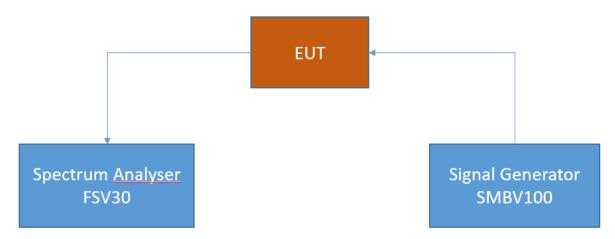
Date: 14DEC.2016 10:33:06

Spectrum	ר	squerrey Bu	nd = Band	is, blice		
Ref Level 36.			8 🐽 RBW 100 kHz		_	
Att 1Pk Max	45 dB	⊜ 9₩ T 20 m	is 🌰 VBW 300 kHz	Mode Auto !	Бжөөр	
				M1[1]		18.14 dBn 782.95000 MH
			M	M2[1]	1	16.93 dBn
20 dBm		M2	1101		M3	777.00000 MH
10 dBm					1	
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
40 dBm						
-50 dBm						
-60 dBm		F1			F2	
CF 782.0 MHz		L 1 1	5000 pt	5		Spon 20.0 MHz
1arker						
Type Ref [X-value	Y-value	Function	Fund	tion Result
M1 M2	1	782.35 MHz				
M2 M3	1	777.D MHz 787.D MHz				
					······	

Date:14DEC.2016 11:20:54

4.1.5TEST EQUIPMENT USED R&S TS8997

4.2 MAXIMUM POWER


Standard

The test was performed according to: KDB 935210 D03

4.2.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster power limits and requirements as specified in §§ 20.21(e)(8)(i)(D) and 20.21(e)(8)(i)(B) for wideband consumer signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.2; Maximum Power

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.2.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21(e)(8)(i)(D)

Power Limits. A booster's uplink power must not exceed 1 watt composite conducted power and equivalent isotropic radiated power (EIRP) for each band of operation. Composite downlink power shall not exceed 0.05 watt (17 dBm) conducted and EIRP for each band of operation. Compliance with power limits will use instrumentation calibrated in terms of RMS equivalent voltage.

FCC Part 20, § 20.21(e)(8)(i)(B)

Bidirectional Capability. Consumer Boosters must be able to provide equivalent uplink and downlink gain and conducted uplink power output that is at least 0.05 watts. One-way consumer boosters (*i.e.*, uplink only, downlink only, uplink impaired, downlink impaired) are prohibited. Spectrum block filtering may be used provided the uplink filter attenuation is not less than the downlink filter attenuation, and where RSSI is measured after spectrum block filtering is applied referenced to the booster's input port for each band of operation.

4.2.3TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	1010 hPa
Humidity:	30 %
Band 2, downlink	

Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power [dBm]	Lower Limit Output Power [dBm]	Upper Limit Output Power [dBm]	Margin to Lower Limit [dB]	Margin to Upper Limit [dB]
Pulsed CW	1949.060	-23.7 (AGC start)	-2.0		17.0		19.0
Pulsed CW	1949.060	-21.7	-0.8		17.0		17.8
Pulsed CW	1949.060	-20.0	-0.3		17.0		17.3
AWGN	1949.060	-29.6 (AGC start)	-8.1		17.0		25.1
AWGN	1949.060	-27.6	-6.3		17.0		23.3
AWGN	1949.060	-25.6	-4.7		17.0		21.7
AWGN	1949.060	-23.6	-3.5		17.0		20.5
AWGN	1949.060	-21.6	-2.5		17.0		19.5
AWGN	1949.060	-20.0	-1.6		17.0		18.6

Band 4, downlink

Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power [dBm]	Lower Limit Output Power [dBm]	Upper Limit Output Power [dBm]	Margin to Lower Limit [dB]	Margin to Upper Limit [dB]
Pulsed CW	2131.303	-23.1 (AGC start)	-1.6		17.0		18.6
Pulsed CW	2131.303	-21.1	-0.3		17.0		17.3
Pulsed CW	2131.303	-20.0	0.0		17.0		17.0
AWGN	2131.303	-29.6 (AGC start)	-8.3		17.0		25.3
AWGN	2131.303	-27.6	-6.4		17.0		23.4
AWGN	2131.303	-25.6	-4.9		17.0		21.9
AWGN	2131.303	-23.6	-3.5		17.0		20.5
AWGN	2131.303	-21.6	-2.3		17.0		19.3
AWGN	2131.303	-20.0	-1.6		17.0		18.6

Band 5, downlink

Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power [dBm]	Lower Limit Output Power [dBm]	Upper Limit Output Power [dBm]	Margin to Lower Limit [dB]	Margin to Upper Limit [dB]
Pulsed CW	880.5	-22.4 (AGC start)	-1.5		17.0		18.5
Pulsed CW	880.5	-20.4	-0.4		17.0		17.4
Pulsed CW	880.5	-20.0	-0.3		17.0		17.3
AWGN	880.5	-26.8 (AGC start)	-6.4		17.0		23.4
AWGN	880.5	-24.8	-4.8		17.0		21.8
AWGN	880.5	-22.8	-3.4		17.0		20.4
AWGN	880.5	-20.8	-2.2		17.0		19.2
AWGN	880.5	-20.0	-1.8		17.0		18.8

Band 12, downlink

Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power [dBm]	Lower Limit Output Power [dBm]	Upper Limit Output Power [dBm]	Margin to Lower Limit [dB]	Margin to Upper Limit [dB]
Pulsed CW	740.2	-22.1 (AGC start)	-0.1		17.0		17.1
Pulsed CW	740.2	-20.0	1.6		17.0		15.4
AWGN	740.2	-23.3 (AGC start)	-2.8		17.0		19.8
AWGN	740.2	-21.3	-1.1		17.0		18.1
AWGN	740.2	-20.0	0.0		17.0		17.0

Band 13, downlink

Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power [dBm]	Lower Limit Output Power [dBm]	Upper Limit Output Power [dBm]	Margin to Lower Limit [dB]	Margin to Upper Limit [dB]
Pulsed CW	751.8	-22.1 (AGC start)	-1.0		17.0		18.0
Pulsed CW	751.8	-20.0	0.8		17.0		16.2
AWGN	751.8	-23.2 (AGC start)	-3.7		17.0		20.7
AWGN	751.8	-21.2	-1.9		17.0		18.9
AWGN	751.8	-20.0	-0.8		17.0		17.8

Band 2, uplink								
Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power	Lower Limit Output Power	Upper Limit Output Power	Margin to Lower Limit	Margin to Upper Limit	
Dulcod CW	1889.6		[dBm] 27.5	[dBm] 17.0	[dBm] 30.0	[dB]	[dB] 2.5	
Pulsed CW Pulsed CW	1889.6	7.5 (AGC start) 9.5	27.5	17.0	30.0	10.5		
			-	-		10.9	2.1	
Pulsed CW	1889.6	11.5	27.9	17.0	30.0	10.9	2.1	
Pulsed CW	1889.6	13.5	28.0	17.0	30.0	11.0	2.1	
Pulsed CW	1889.6	15.5	27.9	17.0	30.0	10.9	2.1	
Pulsed CW	1889.6	17.5	28.0	17.0	30.0	11.0	2.0	
Pulsed CW	1889.6	19.5	26.5	17.0	30.0	9.5	3.6	
Pulsed CW	1889.6	21.5	27.8	17.0	30.0	10.8	2.3	
Pulsed CW	1889.6	23.0	27.8	17.0	30.0	10.8	2.2	
AWGN	1889.6	1.0 (AGC start)	21.2	17.0	30.0	4.2	8.8	
AWGN	1889.6	3.0	21.2	17.0	30.0	4.2	8.8	
AWGN	1889.6	5.0	21.3	17.0	30.0	4.3	8.8	
AWGN	1889.6	7.0	21.3	17.0	30.0	4.3	8.7	
AWGN	1889.6	9.0	21.2	17.0	30.0	4.2	8.8	
AWGN	1889.6	11.0	21.2	17.0	30.0	4.2	8.8	
AWGN	1889.6	13.0	21.2	17.0	30.0	4.2	8.8	
AWGN	1889.6	15.0	21.2	17.0	30.0	4.2	8.8	
AWGN	1889.6	17.0	19.8	17.0	30.0	2.8	10.2	
AWGN	1889.6	19.0	20.5	17.0	30.0	3.5	9.5	
AWGN	1889.6	21.0	20.3	17.0	30.0	3.3	9.7	
AWGN	1889.6	23.0	20.3	17.0	30.0	3.3	9.7	

Band 4, uplink

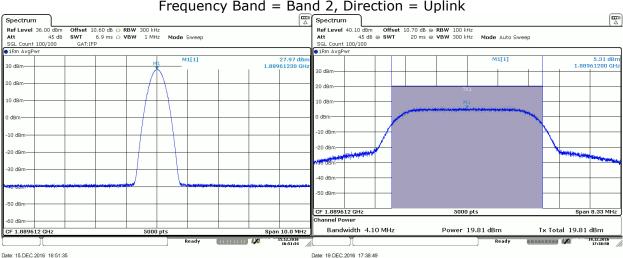
Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power [dBm]	Lower Limit Output Power [dBm]	Upper Limit Output Power [dBm]	Margin to Lower Limit [dB]	Margin to Upper Limit [dB]
Pulsed CW	1750.2	-1.7 (AGC start)	20.1	17.0	30.0	3.1	9.9
Pulsed CW	1750.2	0.3	20.2	17.0	30.0	3.2	9.8
Pulsed CW	1750.2	2.3	20.3	17.0	30.0	3.3	9.7
Pulsed CW	1750.2	4.3	20.2	17.0	30.0	3.2	9.8
Pulsed CW	1750.2	6.3	20.2	17.0	30.0	3.2	9.8
Pulsed CW	1750.2	8.3	20.1	17.0	30.0	3.1	9.9
Pulsed CW	1750.2	10.3	20.3	17.0	30.0	3.3	9.7
Pulsed CW	1750.2	12.3	20.2	17.0	30.0	3.2	9.8
Pulsed CW	1750.2	14.3	20.2	17.0	30.0	3.2	9.8
Pulsed CW	1750.2	16.3	19.6	17.0	30.0	2.6	10.4
Pulsed CW	1750.2	18.3	19.7	17.0	30.0	2.7	10.3
Pulsed CW	1750.2	20.3	19.6	17.0	30.0	2.6	10.4
Pulsed CW	1750.2	22.3	21.0	17.0	30.0	4.0	9.0
Pulsed CW	1750.2	23.0	21.5	17.0	30.0	4.5	8.6
AWGN	1750.2	1.4 (AGC start)	19.1	17.0	30.0	2.1	10.9
AWGN	1750.2	3.4	19.3	17.0	30.0	2.3	10.7
AWGN	1750.2	5.4	19.3	17.0	30.0	2.3	10.7
AWGN	1750.2	7.4	19.3	17.0	30.0	2.3	10.7
AWGN	1750.2	9.4	19.4	17.0	30.0	2.4	10.6
AWGN	1750.2	11.4	19.3	17.0	30.0	2.3	10.7
AWGN	1750.2	13.4	19.1	17.0	30.0	2.1	10.9
AWGN	1750.2	15.4	19.1	17.0	30.0	2.1	10.9
AWGN	1750.2	17.4	19.1	17.0	30.0	2.1	10.9
AWGN	1750.2	19.4	18.7	17.0	30.0	1.7	11.4
AWGN	1750.2	21.4	18.4	17.0	30.0	1.4	11.6
AWGN	1750.2	23.0	20.0	17.0	30.0	3.0	10.0

Band 5, uplink									
Signal	Frequency	Input Power	Output	Lower Limit	Upper Limit	Margin to	Margin to		
Туре	[MHz]	[dBm]	Power	Output Power	Output Power	Lower Limit	Upper Limit		
			[dBm]	[dBm]	[dBm]	[dB]	[dB]		
Pulsed CW	837.3	10.2 (AGC start)	28.0	17.0	30.0	11.0	2.0		
Pulsed CW	837.3	12.2	28.4	17.0	30.0	11.4	1.6		
Pulsed CW	837.3	14.2	28.4	17.0	30.0	11.4	1.6		
Pulsed CW	837.3	16.2	27.9	17.0	30.0	10.9	2.1		
Pulsed CW	837.3	18.2	28.3	17.0	30.0	11.3	1.7		
Pulsed CW	837.3	20.2	28.4	17.0	30.0	11.4	1.6		
Pulsed CW	837.3	22.2	28.3	17.0	30.0	11.3	1.7		
Pulsed CW	837.3	23.0	28.3	17.0	30.0	11.3	1.7		
AWGN	837.3	2.4 (AGC start)	21.8	17.0	30.0	4.8	8.2		
AWGN	837.3	4.4	22.0	17.0	30.0	5.0	8.0		
AWGN	837.3	6.4	22.0	17.0	30.0	5.0	8.0		
AWGN	837.3	8.4	22.0	17.0	30.0	5.0	8.0		
AWGN	837.3	10.4	22.0	17.0	30.0	5.0	8.0		
AWGN	837.3	12.4	22.0	17.0	30.0	5.0	8.0		
AWGN	837.3	14.4	22.1	17.0	30.0	5.1	7.9		
AWGN	837.3	16.4	21.9	17.0	30.0	4.9	8.1		
AWGN	837.3	18.4	21.0	17.0	30.0	4.0	9.0		
AWGN	837.3	20.4	21.0	17.0	30.0	4.0	9.0		
AWGN	837.3	22.4	20.8	17.0	30.0	3.8	9.2		
AWGN	837.3	23.0	21.9	17.0	30.0	4.9	8.1		

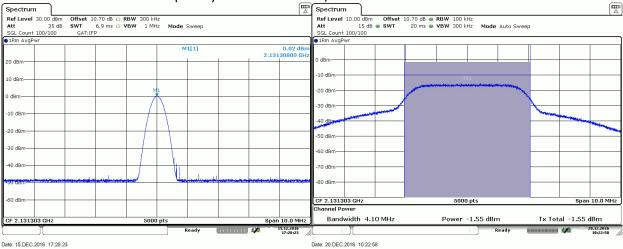
Band 12, uplink

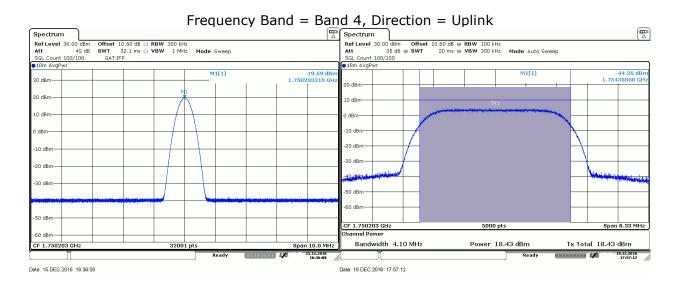
Signal Type	Frequency [MHz]	Input Power [dBm]	Output Power [dBm]	Lower Limit Output Power [dBm]	Upper Limit Output Power [dBm]	Margin to Lower Limit [dB]	Margin to Upper Limit [dB]
Pulsed CW	705.7	1.1 (AGC start)	22.5	17.0	30.0	5.5	7.5
Pulsed CW	705.7	3.1	22.7	17.0	30.0	5.7	7.3
Pulsed CW	705.7	5.1	22.6	17.0	30.0	5.6	7.4
Pulsed CW	705.7	7.1	22.6	17.0	30.0	5.6	7.4
Pulsed CW	705.7	9.1	22.7	17.0	30.0	5.7	7.3
Pulsed CW	705.7	11.1	22.7	17.0	30.0	5.7	7.3
Pulsed CW	705.7	13.1	22.7	17.0	30.0	5.7	7.4
Pulsed CW	705.7	15.1	22.6	17.0	30.0	5.6	7.4
Pulsed CW	705.7	17.1	22.6	17.0	30.0	5.6	7.4
Pulsed CW	705.7	19.1	22.7	17.0	30.0	5.7	7.3
Pulsed CW	705.7	21.1	22.2	17.0	30.0	5.2	7.8
Pulsed CW	705.7	23.0	22.2	17.0	30.0	5.2	7.9
AWGN	705.7	1.7 (AGC start)	22.1	17.0	30.0	5.1	7.9
AWGN	705.7	3.7	22.4	17.0	30.0	5.4	7.6
AWGN	705.7	5.7	22.4	17.0	30.0	5.4	7.7
AWGN	705.7	7.7	22.4	17.0	30.0	5.4	7.6
AWGN	705.7	9.7	22.4	17.0	30.0	5.4	7.6
AWGN	705.7	11.7	22.4	17.0	30.0	5.4	7.6
AWGN	705.7	13.7	22.2	17.0	30.0	5.2	7.8
AWGN	705.7	15.7	22.3	17.0	30.0	5.3	7.7
AWGN	705.7	17.7	22.3	17.0	30.0	5.3	7.7
AWGN	705.7	19.7	22.3	17.0	30.0	5.3	7.8
AWGN	705.7	21.7	21.2	17.0	30.0	4.2	8.8
AWGN	705.7	23.0	21.9	17.0	30.0	4.9	8.1

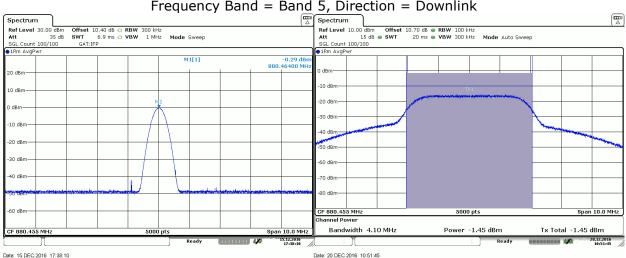
Band 13, uplink								
Signal	Frequency	Input Power	Output	Lower Limit	Upper Limit	Margin to	Margin to	
Туре	[MHz]	[dBm]	Power	Output Power	Output Power	Lower Limit	Upper Limit	
			[dBm]	[dBm]	[dBm]	[dB]	[dB]	
Pulsed CW	782.4	1.2 (AGC start)	21.2	17.0	30.0	4.2	8.8	
Pulsed CW	782.4	3.2	21.2	17.0	30.0	4.2	8.8	
Pulsed CW	782.4	5.2	21.2	17.0	30.0	4.2	8.8	
Pulsed CW	782.4	7.2	21.2	17.0	30.0	4.2	8.8	
Pulsed CW	782.4	9.2	21.3	17.0	30.0	4.3	8.7	
Pulsed CW	782.4	11.2	21.3	17.0	30.0	4.3	8.7	
Pulsed CW	782.4	13.2	21.3	17.0	30.0	4.3	8.7	
Pulsed CW	782.4	15.2	21.3	17.0	30.0	4.3	8.7	
Pulsed CW	782.4	17.2	20.8	17.0	30.0	3.8	9.2	
Pulsed CW	782.4	19.2	20.9	17.0	30.0	3.9	9.1	
Pulsed CW	782.4	21.2	20.7	17.0	30.0	3.7	9.3	
Pulsed CW	782.4	23.0	20.9	17.0	30.0	3.9	9.1	
AWGN	782.4	1.1 (AGC start)	21.7	17.0	30.0	4.7	8.3	
AWGN	782.4	3.1	21.7	17.0	30.0	4.7	8.3	
AWGN	782.4	5.1	21.8	17.0	30.0	4.8	8.2	
AWGN	782.4	7.1	21.9	17.0	30.0	4.9	8.1	
AWGN	782.4	9.1	21.8	17.0	30.0	4.8	8.2	
AWGN	782.4	11.1	21.8	17.0	30.0	4.8	8.2	
AWGN	782.4	13.1	21.7	17.0	30.0	4.7	8.3	
AWGN	782.4	15.1	21.7	17.0	30.0	4.7	8.3	
AWGN	782.4	17.1	21.7	17.0	30.0	4.7	8.3	
AWGN	782.4	19.1	21.6	17.0	30.0	4.6	8.4	
AWGN	782.4	21.1	20.6	17.0	30.0	3.6	9.4	
AWGN	782.4	23.0	22.2	17.0	30.0	5.2	7.8	


Remark: Please see next sub-clause for the measurement plot.

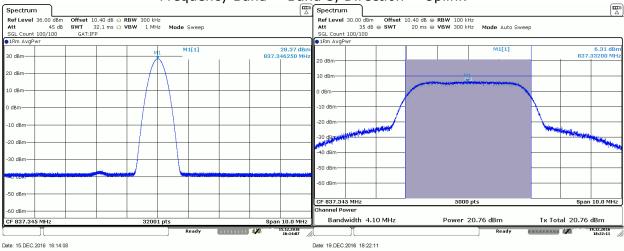
4.2.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

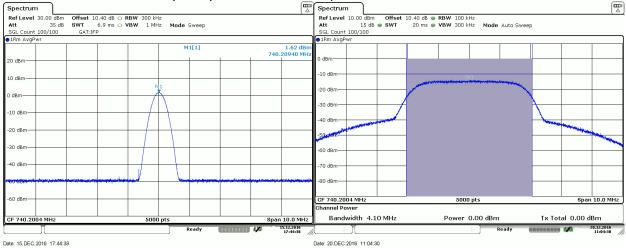

Frequency Band = Band 2, Direction = Downlink



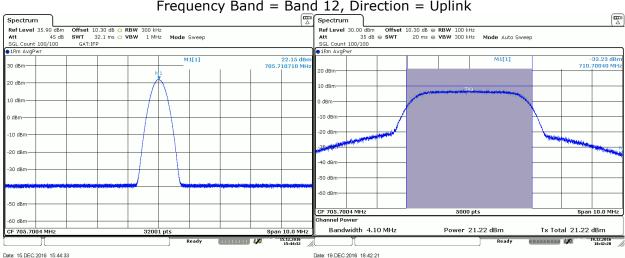

Frequency Band = Band 2, Direction = Uplink

Frequency Band = Band 4, Direction = Downlink

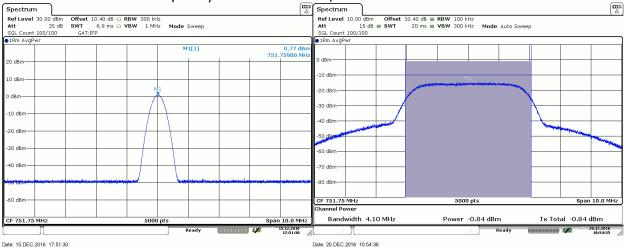


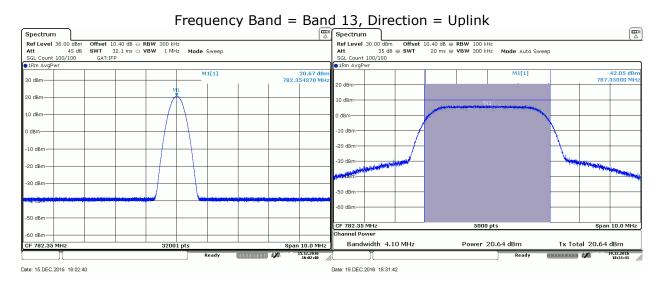


Frequency Band = Band 5, Direction = Downlink


Frequency Band = Band 5, Direction = Uplink

Frequency Band = Band 12, Direction = Downlink





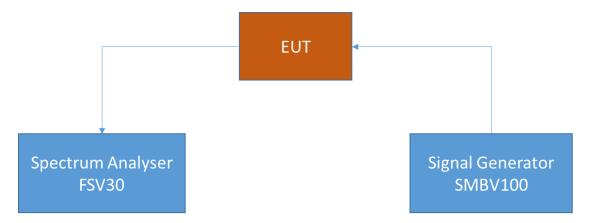
Frequency Band = Band 12, Direction = Uplink

Frequency Band = Band_13, Direction = Downlink

4.2.5TEST EQUIPMENT USED R&S TS8997

4.3 MAXIMUM BOOSTER GAIN

Standard


The test was performed according to: KDB 935210 D03

4.3.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster gain limits and bidirectional capabilities as specified in § 20.21(e)(8)(i)(C)(2) and § 20.21(e)(8)(i)(B) for wideband consumer signal boosters.

The results of this test case are computed by the measurement values from test case 7.1 and 7.2.

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.3; Maximum Booster Gain

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

4.3.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21(e)(8)(i)(C)(2)

Booster Gain Limits. The uplink and downlink maximum gain of a Consumer Booster referenced to its input and output ports shall not exceed the following limits: (*i*) Fixed Booster maximum gain shall not exceed 6.5 dB + 20 Log₁₀ (Frequency) (*ii*) Where, Frequency is the uplink mid-band frequency of the supported spectrum bands in MHz.

(*iii*) Mobile Booster maximum gain shall not exceed 50 dB when using an inside antenna (e.g., inside a vehicle), 23 dB when using direct contact coupling (e.g., cradle-type boosters), or 15 dB when directly connected (e.g., boosters with a physical connection to the phone).

FCC Part 20, § 20.21(e)(8)(i)(B)

Bidirectional Capability. Consumer Boosters must be able to provide equivalent uplink and downlink gain and conducted uplink power output that is at least 0.05 watts. One-way consumer boosters (*i.e.*, uplink only, downlink only, uplink impaired, downlink impaired) are prohibited. Spectrum block filtering may be used provided the uplink filter attenuation is not less than the downlink filter attenuation, and where RSSI is measured after spectrum block filtering is applied referenced to the booster's input port for each band of operation.

Note:

The margin for equivalent uplink and downlink gain is considered as 9 dB. This margin is a provisional specification determined by the ANSI ASC C63® task group working in collaboration and consultation with FCC OET Laboratory Division staff.

4.3.3TEST PROTOCOL

Signal Type		Difference Gain [dB]	
Band 2			
Humidity:	28 %		
Air Pressure	1006 hPa		
Ambient ter	23 °C		

Signal Type	Maximum Gain Downlink [dB]	Gain	Difference Gain [dB]	Absolut Gain Limit [dB]		Margin Absolute Gain Downlink [dB]	Margin Absolute Gain Uplink [dB]	Margin Difference Gain [dB]
Pulsed CW	21.7	20.0	1.7	23.0	9.0	1.3	3.0	7.3
AWGN	21.5	20.2	1.4	23.0	9.0	1.5	2.8	7.7

Ba	nd	4

Signal Type	Maximum Gain Downlink [dB]	Gain	Difference Gain [dB]	Absolut Gain Limit [dB]	Difference Gain Limit [dB]	Margin Absolute Gain Downlink [dB]	Margin Absolute Gain Uplink [dB]	Margin Difference Gain [dB]
Pulsed CW	21.5	21.5	0.0	23.0	9.0	1.5	1.5	9.0
AWGN	21.3	21.3	0.0	23.0	9.0	1.7	1.7	9.0

Band 5

Signal Type	Maximum Gain Downlink [dB]	Gain	Difference Gain [dB]	Absolut Gain Limit [dB]	Difference Gain Limit [dB]	Margin Absolute Gain Downlink [dB]	Margin Absolute Gain Uplink [dB]	Margin Difference Gain [dB]
Pulsed CW	20.9	17.8	3.1	23.0	9.0	2.1	5.2	5.9
AWGN	20.4	19.4	1.0	23.0	9.0	2.6	3.6	8.0

Band 12

Signal Type	Maximum Gain Downlink [dB]	Gain	Difference Gain [dB]	Absolut Gain Limit [dB]	Difference Gain Limit [dB]	Margin Absolute Gain Downlink [dB]	Absolute Gain	Margin Difference Gain [dB]
Pulsed CW	22.0	21.4	0.6	23.0	9.0	1.0	1.6	8.4
AWGN	20.5	22.4	2.0	23.0	9.0	2.5	0.6	7.1

Band 13

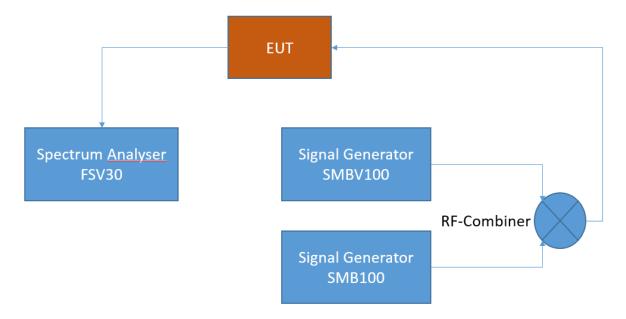
Signal Type		Gain	Difference Gain [dB]	Absolut Gain Limit [dB]	Difference Gain Limit [dB]	Absolute	Margin Absolute Gain Uplink [dB]	Margin Difference Gain [dB]
Pulsed CW	21.1	20.0	1.2	23.0	9.0	1.9	3.0	7.9
AWGN	19.5	20.6	1.1	23.0	9.0	3.5	2.4	7.9

Remark: Please see next sub-clause for the measurement plot.

4.3.4TEST EQUIPMENT USED

R&S TS8997

4.4 INTERMODULATION


Standard

The test was performed according to: KDB 935210 D03

4.4.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the intermodulation limit $\S 20.21(e)(8)(i)(F)$ for wideband consumer signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.4; Intermodulation

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.4.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21(e)(8)(i)(F)

Intermodulation Limits. The transmitted intermodulation products of a consumer booster at its uplink and downlink ports shall not exceed the power level of -19 dBm for the supported bands of operation. Compliance with intermodulation limits will use boosters operating at maximum gain and maximum rated output power, with two continuous wave (CW) input signals spaced 600 kHz apart and centered in the pass band of the booster, and with a 3 kHz measurement bandwidth.

4.4.3TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	1006 hPa
Humidity:	31 %
Band 2, downlink	

Input Power	f1 [MHz]	f2 [MHz]	Input Power [dBm]	Maximum Intermodulation [dBm]	Intermodulation Limit [dBm]	Margin to Limit [dB]
AGC	1959.7	1960.3	-25.8	-39.8	-19.0	20.8
	1959.7	1960.3	-23.8	-30.0	-19.0	11.0
	1959.7	1960.3	-21.8	-24.7	-19.0	5.7
	1959.7	1960.3	-20.0	-21.7	-19.0	2.7

Band 4, downlink

Input Power	f1 [MHz]	f2 [MHz]	Input Power [dBm]	Maximum Intermodulation [dBm]	Intermodulation Limit [dBm]	Margin to Limit [dB]
AGC	2132.2	2132.8	-26.3	-40.2	-19.0	21.2
	2132.2	2132.8	-24.3	-30.4	-19.0	11.4
	2132.2	2132.8	-22.3	-25.0	-19.0	6.0
	2132.2	2132.8	-20.3	-21.6	-19.0	2.6
	2132.2	2132.8	-20.0	-21.1	-19.0	2.1

Band 5, downlink

Input Power	f1 [MHz]	f2 [MHz]	Input Power [dBm]	Maximum Intermodulation [dBm]	Intermodulation Limit [dBm]	Margin to Limit [dB]
AGC	881.2	881.8	-24.9	-38.2	-19.0	19.2
	881.2	881.8	-22.9	-30.1	-19.0	11.1
	881.2	881.8	-20.9	-25.0	-19.0	6.0
	881.2	881.8	-20.0	-25.0	-19.0	6.0

Band 12, downlink

Input Power	f1 [MHz]	f2 [MHz]	Input Power [dBm]	Maximum Intermodulation [dBm]	Intermodulation Limit [dBm]	Margin to Limit [dB]
AGC	736.7	737.3	-25.1	-50.8	-19.0	31.8
	736.7	737.3	-23.1	-45.6	-19.0	26.6
	736.7	737.3	-21.1	-35.1	-19.0	16.1
	736.7	737.3	-20.0	-26.9	-19.0	7.9

Band 13, downlink

Input Power	f1 [MHz]	f2 [MHz]	Input Power [dBm]	Maximum Intermodulation [dBm]	Intermodulation Limit [dBm]	Margin to Limit [dB]
AGC	750.7	751.3	-24.0	-49.9	-19.0	30.9
	750.7	751.3	-22.0	-45.5	-19.0	26.5
	750.7	751.3	-20.0	-34.5	-19.0	15.5

Band 2, uplink

Input Power	f1 [MHz]	f2 [MHz]	Input Power [dBm]	Maximum Inter modulation [dBm]	Inter modulation Limit [dBm]	Margin to Limit [dB]
AGC	1879.7	1880.3	-0.2	-21.0	-19.0	2.0
	1879.7	1880.3	1.8	-22.2	-19.0	3.2
	1879.7	1880.3	3.8	-22.0	-19.0	3.0
	1879.7	1880.3	5.8	-22.0	-19.0	3.0
	1879.7	1880.3	7.8	-22.0	-19.0	3.0
AGC+10dB	1879.7	1880.3	9.8	-22.6	-19.0	3.6

Band 4, uplink

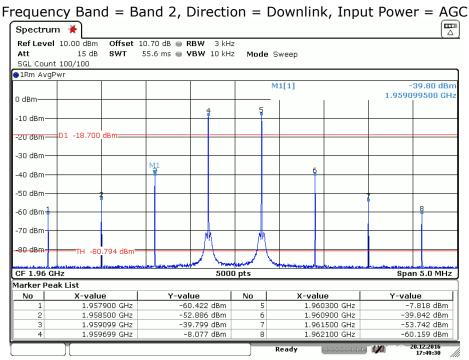
Input Power	f1 [MHz]	f2 [MHz]	Input Power [dBm]	Maximum Inter modulation [dBm]	Inter modulation Limit [dBm]	Margin to Limit [dB]
AGC	1732.2	1732.8	-3.7	-22.5	-19.0	3.5
	1732.2	1732.8	-1.7	-22.5	-19.0	3.5
	1732.2	1732.8	0.3	-22.1	-19.0	3.1
	1732.2	1732.8	2.3	-22.1	-19.0	3.1
	1732.2	1732.8	4.3	-22.0	-19.0	3.0
AGC+10dB	1732.2	1732.8	6.3	-22.1	-19.0	3.1

Band 5, uplink

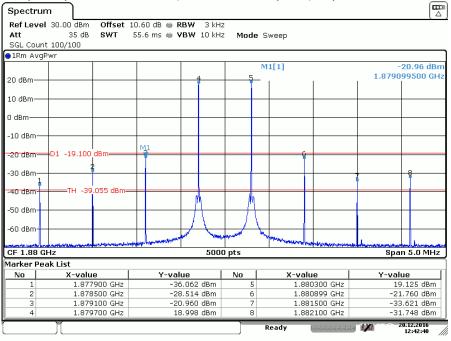
Input Power	f1 [MHz]	f2 [MHz]	Input Power [dBm]	Maximum Inter modulation [dBm]	Inter modulation Limit [dBm]	Margin to Limit [dB]
AGC	836.2	836.8	-1.2	-23.9	-19.0	4.9
	836.2	836.8	0.8	-22.8	-19.0	3.8
	836.2	836.8	2.8	-22.5	-19.0	3.5
	836.2	836.8	4.8	-22.6	-19.0	3.6
	836.2	836.8	6.8	-22.3	-19.0	3.3
AGC+10dB	836.2	836.8	8.8	-22.6	-19.0	3.6

Band 12, uplink

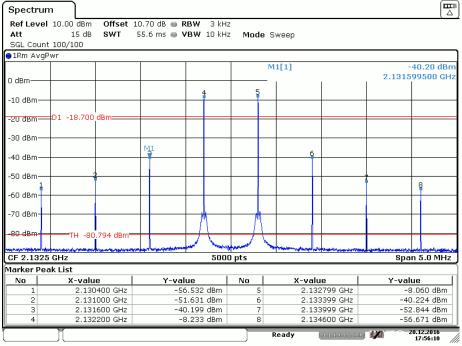
Input Power	f1 [MHz]	f2 [MHz]	Input Power [dBm]	Maximum Inter modulation [dBm]	Inter modulation Limit [dBm]	Margin to Limit [dB]
AGC	706.7	707.3	0.7	-23.1	-19.0	4.1
	706.7	707.3	2.7	-22.8	-19.0	3.8
	706.7	707.3	4.7	-22.4	-19.0	3.4
	706.7	707.3	6.7	-22.9	-19.0	3.9
	706.7	707.3	8.7	-23.2	-19.0	4.2
AGC+10dB	706.7	707.3	10.7	-22.4	-19.0	3.4


Band 13, uplink

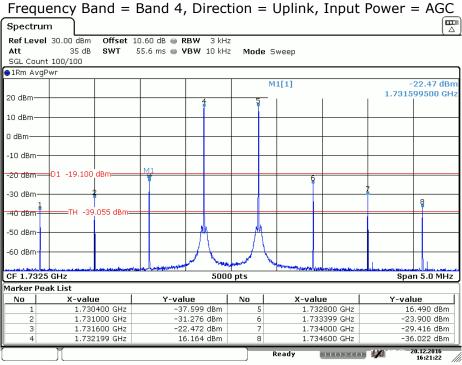
Input Power	f1 [MHz]	f2 [MHz]	Input Power [dBm]	Maximum Inter modulation [dBm]	Inter modulation Limit [dBm]	Margin to Limit [dB]
AGC	781.7	782.3	1.0	-21.4	-19.0	2.4
	781.7	782.3	3.0	-21.3	-19.0	2.3
	781.7	782.3	5.0	-21.3	-19.0	2.3
	781.7	782.3	7.0	-21.2	-19.0	2.2
	781.7	782.3	9.0	-21.7	-19.0	2.7
AGC+10dB	781.7	782.3	11.0	-21.2	-19.0	2.2

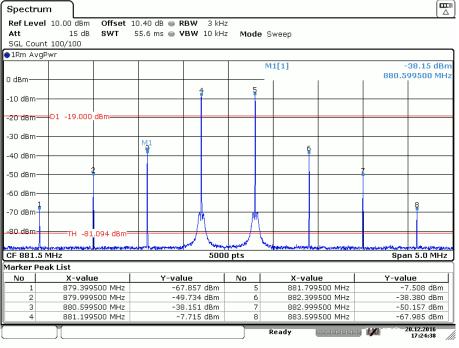

Remark: Please see next sub-clause for the measurement plot.

4.4.4MEASUREMENT PLOTS

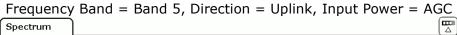

Date: 20.DEC.2016 17:49:30

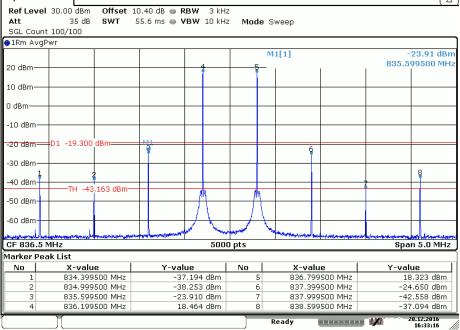
Frequency Band = Band 2, Direction = Uplink, Input Power = AGC


Date: 20.DEC.2016 12:42:40


Frequency Band = Band 4, Direction = Downlink, Input Power = AGC

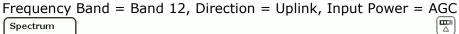
Date: 20.DEC.2016 17:56:11


Date: 20.DEC.2016 16:21:22



Frequency Band = Band 5, Direction = Downlink, Input Power = AGC

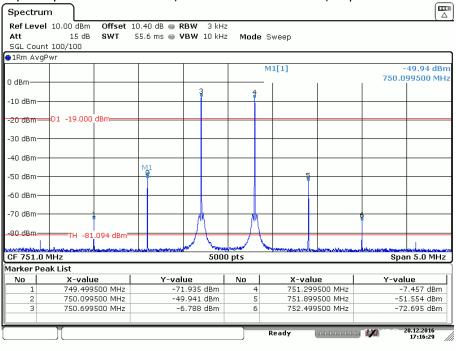
Date: 20.DEC.2016 17:24:39

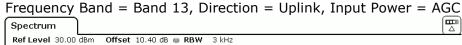

Date: 20.DEC.2016 16:33:17

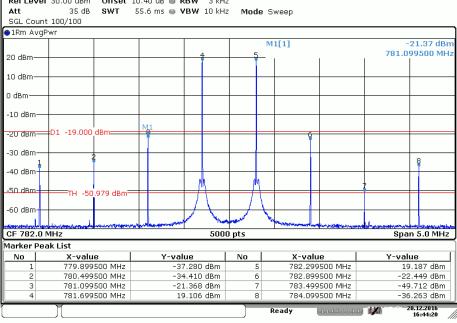


Spectr	um				(E
Ref Lev	el 10.00 dBm Offset	10.40 dB 🔵 RBW 3 kH	z		· · · · · · · · · · · · · · · · · · ·
Att	15 dB SWT	55.6 ms 👄 VBW 10 kH	z Mode	Sweep	
SGL Cou	unt 100/100				
∋1Rm Av	'gPwr				
			1	M1[1]	-50.80 dBn
0 dBm—					737.899500 MH
o abiii					
-10 dBm-		3	4		
-20 dBm-	D1 -19.000 dBm				
-30 dBm-					
-40 dBm·					
-40 UBIII-				641	
-50 dBm-		2		M1	
-60 dBm·					
-70 dBm			An		•
00 40		- J / / /	1 17		
-80 0800-	TH -81.094 dBm				
- Angel and the second	has menore many menore the	ment manufacture man	mangara V	Manufacture and and and and the second secon	un territer anneal & there are
CF 737.		500	0 pts		Span 5.0 MHz
	Peak List				-
No	X-value	Y-value	No	X-value	Y-value
1	735.499500 MHz	-73.058 dBm	4	737.299500 MHz	
2	736.099500 MHz	-51.556 dBm	5	737.899500 MHz	
3	736.699500 MHz	-9.237 dBm	6	738.499500 MHz	-71.284 dBm
	Y		,		20.12.2016
				Ready Trouble	17:07:56

Frequency Band = Band 12, Direction = Downlink, Input Power = AGC


Date: 20.DEC.2016 17:07:56


Date: 20.DEC.2016 16:55:46



Frequency Band = Band 13, Direction = Downlink, Input Power = AGC

Date: 20.DEC.2016 17:16:30

Date: 20.DEC.2016 16:44:20

4.4.5TEST EQUIPMENT USED R&S TS8997

4.5 OUT-OF-BAND EMISSION


Standard

The test was performed according to: KDB 935210 D03

4.5.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the out-of-band emission limit § 20.21(e)(8)(i)(E) for wideband consumer signal boosters. The limits itself come from the applicable rule for each operating as listed in Appendix A of KDB 935210 D03

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.5; Out-of-band emissions

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.5.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21(e)(8)(i)(E)

Out of Band Emission Limits. Booster out of band emissions (OOBE) shall be at least 6 dB below the FCC's mobile emission limits for the supported bands of operation. Compliance to OOBE limits will utilize high peak-to-average CMRS signal types.

Part 22, Subpart H – Cellular Radiotelephone Service; Band 5 (Cellular)

§ 22 917 – Emission limitations for cellular equipment

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Part 24 E – Personal Communication Services

§ 24.238 – Emission limitations for Broadband PCS equipment; Band 2 (Broadband PCS)

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Part 27 - Miscellaneous Wireless Communication Services;

Band 4 (AWS-1) § 27.53 (h) – Emission limits

(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}$ (P) dB.

(2) *Additional protection levels.* Notwithstanding the foregoing paragraph (h)(1) of this section:

(i) Operations in the 2180-2200 MHz band are subject to the out-of-band emission requirements set forth in §27.1134 for the protection of federal government operations operating in the 2200-2290 MHz band.

(ii) For operations in the 2000-2020 MHz band, the power of any emissions below 2000 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log₁₀(P) dB. (iii) For operations in the 1915-1920 MHz band, the power of any emission between 1930-1995 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log₁₀(P) dB.

(iv) For operations in the 1995-2000 MHz band, the power of any emission between 2005-2020 MHz shall be attenuated below the transmitter power (P) in watts by at least $70 + 10 \log_{10}(P) dB$.

Band 12 (Lower 700 MHz) § 27.53 (g) – Emission limits

For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Band 13 (Upper 700 MHz) § 27.53 (c), (f) – Emission limits

(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $76 + 10 \log (P) dB$ in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $65 + 10 \log (P) dB$ in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

4.5.3TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	1006 hPa
Humidity:	31 %
Band 2. downlink	

Signal Type	Band Edge	Signal Frequency [MHz]	AGC Start Input Power [dBm]	Maximum Out- of-band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
GSM	upper	1989.80	-23.7	-36.4	-19.0	17.4
LTE	upper	1987.50	-29.6	-54.9	-19.0	35.9
CDMA	upper	1988.75	-29.6	-68.1	-19.0	49.1
GSM	lower	1930.20	-23.7	-37.5	-19.0	18.5
LTE	lower	1932.50	-29.6	-55.0	-19.0	36.0
CDMA	lower	1931.25	-29.6	-65.4	-19.0	46.4

Band 4, downlink

Signal Type	Band Edge	Signal Frequency [MHz]	AGC Start Input Power [dBm]	Maximum Out- of-band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
GSM	upper	2154.80	-23.1	-34.2	-19.0	15.2
LTE	upper	2152.50	-29.6	-52.9	-19.0	33.9
CDMA	upper	2153.75	-29.6	-62.2	-19.0	43.2
GSM	lower	2110.20	-23.1	-35.0	-19.0	16.0
LTE	lower	2112.50	-29.6	-53.3	-19.0	34.3
CDMA	lower	2111.25	-29.6	-63.3	-19.0	44.3

Band 5, downlink

Signal Type	Band Edge	Signal Frequency [MHz]	AGC Start Input Power [dBm]	Maximum Out- of-band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
GSM	upper	893.80	-22.4	-35.7	-19.0	16.7
LTE	upper	891.50	-26.8	-49.0	-19.0	30.0
CDMA	upper	892.75	-26.8	-47.8	-19.0	28.8
GSM	lower	869.20	-22.4	-35.9	-19.0	16.9
LTE	lower	871.50	-26.8	-48.8	-19.0	29.8
CDMA	lower	870.25	-26.8	-47.0	-19.0	28.0

Band 12, downlink

Signal Type	Band Edge	Signal Frequency [MHz]	AGC Start Input Power [dBm]	Maximum Out- of-band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
GSM	upper	745.80	-22.1	-53.9	-19.0	34.9
LTE	upper	743.50	-23.3	-55.4	-19.0	36.4
CDMA	upper	744.75	-23.3	-63.9	-19.0	44.9
GSM	lower	728.20	-22.1	-55.4	-19.0	36.4
LTE	lower	730.50	-23.3	-51.0	-19.0	32.0
CDMA	lower	729.25	-23.3	-53.9	-19.0	34.9

Band 13, downlink

Signal Type	Band Edge	Signal Frequency [MHz]	AGC Start Input Power [dBm]	Maximum Out- of-band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
GSM	upper	755.80	-22.1	-52.9	-19.0	33.9
LTE	upper	753.50	-23.2	-54.8	-19.0	35.8
CDMA	upper	754.75	-23.2	-63.2	-19.0	44.2
GSM	lower	746.20	-22.1	-55.1	-19.0	36.1
LTE	lower	748.50	-23.2	-53.9	-19.0	34.9
CDMA	lower	747.25	-23.2	-60.5	-19.0	41.5

Band 2, uplink Maximum Out-of-Limit Out-of-Signal Type Band Signal AGC Start Margin to Limit [dB] Edge Frequency **Input Power** band Power band Power [MHz] [dBm] [dBm] [dBm] GSM upper 1909.80 7.5 -22.8 -19.0 3.8 LTE upper 1907.50 1.0 -26.1 -19.0 7.1 2.5 CDMA 1908.75 1.0 -21.5 -19.0 upper GSM -22.3 1850.20 7.5 -19.0 3.3 lower LTE lower 1852.50 1.0 -24.7 -19.0 5.7 CDMA lower 1851.25 1.0 -31.8 -19.0 12.8

Band 4, uplink

Signal Type	Band Edge	Signal Frequency [MHz]	AGC Start Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
GSM	upper	1754.80	-1.7	-35.3	-19.0	16.3
LTE	upper	1752.50	1.4	-24.7	-19.0	5.7
CDMA	upper	1753.75	1.4	-30.4	-19.0	11.4
GSM	lower	1710.20	-1.7	-36.6	-19.0	17.6
LTE	lower	1712.50	1.4	-24.6	-19.0	5.6
CDMA	lower	1711.25	1.4	-30.5	-19.0	11.5

Band 5, uplink

Signal Type	Band Edge	Signal Frequency [MHz]	AGC Start Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
GSM	upper	848.80	10.2	-35.4	-19.0	16.4
LTE	upper	846.50	2.4	-32.0	-19.0	13.0
CDMA	upper	847.75	2.4	-27.8	-19.0	8.8
GSM	lower	824.20	10.2	-37.6	-19.0	18.6
LTE	lower	826.50	2.4	-34.2	-19.0	15.2
CDMA	lower	825.25	2.4	-31.8	-19.0	12.8

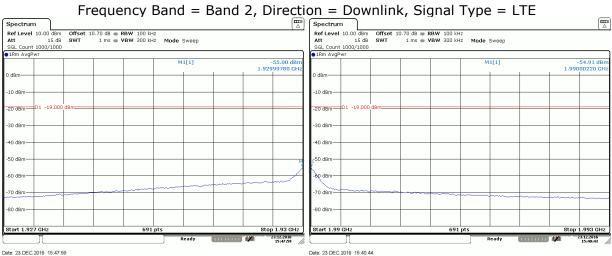
Band 12, uplink

Signal Type	Band Edge	Signal Frequency [MHz]	AGC Start Input Power [dBm]	put Power band Power [Bm] [dBm]		Margin to Limit [dB]
GSM	upper	715.80	1.1	-28.2	-19.0	9.2
LTE	upper	713.50	1.7	-26.3	-19.0	7.3
CDMA	upper	714.75	1.7	-27.9	-19.0	8.9
GSM	lower	698.20	1.1	-30.0	-19.0	11.0
LTE	lower	700.50	1.7	-24.6	-19.0	5.6
CDMA	lower	699.25	1.7	-26.1	-19.0	7.1

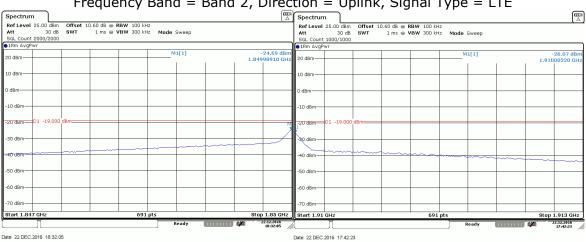

Band 13, uplink

Signal Type	Band Edge	Signal Frequency [MHz]	AGC Start Input Power [dBm]	Maximum Out-of- band Power [dBm]	Limit Out-of- band Power [dBm]	Margin to Limit [dB]
GSM	upper	786.80	1.2	-28.3	-19.0	9.3
LTE	upper	784.50	1.1	-25.5	-19.0	6.5
CDMA	upper	785.75	1.1	-26.8	-19.0	7.8
GSM	lower	777.20	1.2	-31.3	-19.0	12.3
LTE	lower	779.50	1.1	-27.6	-19.0	8.6
CDMA	lower	778.25	1.1	-25.7	-19.0	6.7

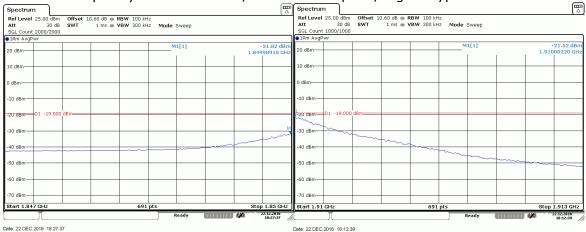
Remark: Please see next sub-clause for the measurement plot.


4.5.4MEASUREMENT PLOTS

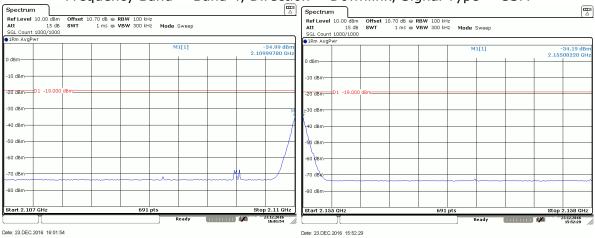
Frequency Band = Band 2, Direction = Downlink, Signal Type = GSM


Frequency Band = Band 2, Direction = Uplink, Signal Type = GSM

Date: 23.DEC.2016 15:47:59

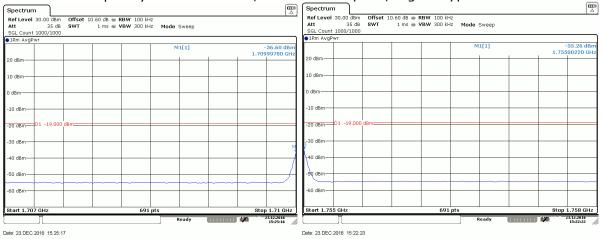


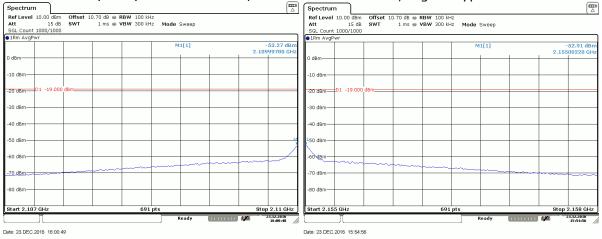
Frequency Band = Band 2, Direction = Uplink, Signal Type = LTE


Frequency Band = Band 2, Direction = Downlink, Signal Type = CDMA

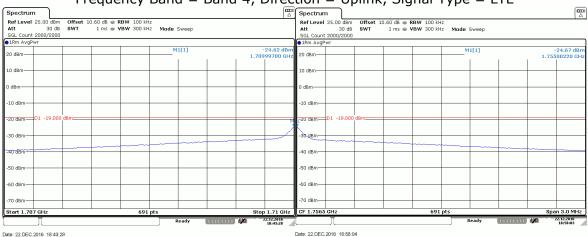
Spectrum							Spectrun	ı)								
Ref Level 10.0	0 dBm Offset	t 10.70 dB 👄	RBW 100 kH:				Ref Level	10.00 dBm	Offset 1	0.70 dB 🖷 RB	W 100 kHz					
Att SGL Count 1000	15 dB SWT	1 ms 👄	VBW 300 kH:	Mode Sweep			Att SGL Count	15 dB 1000/1000	SWT	1 ms 🖷 VB	W 300 kHz	Mode	Sweep			
1Rm AvgPwr							1Rm AvgP									
				M1[1]		-65.43 dBm 998480 GHz						N	41[1]			68.14 dBm 04120 GHz
0 dBm							0 dBm			<u> </u>				+ +		
-10 dBm							-10 dBm							+		
-20 dBm-01 -	-19.000 dBm						-20 dBm	D1 -19.000	dBm:							
-30 dBm							-30 dBm									
-40 dBm							-40 dBm									
							-50 dBm-									
-50 dBm																
-60 dBm						M	-60 dBm									
-70 dBm					 		-70-d8m			ļ						
-80 dBm							-80 dBm							+ +		
Start 1.927 GH	lz l		691	ots		0 1.93 GHz	Start 1.99	GHz			691 p	ts				1.993 GHz
				Ready	620	23:12:2016 15:45:43		Л					Ready	[X 2	3.12.2016 15:43:55
Date: 23.DEC.2016	15:45:43						Date: 23.DEC.	2016 15:43:5	6							

Frequency Band = Band 2, Direction = Uplink, Signal Type = CDMA



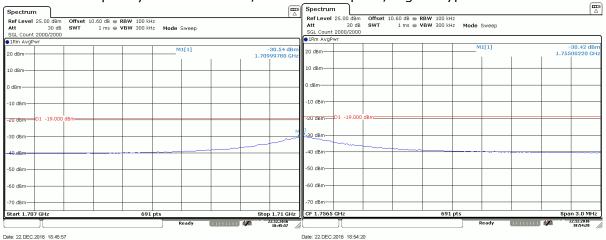


Frequency Band = Band 4, Direction = Downlink, Signal Type = GSM


Frequency Band = Band 4, Direction = Uplink, Signal Type = GSM

Frequency Band = Band 4, Direction = Downlink, Signal Type = LTE

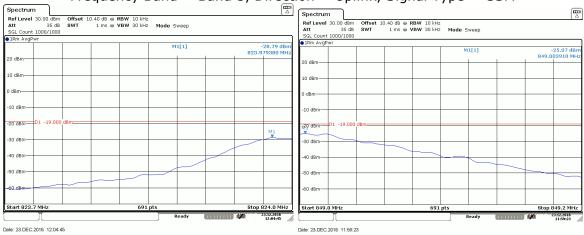


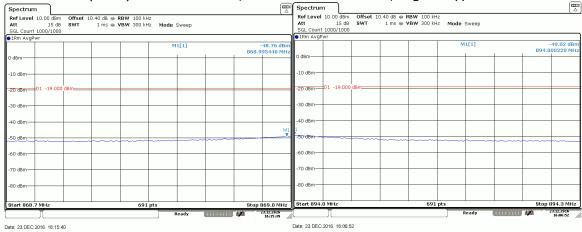


Frequency Band = Band 4, Direction = Uplink, Signal Type = LTE

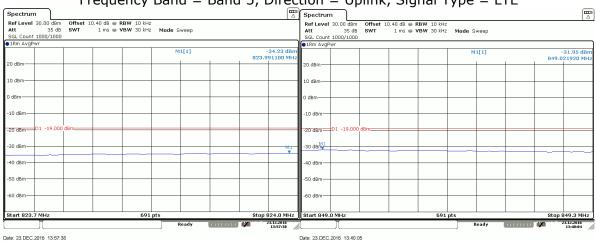
Frequency Band = Band 4, Direction = Downlink, Signal Type = CDMA

Frequency Band = Band 4, Direction = Uplink, Signal Type = CDMA



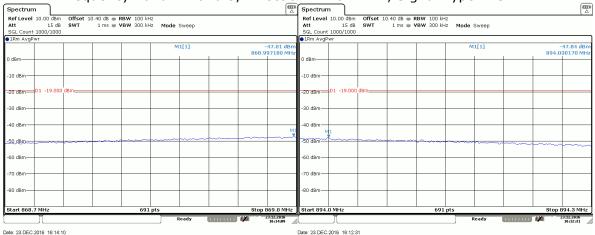

Frequency Band = Band 5, Direction = Downlink, Signal Type = GSM

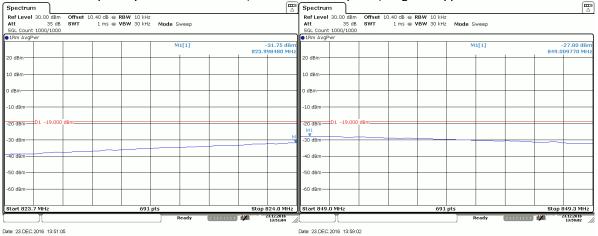
Frequency Band = Band 5, Direction = Uplink, Signal Type = GSM



Date: 23.DEC.2016 12:04:45

Frequency Band = Band 5, Direction = Downlink, Signal Type = LTE

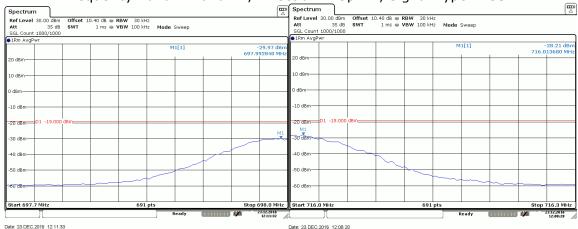


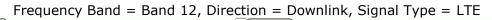


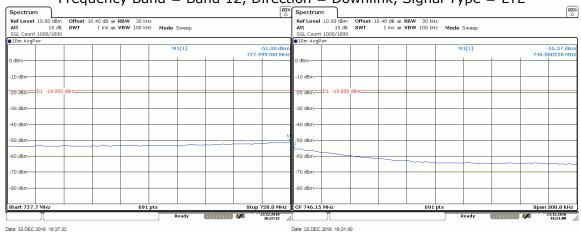
Frequency Band = Band 5, Direction = Uplink, Signal Type = LTE

Frequency Band = Band 5, Direction = Downlink, Signal Type = CDMA

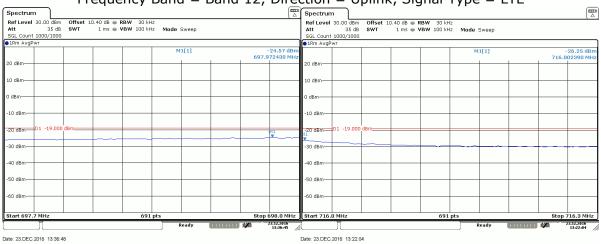
Frequency Band = Band 5, Direction = Uplink, Signal Type = CDMA

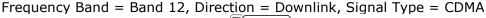


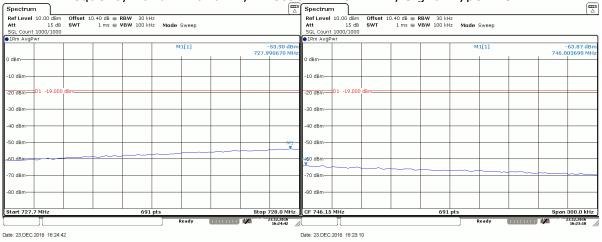


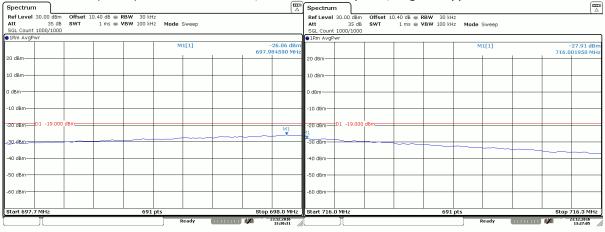


Frequency Band = Band 12, Direction = Downlink, Signal Type = GSM


Frequency Band = Band 12, Direction = Uplink, Signal Type = GSM





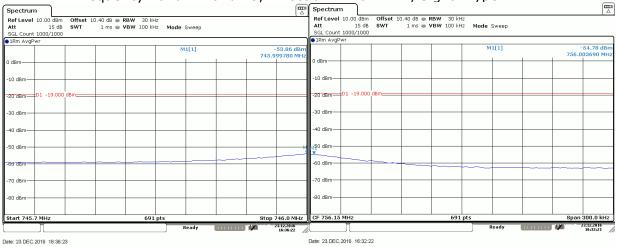


Frequency Band = Band 12, Direction = Uplink, Signal Type = LTE

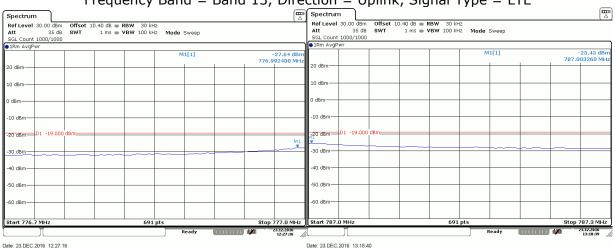
Frequency Band = Band 12, Direction = Uplink, Signal Type = CDMA

Date: 23.DEC.2016 13:30:32

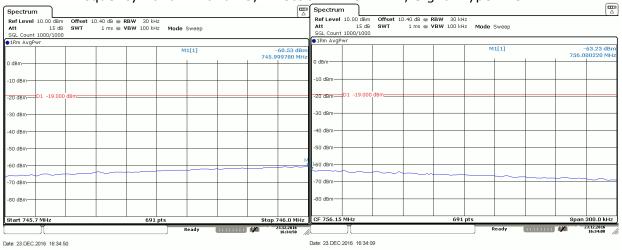
Date: 23.DEC.2016 13:27:05

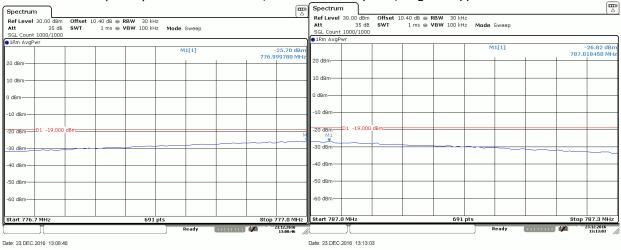


Frequency Band = Band 13, Direction = Downlink, Signal Type = GSM


Frequency Band = Band 13, Direction = Uplink, Signal Type = GSM

Frequency Band = Band 13, Direction = Downlink, Signal Type = LTE





Frequency Band = Band 13, Direction = Uplink, Signal Type = LTE

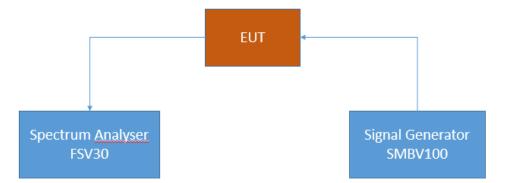
Frequency Band = Band 13, Direction = Downlink, Signal Type = CDMA

Frequency Band = Band 13, Direction = Uplink, Signal Type = CDMA

4.5.5TEST EQUIPMENT USED

R&S TS8997

4.6 CONDUCTED SPURIOUS EMISSIONS


Standard

The test was performed according to: KDB 935210 D03

4.6.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission limits per § 2.1051

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.6; Conducted Spurious Emissions

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.6.2TEST REQUIREMENTS / LIMITS

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

FCC Part 20, § 20.21(e)(8)(i)(E)

Out of Band Emission Limits. Booster out of band emissions (OOBE) shall be at least 6 dB below the FCC's mobile emission limits for the supported bands of operation. Compliance to OOBE limits will utilize high peak-to-average CMRS signal types.

Part 22, Subpart H – Cellular Radiotelephone Service; Band 5 (Cellular)

§ 22 917 – Emission limitations for cellular equipment

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Part 24 E – Personal Communication Services

§ 24.238 – Emission limitations for Broadband PCS equipment; Band 2 (Broadband PCS)

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Part 27 – Miscellaneous Wireless Communication Services;

Band 4 (AWS-1) § 27.53 (h) – Emission limits

(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}$ (P) dB.

(2) *Additional protection levels.* Notwithstanding the foregoing paragraph (h)(1) of this section:

(i) Operations in the 2180-2200 MHz band are subject to the out-of-band emission requirements set forth in §27.1134 for the protection of federal government operations operating in the 2200-2290 MHz band.

(ii) For operations in the 2000-2020 MHz band, the power of any emissions below 2000 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log₁₀(P) dB. (iii) For operations in the 1915-1920 MHz band, the power of any emission between 1930-1995 MHz shall be attenuated below the transmitter power (P) in watts by at least 70 + 10 log₁₀(P) dB.

(iv) For operations in the 1995-2000 MHz band, the power of any emission between 2005-2020 MHz shall be attenuated below the transmitter power (P) in watts by at least $70 + 10 \log_{10}(P) dB$.

Band 12 (Lower 700 MHz)

§ 27.53 (g) – Emission limits

For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed

Band 13 (Upper 700 MHz) § 27.53 (c), (f) – Emission limits

(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $76 + 10 \log (P) dB$ in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $65 + 10 \log (P) dB$ in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

4.6.3TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	1010 hPa
Humidity:	30 %
Pand 2 downlinks Contor	froquency 1060.00 M

Band 2, downlink; Center frequency: 1960.00 MHz										
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]				
6898.3	-30.7	-29.6	RMS	1000	-13.0	17.7				

Band 4, downlink; Center frequency: 2132.50 MHz

Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
17494.8	-31.0	-29.6	RMS	1000	-13.0	18.0

Band 5, downlink; Center frequency: 881.5.0 MHz

Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
6849.9	-40.6	-26.8	RMS	100	-13.0	27.6

Band 12, downlink; Center frequency: 737.00 MHz

Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
6888.4	-38.9	-23.3	RMS	100	-13.0	25.9

Band 13, downlink; Center frequency: 751.00 MHz

Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
6967.0	-40.1	-23.2	RMS	100	-13.0	27.1

Band 2, uplink; Center frequency: 1880.00 MHz

Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
6870.3	-29.7	1.0	RMS	1000	-13.0	16.7

Band 4, uplink; Center frequency: 1732.50 MHz

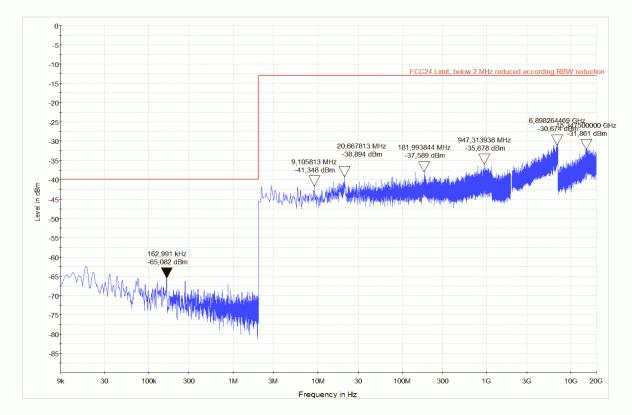
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
3466.9	-25.9	1.4	RMS	1000	-13.0	12.9

Band 5, uplink; Center frequency: 836.50 MHz

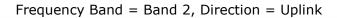
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
6841.8	-41.0	2.4	RMS	100	-13.0	28.0

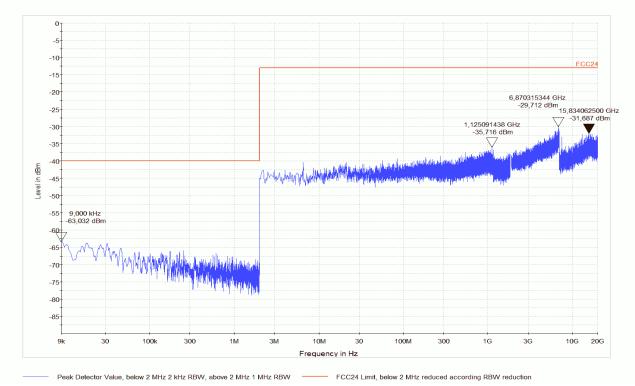
Band 12, uplink: Center frequency: 707.00 MHz

Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
679.9	-39.1	1.7	RMS	100	-13.0	26.1

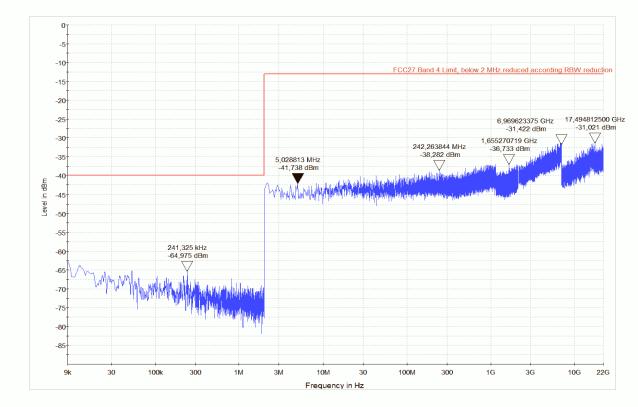

Band 13, uplink; Center frequency: 782.00 MHz

Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
787.1	-23.4	1.1	RMS	100	-13.0	10.4

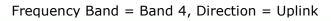

Remark: Please see next sub-clause for the measurement plot.

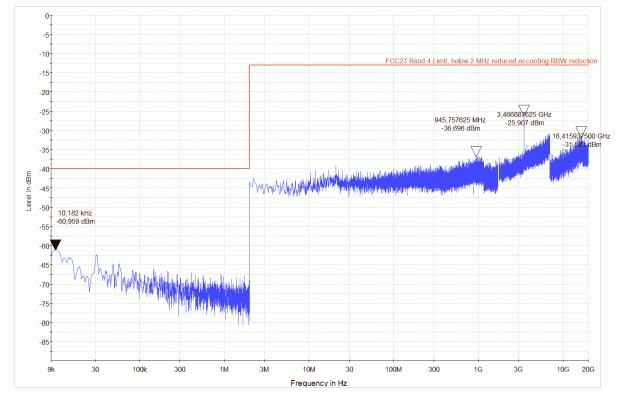


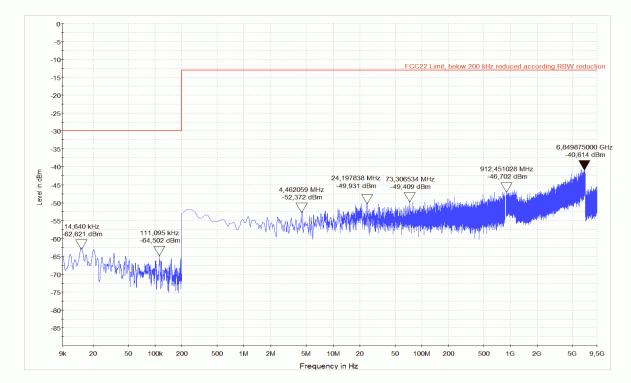
4.6.4MEASUREMENT PLOTS

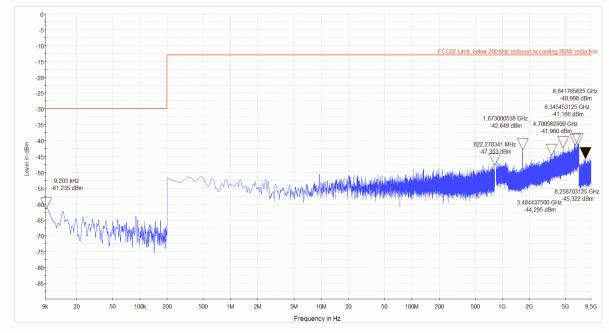


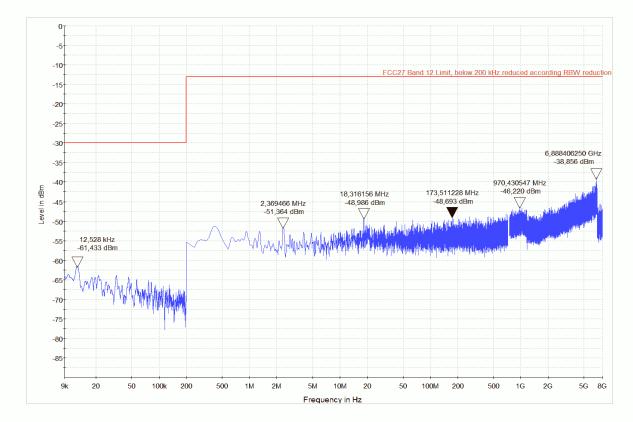
Frequency Band = Band 2, Direction = Downlink



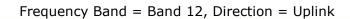


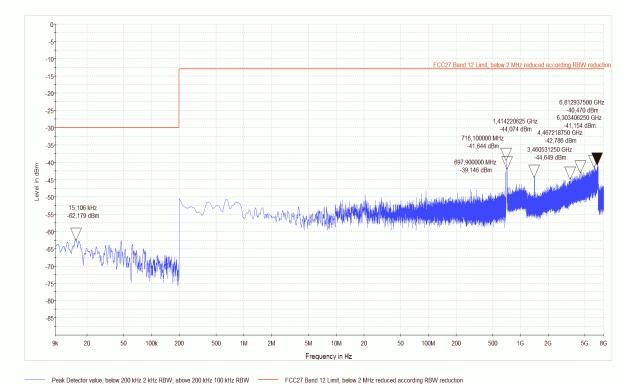

Frequency Band = Band 4, Direction = Downlink

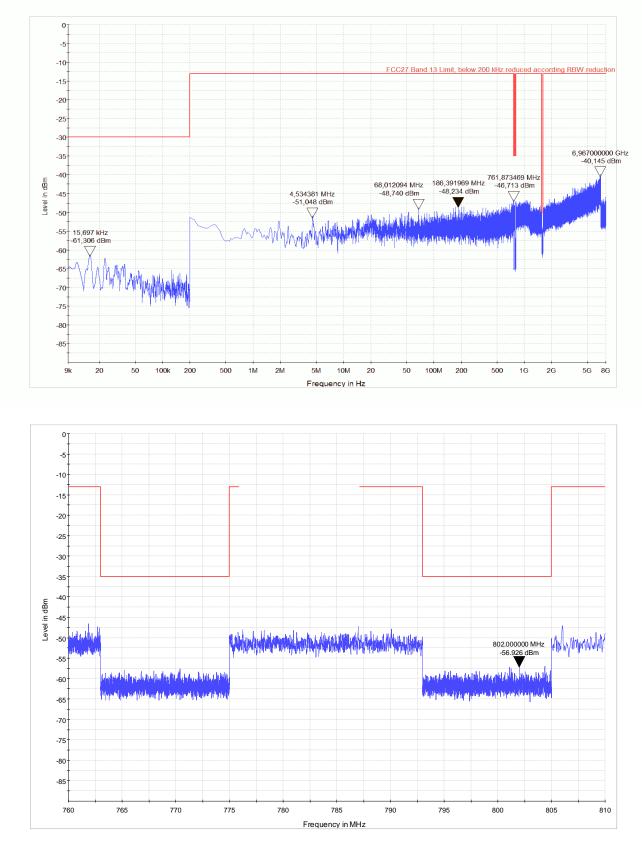

Peak Detector value, below 2 MHz 2 kHz RBW, above 2 MHz 1 MHz RBW FCC27 Band 4 Limit, below 2 MHz reduced according RBW reduction


Frequency Band = Band 5, Direction = Downlink

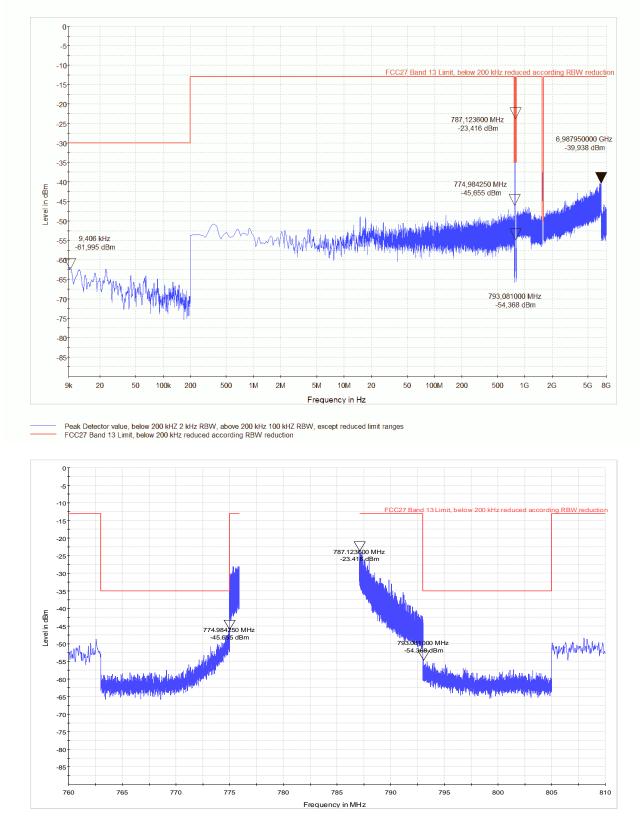
Frequency Band = Band 5, Direction = Uplink




Peak Detector Value, below 200 kHz 2 kHz RBW, above 200 kHz 100 kHz RBW FCC22 Limit, below 200 kHz reduced according RBW reduction



Frequency Band = Band 12, Direction = Downlink



Frequency Band = Band 13, Direction = Downlink

Zoom on range 760 – 810 MHz, ranges 763 – 775 MHz and 793 -805 MHz measured with 10 kHz RBW

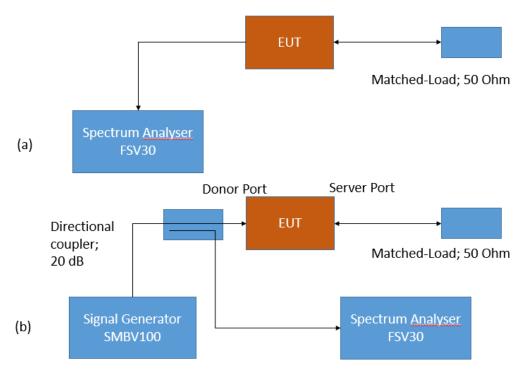
Frequency Band = Band 13, Direction = Uplink

Zoom on range 760 – 810 MHz, ranges 763 – 775 MHz and 793 -805 MHz measured with 10 kHz RBW

Ref Level 20.00 dBm		16.80 dB 🝵						
Att 20 dB	SWT	1.1 ms 🖷	VBW	300 kHz	Mode	Sweep		
SGL Count 1000/1000								
1Rm AvgPwr						1[1]		-59.76 dBr
					IVI	1[1]		-39.76 dBI 636870 GI-
10 dBm			_				 -	
o dBm			_				 	
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-to abin								
-50 dBm D1 -50.000 d	Dec							
	DIII							
-60 dBm								
-70 dBm			-T					T
-/u abm								
Start 1.559 GHz				691	ots		Sto	p 1.61 GHz

4.6.5TEST EQUIPMENT USED R&S TS8997

4.7 MAXIMUM TRANSMITTER NOISE POWER


Standard

The test was performed according to: KDB 935210 D03

4.7.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the noise limits (uplink) and Transmitter Power Off Mode limits (uplink and downlink noise power) according § 20.21(e)(8)(i)(A) and § $20.21 \in (8)(i)(H)$ for wideband consumer signal boosters.

The EUT was connected to the test setups according to the following diagrams:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.7.1; Maximum Transmitter Noise Power Level

Setup (a); Downlink/uplink noise without presence of an input signal Setup (b); Uplink noise in presence of an input signal

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.7.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21(e)(8)(i)(A)

Noise Limits. (1) The transmitted noise power in dBm/MHz of consumer boosters at their uplink port shall not exceed –103 dBm/MHz—RSSI. RSSI (received signal strength indication expressed in negative dB units relative to 1 mW) is the downlink composite received signal power in dBm at the booster donor port for all base stations in the band of operation.

(2) The transmitted maximum noise power in dBm/MHz of consumer boosters at their uplink and downlink ports shall not exceed the following limits:

(i) Fixed booster maximum noise power shall not exceed $-102.5 \text{ dBm/MHz} + 20 \text{ Log}_{10}$ (Frequency), where Frequency is the uplink mid-band frequency of the supported spectrum bands in MHz.

(ii) Mobile booster maximum noise power shall not exceed-59 dBm/MHz.

(iii) Compliance with Noise limits will use instrumentation calibrated in terms of RMS equivalent voltage, and with booster input ports terminated or without input signals applied within the band of measurement.

FCC Part 20, § 20.21(e)(8)(i)(H)

Transmit Power Off Mode. When the consumer booster cannot otherwise meet the noise and gain limits defined herein it must operate in "Transmit Power Off Mode." In this mode of operation, the uplink and downlink noise power shall not exceed -70 dBm/MHz and both uplink and downlink gain shall not exceed the lesser of 23 dB or MSCL.

4.7.3TEST PROTOCOL

Innut Cignal		т
Band 2, downlink		
Humidity:	30 %	6
Air Pressure:	1010) hPa
Ambient temperatur	re: 23 °	С

Input Signal	DL AWGN Signal [MHz]	Input Power [dBm]	Maximum Noise Power [dBm]	Noise Limit [dBm]	Margin to Limit [dB]
None	-	-	-78.9	-59.0	19.9

Band 4, downlink					
Input Signal	DL AWGN Signal [MHz]	Input Power [dBm]	Maximum Noise Power [dBm]	Noise Limit [dBm]	Margin to Limit [dB]
None	-	-	-76.9	-59.0	17.9

Band 5, downlink

Input Signal	DL AWGN Signal [MHz]	Input Power [dBm]	Maximum Noise Power [dBm]	Noise Limit [dBm]	Margin to Limit [dB]
None	-	-	-78.0	-59.0	19.0

Band 12, downlink

Input Signal	DL AWGN Signal [MHz]	Input Power [dBm]	Maximum Noise Power [dBm]	Noise Limit [dBm]	Margin to Limit [dB]
None	-	-	-78.2	-59.0	19.2

Band 13, downlink					
Input Signal	DL AWGN Signal [MHz]	Input Power [dBm]	Maximum Noise Power [dBm]	Noise Limit [dBm]	Margin to Limit [dB]
None	-	-	-78.2	-59.0	19.2

	Band	2,	up	link
--	------	----	----	------

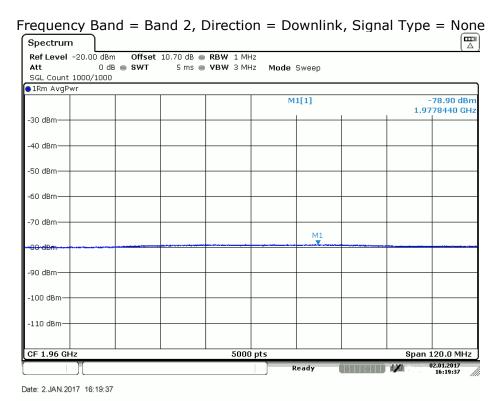
Input Signal	DL AWGN Signal [MHz]	Input Power [dBm]	Maximum Noise Power [dBm]	Noise Limit [dBm]	Margin to Limit [dB]
None	-	-	-74.0	-59.0	15.0
AWGN DL	1960.0	-36.0	-74.0	-67.0	7.0
AWGN DL	1960.0	-35.0	-74.0	-68.0	6.0
AWGN DL	1960.0	-34.0	-74.0	-69.0	5.0
AWGN DL	1960.0	-33.0	-73.9	-70.0	3.9
AWGN DL	1960.0	-30.0	-74.0	-70.0	4.0
AWGN DL	1960.0	-20.0	-73.8	-70.0	3.8

Band	4	unl	link	
Dallu	4,	uυ	IIIK	

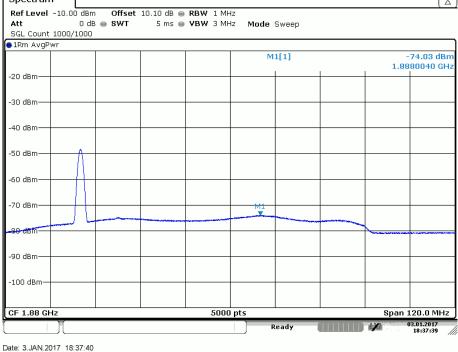
Input Power	DL AWGN Signal [MHz]	Input Power [dBm]	Maximum Noise Power [dBm]	Noise Limit [dBm]	Margin to Limit [dB]
None	-	-	-74.2	-59.0	15.2
AWGN DL	2132.5	-36.0	-74.3	-67.0	7.3
AWGN DL	2132.5	-35.0	-74.4	-68.0	6.3
AWGN DL	2132.5	-34.0	-74.3	-69.0	5.3
AWGN DL	2132.5	-33.0	-74.2	-70.0	4.2
AWGN DL	2132.5	-30.0	-74.3	-70.0	4.3
AWGN DL	2132.5	-20.0	-74.3	-70.0	4.3

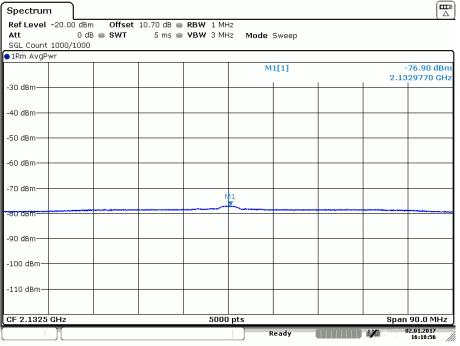
Band 5, uplink					
Input Power	DL AWGN Signal [MHz]	Input Power [dBm]	Maximum Noise Power [dBm]	Noise Limit [dBm]	Margin to Limit [dB]
None	-	-	-74.6	-59.0	15.6
AWGN DL	881.5	-36.0	-73.8	-67.0	6.8
AWGN DL	881.5	-35.0	-73.8	-68.0	5.8
AWGN DL	881.5	-34.0	-73.9	-69.0	4.9
AWGN DL	881.5	-33.0	-73.9	-70.0	3.9
AWGN DL	881.5	-30.0	-73.8	-70.0	3.8
AWGN DL	881.5	-20.0	-73.9	-70.0	3.9

Band 12, uplink					
Input Power	DL AWGN Signal [MHz]	Input Power [dBm]	Maximum Noise Power [dBm]	Noise Limit [dBm]	Margin to Limit [dB]
None	-	-	-74.6	-59.0	15.6
AWGN DL	737.0	-36.0	-74.6	-67.0	7.6
AWGN DL	737.0	-35.0	-74.6	-68.0	6.6
AWGN DL	737.0	-34.0	-74.6	-69.0	5.6
AWGN DL	737.0	-33.0	-74.6	-70.0	4.6
AWGN DL	737.0	-30.0	-74.6	-70.0	4.6
AWGN DL	737.0	-20.0	-74.7	-70.0	4.7

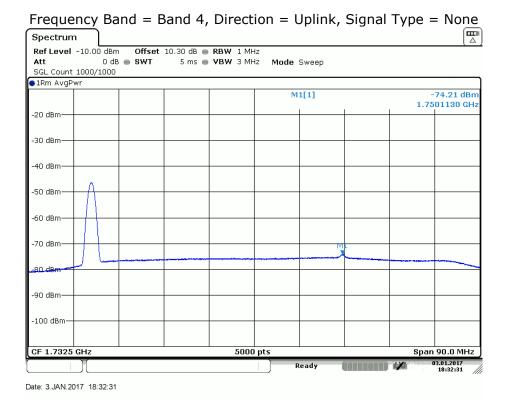

Band 13, uplink

Input Power	DL AWGN Signal [MHz]	Input Power [dBm]	Maximum Noise Power [dBm]	Noise Limit [dBm]	Margin to Limit [dB]
None	-	-	-74.0	-59.0	15.0
AWGN DL	751.0	-36.0	-73.2	-67.0	6.2
AWGN DL	751.0	-35.0	-73.2	-68.0	5.2
AWGN DL	751.0	-34.0	-73.2	-69.0	4.2
AWGN DL	751.0	-33.0	-73.2	-70.0	3.2
AWGN DL	751.0	-30.0	-73.2	-70.0	3.2
AWGN DL	751.0	-20.0	-73.2	-70.0	3.2


Remark: Please see next sub-clause for the measurement plot.

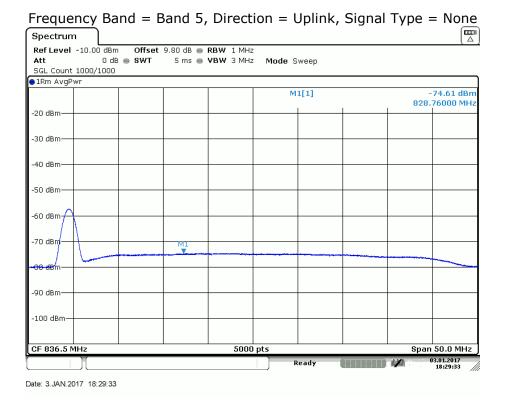

4.7.4MEASUREMENT PLOTS

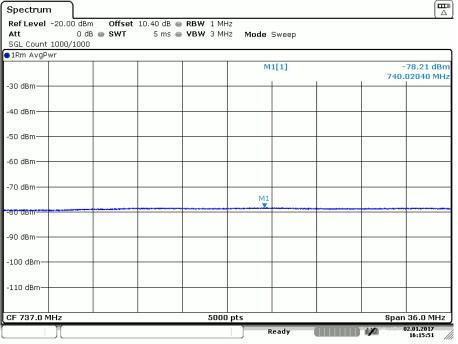
Frequency Band = Band 2, Direction = Uplink, Signal Type = None



Frequency Band = Band 4, Direction = Downlink, Signal Type = None

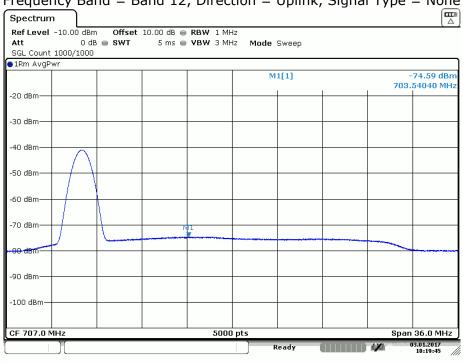
Date: 2.JAN.2017 16:18:56



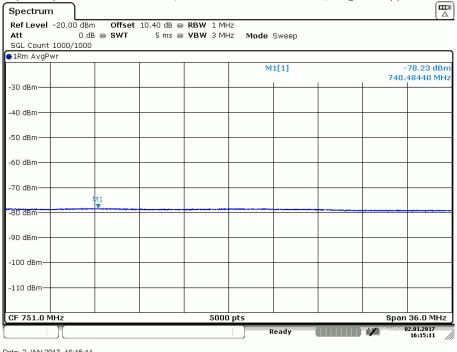

Spectrum)				,	
Ref Level -20.00 Att	O dB 😑 SWT	10.40 dB 🖷 RB 5 ms 🖶 VB		Sweep		
SGL Count 1000/	1000					
●1Rm AvgPwr			η	41[1]		-77.99 dBm 873.38500 MHz
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
-70 UBII		M1				
-90 dBm						
-100 dBm						
-110 dBm						
CF 881.5 MHz			5000 pts			Span 50.0 MHz
				Ready 🚺	11 II 14 II 14	02.01.2017 16:17:26

Frequency Band = Band 5, Direction = Downlink, Signal Type = None

Date: 2.JAN.2017 16:17:26

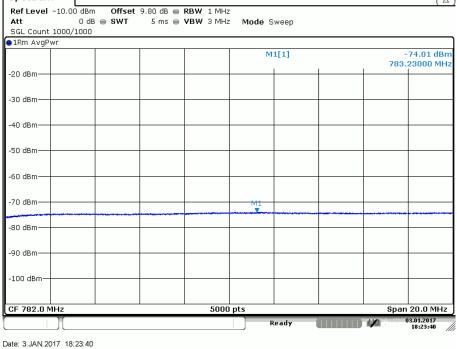


Frequency Band = Band 12, Direction = Downlink, Signal Type = None


Date: 2.JAN.2017 16:15:51

Frequency Band = Band 12, Direction = Uplink, Signal Type = None

Date: 3.JAN.2017 18:19:46



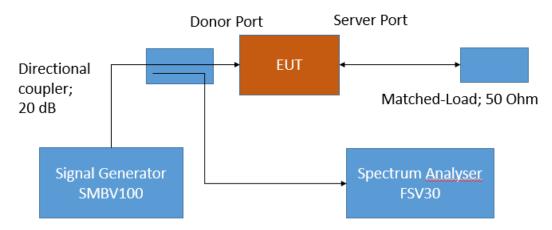
Frequency Band = Band 13, Direction = Downlink, Signal Type = None

Date: 2.JAN.2017 16:15:11

Frequency Band = Band 13, Direction = Uplink, Signal Type = None Spectrum

4.7.5TEST EQUIPMENT USED R&S TS8997

4.8 VARIABLE UPLINK NOISE TIMING


Standard

The test was performed according to: KDB 935210 D03

4.8.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the noise limits (uplink) and Transmitter Power Off Mode limits (uplink and downlink noise power) according § 20.21(e)(8)(i)(A) and § $20.21 \in (8)(i)(H)$ for wideband consumer signal boosters.

The EUT was connected to the test setup(s) according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.7.2; Variable Uplink noise Timing

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.8.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21(e)(8)(i)(A)

Noise Limits. (1) The transmitted noise power in dBm/MHz of consumer boosters at their uplink port shall not exceed -103 dBm/MHz—RSSI. RSSI (received signal strength indication expressed in negative dB units relative to 1 mW) is the downlink composite received signal power in dBm at the booster donor port for all base stations in the band of operation.

(2) The transmitted maximum noise power in dBm/MHz of consumer boosters at their uplink and downlink ports shall not exceed the following limits:

(i) Fixed booster maximum noise power shall not exceed -102.5 dBm/MHz + 20 Log₁₀ (Frequency), where Frequency is the uplink mid-band frequency of the supported spectrum

bands in MHz.

(ii) Mobile booster maximum noise power shall not exceed-59 dBm/MHz.

(iii) Compliance with Noise limits will use instrumentation calibrated in terms of RMS equivalent voltage, and with booster input ports terminated or without input signals applied within the band of measurement.

FCC Part 20, § 20.21(e)(8)(i)(H)

Transmit Power Off Mode. When the consumer booster cannot otherwise meet the noise and gain limits defined herein it must operate in "Transmit Power Off Mode." In this mode of operation, the uplink and downlink noise power shall not exceed -70 dBm/MHz and both uplink and downlink gain shall not exceed the lesser of 23 dB or MSCL.

KDB 935210 D03 7.7.2 e)

Confirm that the uplink noise decreases to the specified level within 1 second for mobile devices, and within 3 seconds for fixed devices¹

¹The time response requirements are provisional and are as determined by the ANSI ASC C63® task group in collaboration and consultation with FCC OET Laboratory Division staff.

4.8.3TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	1010 hPa
Humidity:	30 %
Band 2, uplink	

Center Frequency [MHz]	Input DL Power	Noise Decrease	Noise Decrease	Margin to
	[dBm]	Time [ms]	Time Limit [ms]	Limit [ms]
1880.0	-34.0	0.0	1000.0	1000.0

Band 4, uplink

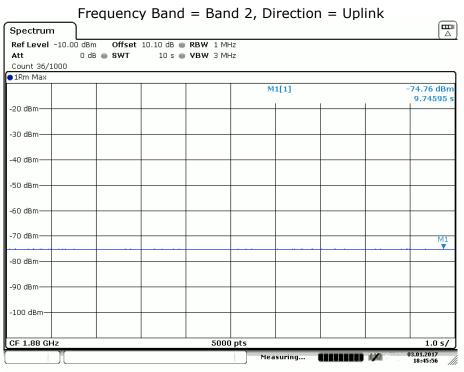
Center Frequency [MHz]	Input DL Power	Noise Decrease	Noise Decrease	Margin to
	[dBm]	Time [ms]	Time Limit [ms]	Limit [ms]
1732.5	-34.0	0.0	1000.0	1000.0

Band 5, uplink

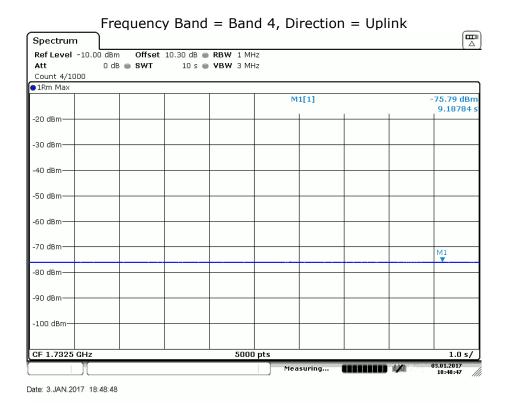
Center Frequency [MHz]	Input DL Power	Noise Decrease	Noise Decrease	Margin to
	[dBm]	Time [ms]	Time Limit [ms]	Limit [ms]
836.5	-34.0	0.0	1000.0	1000.0

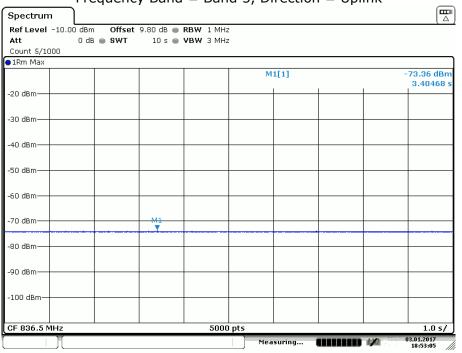
Band 12, uplink

Center Frequency [MHz]	Input DL Power	Noise Decrease	Noise Decrease	Margin to
	[dBm]	Time [ms]	Time Limit [ms]	Limit [ms]
707.0	-34.0	0.0	1000.0	1000.0

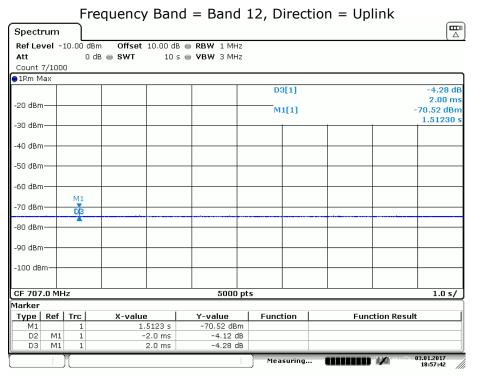

Band 13, uplink

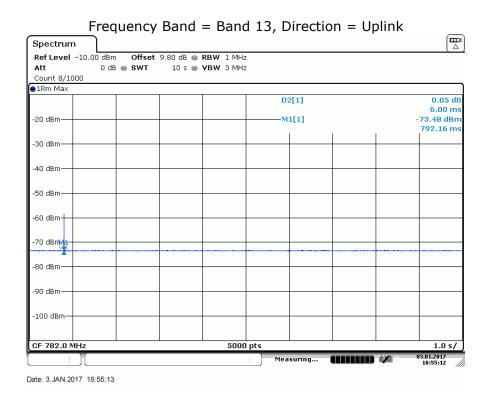
Center Frequency [MHz]	Input DL Power	Noise Decrease	Noise Decrease	Margin to
	[dBm]	Time [ms]	Time Limit [ms]	Limit [ms]
782.0	-34.0	6.0	1000.0	994.0


Remark: Please see next sub-clause for the measurement plot.


4.8.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Date: 3.JAN.2017 18:45:56



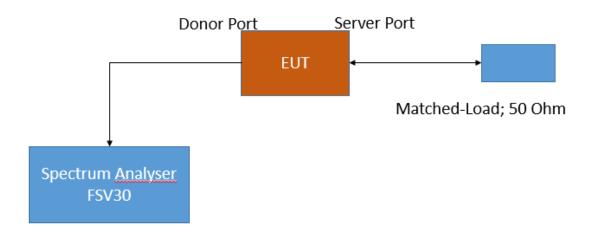

Frequency Band = Band 5, Direction = Uplink

Date: 3.JAN.2017 18:53:05

Date: 3.JAN.2017 18:57:43

4.8.5TEST EQUIPMENT USED R&S TS8997

4.9 UPLINK INACTIVITY


Standard

The test was performed according to: KDB 935210 D03

4.9.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the Uplink Inactivity limit according § 20.21(e)(8)(i)(I) for wideband consumer signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.8; Uplink Inactivity

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.9.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21(e)(8)(i)(I)

Uplink Inactivity. When a consumer booster is not serving an active device connection after 5 minutes the uplink noise power shall not exceed -70 dBm/MHz.

4.9.3TEST PROTOCOL

Center Frequency [MHz]	Noise Dec
Band 2, uplink	
Humidity:	30 %
Air Pressure:	992 hPa
Ambient temperature:	25 °C

Center Frequency [MHz]	Noise Decrease Time	Noise Decrease Time Limit	Margin to
	[s]	[s]	Limit [s]
1880.0	1.01	300.00	298.99

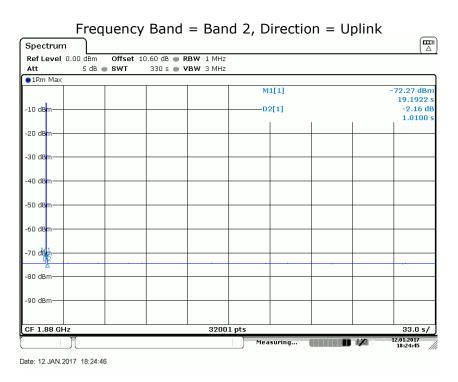
Band 4, uplink

Center Frequency [MHz]	Noise Decrease Time [s]	Noise Decrease Time Limit [s]	Margin to Limit [s]
1732.5	1.01	300.00	298.99

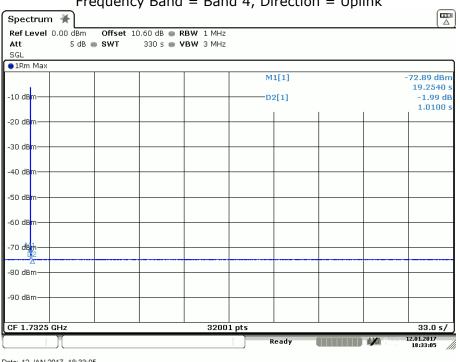
Band 5, uplink

Center Frequency [MHz]	Noise Decrease Time [s]	Noise Decrease Time Limit [s]	Margin to Limit [s]
836.5	1.01	300.00	298.99

Band 12, uplink

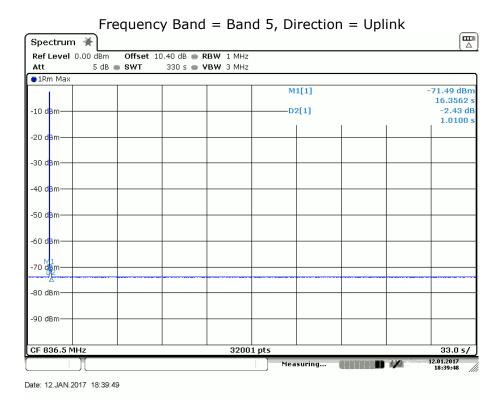

Center Frequency [MHz]	Noise Decrease Time [s]	Noise Decrease Time Limit [s]	Margin to Limit [s]
707.0	1.02	300.00	298.98

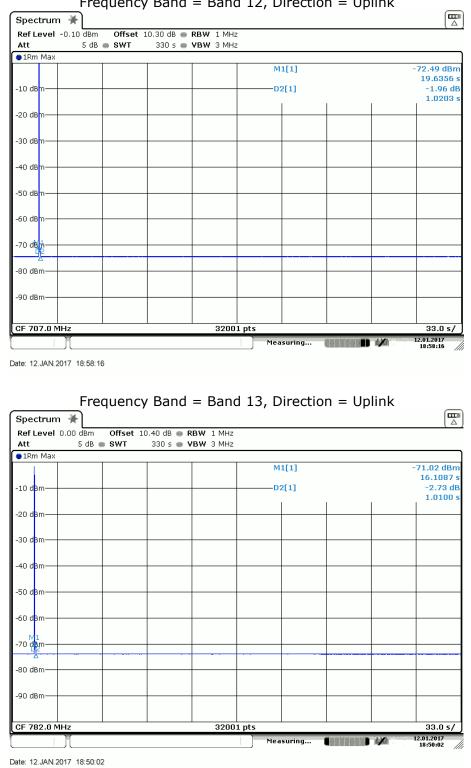
Band 13, uplink


Center Frequency [MHz]	Noise Decrease Time [s]	Noise Decrease Time Limit [s]	Margin to Limit [s]
782.0	1.01	300.00	298.99

Remark: Please see next sub-clause for the measurement plot.

4.9.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")





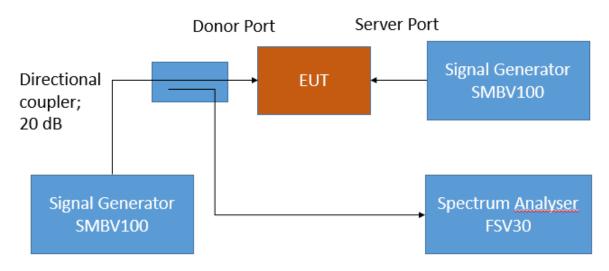
Frequency Band = Band 4, Direction = Uplink

Date: 12.JAN.2017 18:33:05

Frequency Band = Band 12, Direction = Uplink

4.9.5TEST EQUIPMENT USED **R&S TS8997**

4.10 VARIABLE BOOSTER GAIN


Standard

The test was performed according to: KDB 935210 D03

4.10.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the Booster Gain limit according § 20.21(e)(8)(i)(C)(1) or Transmit Power Off Mode according § $20.21 \in (8)(i)(H)$ for wideband consumer signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.9.1; Variable Gain

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.10.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21(e)(8)(C)(1)

Booster Gain Limits. (1) The uplink gain in dB of a consumer booster referenced to its input and output ports shall not exceed -34 dB-RSSI + MSCL.

(i) Where RSSI is the downlink composite received signal power in dBm at the booster donor port for all base stations in the band of operation. RSSI is expressed in negative dB units relative to 1 mW.

(ii) Where MSCL (Mobile Station Coupling Loss) is the minimum coupling loss in dB between the wireless device and input port of the consumer booster. MSCL must be calculated or measured for each band of operation and provided in compliance test reports.

FCC Part 20, § 20.21(e)(8)(i)(H)

Transmit Power Off Mode. When the consumer booster cannot otherwise meet the noise and gain limits defined herein it must operate in "Transmit Power Off Mode." In this mode of operation, the uplink and downlink noise power shall not exceed -70 dBm/MHz and both uplink and downlink gain shall not exceed the lesser of 23 dB or MSCL.

4.10.3TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	1010 hPa
Humidity:	30 %
Band 2 unlink	

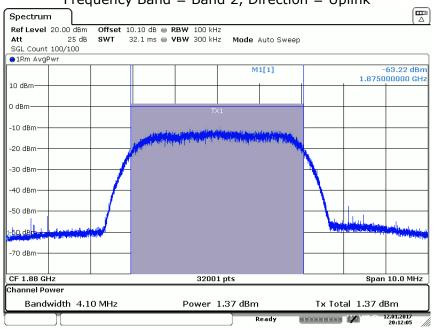
Danu Z, upilik								
UL AWGN Signal [MHz]	DL AWGN Signal [MHz]	Input Power UL [dBm]	Input Power DL [dBm]	Output Power UL [dBm]	Maximum UL Gain [dB]	Gain Limit [dBm]	Margin to Limit [dB]	
1880.0	1960.0	-4.0	-90.0	15.0	19.0	23.0	4.0	
1880.0	1960.0	-4.0	-80.0	15.0	19.0	23.0	4.0	
1880.0	1960.0	-4.0	-35.0	-1.3	2.7	8.0	5.3	
1880.0	1960.0	-4.0	-34.0	-1.3	2.7	7.0	4.3	
1880.0	1960.0	-4.0	-30.0	1.4	5.4	7.0	1.6	
1880.0	1960.0	-4.0	-20.0	1.4	5.4	7.0	1.6	

Band 4, uplink

UL AWGN Signal [MHz]	DL AWGN Signal [MHz]	Input Power UL [dBm]	Input Power DL [dBm]	Output Power UL [dBm]	Maximum UL Gain [dB]	Gain Limit [dBm]	Margin to Limit [dB]
1732.5	2132.5	-3.6	-80.0	16.6	20.2	23.0	2.8
1732.5	2132.5	-3.6	-70.0	16.6	20.2	23.0	2.8
1732.5	2132.5	-3.6	-35.0	0.7	4.3	8.0	3.7
1732.5	2132.5	-3.6	-34.0	0.7	4.3	7.0	2.7
1732.5	2132.5	-3.6	-30.0	0.7	4.3	7.0	2.7
1732.5	2132.5	-3.6	-20.0	0.7	4.3	7.0	2.7

Band 5, uplink

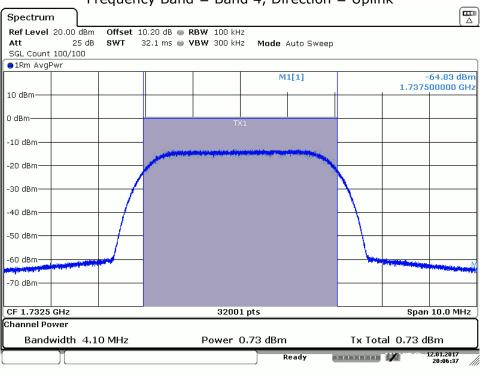
UL AWGN Signal [MHz]	DL AWGN Signal [MHz]	Input Power UL [dBm]	Input Power DL [dBm]	Output Power UL [dBm]	Maximum UL Gain [dB]	Gain Limit [dBm]	Margin to Limit [dB]
836.5	881.5	-2.6	-90.0	17.3	19.9	23.0	3.1
836.5	881.5	-2.6	-80.0	17.3	19.9	23.0	3.1
836.5	881.5	-2.6	-35.0	1.8	4.4	8.0	3.6
836.5	881.5	-2.6	-34.0	1.8	4.4	7.0	2.6
836.5	881.5	-2.6	-30.0	1.8	4.4	7.0	2.6
836.5	881.5	-2.6	-20.0	1.8	4.4	7.0	2.6


Band 12, uplink								
UL AWGN Signal [MHz]	DL AWGN Signal [MHz]	Input Power UL [dBm]	Input Power DL [dBm]	Output Power UL [dBm]	Maximum UL Gain [dB]	Gain Limit [dBm]	Margin to Limit [dB]	
707.0	737.0	-3.3	-90.0	16.2	19.5	23.0	3.5	
707.0	737.0	-3.3	-80.0	16.2	19.5	23.0	3.5	
707.0	737.0	-3.3	-35.0	0.2	3.5	8.0	4.5	
707.0	737.0	-3.3	-34.0	0.7	4.0	7.0	3.0	
707.0	737.0	-3.3	-30.0	0.2	3.5	7.0	3.5	
707.0	737.0	-3.3	-20.0	0.2	3.5	7.0	3.5	

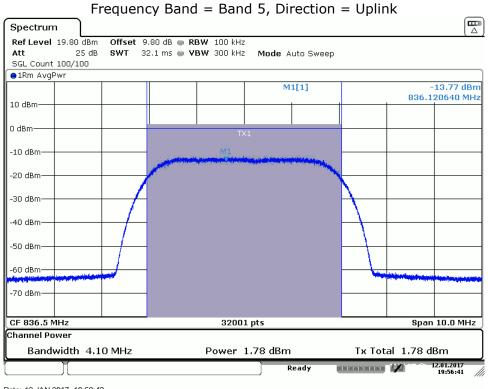
Band 13, uplink

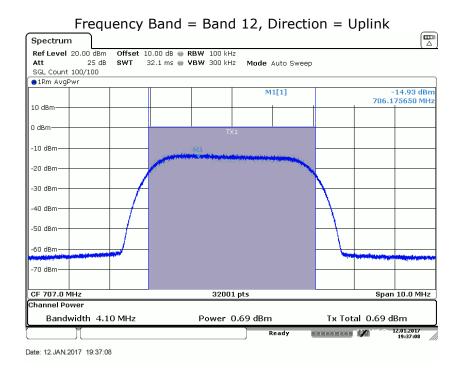
UL AWGN Signal [MHz]	DL AWGN Signal [MHz]	Input Power UL [dBm]	Input Power DL [dBm]	Output Power UL [dBm]	Maximum UL Gain [dB]	Gain Limit [dBm]	Margin to Limit [dB]
782.0	751.0	-3.9	-70.0	16.2	20.1	23.0	2.9
782.0	751.0	-3.9	-60.0	16.2	20.1	23.0	2.9
782.0	751.0	-3.9	-35.0	0.5	4.4	8.0	3.6
782.0	751.0	-3.9	-34.0	0.5	4.4	7.0	2.6
782.0	751.0	-3.9	-30.0	0.5	4.4	7.0	2.6
782.0	751.0	-3.9	-20.0	0.5	4.4	7.0	2.6

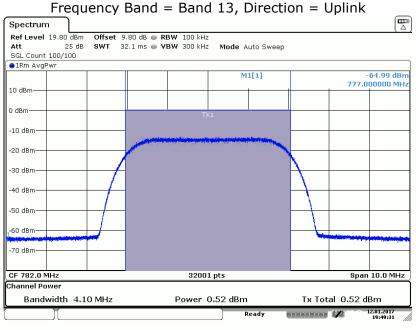
Remark: Please see next sub-clause for the measurement plot.


4.10.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Frequency Band = Band 2, Direction = Uplink


Date: 12.JAN.2017 20:12:05


Frequency Band = Band 4, Direction = Uplink

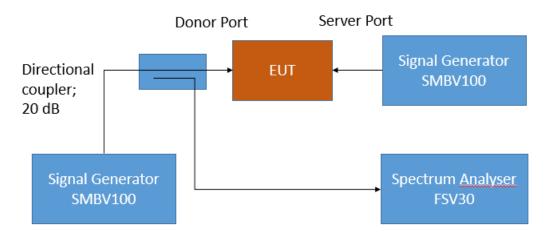

Date: 12.JAN.2017 20:06:37

Date: 12.JAN.2017 19:56:42

Date: 12.JAN.2017 19:49:31

4.10.5TEST EQUIPMENT USED R&S TS8997

4.11 VARIABLE UPLINK GAIN TIMING


Standard

The test was performed according to: KDB 935210 D03

4.11.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the Booster Gain limit according § 20.21(e)(8)(i)(C)(1) or Transmit Power Off Mode according § $20.21 \in (8)(i)(H)$ for wideband consumer signal boosters.

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.9.2; Variable Uplink Gain Timing

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.11.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21(e)(8)(C)(1)

Booster Gain Limits. (1) The uplink gain in dB of a consumer booster referenced to its input and output ports shall not exceed -34 dB-RSSI + MSCL.

(i) Where RSSI is the downlink composite received signal power in dBm at the booster donor port for all base stations in the band of operation. RSSI is expressed in negative dB units relative to 1 mW.

(ii) Where MSCL (Mobile Station Coupling Loss) is the minimum coupling loss in dB between the wireless device and input port of the consumer booster. MSCL must be calculated or measured for each band of operation and provided in compliance test reports.

FCC Part 20, § 20.21(e)(8)(i)(H)

Transmit Power Off Mode. When the consumer booster cannot otherwise meet the noise and gain limits defined herein it must operate in "Transmit Power Off Mode." In this mode of operation, the uplink and downlink noise power shall not exceed -70 dBm/MHz and both uplink and downlink gain shall not exceed the lesser of 23 dB or MSCL.

KDB 935210 D03 7.9.2 e)

Confirm that the uplink noise decreases to the specified level within 1 second for mobile devices, and within 3 seconds for fixed devices¹

¹The time response requirements are provisional and are as determined by the ANSI ASC C63® task group in collaboration and consultation with FCC OET Laboratory Division staff.

4.11.3TEST PROTOCOL

Ambient temperatu Air Pressure:	re:	25 °C 996 hPa
Humidity:		29 %
Band 2, uplink		

Center Frequency [MHz]	Input DL Power	Noise Decrease Time	Noise Decrease Time	Margin to
	[dBm]	[ms]	Limit [ms]	Limit [ms]
1880.0	-40.0	440.6	1000.0	559.4

Band 4, uplink

Center Frequency [MHz]	Input DL Power	Noise Decrease Time	Noise Decrease Time	Margin to
	[dBm]	[ms]	Limit [ms]	Limit [ms]
1732.5	-40.0	472.2	1000.0	527.8

Band 5, uplink

Center Frequency [MHz]	Input DL Power	Noise Decrease Time	Noise Decrease Time	Margin to
	[dBm]	[ms]	Limit [ms]	Limit [ms]
836.5	-40.0	340.6	1000.0	659.4

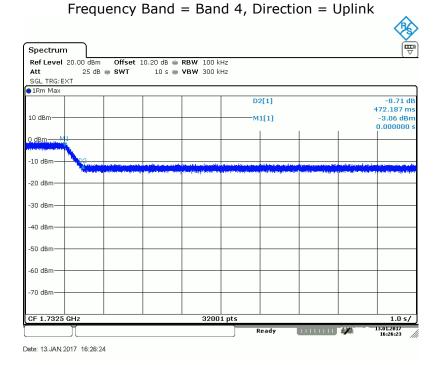
Band 12, uplink

Center Frequency [MHz]	Input DL Power	Noise Decrease Time	Noise Decrease Time	Margin to
	[dBm]	[ms]	Limit [ms]	Limit [ms]
707.0	-40.0	484.4	1000.0	515.6

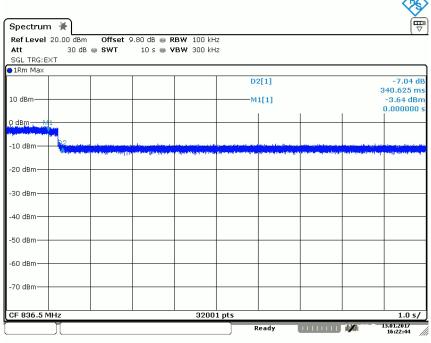
Band 13, uplink

Center Frequency [MHz]	Input DL Power	Noise Decrease Time	Noise Decrease Time	Margin to
	[dBm]	[ms]	Limit [ms]	Limit [ms]
782.0	-40.0	442.2	1000.0	557.8

Remark: Please see next sub-clause for the measurement plot.

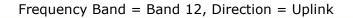


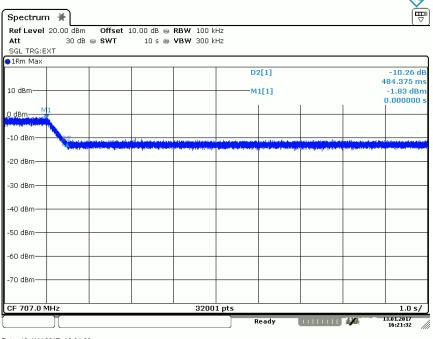
4.11.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")


Ref Level 20.00		t 10.10 dB 👄						
Att 2: SGL TRG:EXT	5 dB 📾 SWT	10 s 👄	VBW 300 k	HZ				
1Rm Max								
				D	2[1]			-7.89 d
10 dBm					1[1]			140.625 n -5.99 dB
				X	uf 1			-3.99 UB 0.000000
D dBm								
M1								
-10 dBm								
	a disease a scientisci	a and the second second		a kalmisin na ana ku	a shi ta a shi ta sundi a sa b	ومراجع العرب	surficial states a surf	ودوراك بغير الأسعا
-20 dBm	in the second second	and the second second second	for the part balance in the last	() been a factor of the state		an fan yward far ywar ywar ywar yw	ad sea parte en el morte	
-30 dBm								
40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
CF 1.88 GHz			3200	1 pts				1.0 s

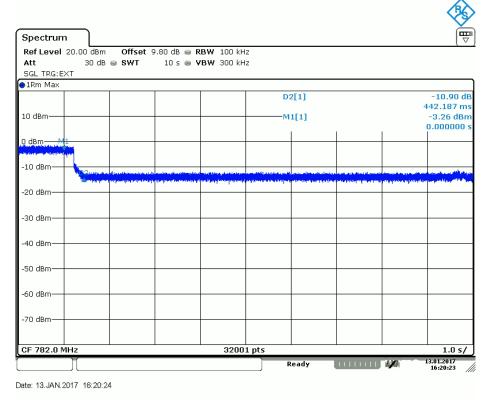
Frequency Band = Band 2, Direction = Uplink

Date: 13.JAN.2017 16:28:26





Frequency Band = Band 5, Direction = Uplink

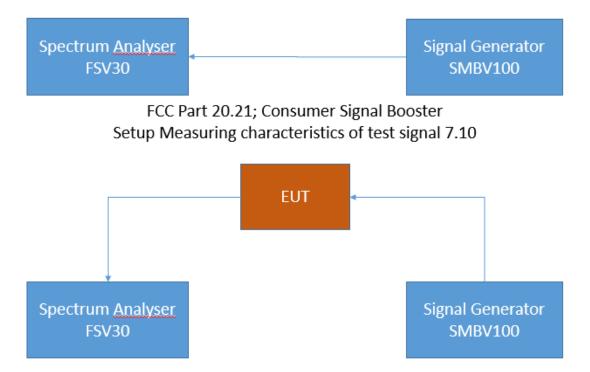

Date: 13.JAN.2017 16:22:45

Date: 13.JAN.2017 16:21:32

Frequency Band = Band 13, Direction = Uplink

4.11.5TEST EQUIPMENT USED R&S TS8997

4.12 OCCUPIED BANDWIDTH


Standard

The test was performed according to: KDB 935210 D03

4.12.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable occupied bandwidth requirements per § 2.1049

The EUT was connected to the test setups according to the following diagram:

FCC Part 20.21; Consumer Signal Booster - Test Setup 7.10; Occupied Bandwidth

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.12.2TEST REQUIREMENTS / LIMITS

FCC Part 2.1049; Occupied Bandwidth:

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

TEST REPORT REFERENCE: MDE_NOVER_1615_FCCa_REV1

(h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

(i) Transmitters designed for other types of modulation—when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

4.12.3TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	1010 hPa
Humidity:	30 %
Band 2. downlink	

Signal Type	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Delta Limit Occupied Bandwidth [kHz]	Margin to Limit [kHz]
GSM	1960.00	247.0	247.0	0.0	200.0	200.0
LTE	1960.00	4120.0	4154.0	34.0	200.0	166.0
CDMA	1960.00	1259.0	1259.0	0.0	200.0	200.0

Band 4, downlink

Signal Type	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Delta Limit Occupied Bandwidth [kHz]	Margin to Limit [kHz]
GSM	2132.50	247.0	246.6	-0.4	200.0	199.6
LTE	2132.50	4120.0	4166.0	46.0	200.0	154.0
CDMA	2132.50	1259.0	1259.0	0.0	200.0	200.0

Band 5, downlink

Signal Type	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Delta Limit Occupied Bandwidth [kHz]	Margin to Limit [kHz]
GSM	881.50	246.4	247.4	1.0	200.0	199.0
LTE	881.50	4128.0	4176.0	48.0	200.0	152.0
CDMA	881.50	1259.0	1259.0	0.0	200.0	200.0

Band 12, downlink

Signal Type	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Delta Limit Occupied Bandwidth [kHz]	Margin to Limit [kHz]
GSM	737.00	246.8	246.6	-0.2	200.0	199.8
LTE	737.00	4101.0	4240.0	139.0	200.0	61.0
CDMA	737.00	1259.0	1259.0	0.0	200.0	200.0

Band 13, downlink Occupied Occupied Delta Delta Limit Margin Signal Signal Bandwidth Bandwidth to Limit Туре Frequency Occupied Occupied [MHz] SG [kHz] Booster [kHz] Bandwidth Bandwidth [kHz] [kHz] [kHz] 246.6 GSM 751.00 199.8 246.8 200.0 -0.2 4130.0 4136.0 LTE 751.00 200.0 194.0 6.0 CDMA 751.00 1259.0 1259.0 0.0 200.0 200.0

Band 2, uplink

Signal Type	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Delta Limit Occupied Bandwidth [kHz]	Margin to Limit [kHz]
GSM	1880.00	247.0	247.2	0.2	200.0	199.8
LTE	1880.00	4124.0	4144.0	20.0	200.0	180.0
CDMA	1880.00	1259.0	1259.0	0.0	200.0	200.0

Band 4, uplink

Signal Type	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Delta Limit Occupied Bandwidth [kHz]	Margin to Limit [kHz]
GSM	1732.50	246.6	247.0	0.4	200.0	199.6
LTE	1732.50	4144.0	4144.0	0.0	200.0	200.0
CDMA	1732.50	1259.0	1259.0	0.0	200.0	200.0

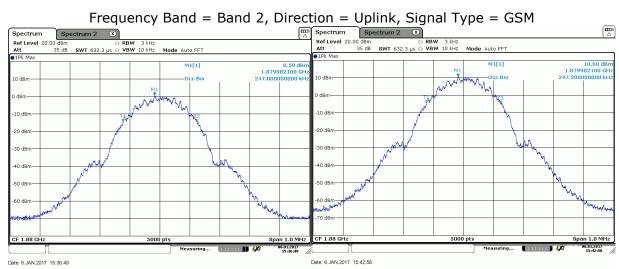
Band 5, uplink

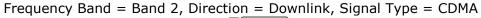
Signal Type	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Delta Limit Occupied Bandwidth [kHz]	Margin to Limit [kHz]]
GSM	836.50	246.8	247.0	0.2	200.0	199.8
LTE	836.50	4106.0	4178.0	72.0	200.0	128.0
CDMA	836.50	1259.0	1263.4	4.3	200.0	195.7

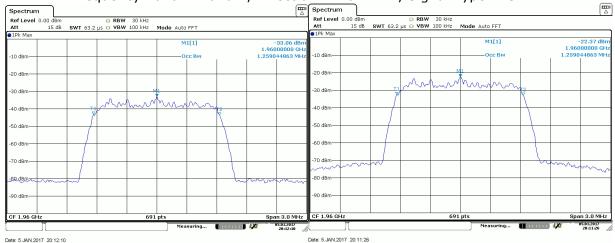
Band 12, uplink

Signal Type	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Delta Limit Occupied Bandwidth [kHz]	Margin to Limit [kHz]
GSM	707.00	247.0	247.6	0.6	200.0	199.4
LTE	707.00	4122.0	4174.0	52.0	200.0	148.0
CDMA	707.00	1259.0	1259.0	0.0	200.0	200.0

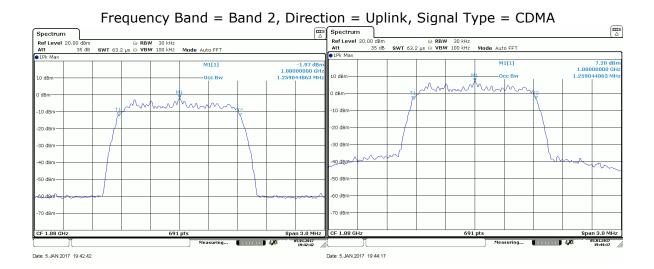

Band 13, uplink

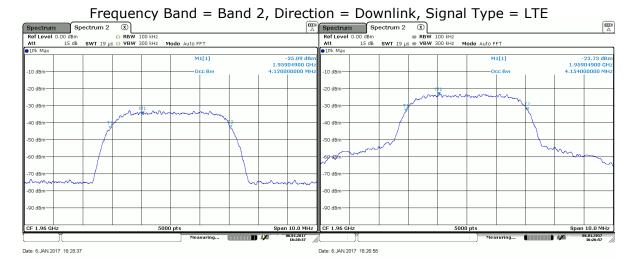

Signal Type	Signal Frequency [MHz]	Occupied Bandwidth SG [kHz]	Occupied Bandwidth Booster [kHz]	Delta Occupied Bandwidth [kHz]	Delta Limit Occupied Bandwidth [kHz]	Margin to Limit [kHz]
GSM	782.00	247.0	247.0	0.0	200.0	200.0
LTE	782.00	4138.0	4156.0	18.0	200.0	182.0
CDMA	782.00	1259.0	1259.0	0.0	200.0	200.0

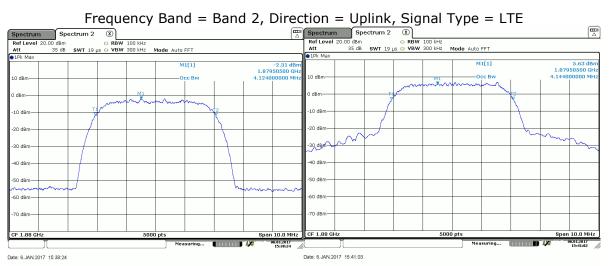

Remark: Please see next sub-clause for the measurement plot.



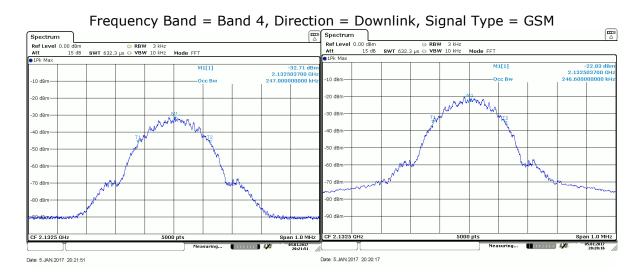
4.12.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") First plot shows bandwidth measured at signal generator output Second plot shows bandwidth at output of EUT

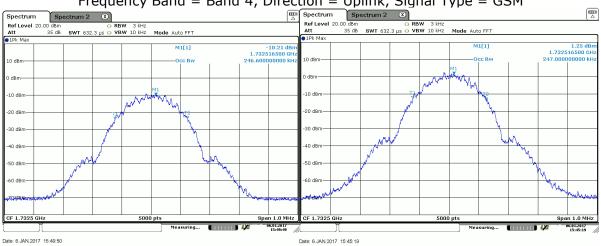


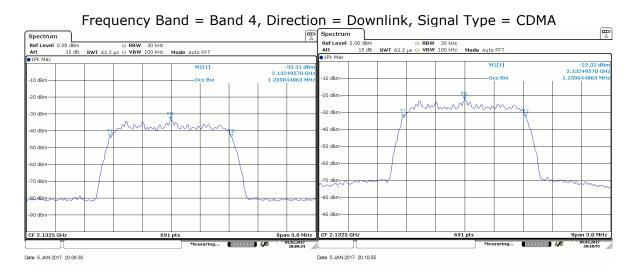


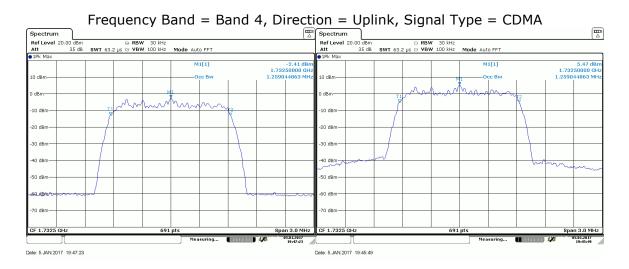


TEST REPORT REFERENCE: MDE_NOVER_1615_FCCa_REV1

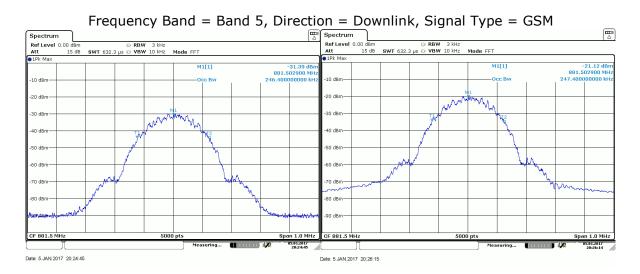


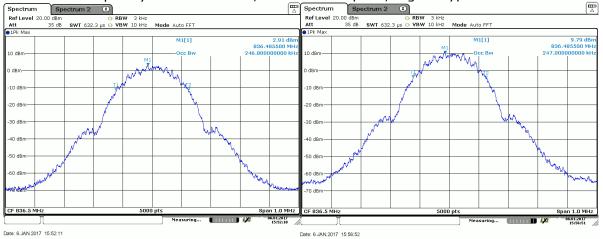




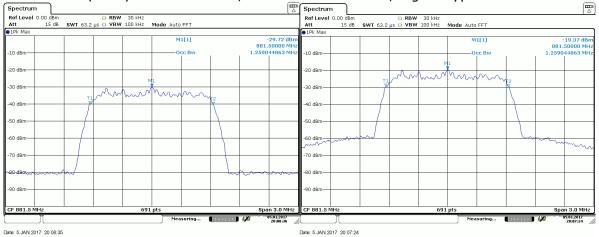


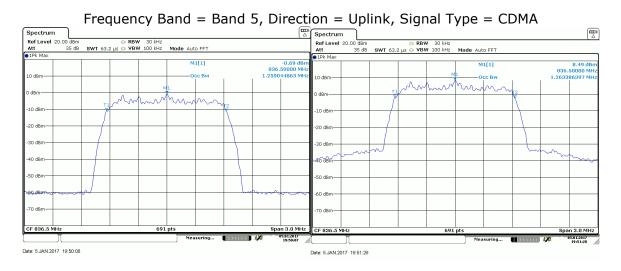
Frequency Band = Band 4, Direction = Uplink, Signal Type = GSM

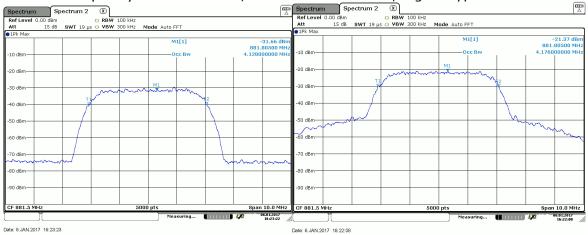


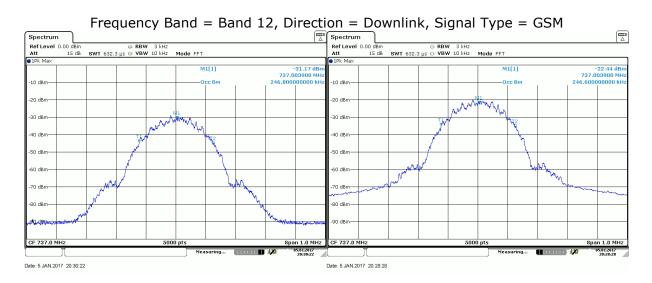


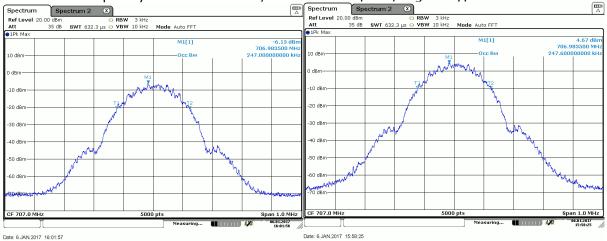
Frequency Band = Band 4, Direction = Uplink, Signal Type = LTE



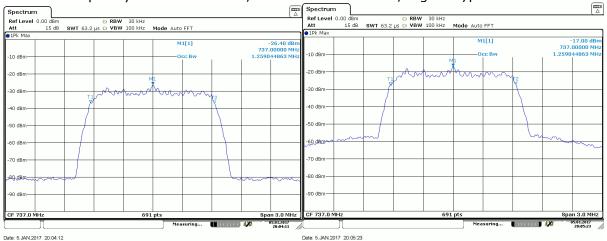

Frequency Band = Band 5, Direction = Uplink, Signal Type = GSM

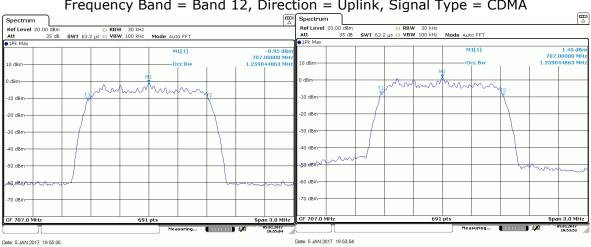


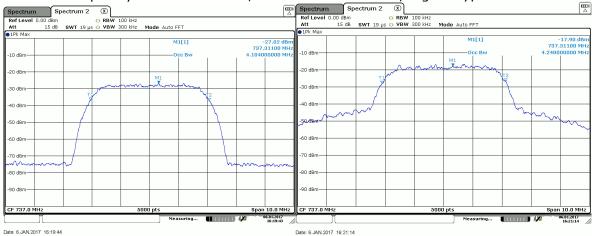


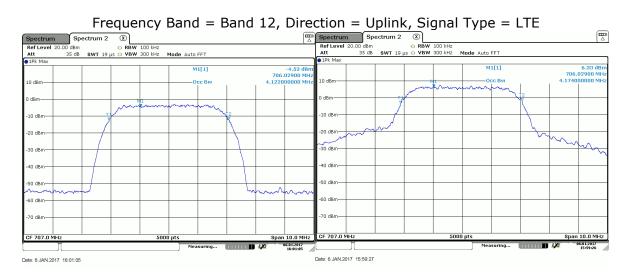


Frequency Band = Band 5, Direction = Uplink, Signal Type = LTE

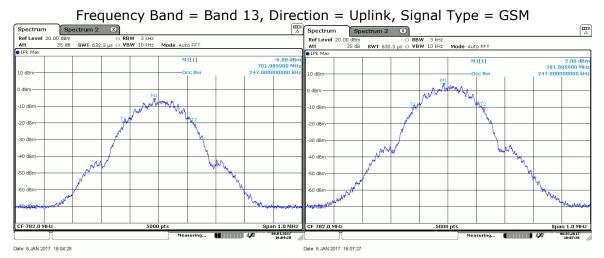


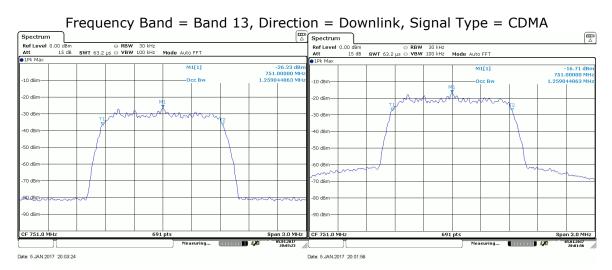


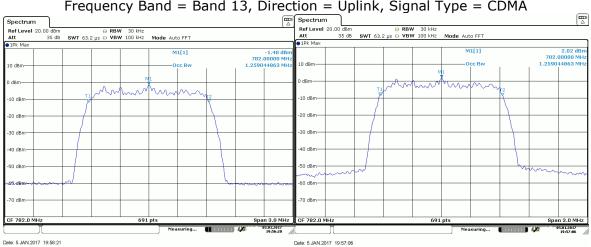




Frequency Band = Band 12, Direction = Uplink, Signal Type = CDMA


Frequency Band = Band 12, Direction = Downlink, Signal Type = LTE





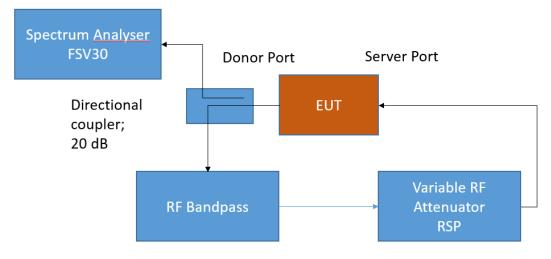


Frequency Band = Band 13, Direction = Uplink, Signal Type = CDMA

4.12.5TEST EQUIPMENT USED

R&S TS8997

4.13 OSCILLATION RESTART


Standard

The test was performed according to: KDB 935210 D03

4.13.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster Anti-Oscillation limits and requirements as specified in §§ 20.21(e)(8)(ii)(A for wideband consumer signal boosters.)

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.11.2; Oscillation Restart

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.13.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21 (e)(8)(ii)(A)

Anti-Oscillation. Consumer boosters must be able to detect and mitigate (*i.e.*, by automatic gain reduction or shut down), any oscillations in uplink and downlink bands. Oscillation detection and mitigation must occur automatically within 0.3 seconds in the uplink band and within 1 second in the downlink band. In cases where oscillation is detected, the booster must continue mitigation for at least one minute before restarting. After five such restarts, the booster must not resume operation until manually reset.

4.13.3TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	1010 hPa
Humidity:	30 %
Band 2, downlink	

Ī	Freque ncy [MHz]	Oscillati on Detecti on Time [ms]	Oscillati on Restart Time [s]	Oscillati on Restart s	Oscillati on Detecti on Time Limit [ms]	Oscillati on Restart Time Limit [s]	Oscillati on Restart s Limit	Margin Oscillati on Detecti on Time [ms]	Margin Oscillati on Restart Time [s]	Margin Oscillati on Restart s
	1960.0	206.6	62.4	4	300.0	60.0	5	93.4	2.4	1

Band 4, downlink

Freque ncy [MHz]	Oscillati on Detecti on Time [ms]	on Restart	Oscillati on Restart s	Oscillati on Detecti on Time Limit [ms]	Oscillati on Restart Time Limit [s]	Oscillati on Restart s Limit	Margin Oscillati on Detecti on Time [ms]	Margin Oscillati on Restart Time [s]	Margin Oscillati on Restart s
2132.5	212.6	62.4	4	1000.0	60.0	5	787.4	2.4	1

Band 5, downlink

Freque ncy [MHz]	Oscillati on Detecti on Time [ms]	on Restart	Oscillati on Restart s	Oscillati on Detecti on Time Limit [ms]	Oscillati on Restart Time Limit [s]	Oscillati on Restart s Limit	Margin Oscillati on Detecti on Time [ms]	Margin Oscillati on Restart Time [s]	Margin Oscillati on Restart s
881.5	207.5	62.4	4	1000.0	60.0	5	792.5	2.4	1

Band 12, downlink

Free ncy [MH	•	Oscillati on Detecti on Time [ms]	on Restart	Oscillati on Restart s	Oscillati on Detecti on Time Limit [ms]	Oscillati on Restart Time Limit [s]	Oscillati on Restart s Limit	Margin Oscillati on Detecti on Time [ms]	Margin Oscillati on Restart Time [s]	Margin Oscillati on Restart s
737	.0	211.0	62.4	4	1000.0	60.0	5	789.0	2.4	1

Band 13, downlink

Freque ncy [MHz]	Oscillati on Detecti on Time [ms]	on Restart	Oscillati on Restart s	Oscillati on Detecti on Time Limit [ms]	Oscillati on Restart Time Limit [s]	Oscillati on Restart s Limit	Margin Oscillati on Detecti on Time [ms]	Margin Oscillati on Restart Time [s]	Margin Oscillati on Restart s
751.0	206.9	62.4	4	1000.0	60.0	5	793.1	2.4	1

Band 2, uplink

Freque ncy [MHz]	Oscillati on Detecti on Time [ms]	Oscillati on Restart Time [s]	Oscillati on Restart s	Oscillati on Detecti on Time Limit [ms]	Oscillati on Restart Time Limit [s]	Oscillati on Restart s Limit	Margin Oscillati on Detecti on Time [ms]	Margin Oscillati on Restart Time [s]	Margin Oscillati on Restart s
1880.0	36.1	62.3	4	300.0	60.0	5	263.9	2.3	1

Band 4, uplink

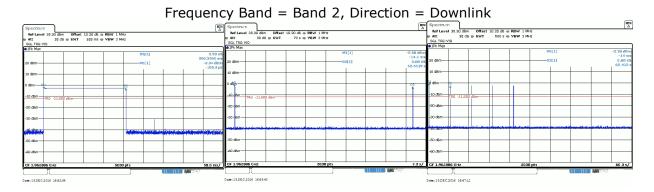
Freque ncy [MHz]	Oscillati on Detecti on Time [ms]	on Restart	Oscillati on Restart s	Oscillati on Detecti on Time Limit [ms]	Oscillati on Restart Time Limit [s]	Oscillati on Restart s Limit	Margin Oscillati on Detecti on Time [ms]	Margin Oscillati on Restart Time [s]	Margin Oscillati on Restart s
1732.5	149.5	62.3	4	300.0	60.0	5	150.5	2.3	1

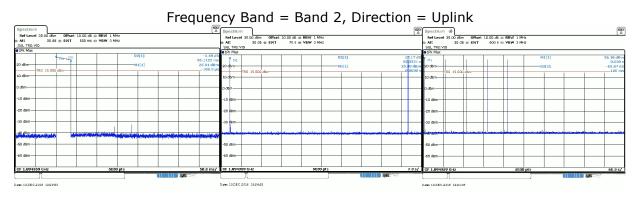
Band 5, uplink

Freque ncy [MHz]	Oscillati on Detecti on Time [ms]	Oscillati on Restart Time [s]	Oscillati on Restart s	Oscillati on Detecti on Time Limit [ms]	Oscillati on Restart Time Limit [s]	Oscillati on Restart s Limit	Margin Oscillati on Detecti on Time [ms]	Margin Oscillati on Restart Time [s]	Margin Oscillati on Restart s
836.5	149.4	62.3	4	300.0	60.0	5	150.6	2.3	1

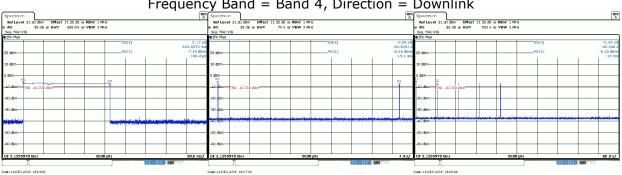
Band 12, uplink

В	Band 12, uplink									
	Freque	Oscillati	Oscillati	Oscillati	Oscillati	Oscillati	Oscillati	Margin	Margin	Margin
	ncy	on	on	on	on	on	on	Oscillati	Oscillati	Oscillati
	[MHz]	Detecti	Restart	Restart	Detecti	Restart	Restart	on	on	on
		on Time	Time [s]	S	on Time	Time	s Limit	Detecti	Restart	Restart
		[ms]			Limit	Limit		on Time	Time	S
					[ms]	[s]		[ms]	[s]	
	707.0	149.8	62.3	4	300.0	60.0	5	150.2	2.3	1

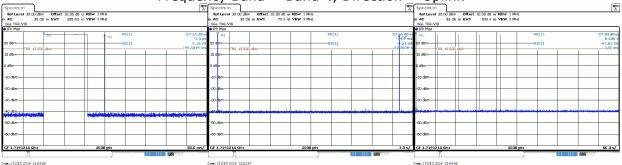

Band 13, uplink

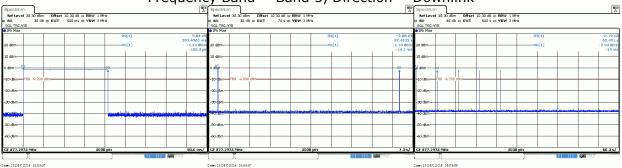

Γ	Freque ncy [MHz]	Oscillati on Detecti on Time [ms]	on Restart	Oscillati on Restart s	Oscillati on Detecti on Time Limit [ms]	Oscillati on Restart Time Limit [s]	Oscillati on Restart s Limit	Margin Oscillati on Detecti on Time [ms]	Margin Oscillati on Restart Time [s]	Margin Oscillati on Restart s
	782.0	149.2	62.7	4	300.0	60.0	5	150.8	2.7	1

Remark: Please see next sub-clause for the measurement plot.

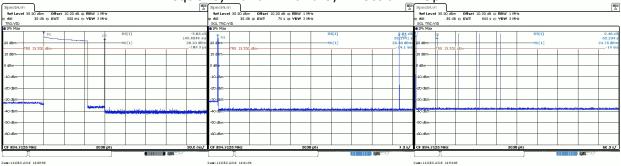

4.13.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

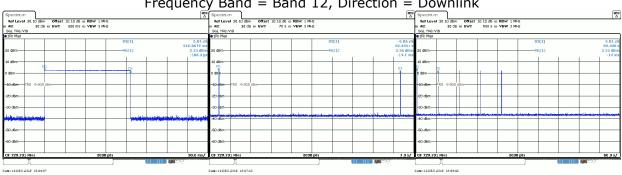
First plot shows oscillation detection time Second plot shows restart time Third plot shows restart attempts



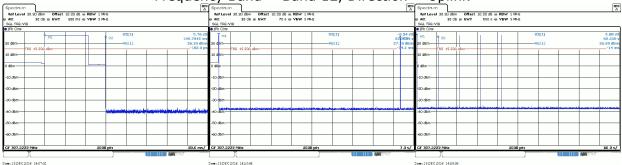


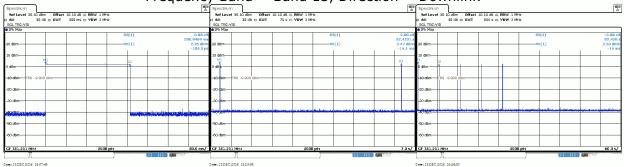
Frequency Band = Band 4, Direction = Downlink

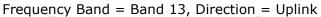

Frequency Band = Band 4, Direction = Uplink

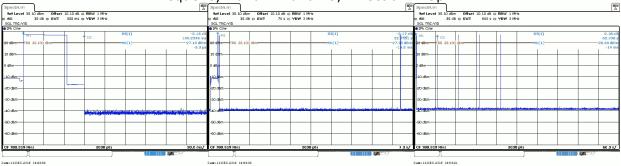

Frequency Band = Band 5, Direction = Downlink

Frequency Band = Band 5, Direction = Uplink



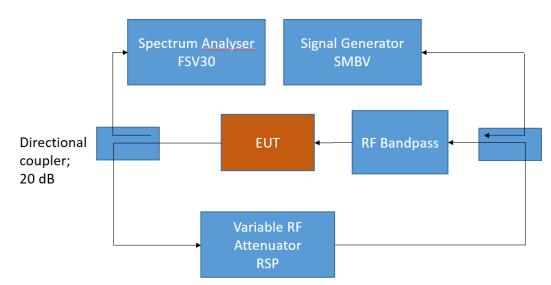



Frequency Band = Band 12, Direction = Downlink


Frequency Band = Band 12, Direction = Uplink

Frequency Band = Band 13, Direction = Downlink

4.13.5TEST EQUIPMENT USED R&S TS8997


4.14 OSCILLATION SHUTDOWN OR MITIGATION

Standard

The test was performed according to: KDB 935210 D03

4.14.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the signal booster Anti-Oscillation limits and requirements as specified in §§ 20.21(e)(8)(ii)(A for wideband consumer signal boosters.)

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.11.3; Oscillation Mitigation/Shutdown

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

4.14.2TEST REQUIREMENTS / LIMITS

FCC Part 20, § 20.21 (e)(8)(ii)(A)

Anti-Oscillation. Consumer boosters must be able to detect and mitigate (*i.e.*, by automatic gain reduction or shut down), any oscillations in uplink and downlink bands. Oscillation detection and mitigation must occur automatically within 0.3 seconds in the uplink band and within 1 second in the downlink band. In cases where oscillation is detected, the booster must continue mitigation for at least one minute before restarting. After five such restarts, the booster must not resume operation until manually reset.

KDB 935210 D03 7.11.3 f6)

The procedure of 7.11.3 f1) to 7.11.3 f5) allows the spectrum analyzer trace to stabilize, and verification of shutdown or oscillation level measurement must occur within 300 seconds.¹

¹The time response requirements are provisional and are as determined by the ANSI ASC C63® task group in collaboration and consultation with FCC OET Laboratory Division staff.

4.14.3TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	1010 hPa
Humidity:	30 %
Band 2, downlink	

Frequency [MHz]	Oscillator Frequency Max. Power [MHz]	Oscillator Max. Power [dBm]	Oscillator Frequency Min. Power [MHz]	Oscillator Min. Power [dBm]	Delta Max Min. Power [dBm]	Limit Delta Max Min. Power [dBm]	Margin Delta Max Min. Power [dBm]
1932.5	1886.2	-80.4	1891.9	-87.4	7.0	12.0	5.0

Band 4, downlink

Frequency [MHz]	Oscillator Frequency Max. Power [MHz]	Oscillator Max. Power [dBm]	Oscillator Frequency Min. Power [MHz]	Oscillator Min. Power [dBm]	Delta Max Min. Power [dBm]	Limit Delta Max Min. Power [dBm]	Margin Delta Max Min. Power [dBm]
2112.5	2127.7	-79.9	2133.1	-86.1	6.2	12.0	5.8

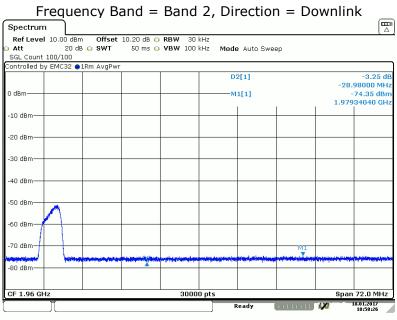
Band 5, downlink

Frequency [MHz]	Oscillator Frequency Max. Power [MHz]	Oscillator Max. Power [dBm]	Oscillator Frequency Min. Power [MHz]	Oscillator Min. Power [dBm]	Delta Max Min. Power [dBm]	Limit Delta Max Min. Power [dBm]	Margin Delta Max Min. Power [dBm]
871.5	880.3	-75.3	882.1	-85.9	10.6	12.0	1.4

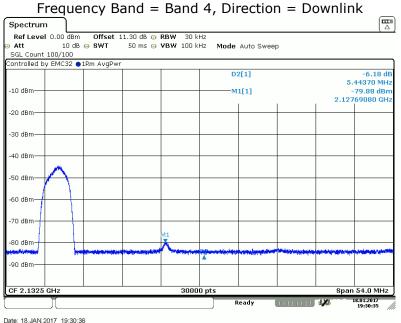
Band 12, downlink

Frequency [MHz]	Oscillator Frequency Max. Power [MHz]	Oscillator Max. Power [dBm]	Oscillator Frequency Min. Power [MHz]	Oscillator Min. Power [dBm]	Delta Max Min. Power [dBm]	Limit Delta Max Min. Power [dBm]	Margin Delta Max Min. Power [dBm]
730.5	738.5	-83.1	736.1	-86.3	3.2	12.0	8.8

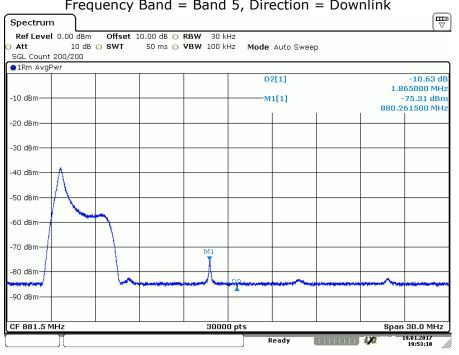
Band 13, downlink

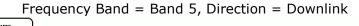

Frequency [MHz]	Oscillator Frequency Max. Power [MHz]	Oscillator Max. Power [dBm]	Oscillator Frequency Max. Power [MHz]	Oscillator Min. Power [dBm]	Delta Max Min. Power [dBm]	Limit Delta Max Min. Power [dBm]	Margin Delta Max Min. Power [dBm]
748.5	751.6	-75.4	754.8	-86.2	10.8	12.0	1.2

For all bands in uplink the booster switched not on with the in the KDB specified input power settings.

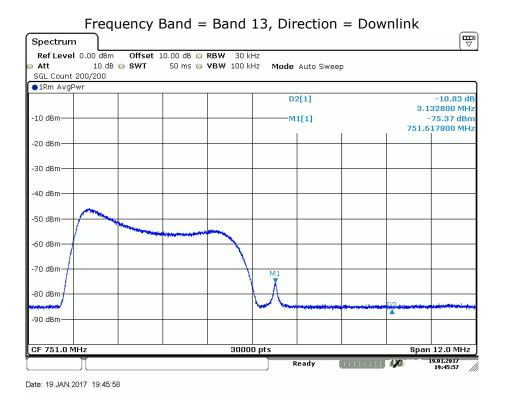

Remark: Please see next sub-clause for the measurement plot.

4.14.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")




Date: 18.JAN.2017 18:58:26

Date: 18.JAN.2017 19:30:36

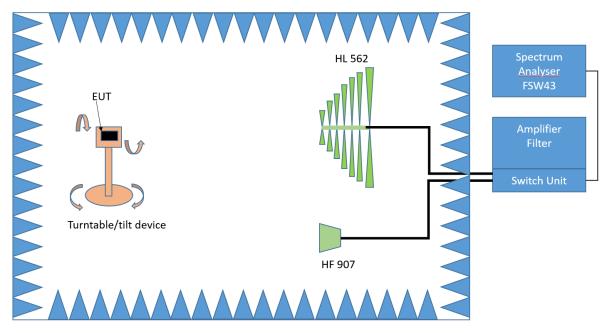


Date: 19.JAN.2017 19:53:11

Date: 19.JAN.2017 19:34:48

4.14.5TEST EQUIPMENT USED R&S TS8997

4.15 RADIATED SPURIOUS EMISSIONS


Standard

The test was performed according to: KDB 935210 D03

4.15.1TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053

The EUT was connected to the test setup according to the following diagram:

FCC Part 20.21; Consumer Signal Booster – Test Setup 7.12; Radiated Spurious Emissions

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz

- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: \pm 45 ° around the determined value
- Height variation range: \pm 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by \pm 45° EMI receiver settings (for all steps):

- Detector: Peak, Average

- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

4.15.2TEST REQUIREMENTS / LIMITS

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

FCC Part 20, § 20.21(e)(8)(i)(E)

Out of Band Emission Limits. Booster out of band emissions (OOBE) shall be at least 6 dB below the FCC's mobile emission limits for the supported bands of operation. Compliance to OOBE limits will utilize high peak-to-average CMRS signal types.

Part 22, Subpart H – Cellular Radiotelephone Service; Band 5 (Cellular)

§ 22 917 – Emission limitations for cellular equipment

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Part 24 E – Personal Communication Services

§ 24.238 – Emission limitations for Broadband PCS equipment; Band 2 (Broadband PCS)

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

Part 27 – Miscellaneous Wireless Communication Services;

Band 4 (AWS-1) § 27.53 (h) – Emission limits

(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}$ (P) dB.

(2) Additional protection levels. Notwithstanding the foregoing paragraph (h)(1) of this section:

(i) Operations in the 2180-2200 MHz band are subject to the out-of-band emission requirements set forth in §27.1134 for the protection of federal government operations operating in the 2200-2290 MHz band.

(ii) For operations in the 2000-2020 MHz band, the power of any emissions below 2000 MHz shall be attenuated below the transmitter power (P) in watts by at least $70 + 10 \log_{10}(P) dB$. (iii) For operations in the 1915-1920 MHz band, the power of any emission between 1930-1995 MHz shall be attenuated below the transmitter power (P) in watts by at least $70 + 10 \log_{10}(P) dB$.

(iv) For operations in the 1995-2000 MHz band, the power of any emission between 2005-2020 MHz shall be attenuated below the transmitter power (P) in watts by at least $70 + 10 \log_{10}(P) dB$.

Band 12 (Lower 700 MHz) § 27.53 (g) – Emission limits

For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed

Band 13 (Upper 700 MHz) § 27.53 (c), (f) – Emission limits

(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $76 + 10 \log (P) dB$ in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $65 + 10 \log (P) dB$ in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the

frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

4.15.3TEST PROTOCOL

Ambient temperature:	23 °C
Air Pressure:	1020 hPa
Humidity:	36 %
Band 2, downlink; Cen	ter frequency: 1960.00 MHz

Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-29.6	RMS	1000	-13.0	>10

Band 4, downlink; Center frequency: 2132.50 MHz

Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-29.6	RMS	1000	-13.0	>10

Band 5, downlink; Cer	ter frequency: 881.	5.0 MHz				
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-26.8	RMS	100	-13.0	>10

Band 12, downlink; Ce	nter frequency: 737.00 MHz

Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-23.3	RMS	100	-13.0	>10

Band 13, downlink; Center frequency: 751.00 MHz

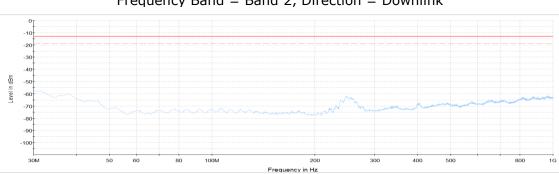
Spurious Freq. [MHz]	Spurious Level [dBm]	Pin [dBm]	Detector	RBW [kHz]	Limit [dBm]	Margin to Limit [dB]
-	-	-23.2	RMS	100	-13.0	>10

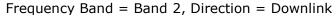
Ambient temperatur	e:		23 °C			
Air Pressure:			1020 hPa			
Humidity:			38 %			
Band 2, uplink; Cen	ter frequency: 1880.00) MHz				
Spurious Freq.	Spurious Level	Pin	Detector	RBW	Limit	Margin to Limit
[MHz]	[dBm]	[dBm]		[kHz]	[dBm]	[dB]
1949.0	-22.0	1.0	RMS	1000	-13.0	9.0
Band 4, uplink; Cen	ter frequency: 1732.50) MHz				
Spurious Freq.	Spurious Level	Pin	Detector	RBW	Limit	Margin to Limit
[MHz]	[dBm]	[dBm]		[kHz]	[dBm]	[dB]
1750.6	-16.0	1.4	RMS	1000	-13.0	3.0
	•	•	•			

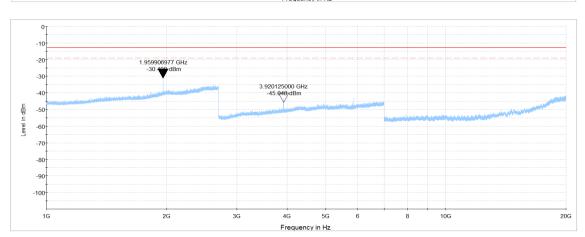
Band 5, uplink; Center frequency: 836.50 MHz

Spurious Freq.	Spurious Level	Pin	Detector	RBW	Limit	Margin to Limit
[MHz]	[dBm]	[dBm]		[kHz]	[dBm]	[dB]
-	-	2.4	RMS	100	-13.0	>10

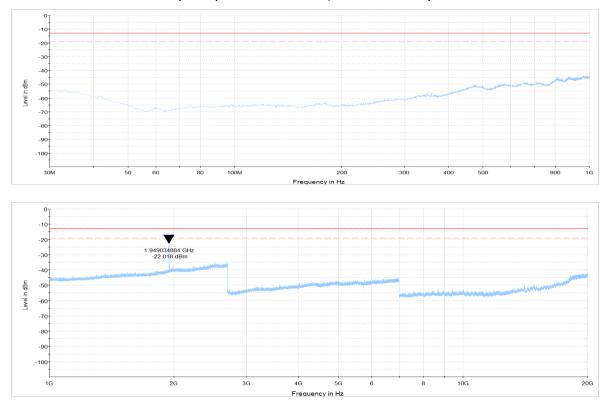
Band 12, uplink; Center frequency: 707.00 MHz

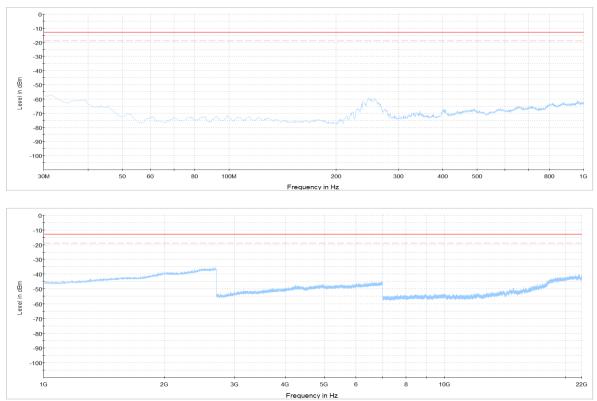

Spurious Freq.	Spurious Level	Pin	Detector	RBW	Limit	Margin to Limit
[MHz]	[dBm]	[dBm]		[kHz]	[dBm]	[dB]
-	-	1.7	RMS	100	-13.0	>10

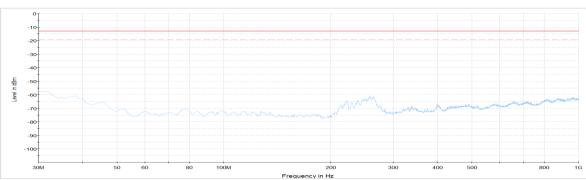

Band 13, uplink; Center frequency: 782.00 MHz


Spurious Freq.	Spurious Level	Pin	Detector	RBW	Limit	Margin to Limit
[MHz]	[dBm]	[dBm]		[kHz]	[dBm]	[dB]
-	-	1.1	RMS	100	-13.0	>10

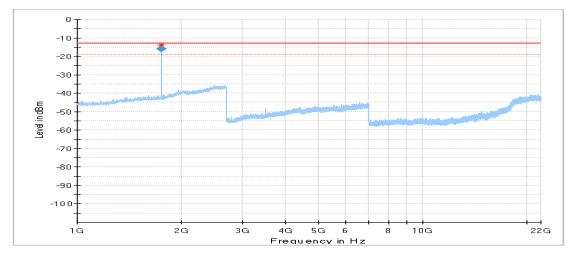
Remark: Please see next sub-clause for the measurement plot.


4.15.4MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

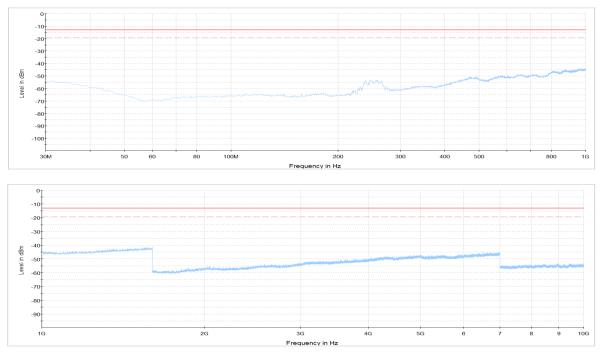




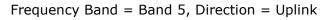
Frequency Band = Band 2, Direction = Uplink

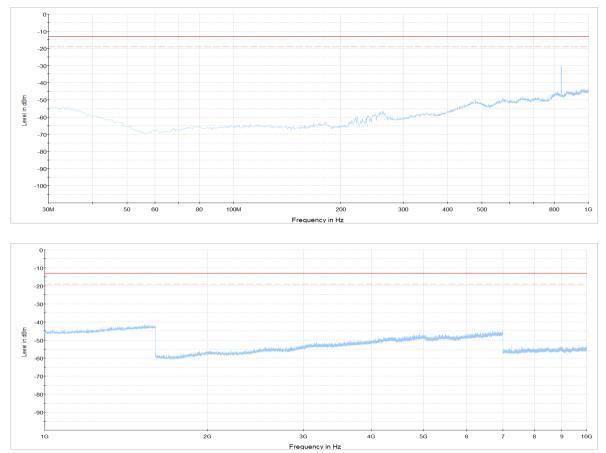

Frequency Band = Band 4, Direction = Downlink

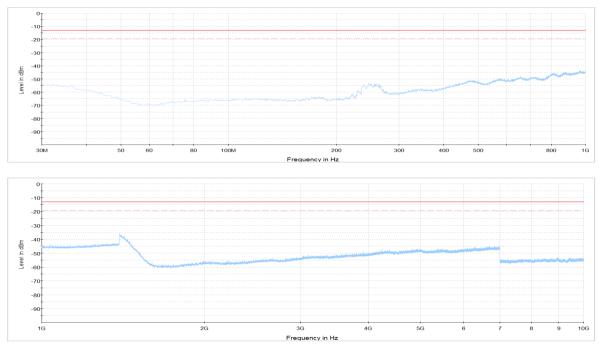
Frequency Band = Band 4, Direction = Uplink


Critical_Freqs

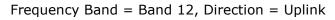
Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
1750.550000	-13.79	-13.00	0.79			150.0	Η	-146.0	-10.4	-65.1

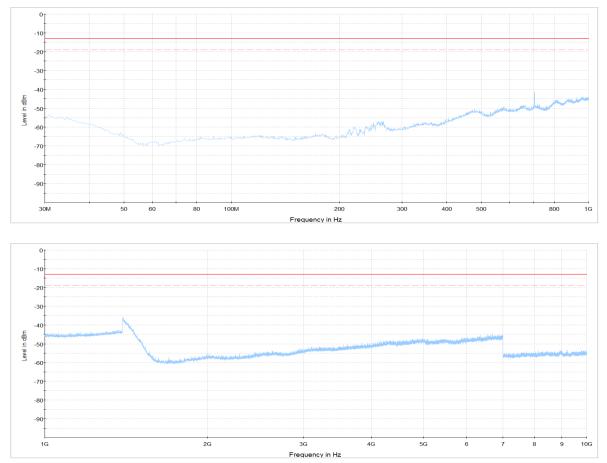

Final Result

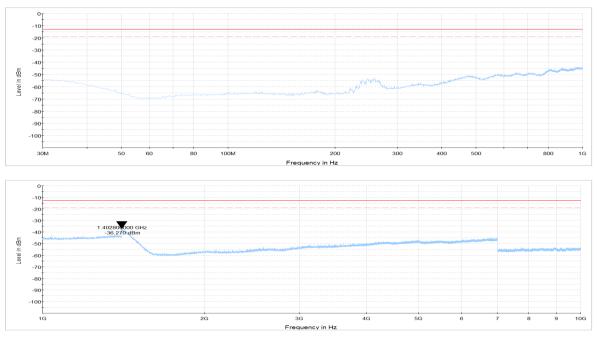

					_					
Frequency (MHz)	MaxPeak (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
1750.550000	-15.96	-13.00	2.96	1000.0	1000.000	150.0	Н	-146.0	-10.3	-65.1



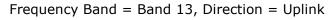
Frequency Band = Band 5, Direction = Downlink

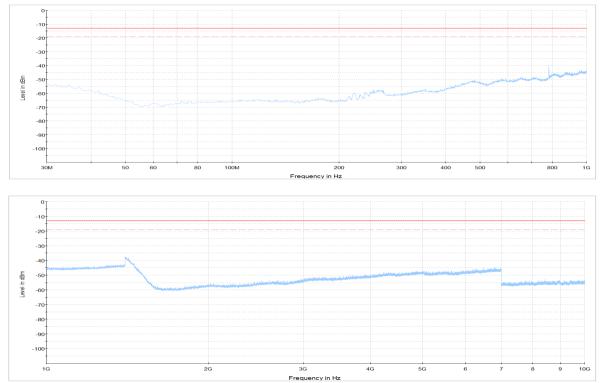






Frequency Band = Band 12, Direction = Downlink





Frequency Band = Band 13, Direction = Downlink

4.15.5 TEST EQUIPMENT USED Radiated Emissions

5 TEST EQUIPMENT

1 R&S TS8997

EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1		Switching Unit with integrated power meter	Rohde & Schwarz	101158	2016-11	2018-11
1.2		4 Way Power Divider (SMA)		-		
1.3		Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
1.4		, ,	Lufft Mess- und Regeltechnik GmbH	7482	2015-02	2017-02
1.5		Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2014-06	2017-06
1.6		Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2016-02	2018-02
1.7		Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10
1.8		Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	260001	2016-01	2016-01
1.9	,	Broadband Power Divider SMA (Aux)	Weinschel Associates	LN673		
1.10	MFS	Rubidium Frequency Standard	Datum-Beverly	5489/001	2016-06	2017-06
1.11	PJ D6PF1G960M3B 6-Q P	Band 2 Duplexer	Taiyo Yuden	3100110400477 2000		
1.12	PJ D6PF2G132M3D 9-Q P	Band 4 Duplexer	Taiyo Yuden	-		
1.13		Band 5 Duplexer	Taiyo Yuden	3100110400563 1000		
1.14		Band 12 Duplexer	Taiyo Yuden	-		
1.15	PJ D5DA782M0K2J 6-Q P	Band 13 Duplexer	Taiyo Yuden	3100110400479 6001		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.16		Directional Coupler	AtlanTecRF	-		

2 Radiated Emissions

Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
2.2	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
2.3	5HC3500/1800 0-1.2-KK	High Pass Filter	Trilithic	200035008		
2.4	Datum MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2016-09	2017-09
	Room	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647- 001-PRB		
2.6	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
2.7	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2016-11	2018-11
2.8	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.9	Anechoic Chamber	10.58 x 6.38 x 6.00 m³	Frankonia	none	2014-01	2017-01
2.10	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2016-02	2018-02
2.11	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
2.12	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/37907 09		
2.13	5HC2700/1275 0-1.5-KK	High Pass Filter	Trilithic	9942012		
2.14	AS 620 P	Antenna mast	HD GmbH	620/37		
2.15	NRV-Z1	Sensor Head A	Rohde & Schwarz	827753/005	2016-05	2017-05

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.16	4HC1600/1275 0-1.5-KK	High Pass Filter	Trilithic	9942011		
2.17	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
2.18	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.19	35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
2.20	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2015-06	2018-06
2.21	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12482	2015-03	2017-03
2.22		Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.23	HFH2-Z2	Loop Antenna	Rohde & Schwarz	829324/006	2014-11	2017-11
2.24	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2016-12	2018-12
2.25		ThermoAirpres sure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2015-02	2017-02
2.26	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
2.27		Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
2.28	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz	100609	2016-04	2019-04
2.29	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
2.30	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2015-05	2018-05

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				cable
FrequencyCorr.insertion loss(incl. 10 dB MHz dBdBdB0,1510,10,110,0510,30,110,0710,50,210,31010,70,310,41410,70,310,41810,90,410,52010,90,410,52411,10,510,62611,20,510,7			LISN	
FrequencyCorr.MHzdB0,1510,1510,3710,51010,51210,71610,80,410,92010,92211,12611,20,510,90,510,90,510,90,110,50,210,70,310,410,510,90,410,90,510,6			-	
Frequency Corr. ESH3- Z5 atten- uator) MHz dB dB dB dB dB dB dB 0,1 10,0 10,0 10,0 10,0				
Frequency Corr. Z5 uator) MHz dB dD,1 10,2 dD,1 10,2 dD,1 dD,2 dD,3 dD,4 dD,5 dD,4 dD,5 dD,4 dD,5 dD,4 dD,5 dD,6 dD,4 dD,5 dD,4 dD,5 dD,6 dD,5 dD,6 dD,5 dD,6 dD,5 dD,6 dD,7 dD,5 dD,6				-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Frequency	Corr.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			dB	dB
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,15	10,1	0,1	10,0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5	10,3	0,1	10,2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	10,5	0,2	10,3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	10,5	0,2	10,3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	10,7	0,3	10,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	10,7	0,3	10,4
20 10,9 0,4 10,5 22 11,1 0,5 10,6 24 11,1 0,5 10,6 26 11,2 0,5 10,7	16	10,8	0,4	10,4
22 11,1 0,5 10,6 24 11,1 0,5 10,6 26 11,2 0,5 10,7	18	10,9	0,4	10,5
24 11,1 0,5 10,6 26 11,2 0,5 10,7	20	10,9	0,4	10,5
24 11,1 0,5 10,6 26 11,2 0,5 10,7	22	11,1	0,5	10,6
	24			10,6
	26	11,2	0,5	10,7
28 11,2 0,5 10,7	28			10,7
30 11,3 0,5 10,8	30	11,3	0,5	10,8

6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

			<u>`</u>		, 				
			cable	cable	cable	cable	distance	d _{Limit}	d _{used}
			loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
	AF		(inside	(outside	(switch	(to	(-40 dB/	distance	distance
Frequency	HFH-Z2)	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
0,009	20,50	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,01	20,45	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,015	20,37	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,02	20,36	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,025	20,38	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,03	20,32	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,05	20,35	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,08	20,30	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,1	20,20	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,2	20,17	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,3	20,14	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,49	20,12	-79,6	0,1	0,1	0,1	0,1	-80	300	3
0,490001	20,12	-39,6	0,1	0,1	0,1	0,1	-40	30	3
0,5	20,11	-39,6	0,1	0,1	0,1	0,1	-40	30	3
0,8	20,10	-39,6	0,1	0,1	0,1	0,1	-40	30	3
1	20,09	-39,6	0,1	0,1	0,1	0,1	-40	30	3
2	20,08	-39,6	0,1	0,1	0,1	0,1	-40	30	3
3	20,06	-39,6	0,1	0,1	0,1	0,1	-40	30	3
4	20,05	-39,5	0,2	0,1	0,1	0,1	-40	30	3
5	20,05	-39,5	0,2	0,1	0,1	0,1	-40	30	3
6	20,02	-39,5	0,2	0,1	0,1	0,1	-40	30	3
8	19,95	-39,5	0,2	0,1	0,1	0,1	-40	30	3
10	19,83	-39,4	0,2	0,1	0,2	0,1	-40	30	3
12	19,71	-39,4	0,2	0,1	0,2	0,1	-40	30	3
14	19,54	-39,4	0,2	0,1	0,2	0,1	-40	30	3
16	19,53	-39,3	0,3	0,1	0,2	0,1	-40	30	3
18	19,50	-39,3	0,3	0,1	0,2	0,1	-40	30	3
20	19,57	-39,3	0,3	0,1	0,2	0,1	-40	30	3
22	19,61	-39,3	0,3	0,1	0,2	0,1	-40	30	3
24	19,61	-39,3	0,3	0,1	0,2	0,1	-40	30	3
26	19,54	-39,3	0,3	0,1	0,2	0,1	-40	30	3
28	19,46	-39,2	0,3	0,1	0,3	0,1	-40	30	3
30	19,73	-39,1	0,4	0,1	0,3	0,1	-40	30	3

6.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18,6	0,6
50	6,0	0,9
100	9,7	1,2
150	7,9	1,6 1,9
200	7,6	1,9
250	9,5	2,1
300	11,0	2,3
350	12,4	2,6
400	13,6	2,9
450	14,7	2,9 3,1 3,2 3,5
500	15,6	3,2
550	16,3	3,5
600	17,2	3,5 3,6 3,6
650	18,1	3,6
700	18,5	3,6
750	19,1	4,1
800	19,6	4,1
850	20,1	4,4
900	20,8	4,7
950	21,1	4,8
1000	21,6	4,9

cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0,29	0,04	0,23	0,02	0,0	3	3
0,39	0,09	0,32	0,08	0,0	3	3
0,56	0,14	0,47	0,08	0,0	3	3
0,73	0,20	0,59	0,12	0,0	3	3
0,84	0,21	0,70	0,11	0,0	3	3
0,98	0,24	0,80	0,13	0,0	3	3
1,04	0,26	0,89	0,15	0,0	3	3
1,18	0,31	0,96	0,13	0,0	3	3
1,28	0,35	1,03	0,19	0,0	3	3
1,39	0,38	1,11	0,22	0,0	3	3
1,44	0,39	1,20	0,19	0,0	3	3
1,55	0,46	1,24	0,23	0,0	3	3
1,59	0,43	1,29	0,23	0,0	3	3
1,67	0,34	1,35	0,22	0,0	3	3
1,67	0,42	1,41	0,15	0,0	3	3
1,87	0,54	1,46	0,25	0,0	3	3
1,90	0,46	1,51	0,25	0,0	3	3
1,99	0,60	1,56	0,27	0,0	3	3
2,14	0,60	1,63	0,29	0,0	3	3
2,22	0,60	1,66	0,33	0,0	3	
2,23	0,61	1,71	0,30	0,0	3	3

(<u>d_{Limit} = 10 m)</u>

	- /								
30	18,6	-9,9	0,29	0,04	0,23	0,02	-10,5	10	3
50	6,0	-9,6	0,39	0,09	0,32	0,08	-10,5	10	3
100	9,7	-9,2	0,56	0,14	0,47	0,08	-10,5	10	3
150	7,9	-8,8	0,73	0,20	0,59	0,12	-10,5	10	3
200	7,6	-8,6	0,84	0,21	0,70	0,11	-10,5	10	3
250	9,5	-8,3	0,98	0,24	0,80	0,13	-10,5	10	3
300	11,0	-8,1	1,04	0,26	0,89	0,15	-10,5	10	3
350	12,4	-7,9	1,18	0,31	0,96	0,13	-10,5	10	3
400	13,6	-7,6	1,28	0,35	1,03	0,19	-10,5	10	3
450	14,7	-7,4	1,39	0,38	1,11	0,22	-10,5	10	3
500	15,6	-7,2	1,44	0,39	1,20	0,19	-10,5	10	3
550	16,3	-7,0	1,55	0,46	1,24	0,23	-10,5	10	3
600	17,2	-6,9	1,59	0,43	1,29	0,23	-10,5	10	3
650	18,1	-6,9	1,67	0,34	1,35	0,22	-10,5	10	3
700	18,5	-6,8	1,67	0,42	1,41	0,15	-10,5	10	3
750	19,1	-6,3	1,87	0,54	1,46	0,25	-10,5	10	3
800	19,6	-6,3	1,90	0,46	1,51	0,25	-10,5	10	3
850	20,1	-6,0	1,99	0,60	1,56	0,27	-10,5	10	3
900	20,8	-5,8	2,14	0,60	1,63	0,29	-10,5	10	3
950	21,1	-5,6	2,22	0,60	1,66	0,33	-10,5	10	3
1000	21,6	-5,6	2,23	0,61	1,71	0,30	-10,5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

			•		,				
						cable			
				cable		loss 3			
				loss 1		(switch			
				(relay +	cable	`unit,			
	AF			cable	loss 2	atten-	cable		
	R&S			inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.		chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB		dB	dB	dB	dB		
-		-		-	-	-	-		
1000	24,4	-19,4		0,99	0,31	-21,51	0,79		
2000	28,5	-17,4		1,44	0,44	-20,63	1,38		
3000	31,0	-16,1		1,87	0,53	-19,85	1,33		
4000	33,1	-14,7		2,41	0,67	-19,13	1,31		
5000	34,4	-13,7		2,78	0,86	-18,71	1,40		
6000	34,7	-12,7		2,74	0,90	-17,83	1,47		
7000	35,6	-11.0		2,82	0,86	-16,19	1,46		
	/ -	==/*		_/-	-,	/ _ /	_,		
							cable		
							loss 4		
				cable			(switch		
				loss 1	cable	cable	unit,		used
	AF			(relay	loss 2	loss 3	atten-	cable	for
	R&S			inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	HF907	Corr.		chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz		dB		dB	dB	dB	dB	dB	13.247
	dB (1/m)								
3000	31,0	-23,4		0,47	1,87	0,53	-27,58	1,33	
4000	33,1	-23,3		0,56	2,41	0,67	-28,23	1,31	
5000	34,4	-21,7		0,61	2,78	0,86	-27,35	1,40	
6000	34,7	-21,2		0,58	2,74	0,90	-26,89	1,47	
7000	35,6	-19,8		0,66	2,82	0,86	-25,58	1,46	
				cable					
				loss 1	cable	cable	cable	cable	cable
	AF			(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S			inside	(High	(pre-	(inside	(outside	(to
Frequency	HF907	Corr.		chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	dB
7000	35,6	-57,3		0,56	1,28	-62,72	2,66	0,94	1,46
8000	36,3	-56,3		0,69	0,71	-61,49	2,84	1,00	1,53
9000	37,1								
		-55,3		0,68	0,65	-60,80	3,06	1,09	1,60
10000	37,5	-56,2		0,70	0,54	-61,91	3,28	1,20	1,67
11000	37,5	-55,3		0,80	0,61	-61,40	3,43	1,27	1,70
12000	37,6	-53,7		0,84	0,42	-59,70	3,53	1,26	1,73
13000	38,2	-53,5		0,83	0,44	-59,81	3,75	1,32	1,83
14000	39,9	-56,3		0,91	0,53	-63,03	3,91	1,40	1,77
15000	40,9	-54,1		0,98	0,54	-61,05	4,02	1,44	1,83
16000	41,3	-54,1		1,23	0,49	-61,51	4,17	1,51	1,85
17000	42,8	-54,4		1,25	0,49	-62,36	4,17	1,51	2,00
18000	42,8	/							/
18000	44,2	-54,7		1,70	0,53	-62,88	4,41	1,55	1,91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			•				
			cable	cable	cable	cable	cable
	AF		loss 1	loss 2	loss 3	loss 4	loss 5
	EMCO		(inside	(pre-	(inside	(switch	(to
Frequency	3160-09	Corr.	chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40,2	-23,5	0,72	-35,85	6,20	2,81	2,65
18500	40,2	-23,2	0,69	-35,71	6,46	2,76	2,59
19000	40,2	-22,0	0,76	-35,44	6,69	3,15	2,79
19500	40,3	-21,3	0,74	-35,07	7,04	3,11	2,91
20000	40,3	-20,3	0,72	-34,49	7,30	3,07	3,05
20500	40,3	-19,9	0,78	-34,46	7,48	3,12	3,15
21000	40,3	-19,1	0,87	-34,07	7,61	3,20	3,33
21500	40,3	-19,1	0,90	-33,96	7,47	3,28	3,19
22000	40,3	-18,7	0,89	-33,57	7,34	3,35	3,28
22500	40,4	-19,0	0,87	-33,66	7,06	3,75	2,94
23000	40,4	-19,5	0,88	-33,75	6,92	3,77	2,70
23500	40,4	-19,3	0,90	-33,35	6,99	3,52	2,66
24000	40,4	-19,8	0,88	-33,99	6,88	3,88	2,58
24500	40,4	-19,5	0,91	-33,89	7,01	3,93	2,51
25000	40,4	-19,3	0,88	-33,00	6,72	3,96	2,14
25500	40,5	-20,4	0,89	-34,07	6,90	3,66	2,22
26000	40,5	-21,3	0,86	-35,11	7,02	3,69	2,28
26500	40,5	-21,1	0,90	-35,20	7,15	3,91	2,36

6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{⊔imit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26,5	43,4	-11,2	4,4				-15,6	3	0,5
27,0	43,4	-11,2	4,4				-15,6	3	0,5
28,0	43,4	-11,1	4,5				-15,6	3	0,5
29,0	43,5	-11,0	4,6				-15,6	3	0,5
30,0	43,5	-10,9	4,7				-15,6	3	0,5
31,0	43,5	-10,8	4,7				-15,6	3	0,5
32,0	43,5	-10,7	4,8				-15,6	3	0,5
33,0	43,6	-10,7	4,9				-15,6	3	0,5
34,0	43,6	-10,6	5,0				-15,6	3	0,5
35,0	43,6	-10,5	5,1				-15,6	3	0,5
36,0	43,6	-10,4	5,1				-15,6	3	0,5
37,0	43,7	-10,3	5,2				-15,6	3	0,5
38,0	43,7	-10,2	5,3				-15,6	3	0,5
39,0	43,7	-10,2	5,4				-15,6	3	0,5
40,0	43,8	-10,1	5,5				-15,6	3	0,5

6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit} / d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 MEASUREMENT UNCERTAINTIES

Test Case(s)	Parameter	Uncertainty
7.12 - Radiated Spurious Emissions	Power	± 5.5 dB
7.1 -Authorized Frequency Band 7.10 - Occupied Bandwidth (99%)	Power Frequency	± 2.9 dB ± 11.2 kHz
 7.2 - Maximum Power 7.3 - Maximum Booster Gain 7.4 - Intermodulation 7.7.1 - Maximum TX Power Noise, 7.7.2 - Variable Uplink Noise 7.8 - Uplink Inactivity 7.9.1 - Variable Gain, 	Power	± 2.2 dB
7.9.2 - Variable Uplink Gain Timing 7.11.2 - Oscillation Shutdown 7.11.3 - Oscillation Mitigation	Power Time	\pm 2.2 dB \pm 1 x 10 ⁻⁴ s \pm 120 x 10 ⁻³ s
7.5 - Out-of-band emissions 7.6 – Conducted Spurious Emissions	Power Frequency	± 2.2 dB ± 11.2 kHz

8 PHOTO REPORT

Please see separate photo report.