

Page 1 of 49

APPLICATION CERTIFICATION FCC Part 15C&RSS-247
On Behalf of
Chuango Security Technology Corporation

UFO Panoramic WiFi HD Camera Model No.: UFO, PT-180, PT-180H

FCC ID: RJY-UFO IC: 20008-UFO

Prepared for

Address

 Chuango Security Technology Corporation.
 Room 6-17, Overseas Students Pioneer Park, No.108, Jiangbin East Road, Economic &

Technological Development Zone, Fuzhou 350015,

China.

Prepared by

Address

ACCURATE TECHNOLOGY CO., LTD

F1, Bldg. A&D, Chan Yuan New Material Port, Keyuan Rd. Science & Industry Park, Nan Shan,

Shenzhen, Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20170447

Date of Test : Apr. 01, 2017-May 14, 2017

Date of Report : May 15, 2017

TABLE OF CONTENTS

Descrip	otion	Page
Test Re	eport Certification	
1. GE	NERAL INFORMATION	5
1.1.	Description of Device (EUT)	5
1.2.	Description of Test Facility	
1.3.	Measurement Uncertainty	
2. ME	ASURING DEVICE AND TEST EQUIPMENT	9
3. OP:	ERATION OF EUT DURING TESTING	
3.1.	Test setups	10
3.2.	Configuration and peripherals	
3.3.	Test mode	
	ST PROCEDURES AND RESULTS	
	WER LINE CONDUCTED MEASUREMENT	
5.1.	Block Diagram of Test Setup	
5.2. 5.3.	Power Line Conducted Emission Measurement Limits	
5.3. 5.4.	Operating Condition of EUT	
5.5.	Test Procedure	
5.6.	Power Line Conducted Emission Measurement Results	16
6. 6DI	B OCCUPIED BANDWIDTH TEST	21
6.1.	Block Diagram of Test Setup	21
6.2.	EUT Configuration on Measurement	
6.3.	Operating Condition of EUT	
6.4. 6.5.	Test Procedure	
	OB OCCUPIED BANDWIDTH TEST	
7.1.	Block Diagram of Test Setup	
7.1.	EUT Configuration on Measurement	
7.3.	Operating Condition of EUT	
7.4.	Test Procedure	
7.5.	Test Result	
	% BANDWIDTH MEASUREMENT	
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.407	
8.3. 8.4.	EUT Configuration on Measurement Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	
9. D U	TY CYCLE MEASUREMENT	30
9.1.	Block Diagram of Test Setup	30
9.2.	EUT Configuration on Measurement	
9.3.	Operating Condition of EUT	
9.4. 9.5.	Test Procedure Test Result	
	YIMIM POWER SPECTRAL DENSITY TEST	32

10.1.	Block Diagram of Test Setup	32
10.2.	The Requirement For Section 15.407&RSS-247	32
10.3.	EUT Configuration on Measurement	
10.4.	Operating Condition of EUT	32
10.5.	Test Procedure	33
10.6.	Test Result	34
11. MA	AXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	37
11.1.	Block Diagram of Test Setup	37
11.2.	The Requirement For Section 15.407	
11.3.	EUT Configuration on Measurement	37
11.4.	Operating Condition of EUT	37
11.5.	Test Procedure	38
11.6.	Test Result	38
12. RA	ADIATED SPURIOUS EMISSION TEST	41
12.1.	Block Diagram of Test Setup	41
12.2.	Restricted bands of operation	
12.3.	Configuration of EUT on Measurement	43
12.4.	The Limit For FCC 15.407&RSS-247	43
12.5.	Operating Condition of EUT	44
12.6.	Test Procedure	
12.7.	The Field Strength of Radiation Emission Measurement Results	44
13. BA	AND EDGE COMPLIANCE TEST	46
13.1.	Block Diagram of Test Setup	46
13.2.	The Requirement For Unwanted Emissions in the Restricted Bands	
13.3.	EUT Configuration on Measurement	46
13.4.	Operating Condition of EUT	
13.5.	Test Procedure	
13.6.	Test Result	47
14. FR	EQUENCIES STABILITY	48
14.1.	Block Diagram of Test Setup	
14.2.	EUT Configuration on Measurement	48
14.3.	Operating Condition of EUT	
14.4.	Test Result	48
15. AN	VTENNA REQUIREMENT	49
15.1.	The Requirement	49
15.2.	Antenna Construction	

Report No.: ATE20170447 Page 4 of 49

Test Report Certification

Applicant : Chuango Security Technology Corporation.

Address : Room 6-17, Overseas Students Pioneer Park, No.108, Jiangbin East

Road, Economic & Technological Development Zone, Fuzhou 350015,

China

Manufacturer : Chuango Security Technology Corporation

Address : Room 6-17, Overseas Students Pioneer Park, No.108, Jiangbin East

Road, Economic & Technological Development Zone, Fuzhou 350015,

China

Product : UFO Panoramic WiFi HD Camera

Model No. : UFO, PT-180, PT-180H

Trade name : smanos

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.407:2016

ANSI C63.10: 2013

KDB 789033 D02 General UNII Test Procedures New Rules v01r04

KDB 558074 D01 DTS Meas Guidance v04

RSS-247 Issue 2 February 2017 RSS-Gen Issue 4 November 2014

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.407 and RSS-247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	Apr. 01, 2017-May 14, 2017
Date of Report :	May 15, 2017
Prepared by :	7 RECHNOLOGY
	(Timeh Ag Engle er)
Approved & Authorized Signer :	Lemil
	(Sean Liu, Manager)

Page 5 of 49

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : UFO Panoramic WiFi HD Camera

Model Number : UFO, PT-180, PT-180H

Note: These three models are used only for

FCC certification, Only model PT-180H is used for

IC certification.

IEEE 802.11 WLAN : 802.11a (20 MHz channel bandwidth),

802.11n (20 MHz channel bandwidth), 802.11n (40 MHz channel bandwidth), 802.11ac (20 MHz channel bandwidth), 802.11ac (40 MHz channel bandwidth) 802.11ac (80 MHz channel bandwidth)

Frequency Range : U-NII(5150-5250, 5250-5350,

5470-5725, 5725-5850MHz)

Note: The device for operation in the band

5150-5250MHz is only for indoor use to reduce the potential for harmful interference to co-channel mobile

satellite systems

Number of Channels : fc = 5000 MHz + N * 5 MHz, where:

- fc = "Operating Frequency" in MHz,

- N = "Channel Number".

5150-5250 MHz:

N = 36 to 48 with step of 4 for the 20 MHz channel

bandwidth.

N = 38 to 46 with step of 4 for the 40 MHz channel

bandwidth.

N = 42 for the 80 MHz channel bandwidth.

5250-5350 MHz:

N = 52 to 64 with step of 4 for the 20 MHz channel

bandwidth.

N = 54 to 62 with step of 4 for the 40 MHz channel

bandwidth.

N = 58 for the 80 MHz channel bandwidth.

5470-5600 MHz:

N = 100 to 116 with step of 4 for the 20 MHz channel

bandwidth.

N = 102 to 110 with step of 4 for the 40 MHz channel

ACCURATE TECHNOLOGY CO. LTD

Report No.: ATE20170447 Page 6 of 49

bandwidth.

N = 106 for the 80 MHz channel bandwidth.

5650-5725 MHz:

N = 132 to 140 with step of 4 for the 20 MHz channel

bandwidth.

N = 134 for the 40 MHz channel bandwidth.

5725-5850 MHz:

N = 149 to 165 with step of 4 for the 20 MHz channel

bandwidth.

N = 151 to 159 with step of 4 for the 40 MHz channel

bandwidth.

N = 155 for the 80 MHz channel bandwidth.

 $G_{ANT MAX}$: 2 dBi

Type of Antenna : SISO antenna

Power Supply : DC 5V(Powered by Adapter)

Adapter information : Model: SA-US5V

Input: AC 100-240V~60Hz 0.3A

Output: DC 5.0V 1.0A

Modulation Type : BPSK/QPSK/16QAM/64QAM (OFDM)

TPC : Not Supported

RF power setting in

TEST

Max power

EUT Hardware Version : F11AUUM13-W2

EUT Software Version : V41

Test Software Version : V41

Radio Software Version: V41

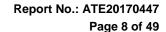
Radio Hardware Version: F11AUUM13-W2

Applicant : Chuango Security Technology Corporation

Address : Room 6-17, Overseas Students Pioneer Park, No.108,

Jiangbin East Road, Economic & Technological Development Zone, Fuzhou 350015, China.

Manufacturer : Chuango Security Technology Corporation


Address : Room 6-17, Overseas Students Pioneer Park, No.108,

Jiangbin East Road, Economic & Technological Development Zone, Fuzhou 350015, China.

Page 7 of 49

Date of sample received: Apr. 01, 2017
Date of Test: Apr. 01, 2017-May 14, 2017

1.2.Description of Test Facility

EMC Lab : Listed by Federal Communications Commission (FCC)

The Registration Number is 752051

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

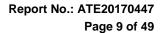
Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.3. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2


(9kHz-30MHz)

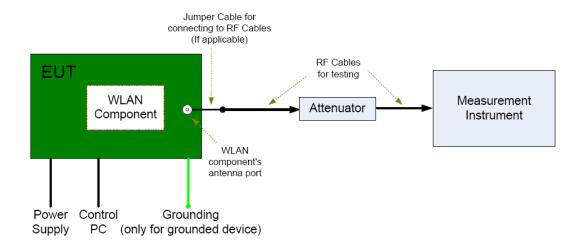
Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

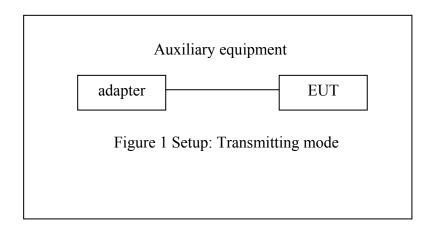
Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

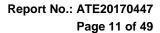
2. MEASURING DEVICE AND TEST EQUIPMENT


Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 07, 2017	Jan. 06, 2018
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 07, 2017	Jan. 06, 2018
Spectrum Analyzer	Rohde&Schwarz	FSV40	101495	Jan. 07, 2017	Jan. 06, 2018
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 07, 2017	Jan. 06, 2018
Open Switch and Control Unit	Rohde&Schwarz	OSP120 + OSP-B157	101244 + 100866	Jan. 07, 2017	Jan. 06, 2018
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 13, 2017	Jan. 12, 2018
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 13, 2017	Jan. 12, 2018
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 13, 2017	Jan. 12, 2018
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 13, 2017	Jan. 12, 2018
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 07, 2017	Jan. 06, 2018
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 07, 2017	Jan. 06, 2018
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 07, 2017	Jan. 06, 2018
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 07, 2017	Jan. 06, 2018

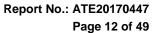


3. OPERATION OF EUT DURING TESTING


3.1.Test setups

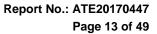
3.2. Configuration and peripherals

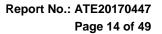
(EUT: UFO Panoramic WiFi HD Camera)



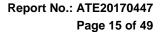
3.3.Test mode

Test Mode	Test Modes Description
11A	IEEE 802.11a with data rate of 6 Mbps using SISO mode.
11N20	IEEE 802.11n with data date of MCS0 and bandwidth of 20 MHz
	using SISO mode.
11N40	IEEE 802.11n with data date of MCS0 and bandwidth of 40 MHz
	using SISO mode.
11AC20	IEEE 802.11ac with data date of MCS0 and bandwidth of 20 MHz
	using SISO mode.
11AC40	IEEE 802.11ac with data date of MCS0 and bandwidth of 40 MHz
	using SISO mode.
11AC80	IEEE 802.11ac with data date of MCS0 and bandwidth of 80 MHz
	using SISO mode.

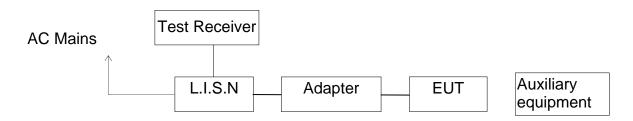

NOTE: Worst cases for each IEEE 802.11 mode are selected to perform tests.


4. TEST PROCEDURES AND RESULTS

Description of Test	Band	FCC&IC Rules	Requirements	Result
AC power Line Conducted Emission Test	N/A	Section 15.207 RSS-Gen Section 8.8	Please refer to the standard limit	Compliant
Emission Bandwidth	5150-5250	15.403(i), 15.407(a)(1) RSS-247	No limit.	Compliant
	5250-5350	15.403(i), 15.407(a)(2) RSS-247	No limit.	
	5470-5725	15.403(i), 15.407(a)(2) RSS-247	No limit.	
	5725-5850	15.403(i), 15.407(e) RSS-247	≥ 500 kHz.	
Occupied Bandwidth	5150-5250 5250-5350 5470-5725 5725-5850	KDB 789033 §D RSS-247	No limit	Compliant
Duty Cycle			No limit	Compliant
Maximum Conducted Output Power	5150-5250	15.407(a)(1) 15.407(a)(4) RSS-247	FCC: < 250 mW IC: 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz	Compliant
	5250-5350	15.407(a)(2) 15.407(a)(4) RSS-247	< MIN {250mW, 11dBm+10 log10B} FCC: B is the 99% emission bandwidth in megahertz IC: B is the 26dB emission bandwidth in megahertz	
	5470-5725	15.407(a)(2) 15.407(a)(4) RSS-247	< MIN {250mW, 11dBm+10 log10B} FCC: B is the 99% emission bandwidth in megahertz IC: B is the 26dB emission bandwidth in megahertz	
	5725-5850	15.407(a)(3)	< 1 W	1



		RSS-247		
Peak Power Spectral Density	5150-5250	15.407(a)(1) 15.407(a)(4) RSS-247	FCC: For client devices in the 5.15-5.25 GHz band <11dBm/MHz	Compliant
		1.55 2.7	IC: The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band	
	5250-5350	15.407(a)(2) 15.407(a)(4) RSS-247	<11dBm/MHz	
	5470-5725	15.407(a)(2) 15.407(a)(4) RSS-247	<11dBm/MHz	
	5725-5850	15.407(a)(3) 15.407(a)(4) RSS-247	<30dBm/500KHz	
Unwanted Emissions	5150-5250	15.407(b)(1) 15.407(b)(6) 15.407(b)(7) 15.209 RSS-247	F<1GHz: § 15.209/§7.2.5 limit (QP). F≥1GHz & out-restricted: <-27dBm/MHz PK e.i.r.p. (exl. 5.15-5.35 GHz). F≥1GHz & in-restricted: § 15.209/§7.2.5 limit(AV&PK).	
	5250-5350	15.407(b)(2) 15.407(b)(6) 15.407(b)(7) 15.209 RSS-247	F<1GHz: § 15.209/§7.2.5 limit (QP). F≥1GHz & out-restricted: <-27dBm/MHz PK e.i.r.p. (exl. 5.25-5.35 GHz). F≥1GHz & in-restricted: § 15.209/§7.2.5 limit(AV&PK).	
	5470-5725	15.407(b)(3) 15.407(b)(6) 15.407(b)(7) 15.209 RSS-247	F<1GHz: § 15.209/§7.2.5 limit (QP). F≥1GHz & out-restricted: <-27dBm/MHz PK e.i.r.p. (exl. 5.47-5.725 GHz). F≥1GHz & in-restricted: § 15.209/§7.2.5 limit(AV&PK).	
	5725-5850	15.407(b)(4) 15.407(b)(6) 15.407(b)(7) 15.209 RSS-247	F<1GHz: § 15.209/§7.2.5 limit (QP). All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or	


Frequency Stability	5150-5250 5250-5350 5470-5725 5725-5850	15.407(g) RSS-247	below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge F≥1GHz & in-restricted: § 15.209/§7.2.5 limit (AV&PK). FCC Part 15.407(g)	Compliant
Antenna Requirement	N/A	15.203, 15.204(b), 15.204(c), 15.212(a), 2.929(b) RSS-GEN	N/A	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

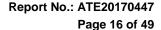
5.1.Block Diagram of Test Setup

(EUT: UFO Panoramic WiFi HD Camera)

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit d	Limit dB(μV)			
(MHz)	Quasi-peak Level	Average Level			
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *			
0.50 - 5.00	56.0	46.0			
5.00 - 30.00	60.0	50.0			

NOTE1: The lower limit shall apply at the transition frequencies.


NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

5.5. Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

Page 17 of 49

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: UFO Panoramic WiFi HD Camera M/N:PT-180H

Chuango Manufacturer: Operating Condition: WiFi operation Test Site: 1#Shielding Room

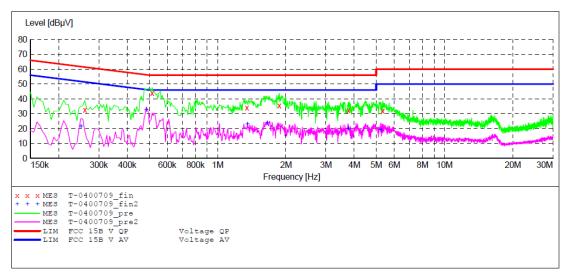
Operator: STAR Test Specification: L 120V/60Hz

Comment: Report NO.. A:10:44PM Report No.:ATE20170447 Start of Test:

SCAN TABLE: "V 9K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Detector Meas. IF Step Transducer


Frequency Frequency Width Time 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s

Bandw. 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "T-0400709 fin"

4/	6/2017 4:1	.2PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.260000	32.60	10.6	61.4	28.8	QP	L1	GND
	0.515000	43.90	10.7	56	12.1	QP	L1	GND
	1.345000	34.00	10.9	56	22.0	QP	L1	GND
	1.870000	35.50	11.0	56	20.5	QP	L1	GND
	3.770000	32.10	11.1	56	23.9	QP	L1	GND
	5.330000	31.70	11.2	60	28.3	QP	L1	GND

MEASUREMENT RESULT: "T-0400709 fin2"

4/6/2017 Frequ		PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.25	50000	21.80	10.6	51.8	30.0	AV	L1	GND
0.48	35000	32.40	10.7	46.1	13.9	AV	L1	GND
1.35	55000	23.00	10.9	46	23.0	AV	L1	GND
1.65	55000	23.80	10.9	46	22.2	AV	L1	GND
3.77	70000	20.10	11.1	46	25.9	AV	L1	GND
5.23	30000	19.00	11.2	50	31.0	AV	L1	GND

Page 18 of 49

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: UFO Panoramic WiFi HD Camera M/N:PT-180H

Chuango Manufacturer:

Operating Condition: WiFi operation Test Site: 1#Shielding Room

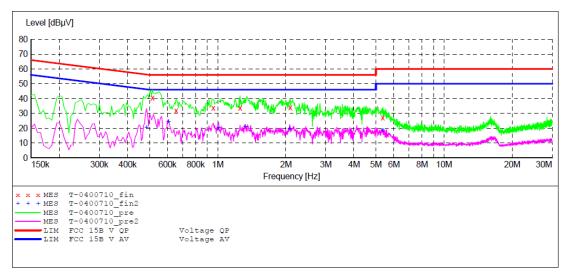
Operator: STAR Test Specification: N 120V/60Hz

Report No.:ATE20170447 Comment: Report NO..AIB201... 4/6/2017 / 4:12:32PM Start of Test:

SCAN TABLE: "V 9K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer


Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz Time

Bandw. 200 Hz NSLK8126 2008 QuasiPeak 1.0 s

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "T-0400710 fin"

4:16PM						
4				Detector	Line	PE
riiiz ab	μν αδ	αвμν	uв			
5000 40.	40 10.7	56	15.6	QP	N	GND
32.	00 10.8	56	24.0	QP	N	GND
33.	60 10.8	56	22.4	QP	N	GND
33.	50 10.9	56	22.5	QP	N	GND
0000 34.	20 11.0	56	21.8	QP	N	GND
27.	10 11.2	60	32.9	QP	N	GND
	MHZ dB 5000 40. 5000 32. 5000 33. 5000 33. 0000 34.	Ency Level Transd dBμV dB dBμV dB 3000 40.40 10.7 3000 32.00 10.8 3000 33.60 10.8 3000 33.50 10.9 34.20 11.0	ency Level Transd Limit MHz dBμV dB dBμV 5000 40.40 10.7 56 5000 32.00 10.8 56 5000 33.60 10.8 56 5000 33.50 10.9 56 5000 34.20 11.0 56	ency Level Transd Limit Margin MHz dBμV dB dBμV dB 5000 40.40 10.7 56 15.6 5000 32.00 10.8 56 24.0 5000 33.60 10.8 56 22.4 5000 33.50 10.9 56 22.5 5000 34.20 11.0 56 21.8	ency MHz Level Detector dB μV Transd dB μV Limit dB μV Margin dB Detector dB 6000 40.40 10.7 56 15.6 QP 6000 32.00 10.8 56 24.0 QP 6000 33.60 10.8 56 22.4 QP 6000 33.50 10.9 56 22.5 QP 0000 34.20 11.0 56 21.8 QP	ency Level Transd Limit Margin Detector Line MHz dBμV dB dBμV dB Detector Line 6000 40.40 10.7 56 15.6 QP N 6000 32.00 10.8 56 24.0 QP N 6000 33.60 10.8 56 22.4 QP N 6000 33.50 10.9 56 22.5 QP N 0000 34.20 11.0 56 21.8 QP N

MEASUREMENT RESULT: "T-0400710 fin2"

4/	6/2017 4:16	PM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.485000	20.70	10.7	46.3	25.6	AV	N	GND
	0.605000	24.40	10.7	46	21.6	AV	N	GND
	1.010000	20.20	10.8	46	25.8	AV	N	GND
	1.320000	21.20	10.9	46	24.8	AV	N	GND
	2.080000	19.80	11.0	46	26.2	AV	N	GND
	5.360000	18.60	11.2	50	31.4	AV	N	GND

Page 19 of 49

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: UFO Panoramic WiFi HD Camera M/N:PT-180H

Manufacturer: Chuango

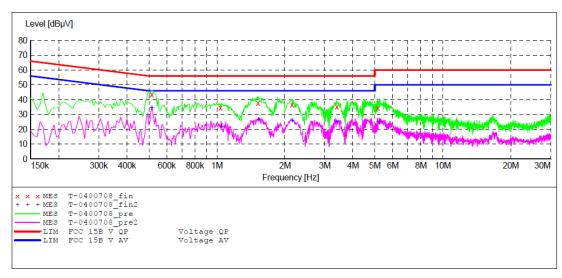
Operating Condition: WiFi operation 1#Shielding Room STAR Test Site:

Operator: Test Specification: L 240V/60Hz

Report No.: ATE20170447 4/6/2017 / 4:02:00PM Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin" Short Description: SU

SUB STD VTERM2 1.70


Detector Meas. IF Time Bandw. Step Start Stop Transducer

Frequency Frequency Width Time Bandw.
9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "T-0400708 fin"

4/	6/2017 4:05	5PM						
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
	MHz	dΒμV	dB	dΒμV	dB			
	0.515000	43.50	10.7	56	12.5	QP	L1	GND
	1.035000	34.40	10.9	56	21.6	QP	L1	GND
	1.520000	37.60	10.9	56	18.4	QP	L1	GND
	2.150000	36.60	11.0	56	19.4	QP	L1	GND
	3.390000	35.20	11.1	56	20.8	QP	L1	GND
	5.140000	34.40	11.2	60	25.6	QP	L1	GND

MEASUREMENT RESULT: "T-0400708 fin2"

4/6/20	17 4:05	PM						
Fre	quency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.	515000	34.80	10.7	46	11.2	AV	L1	GND
	045000	21.90	10.9	46	24.1	AV	L1	GND
1.	530000	26.80	10.9	46	19.2	AV	L1	GND
2.	150000	26.10	11.0	46	19.9	AV	L1	GND
3.	390000	25.40	11.1	46	20.6	AV	L1	GND
5.	230000	24.80	11.2	50	25.2	AV	L1	GND

Page 20 of 49

ACCURATE TECHNOLOGY CO., LTD

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: UFO Panoramic WiFi HD Camera M/N:PT-180H

Chuango Manufacturer:

Operating Condition: WiFi operation Test Site: 1#Shielding Room

Operator: STAR

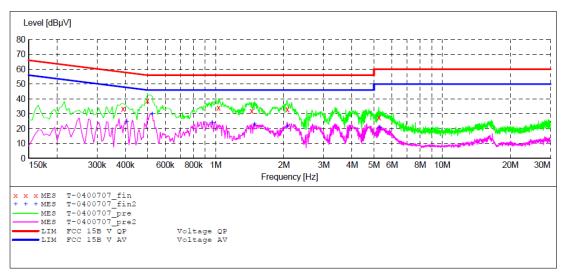
Test Specification: N 240V/60Hz

Report No.:ATE20170447 4/6/2017 / 3:57:31PM Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Step

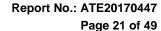

Frequency Frequency Width Time 9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s

SUB STD VTERM2 1.70
Detector Meas. IF Transducer
Time Bandw.
QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

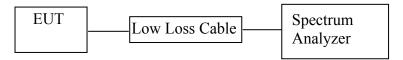
Average



MEASUREMENT RESULT: "T-0400707 fin"

4/6/2017 4:01	LPM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.390000	33.40	10.7	58.1	24.7	QP	N	GND
0.500000	38.60	10.7	56	17.4	QP	N	GND
1.030000	33.90	10.8	56	22.1	QP	N	GND
1.445000	31.80	10.9	56	24.2	QP	N	GND
2.070000	33.10	11.0	56	22.9	QP	N	GND
5.260000	27.50	11.2	60	32.5	QP	N	GND

MEASUREMENT RESULT: "T-0400707 fin2"


4/	/6/2017 4: 01	PM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.405000	24.50	10.7	47.8	23.3	AV	N	GND
	0.525000	30.10	10.7	46	15.9	AV	N	GND
	0.965000	23.70	10.8	46	22.3	AV	N	GND
	1.485000	23.00	10.9	46	23.0	AV	N	GND
	2.070000	21.80	11.0	46	24.2	AV	N	GND
	5.300000	20.40	11.2	50	29.6	AV	N	GND

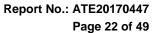
6. 6DB OCCUPIED BANDWIDTH TEST

6.1.Block Diagram of Test Setup

(EUT: UFO Panoramic WiFi HD Camera)

6.2.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.


Section 15.407(e) and RSS-247 section 5.2 specifies the minimum 6 dB emission bandwidth of at least 500 kHz for the band 5.725-5.85 GHz

6.3. Operating Condition of EUT

- 6.3.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.3.2. Turn on the power of all equipment.
- 6.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 5725-5850MHz.

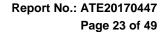
6.4. Test Procedure

- 6.4.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 6.4.2.Set RBW of spectrum analyzer to 100 kHz and VBW to 300 kHz.
- 6.4.3.The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

6.5.Test Result

For detailed test plots, please refer to the report ATE20170447 part 4.

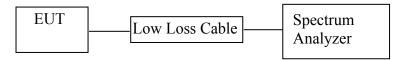
The test was performed with 802.11a							
Channel	Frequency (MHz)	6dB Bandwidth ANT 1 (MHz)	Limit (MHz)				
149	5745	16.447	> 0.5MHz				
165	5825	16.555	> 0.5MHz				


The test was performed with 802.11n20						
Channel	Frequency (MHz)	6dB Bandwidth ANT 1 (MHz)	Limit (MHz)			
149	5745	17.655	> 0.5MHz			
165	5825	17.713	> 0.5MHz			

The test was performed with 802.11ac20						
Channel	Frequency (MHz)	6dB Bandwidth ANT 1 (MHz)	Limit (MHz)			
149	5745	17.655	> 0.5MHz			
165	5825	17.713	> 0.5MHz			

The test was performed with 802.11n40						
Channel	Frequency (MHz)	6dB Bandwidth ANT 1 (MHz)	Limit (MHz)			
151	5755	35.960	> 0.5MHz			
159	5795	35.920	> 0.5MHz			

The test was performed with 802.11ac40						
Channel	Frequency (MHz)	6dB Bandwidth ANT 1 (MHz)	Limit (MHz)			
151	5755	35.950	> 0.5MHz			
159	5795	36.190	> 0.5MHz			


The test was performed with 802.11ac80							
Channel	Frequency (MHz)	6dB Bandwidth ANT 1 (MHz)	Limit (MHz)				
155	5775	75.100	> 0.5MHz				

7. 26DB OCCUPIED BANDWIDTH TEST

7.1.Block Diagram of Test Setup

(EUT: UFO Panoramic WiFi HD Camera)

7.2.EUT Configuration on Measurement

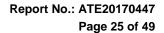
The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.3. Operating Condition of EUT

- 7.3.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.3.2. Turn on the power of all equipment.
- 7.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250MHz, 5250-5350MHz, 5470-5725MHz.

7.4. Test Procedure

- 7.4.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.4.2.Set Set RBW = approximately 1% of the emission bandwidth.
- 7.4.3.Set the VBW > RBW.
- 7.4.4.Detector = Peak.
- 7.4.5. Trace mode = max hold.
- 7.4.6.Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

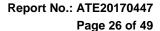


7.5.Test Result
For detailed test plots, please refer to the report ATE20170447 part 4.

The test was performed with 802.11a							
Channel	Frequency (MHz)	26dB Bandwidth (MHz)	Limit (MHz)				
36	5180	19.623	> 0.5MHz				
48	5240	19.508	> 0.5MHz				
52	5260	19.652	> 0.5MHz				
64	5320	19.219	> 0.5MHz				
100	5500	19.045	> 0.5MHz				
140	5700	19.681	> 0.5MHz				

The test was per	The test was performed with 802.11n20					
Channel	Frequency (MHz)	26dB Bandwidth (MHz)	Limit (MHz)			
36	5180	19.624	> 0.5MHz			
48	5240	20.029	> 0.5MHz			
52	5260	19.825	> 0.5MHz			
64	5320	19.740	> 0.5MHz			
100	5500	19.740	> 0.5MHz			
140	5700	19.682	> 0.5MHz			

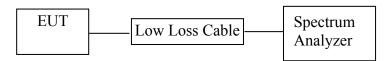
The test was performed with 802.11ac20					
Channel	Frequency (MHz)	26dB Bandwidth (MHz)	Limit (MHz)		
36	5180	19.914	> 0.5MHz		
48	5240	19.798	> 0.5MHz		
52	5260	19.769	> 0.5MHz		
64	5320	19.798	> 0.5MHz		
100	5500	19.797	> 0.5MHz		
140	5700	19.797	> 0.5MHz		



The test was pe	The test was performed with 802.11n40					
Channel	Frequency (MHz)	26dB Bandwidth (MHz)	Limit (MHz)			
38	5190	40.05	> 0.5MHz			
46	5230	40.23	> 0.5MHz			
54	5270	39.71	> 0.5MHz			
62	5310	40.22	> 0.5MHz			
102	5510	40.29	> 0.5MHz			
134	5670	40.40	> 0.5MHz			

The test was performed with 802.11ac40					
Channel	Frequency (MHz)	26dB Bandwidth (MHz)	Limit (MHz)		
38	5190	40.29	> 0.5MHz		
46	5230	40.00	> 0.5MHz		
54	5270	39.94	> 0.5MHz		
62	5310	40.23	> 0.5MHz		
102	5510	40.29	> 0.5MHz		
134	5670	40.29	> 0.5MHz		

The test was performed with 802.11ac80					
Channel Frequency (MHz) 26dB Bandwidth Limit (MHz) (MHz)					
42	5210	80.81	> 0.5MHz		
58	5290	80.82	> 0.5MHz		
106	5530	81.09	> 0.5MHz		


The spectrum analyzer plots are attached as below.

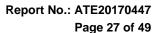
8. 99% BANDWIDTH MEASUREMENT

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.407

The 99% occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5 % of the total mean power of the given emission. Measurement of the 99% occupied bandwidth is required only as a condition for using the optional band-edge measurement techniques described in section II.G.3.d). Measurements of 99% occupied bandwidth may also optionally be used in lieu of the EBW to define the minimum frequency range over which the spectrum is integrated when measuring maximum conducted output power as described in section II.E. However, the EBW must be measured to determine bandwidth dependent limits on maximum conducted output power in accordance with 15.407(a).

8.3.EUT Configuration on Measurement

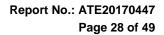

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250, 5250-5350, 5470-5725 and 5725-5850MHz.

8.5.Test Procedure

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW. Set VBW \geq 3 * RBW
- 4. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- 5. Use the 99 % power bandwidth function of the instrument.

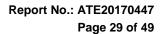

6. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

8.6. Test Result

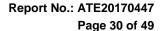
For detailed test plots, please refer to the report ATE20170447 part 4.

Channel	Frequency (MHz)	99% Bandwidth (MHz)	Verdict
36	5180	16.498	PASS
48	5240	16.671	PASS
52	5260	16.556	PASS
64	5320	16.671	PASS
100	5500	16.556	PASS
140	5700	16.556	PASS
149	5745	16.729	PASS
165	5825	16.671	PASS

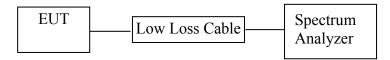
The test was performed with 802.11n20					
Channel	Frequency (MHz)	99% Bandwidth (MHz)	Verdict		
36	5180	17.829	PASS		
48	5240	17.887	PASS		
52	5260	17.829	PASS		
64	5320	17.829	PASS		
100	5500	17.829	PASS		
140	5700	17.771	PASS		
149	5745	17.887	PASS		
165	5825	17.829	PASS		



The test was performed with 802.11ac20					
Channel	Frequency (MHz)	99% Bandwidth (MHz)	Verdict		
36	5180	17.829	PASS		
48	5240	17.887	PASS		
52	5260	17.887	PASS		
64	5320	17.829	PASS		
100	5500	17.829	PASS		
140	5700	17.887	PASS		
149	5745	17.829	PASS		
165	5825	17.829	PASS		


The test was perfo	The test was performed with 802.11 n40					
Channel	Frequency (MHz)	99% Bandwidth (MHz)	Verdict			
38	5190	36.816	PASS			
46	5230	36.700	PASS			
54	5270	36.700	PASS			
62	5310	36.700	PASS			
102	5510	36.700	PASS			
134	5670	36.585	PASS			
151	5755	36.700	PASS			
159	5795	36.700	PASS			

The test was performed with 802.11 ac40					
Channel	Frequency (MHz)	99% Bandwidth (MHz)	Verdict		
38	5190	36.700	PASS		
46	5230	36.700	PASS		
54	5270	36.700	PASS		
62	5310	36.700	PASS		
102	5510	36.700	PASS		
134	5670	36.700	PASS		
151	5755	36.700	PASS		
159	5795	36.700	PASS		


The test was performed with 802.11 ac80 99% Bandwidth Frequency Channel Verdict (MHz) (MHz) 42 5210 75.022 **PASS** 58 5290 75.195 PASS 5530 75.195 PASS 106 5775 75.022 **PASS** 155

9. DUTY CYCLE MEASUREMENT

9.1.Block Diagram of Test Setup

9.2.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.3. Operating Condition of EUT

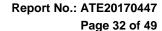
- 9.3.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.3.2. Turn on the power of all equipment.
- 9.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250, 5250-5350, 5470-5725 and 5725-5850MHz.

9.4. Test Procedure

Measurements of duty cycle and transmission duration shall be performed using one of the following techniques:

- 1. A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on- and off-times of the transmitted signal.
- 2. The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on- and off-times of the transmitted signal
- a. Set the center frequency of the instrument to the centre frequency of the transmission
- b. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value(10MHz).
- c. Set detector = Peak or average.
- d. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

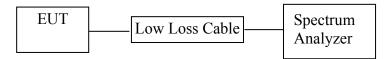
(For example, if VBW and/or RBW are limited to 3MHz, then the zero-span method of measuring duty cycle shall not be used if $T \le 16.7$ microseconds.)



9.5.Test Result

For detailed test plots, please refer to the report ATE20170447 part 4.

Test mode	Frequency (MHz)	Duty cycle(%)	10log(1/x)
802.11a20	5180	97.2	0.12
802.11n20	5180	97.0	0.13
802.11ac20	5180	97.0	0.13
802.11n40	5190	94.14	0.26
802.11ac40	5190	94.14	0.26
802.11ac80	5210	96.84	0.14


Note: Duty cycle=x

10.MAXIMUM POWER SPECTRAL DENSITY TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement For Section 15.407&RSS-247

For the band 5.15–5.25GHz,

Section 15.407: the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band

Section RSS-247: The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0MHz band.

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands,

Section 15.407: the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band.

Section RSS-247: The power spectral density shall not exceed 11 dBm in any 1.0 MHz band;

For the band 5.725–5.825GHz,

Section 15.407: The maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

Section RSS-247: The output power spectral density shall not exceed 30 dBm in any 500 kHz band.

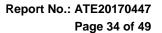
If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the output power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

10.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.4. Operating Condition of EUT

- 10.4.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.4.2. Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250, 5250-5350, 5470-5725 and 5725-5850MHz.

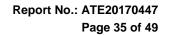

10.5.Test Procedure

10.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.

10.5.2.Measurement Procedure PKPSD:

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

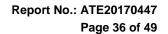
- 1. Set RBW $\geq 1/T$, where T is defined in section II.B.l.a). Set VBW ≥ 3 RBW.
- 2. If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- 3. If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- 4. Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.
- 5. Detector = RMS.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10.5.3. Measurement the maximum power spectral density.



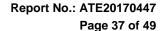
10.6.Test Result

For detailed test plots, please refer to the report ATE20170447 part 4.

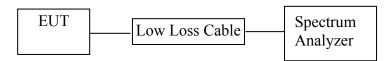
The test wa	The test was performed with 802.11a						
Channel	Frequency (MHz)	Power Spectral Density (dBm)	10log(1/x)	Final Power Spectral Density (dBm)	Limits dBm/MHz		
36	5180	-4.61	0.12	-4.49	FCC:11 IC:10		
48	5240	-4.34	0.12	-4.22	FCC:11 IC:10		
52	5260	-4.49	0.12	-4.37	11		
64	5320	-3.65	0.12	-3.53	11		
100	5500	-4.55	0.12	-4.43	11		
140	5700	-5.29	0.12	-5.17	11		
149	5745	-6.51	0.12	-6.39	30		
165	5825	-7.31	0.12	-7.19	30		


The test was performed with 802.11n20					
Channel	Frequency (MHz)	Power Spectral Density (dBm)	10log(1/x)	Final Power Spectral Density (dBm)	Limits dBm/MHz
36	5180	-6.61	0.13	-6.48	FCC:11 IC:10
48	5240	-6.38	0.13	-6.25	FCC:11 IC:10
52	5260	-6.96	0.13	-6.83	11
64	5320	-6.63	0.13	-6.50	11
100	5500	-6.61	0.13	-6.48	11
140	5700	-6.32	0.13	-6.19	11
149	5745	-8.78	0.13	-8.65	30
165	5825	-7.95	0.13	-7.82	30

The test was performed with 802.11ac20						
Channel	Frequency (MHz)	Power Spectral Density (dBm)	10log(1/x)	Final Power Spectral Density (dBm)	Limits dBm/MHz	
36	5180	-6.95	0.13	-6.82	FCC:11 IC:10	
48	5240	-6.93	0.13	-6.80	FCC:11 IC:10	
52	5260	-7.23	0.13	-7.10	11	
64	5320	-6.94	0.13	-6.81	11	
100	5500	-7.21	0.13	-7.08	11	
140	5700	-7.19	0.13	-7.06	11	
149	5745	-8.15	0.13	-8.02	30	
165	5825	-8.67	0.13	-8.54	30	


The test was performed with 802.11 n40					
Channel	Frequency (MHz)	Power Spectral Density (dBm)	10log(1/x)	Final Power Spectral Density (dBm)	Limits dBm/MHz
38	5190	-10.16	0.26	-9.90	FCC:11 IC:10
46	5230	-9.46	0.26	-9.20	FCC:11 IC:10
54	5270	-9.66	0.26	-9.40	11
62	5310	-9.88	0.26	-9.62	11
102	5510	-8.93	0.26	-8.67	11
134	5670	-10.22	0.26	-9.96	11
151	5755	-10.93	0.26	-10.67	30
159	5795	-11.67	0.26	-11.41	30

The test was performed with 802.11 ac40 Power Spectral $10\log(1/x)$ Final Power Spectral Frequency Limits Channel Density Density (MHz) dBm/MHz (dBm) (dBm) FCC:11 38 -10.17 0.26 -9.91 5190 IC:10 FCC:11 46 5230 -9.34 0.26 -9.08 IC:10 54 5270 -9.64 0.26 -9.38 11 62 5310 -9.72 -9.46 11 0.26 102 5510 -9.90 0.26 -9.64 11 11 134 5670 -10.23 0.26 -9.97 -11.26 151 5755 0.26 -11.00 30 159 30 5795 -12.21 0.26 -11.95


The test was performed with 802.11 ac80						
Channel	Frequency (MHz)	Power Spectral Density (dBm)	10log(1/x)	Final Power Spectral Density (dBm)	Limits dBm/MHz	
42	5210	-9.40	0.14	-9.26	FCC:11 IC:10	
58	5290	-7.35	0.14	-7.21	11	
106	5530	-7.46	0.14	-7.32	11	
155	5775	-10.82	0.14	-10.68	30	

11.MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER

11.1.Block Diagram of Test Setup

11.2. The Requirement For Section 15.407

For the band 5.15–5.25 GHz,

Section 15.407: For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

Section RSS-247: the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz.

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands,

Section 15.407: the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

Section RSS-247: The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, whichever power is less. B is the 99% emission bandwidth in megahertz.

For the band 5.725–5.825 GHz,

Section 15.407: the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Section RSS-247: The maximum conducted output power shall not exceed 1 W.

11.3.EUT Configuration on Measurement

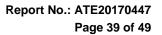
The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

11.4. Operating Condition of EUT

- 11.4.1. Setup the EUT and simulator as shown as Section 11.1.
- 11.4.2. Turn on the power of all equipment.
- 11.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250, 5250-5350, 5470-5725 and 5725-5850MHz.

Report No.: ATE20170447 Page 38 of 49

11.5.Test Procedure


- 11.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 11.5.2.Set RBW = 1-5% of the OBW, VBW \geq 3 x RBW, Sweep time = auto, Set span to at least 1.5 times the OBW, Detector = RMS.
- 11.5.3.Measurement the Maximum conducted (average) output power.

11.6.Test Result

For detailed test plots, please refer to the report ATE20170447 part 4.

The test was performed with 802.11a						
Channel	Frequency (MHz)	Ave output power (dBm)	10log(1/x)	Final output power (dBm)	Limits dBm / W	
36	5180	10.76	0.12	10.88	FCC:24 IC:22	
48	5240	11.37	0.12	11.49	FCC:24 IC:22	
52	5260	11.02	0.12	11.14	FCC:24 IC:23	
64	5320	11.52	0.12	11.64	FCC:24 IC:23	
100	5500	11.53	0.12	11.65	FCC:24 IC:23	
140	5700	11.41	0.12	11.53	FCC:24 IC:23	
149	5745	11.02	0.12	11.14	30	
165	5825	10.86	0.12	10.98	30	

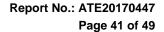
The test wa	The test was performed with 802.11n20						
Channel	Frequency (MHz)	Ave output power (dBm)	10log(1/x)	Final output power (dBm)	Limits dBm / W		
36	5180	10.47	0.13	10.60	FCC:24 IC:23		
48	5240	10.72	0.13	10.85	FCC:24 IC:23		
52	5260	10.61	0.13	10.74	24		
64	5320	10.74	0.13	10.87	24		
100	5500	10.68	0.13	10.81	24		
140	5700	10.83	0.13	10.96	24		

149	5745	10.53	0.13	10.66	30
165	5825	10.39	0.13	10.52	30

The test was performed with 802.11ac20						
Channel	Frequency (MHz)	Ave output power (dBm)	10log(1/x)	Final output power (dBm)	Limits dBm / W	
36	5180	10.40	0.13	10.53	FCC:24 IC:23	
48	5240	10.73	0.13	10.86	FCC:24 IC:23	
52	5260	10.43	0.13	10.56	24	
64	5320	10.76	0.13	10.89	24	
100	5500	10.78	0.13	10.91	24	
140	5700	10.74	0.13	10.87	24	
149	5745	10.28	0.13	10.41	30	
165	5825	10.41	0.13	10.54	30	

The test was performed with 802.11 n40						
Channel	Frequency (MHz)	Ave output power (dBm)	10log(1/x)	Final output power (dBm)	Limits dBm / W	
38	5190	9.43	0.26	9.69	FCC:24 IC:23	
46	5230	9.03	0.26	9.29	FCC:24 IC:23	
54	5270	8.93	0.26	9.19	24	
62	5310	8.97	0.26	9.23	24	
102	5510	9.20	0.26	9.46	24	
134	5670	9.02	0.26	9.28	24	
151	5755	8.52	0.26	8.78	30	
159	5795	8.58	0.26	8.84	30	

The test wa	The test was performed with 802.11 ac40						
Channel	Frequency (MHz)	Ave output power (dBm)	10log(1/x)	Final output power (dBm)	Limits dBm / W		
38	5190	9.42	0.26	9.68	FCC:24 IC:23		
46	5230	9.39	0.26	9.65	FCC:24 IC:23		
54	5270	9.24	0.26	9.50	24		
62	5310	9.11	0.26	9.37	24		
102	5510	8.99	0.26	9.25	24		

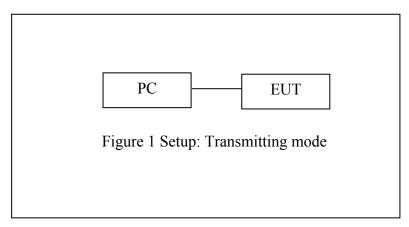


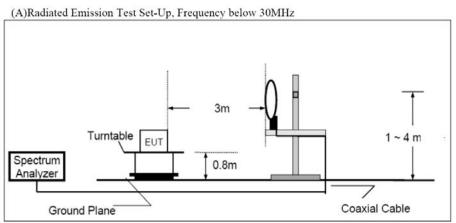
Report No.: ATE20170447 Page 40 of 49

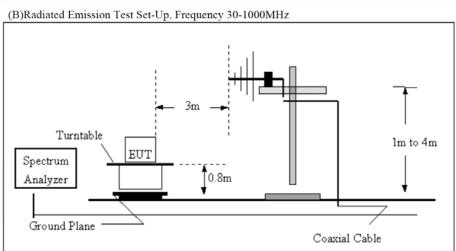
134	5670	8.93	0.26	9.19	24
151	5755	8.27	0.26	8.53	30
159	5795	8.35	0.26	8.61	30

The test was performed with 802.11 ac80							
Channel	Frequency (MHz)	Ave output power (dBm)	10log(1/x)	Final output power (dBm)	Limits dBm / W		
42	5210	8.63	0.14	8.77	FCC:24 IC:23		
58	5290	9.33	0.14	9.47	24		
106	5530	9.59	0.14	9.73	24		
155	5775	9.57	0.14	9.71	30		

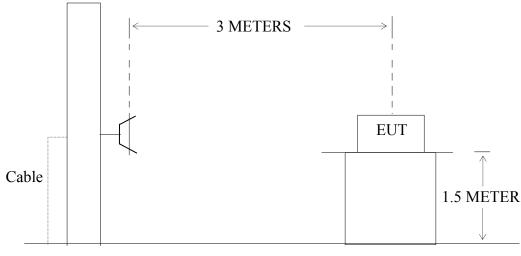
Note: FCC:B is the 26–dB emission bandwidth in MHz IC:B is the 99% emission bandwidth in MHz




12. RADIATED SPURIOUS EMISSION TEST


12.1.Block Diagram of Test Setup

12.1.1.Block diagram of connection between the EUT and peripherals


12.1.2.Semi-Anechoic Chamber Test Setup Diagram

Report No.: ATE20170447 Page 42 of 49

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

GROUND PLANE

12.2.Restricted bands of operation

12.2.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

permitted in any of the frequency bands fished below.						
MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4			
6.31175-6.31225	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$			
13.36-13.41						

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated

²Above 38.6

Report No.: ATE20170447 Page 43 of 49

based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

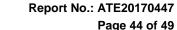
12.3. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

12.4. The Limit For FCC 15.407&RSS-247

Section 15.407(b): For transmitters operating in the 5.15–5.25 GHz band: all emissions out-side of the 5.15–5.35 GHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5.25–5.35 GHz band: all emissions outside of the 5.15–5.35 GHz band shall not exceed an EIRP of –27dBm/MHz. Devices operating in the 5.25–5.35 GHz band that generate emissions in the 5.15–5.25 GHz band must meet all applicable technical requirements for operation in the 5.15–5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of –27dBm/MHz in the 5.15–5.25 GHz band.


For transmitters operating in the 5.47–5.725 GHz band: all emissions outside of the 5.47–5.725 GHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5.725–5.825 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Section RSS-247: For transmitters with operating frequencies in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27dBm/MHz e.i.r.p. Any unwanted emissions that fall into the band 5250-5350 MHz shall be attenuated below the channel power by at least 26 dB, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth (i.e. 99% bandwidth), above 5250 MHz. The 26 dB bandwidth may fall into the 5250-5350 MHz band; however, if the occupied bandwidth also falls within the 5250-5350 MHz band, the transmission is considered as intentional and the devices shall comply with all requirements in the band 5250-5350 MHz including implementing dynamic frequency selection (DFS) and TPC, on the portion of the emission that resides in the 5250-5350 MHz band.

Emissions outside the band 5470-5725 MHz shall not exceed -27dBm/MHz e.i.r.p. However, devices with bandwidth overlapping the band edge of 5725MHz can meet the emission limit of -27 dBm/MHz e.i.r.p. at 5850 MHz instead of 5725MHz.

Devices operating in the band 5725-5850MHz with antenna gain of 10dBi or less can have unwanted emissions that comply with either the limits in this section or in section 5.5 until April 1, 2018 for certification.

12.5. Operating Condition of EUT

- 12.5.1. Setup the EUT and simulator as shown as Section 11.1.
- 12.5.2. Turn on the power of all equipment.
- 12.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250, 5250-5350, 5470-5725 and 5725-5825MHz.

12.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The frequency range from 9KHz to 40000MHz is checked.

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

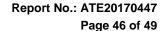
During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

12.7. The Field Strength of Radiation Emission Measurement Results

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The fundamental radiated emissions were reduced by Band Reject Filter in the attached plots.
- 4. The EUT is tested radiation emission at each test mode (802.11a/ac/n) in three axes. The worst emissions are reflected in the following plots.



Report No.: ATE20170447

Page 45 of 49

5. The average measurement was not performed when peak measured data under the limit of average detection.

For detailed test plots, please refer to the report ATE20170447 part 2.

13.BAND EDGE COMPLIANCE TEST

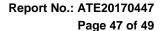
13.1.Block Diagram of Test Setup

13.2. The Requirement For Unwanted Emissions in the Restricted Bands

- 1. For all measurements, follow the requirements in section II.G.3.,
- "General Requirements for Unwanted Emissions Measurements.
- 2. At frequencies below 1000 MHz, use the procedure described in section
- II.G.4., "Procedure for Unwanted Emissions Measurements Below 1000 MHz."
- 3. At frequencies above 1000 MHz, measurements performed using the peak and average measurement procedures described in sections II.G.5. and II.G.6, respectively, must satisfy the respective peak and average limits.
- If all peak measurements satisfy the average limit, then average measurements are not required.
- 4. For conducted measurements above 1000 MHz, EIRP shall be computed as specified in section II.G.3.b) and then field strength shall be computed as follows (see KDB Publication 412172):

 $E[dB\mu V/m] = EIRP[dBm] - 20 \log (d[meters]) + 104.77,$

where E = field strength and d = distance at which field strength limit is specified in the rules;


 $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

13.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

13.4. Operating Condition of EUT

- 13.4.1. Setup the EUT and simulator as shown as Section 12.1.
- 13.4.2. Turn on the power of all equipment.
- 13.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250, 5250-5350, 5470-5725 and 5725-5825MHz.

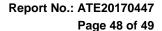
13.5.Test Procedure

Conducted Band Edge:

- 13.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- 13.5.2.Set RBW of spectrum analyzer to 1000kHz and VBW to 3000kHz.

Radiate Band Edge:

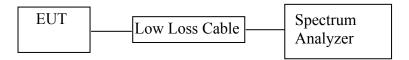
- 13.5.3. The EUT is placed on a turntable, which is 1.5m above the ground plane and worked at highest radiated power.
- 13.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 13.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 13.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
- 13.5.7.RBW=1MHz, VBW=1MHz
- 13.5.8. The band edges was measured and recorded.


13.6.Test Result

PASS

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:
 - Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.
- 4. The EUT is tested radiation emission at each test mode (802.11a/ac/n) in three axes. The worst emissions are reflected in the following plots.
- 5. The average measurement was not performed when peak measured data under the limit of average detection.


For detailed test plots, please refer to the report ATE20170447 part 3.

14.FREQUENCIES STABILITY

14.1.Block Diagram of Test Setup

(EUT: UFO Panoramic WiFi HD Camera)

14.2.EUT Configuration on Measurement

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user manual.

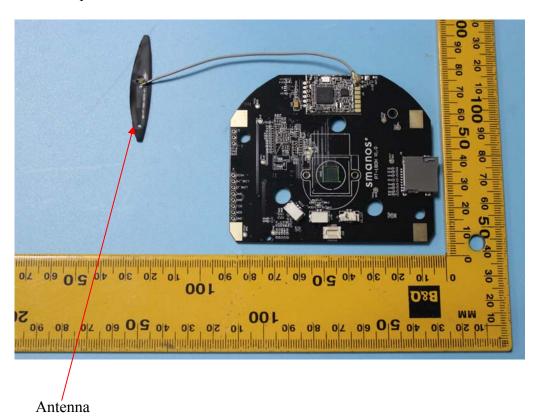
14.3. Operating Condition of EUT

- 14.3.1. Setup the EUT and simulator as shown as Section 13.1.
- 14.3.2. Turn on the power of all equipment.
- 14.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 5150-5250, 5250-5350, 5470-5725 and 5725-5825MHz.

14.4.Test Result

PASS

For detailed test plots, please refer to the report ATE20170447 part 4.


15.ANTENNA REQUIREMENT

15.1.The Requirement

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.2. Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 2dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.

