

Report No.: ATE20170747

Page 1 of 116

APPLICATION CERTIFICATION FCC Part 15C On Behalf of Chuango Security Technology Corporation

K1 SMARTHOME DIY KIT

Model No.: K1

FCC ID: RJY-K1

Prepared for

Address

Chuango Security Technology Corporation. Room 6-17, Overseas Students Pioneer Park,

No.108, Jiangbin East Road, Economic &

Technological Development Zone, Fuzhou 350015,

China.

Prepared by

Address

ACCURATE TECHNOLOGY CO., LTD

F1, Bldg. A&D, Chan Yuan New Material Port,

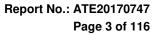
Keyuan Rd. Science & Industry Park, Nan Shan,

Shenzhen, Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20170747

Date of Test : May 12, 2017-May 27, 2017


Date of Report : May 27, 2017

Report No.: ATE20170747

Page 2 of 116

TABLE OF CONTENTS

ption	Page
eport Certification	
ENERAL INFORMATION	5
Description of Device (EUT)	
V A A	
•	
•	
Operating Mode	
Configuration and peripherals	9
ST PROCEDURES AND RESULTS	10
OWER LINE CONDUCTED MEASUREMENT	11
Block Diagram of Test Setup	11
Power Line Conducted Emission Measurement Limits	
EUT Configuration on Measurement	
Operating Condition of EUT	
Test Procedure	
Test Result	26
AXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	33
Block Diagram of Test Setup	33
· ·	
The Requirement For Section 15.247(e)	
EUT Configuration on Measurement	
	EPORT Certification ENERAL INFORMATION Description of Device (EUT). Carrier Frequency of Channels Accessory and Auxiliary Equipment Description of Test Facility Measurement Uncertainty EASURING DEVICE AND TEST EQUIPMENT EPRATION OF EUT DURING TESTING Operating Mode Configuration and peripherals ST PROCEDURES AND RESULTS ENWER LINE CONDUCTED MEASUREMENT Block Diagram of Test Setup. Power Line Conducted Emission Measurement Limits. Configuration of EUT on Measurement operating Condition of EUT Test Procedure Power Line Conducted Emission Measurement Results B BANDWIDTH MEASUREMENT Block Diagram of Test Setup. The Requirement For Section 15.247(a)(2) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result. TYY CYCLE MEASUREMENT Block Diagram of Test Setup. Block Diagram of Test Setup. Test Procedure Test Result AXIMUM CONDUCTED (AVERAGE) OUTPUT POWER Block Diagram of Test Setup. The Requirement For Section 15.247(b)(3) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result AXIMUM CONDUCTED (AVERAGE) OUTPUT POWER Block Diagram of Test Setup. The Requirement For Section 15.247(b)(3) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result AXIMUM CONDUCTED (AVERAGE) OUTPUT POWER Block Diagram of Test Setup. The Requirement For Section 15.247(b)(3) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result AXIMUM CONDUCTED (AVERAGE) OUTPUT POWER Block Diagram of Test Setup. The Requirement For Section 15.247(b)(3) EUT Configuration on Measurement Operating Condition of EUT Test Procedure Test Result Test Procedure Test Result The Requirement For Section 15.247(c).

13.1.

13.2.

9.4.	Operating Condition of EUT	41
9.5.	Test Procedure	41
9.6.	Test Result	42
10. BA	ND EDGE COMPLIANCE TEST	50
10.1.	Block Diagram of Test Setup	50
10.2.	The Requirement For Section 15.247(d)	
10.3.	EUT Configuration on Measurement	50
10.4.	Operating Condition of EUT	50
10.5.	Test Procedure	50
10.6.	Test Result	51
11. RA	DIATED SPURIOUS EMISSION TEST	73
11.1.	Block Diagram of Test Setup	73
11.2.	The Limit For Section 15.247(d)	
11.3.	Restricted bands of operation	
11.4.	Configuration of EUT on Measurement	
11.5.	Operating Condition of EUT	76
11.6.	Test Procedure	76
11.7.	The Field Strength of Radiation Emission Measurement Results	77
12. 999	% OCCUPIED BANDWIDTH	108
12.1.	Block Diagram of Test Setup	108
12.2.	EUT Configuration on Measurement	
12.3.	Operating Condition of EUT	108
12.4.	Test Procedure	
12.5.	Measurement Result	109
13. AN	TENNA REQUIREMENT	116
	•	

Report No.: ATE20170747

Page 4 of 116

Test Report Certification

Applicant : Chuango Security Technology Corporation.

Address : Room 6-17, Overseas Students Pioneer Park, No.108, Jiangbin East

Road, Economic & Technological Development Zone, Fuzhou 350015,

China

Manufacturer : Chuango Security Technology Corporation

Address : Room 6-17, Overseas Students Pioneer Park, No.108, Jiangbin East

Road, Economic & Technological Development Zone, Fuzhou 350015,

China

Product : K1 SMARTHOME DIY KIT

Model No. : K1

Trade name : smanos

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2016 ANSI C63.10: 2013

The EUT was tested according to DTS test procedure of Apr 05, 2017 KDB558074 D01 DTS Meas Guidance v04 for compliance to FCC 47CFR 15.247 requirements

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements. This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	May 12, 2017-May 27, 2017
Date of Report:	May 27, 2017
Prepared by :	(Tim Saperover)
Approved & Authorized Signer :	(Sean Liu, Manager)

Report No.: ATE20170747

Page 5 of 116

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : K1 SMARTHOME DIY KIT

Model Number : K1

Frequency Range : 802.11b/g/n(20MHz): 2412-2462MHz

802.11n(40MHz): 2422-2452MHz

Number of Channels : 802.11b/g/n (20MHz):11

802.11n (40MHz): 7

Antenna Gain : 2dBi

Type of Antenna : Integral Antenna

Power Supply : DC 12V(Powered by Adapter)

Adapter information : Model: SA-US12V

Input: AC 100-240V~60Hz 0.3A

Output: DC 12.0V 0.5A

Data Rate : 802.11b: 11, 5.5, 2, 1 Mbps

802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps

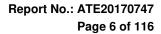
802.11n: up to 150Mbps

Modulation Type : DSSS, OFDM

Applicant : Chuango Security Technology Corporation

Address : Room 6-17, Overseas Students Pioneer Park, No.108,

Jiangbin East Road, Economic & Technological Development Zone, Fuzhou 350015, China.


Manufacturer : Chuango Security Technology Corporation

Address : Room 6-17, Overseas Students Pioneer Park, No.108,

Jiangbin East Road, Economic & Technological Development Zone, Fuzhou 350015, China.

Date of sample received: May 12, 2017

Date of Test : May 12, 2017-May 27, 2017

1.2. Carrier Frequency of Channels

802.11b, 802.11g, 802.11n (20MHz)

Channel	Frequency(MHz)	Channel	Frequency(MHz)
01	2412	07	2442
02	2417	08	2447
03	2422	09	2452
04	2427	10	2457
05	2432	11	2462
06	2437		

802.11n (40MHz)

Channel	Frequency(MHz)	Channel	Frequency(MHz)
		07	2442
		08	2447
03	2422	09	2452
04	2427		
05	2432		
06	2437		

1.3. Accessory and Auxiliary Equipment

PC Manufacturer: LENOVO

M/N: 4290-RT8

S/N: R9-FW93G 11/08

Report No.: ATE20170747

Page 7 of 116

1.4.Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

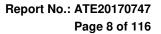
Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.5. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2


(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 07, 2017	1 Year
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 07, 2017	1 Year
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 07, 2017	1 Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 07, 2017	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 07, 2017	1 Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 13, 2017	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 13, 2017	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 13, 2017	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 13, 2017	1 Year
Open Switch and Control Unit	Rohde&Schwarz	OSP120 + OSP-B157	101244 + 100866	Jan. 07, 2017	1 Year
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 07, 2017	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 07, 2017	1 Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 07, 2017	1 Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 07, 2017	1 Year

Page 9 of 116

3. OPERATION OF EUT DURING TESTING

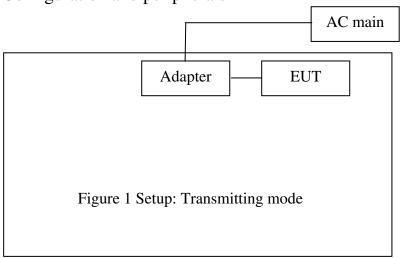
3.1. Operating Mode

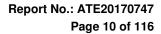
The mode is used: 1.802.11b Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

2.802.11g Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz


3.802.11n (20MHz) Transmitting mode

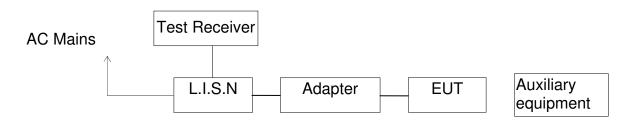

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

4.802.11n (40MHz) Transmitting mode

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

3.2. Configuration and peripherals

4. TEST PROCEDURES AND RESULTS


FCC Rules	Description of Test	Result
Section 15.207	Power Line Conducted Emission	Compliant
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
KDB558074 D01 DTS Meas Guidance v04	Duty cycle	Compliant
KDB558074 D01 DTS Meas Guidance v04	OBW	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.247(d) Section 15.209	Radiated Spurious Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

5. POWER LINE CONDUCTED MEASUREMENT

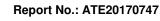
5.1.Block Diagram of Test Setup

(EUT: K1 SMARTHOME DIY KIT)

5.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit $dB(\mu V)$			
(MHz)	Quasi-peak Level	Average Level		
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *		
0.50 - 5.00	56.0	46.0		
5.00 - 30.00	60.0	50.0		

NOTE1: The lower limit shall apply at the transition frequencies.


NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

5.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

Page 12 of 116

5.5.Test Procedure

The EUT is put on the plane 0.8 m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

5.6. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15B

K1 SMARTHOME DIY KIT M/N:K1

Manufacturer: CHUANGO

Operating Condition: WIFI OPERATION Test Site: 1#Shielding Room

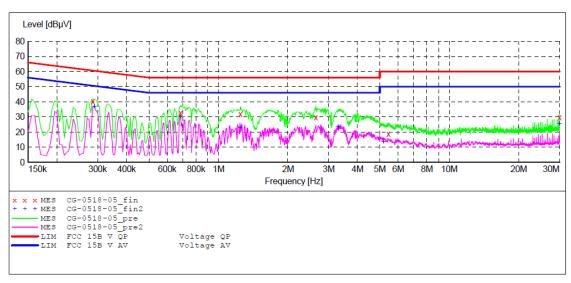
Operator: DING

Test Specification: L 240V/60Hz

Comment: Report NO.:ATE20170747 Start of Test: 5/18/2017 / 5:30:17PM

SCAN TABLE: "V 9K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

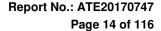

Start Stop Step
Frequency Frequency Width
9.0 kHz 150.0 kHz 100.0 Hz Detector Meas. IF
Time Bandw. Transducer

QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average



MEASUREMENT RESULT: "CG-0518-05 fin"

5/18/2017 Frequen			Limit dBµV	Margin dB	Detector	Line	PE
0.2850	00 40.10	10.6	60.7	20.6	QP	L1	GND
0.6850	00 32.50	10.8	56	23.5	QP	L1	GND
1.2450	00 31.70	10.9	56	24.3	QP	L1	GND
2.6400	00 29.80	11.0	56	26.2	QP	L1	GND
5.4500	00 18.90	11.2	60	41.1	QP	L1	GND
30.0000	00 29.80	11.5	60	30.2	QP	L1	GND

MEASUREMENT RESULT: "CG-0518-05 fin2"

5/18/2017 5 Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.290000 0.685000 1.240000 3.300000 5.180000	30.00 23.00 23.60 13.70	10.6 10.8 10.9 11.1 11.2 11.5	50.5 46 46 46 50	13.4 16.0 23.0 22.4 36.3 24.4	AV AV AV AV AV	L1 L1 L1 L1 L1	GND GND GND GND GND GND

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: K1 SMARTHOME DIY KIT M/N:K1

Manufacturer: CHUANGO

Operating Condition: WIFI OPERATION 1#Shielding Room Test Site:

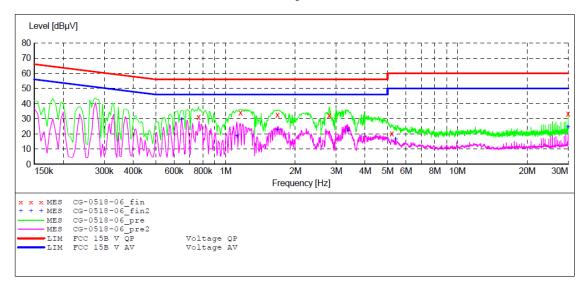
Operator: DING

Test Specification: N 240V/60Hz

Report NO.:ATE20170747 5/18/2017 / 5:41:35PM Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin" Short Description: SU

SUB STD VTERM2 1.70


Detector Meas. IF Time Bandw. Start Stop Step Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz Start Step Transducer

QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz 9 kHz NSLK8126 2008 QuasiPeak 1.0 s

Average

MEASUREMENT RESULT: "CG-0518-06 fin"

5,	/18/2017 5:4							
	Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.765000	31.00	10.8	56	25.0	QP	N	GND
	1.160000	34.00	10.9	56	22.0	QP	N	GND
	1.675000	32.70	10.9	56	23.3	QP	N	GND
	2.800000	32.20	11.0	56	23.8	QP	N	GND
	5.210000	20.20	11.2	60	39.8	QP	N	GND
	30.000000	33.30	11.5	60	26.7	OP	N	GND

MEASUREMENT RESULT: "CG-0518-06 fin2"

5/18/2017 5: Frequency MHz	42PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.645000 1.120000 1.675000 3.360000 5.410000 30.000000	29.80 18.80 22.80 22.50 16.50 24.60	10.8 10.9 10.9 11.1 11.2 11.5	46 46 46 46 50	23.2	AV AV AV AV AV	N N N N N	GND GND GND GND GND GND

CONDUCTED EMISSION STANDARD FCC PART 15B

EUT: K1 SMARTHOME DIY KIT M/N:K1

Manufacturer: CHUANGO

Operating Condition: WIFI OPERATION Test Site: 1#Shielding Room

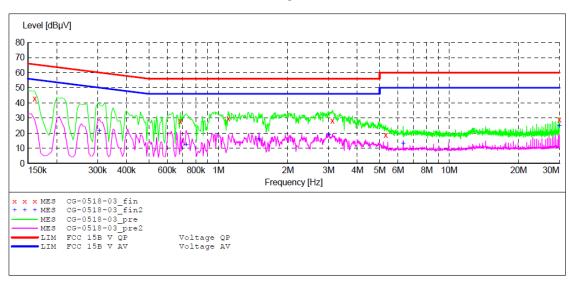
Operator: DING

Test Specification: N 120V/60Hz

Report NO.:ATE20170747 5/18/2017 / 5:13:43PM Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin"

Short Description: SUB STD VTERM2 1.70


Detector Meas. IF
Time Bandw. Start Stop Step Frequency Frequency Width 9.0 kHz 150.0 kHz 100.0 Hz Step Transducer

Time QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 9 kHz NSLK8126 2008 5.0 kHz QuasiPeak 1.0 s

Average

MEASUREMENT RESULT: "CG-0518-03 fin"

5/18/2017 Frequenc MH	y Level	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.16000	0 42.90	10.5	65.5	22.6	OP	N	GND
0.68500		10.8	56	28.1	OP	N	GND
1.10500	0 29.80	10.9	56	26.2	QP	N	GND
3.12000	0 28.20	11.1	56	27.8	QP	N	GND
5.31000	0 18.90	11.2	60	41.1	QP	N	GND
30.00000	0 29.00	11.5	60	31.0	OP	N	GND

MEASUREMENT RESULT: "CG-0518-03 fin2"

5/18/2017 5: Frequency MHz	17PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.305000	21.80	10.6	50.1	28.3	AV	N	GND
0.725000	12.50	10.8	46	33.5	AV	N	GND
1.500000	16.30	10.9	46	29.7	AV	N	GND
3.000000	19.00	11.1	46	27.0	AV	N	GND
6.320000	13.30	11.2	50	36.7	AV	N	GND
30.000000	25.00	11.5	50	25.0	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15B

K1 SMARTHOME DIY KIT M/N:K1

Manufacturer: CHUANGO

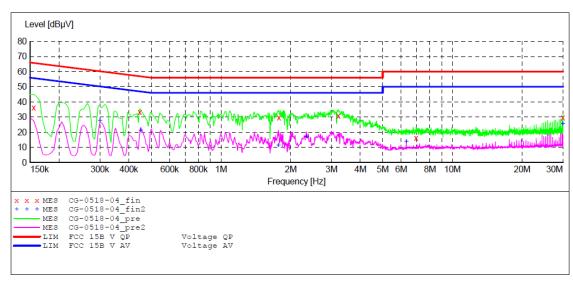
Operating Condition: WIFI OPERATION Test Site: 1#Shielding Room Operator: DING

Test Specification: L 120V/60Hz

Report NO.:ATE20170747 5/18/2017 / 5:18:00PM Comment: Start of Test:

SCAN TABLE: "V 9K-30MHz fin"

SUB STD VTERM2 1.70 Short Description:


Detector Meas. IF Time Bandw. Start Stop Step Transducer

Frequency Frequency Width
9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "CG-0518-04 fin"

5/18/2017 Frequen			Limit dBµV	Margin dB	Detector	Line	PE
0.1550	000 36.10	10.5	65.7	29.6	QP	L1	GND
0.4450	000 33.40	10.7	57	23.6	QP	L1	GND
1.7800	000 29.70	11.0	56	26.3	QP	L1	GND
3.2100	30.80	11.1	56	25.2	QP	L1	GND
6.9600	000 16.40	11.2	60	43.6	QP	L1	GND
30.0000	000 29.80	11.5	60	30.2	OP	L1	GND

MEASUREMENT RESULT: "CG-0518-04 fin2"

5/18/2017 5 Frequency MHz	:21PM Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.300000	27.90	10.6	50.2	22.3	AV	L1	GND
0.450000	21.40	10.7	47	25.5	AV	L1	GND
1.770000	11.60	11.0	46	34.4	AV	L1	GND
2.340000	17.40	11.0	46	28.6	AV	L1	GND
6.320000	13.90	11.2	50	36.1	AV	L1	GND
30.000000	25.80	11.5	50	24.2	AV	L1	GND

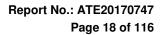
6. 6DB BANDWIDTH MEASUREMENT

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.247(a)(2)

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

6.3.EUT Configuration on Measurement


The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

6.5. Test Procedure

- 1. Set resolution bandwidth (RBW) = 100 kHz.
- 2. Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.6.Test Result

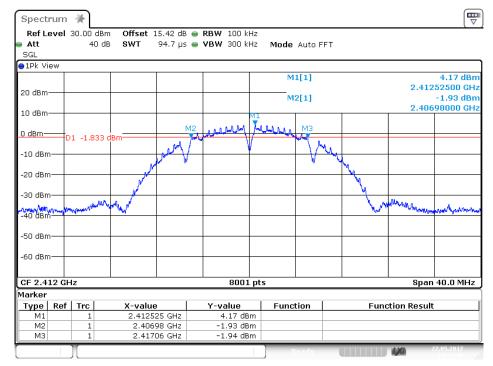
The test was performed with 802.11b					
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)		
Low	2412	10.080	> 0.5MHz		
Middle	2437	10.070	> 0.5MHz		
High	2462	10.075	> 0.5MHz		

The test was performed with 802.11g					
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Limit (MHz)		
Low	2412	16.560	> 0.5MHz		
Middle	2437	16.555	> 0.5MHz		
High	2462	16.560	> 0.5MHz		

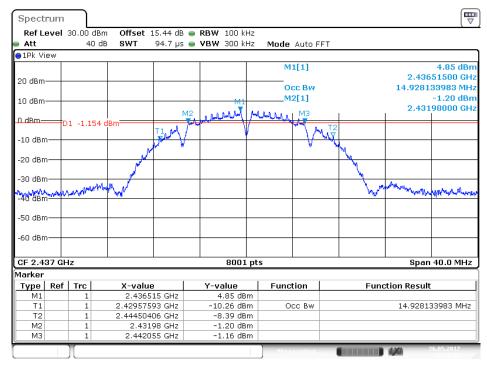
The test was performed with 802.11n (Bandwidth: 20 MHz)					
Channel Frequency (MHz) 6dB Bandwidth Limit (MHz) (MHz)					
Low	2412	17.630	> 0.5MHz		
Middle	2437	17.625	> 0.5MHz		
High	2462	17.625	> 0.5MHz		

The test was performed with 802.11n (Bandwidth: 40 MHz)					
Channel Frequency (MHz) 6dB Bandwidth Limit (MHz) (MHz)					
Low	2422	36.410	> 0.5MHz		
Middle	2437	36.430	> 0.5MHz		
High	2452	36.410	> 0.5MHz		

The spectrum analyzer plots are attached as below.



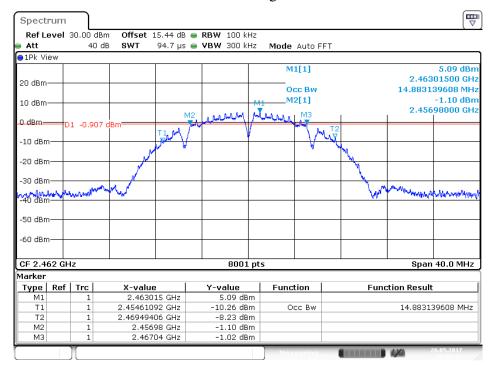
Page 19 of 116

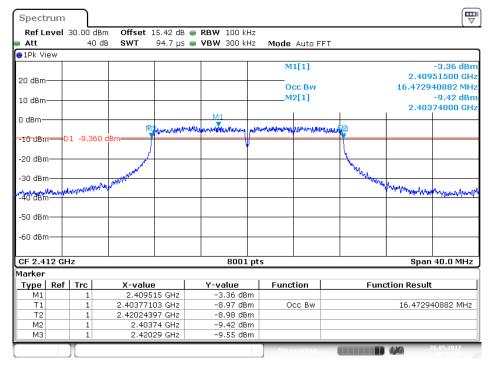

6dB Bandwidth

802.11b Channel Low 2412MHz

Date: 27.MAY.2017 10:11:41

802.11b Channel Middle 2437MHz

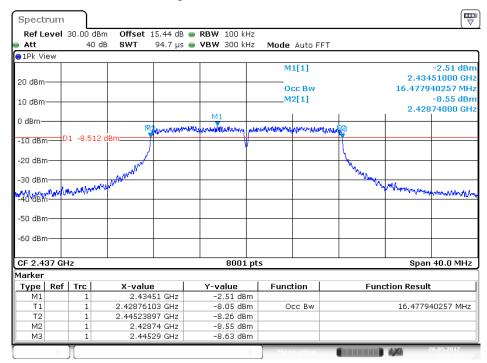

Date: 26.MAY.2017 16:59:02

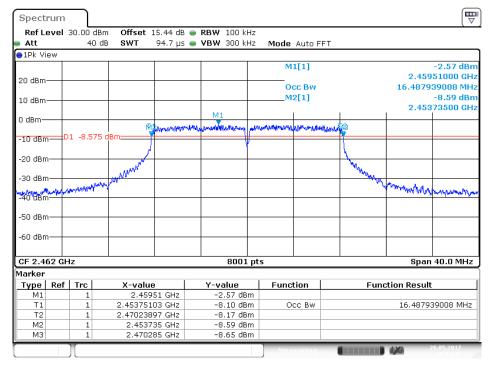

Page 20 of 116

802.11b Channel High 2462MHz

Date: 26.MAY.2017 17:03:32

802.11g Channel Low 2412MHz

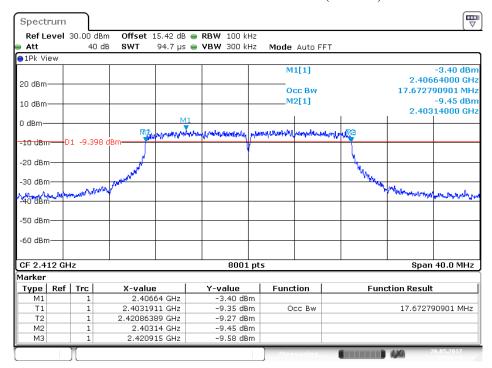

Date: 26.MAY.2017 17:07:22

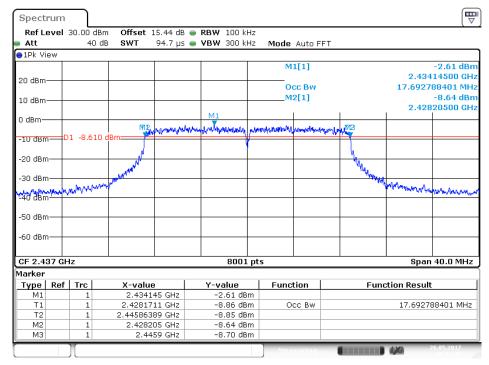

Page 21 of 116

802.11g Channel Middle 2437MHz

Date: 26.MAY.2017 17:06:13

802.11g Channel High 2462MHz

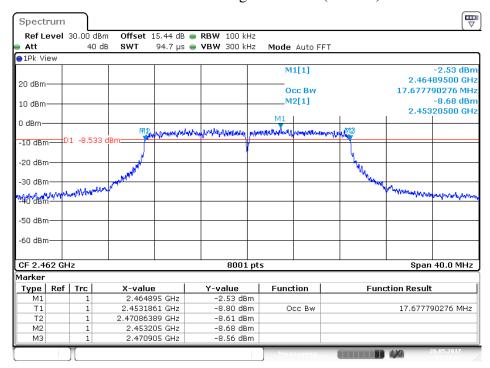

Date: 26.MAY.2017 17:04:42

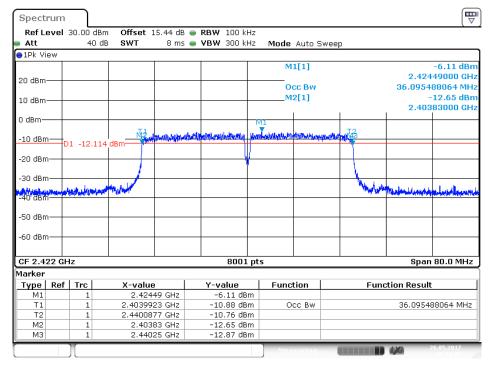

Page 22 of 116

802.11n Channel Low 2412MHz (20MHz)

Date: 26.MAY.2017 17:09:34

802.11n Channel Middle 2437MHz(20MHz)

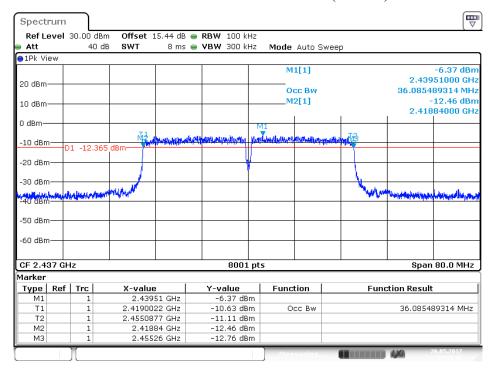

Date: 26.MAY.2017 17:10:48

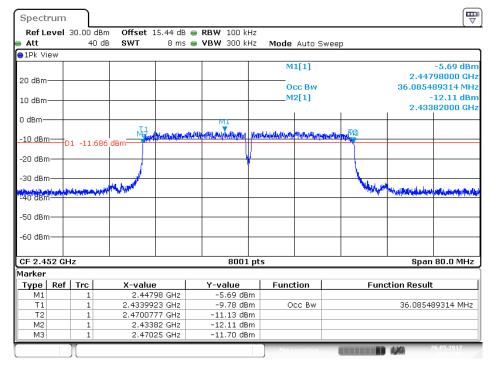

Page 23 of 116

802.11n Channel High 2462MHz(20MHz)

Date: 26.MAY.2017 17:11:52

802.11n Channel Low 2422MHz (40MHz)


Date: 26.MAY.2017 17:14:09


Page 24 of 116

802.11n Channel Middle 2437MHz(40MHz)

Date: 26.MAY.2017 17:15:42

802.11n Channel High 2452MHz(40MHz)

Date: 26.MAY.2017 17:17:07

Report No.: ATE20170747

Page 25 of 116

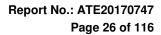
7. DUTY CYCLE MEASUREMENT

7.1.Block Diagram of Test Setup

7.2.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.3. Operating Condition of EUT


- 7.3.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.3.2.Turn on the power of all equipment.
- 7.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

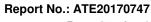
7.4.Test Procedure

Measurements of duty cycle and transmission duration shall be performed using one of the following techniques:

- 1. A diode detector and an oscilloscope that together have sufficiently short response time to permit accurate measurements of the on- and off-times of the transmitted signal.
- 2. The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on- and off-times of the transmitted signal
- a. Set the center frequency of the instrument to the centre frequency of the transmission
- b. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value(10MHz).
- c. Set detector = Peak or average.
- d. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

(For example, if VBW and/or RBW are limited to 3MHz, then the zero-span method of measuring duty cycle shall not be used if $T \le 16.7$ microseconds.)

7.5.Test Result

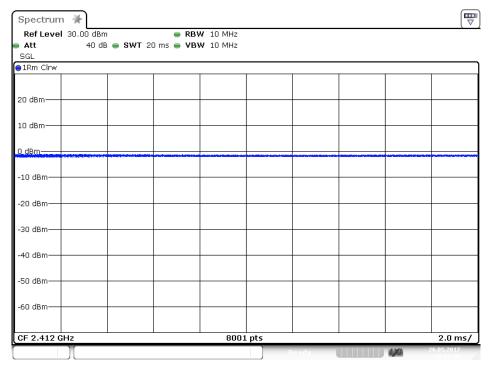

The test was performed with 802.11b				
Channel	Frequency (MHz)	duty cycle(x)	10log(1/x)	
Low	2412	100%	0	
Middle	2437	100%	0	
High	2462	100%	0	

The test was performed with 802.11g				
Channel	Frequency (MHz)	duty cycle(x)	10log(1/x)	
Low	2412	100%	0	
Middle	2437	100%	0	
High	2462	100%	0	

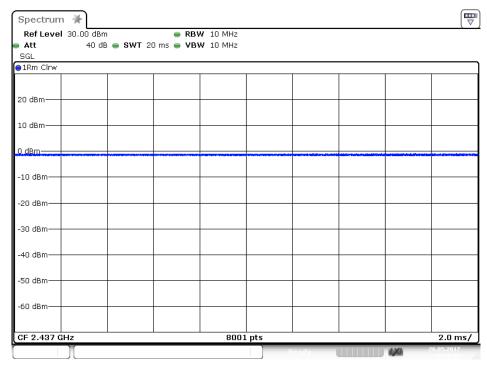
The test was performed with 802.11n (Bandwidth: 20 MHz)					
Channel Frequency (MHz) duty cycle(x) 10log(1/x)					
Low	2412	100%	0		
Middle	2437	100%	0		
High	2462	100%	0		

The test was performed with 802.11n (Bandwidth: 40 MHz)					
Channel Frequency (MHz) duty cycle(x) 10log(1/x)					
Low	2422	100%	0		
Middle	2437	100%	0		
High	2452	100%	0		

The spectrum analyzer plots are attached as below.



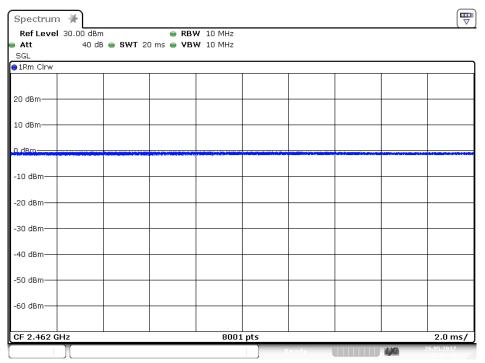
Page 27 of 116

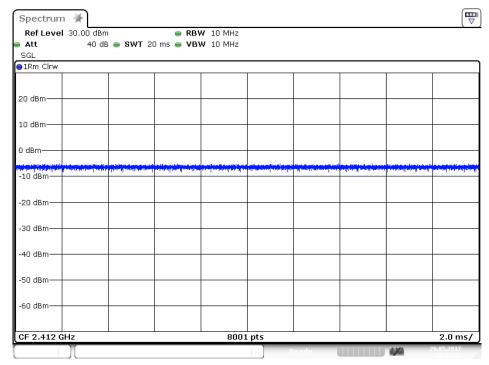

duty cycle

802.11b Channel Low 2412MHz

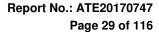
Date: 26.MAY.2017 17:01:46

802.11b Channel Middle 2437MHz


Date: 26.MAY.2017 16:59:10

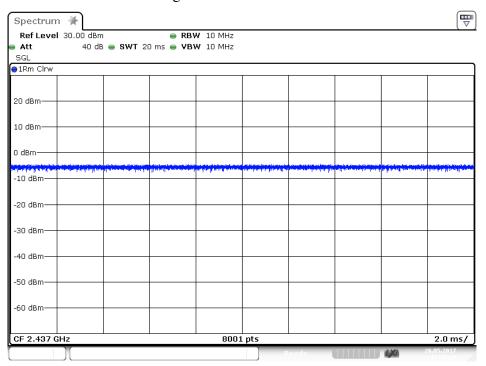

Page 28 of 116

802.11b Channel High 2462MHz

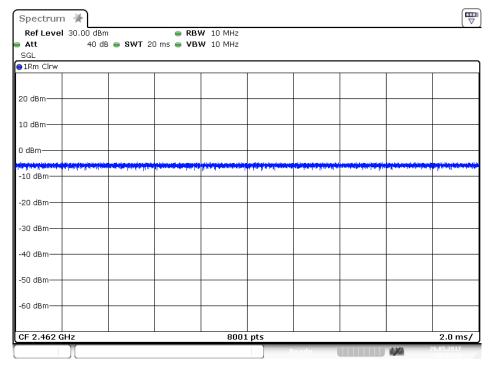


Date: 26.MAY.2017 17:03:40

802.11g Channel Low 2412MHz



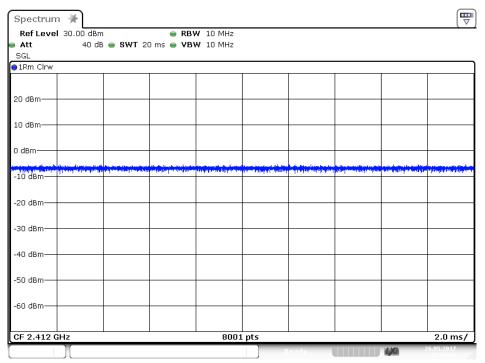
Date: 26.MAY.2017 17:07:30

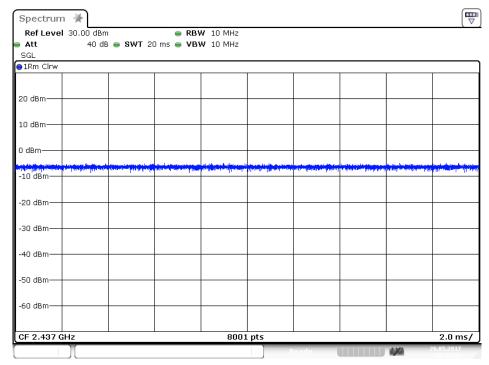


802.11g Channel Middle 2437MHz

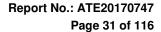
Date: 26.MAY.2017 17:06:20

802.11g Channel High 2462MHz


Date: 26.MAY.2017 17:04:50

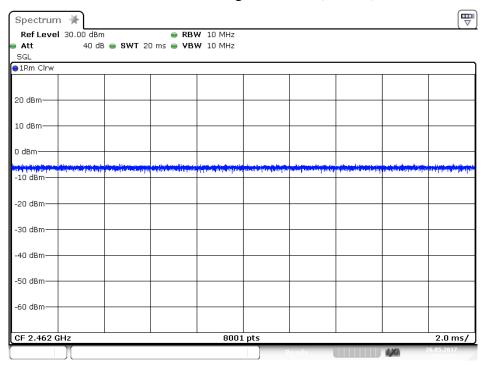

Page 30 of 116

802.11n Channel Low 2412MHz (20MHz)

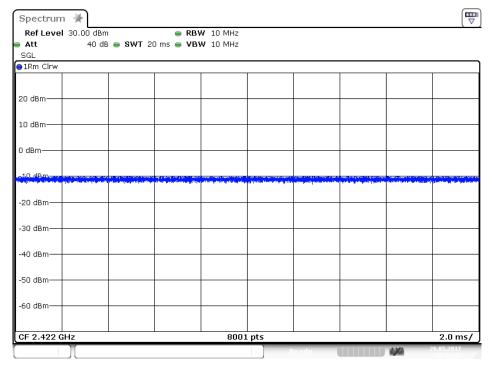


Date: 26.MAY.2017 17:09:42

802.11n Channel Middle 2437MHz(20MHz)



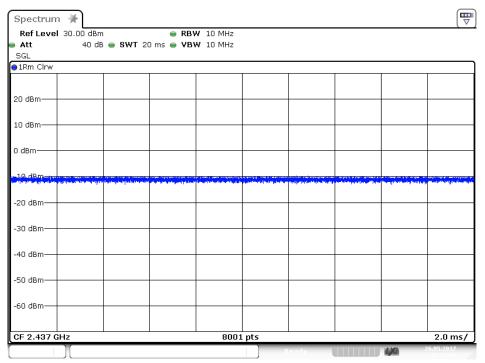
Date: 26.MAY.2017 17:10:56

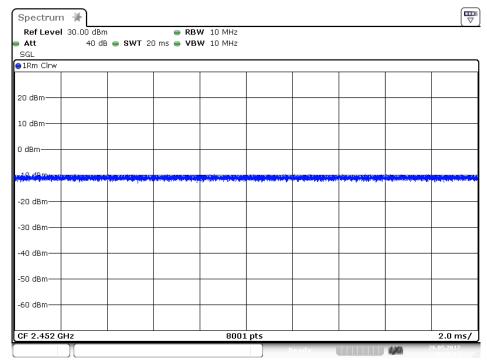


802.11n Channel High 2462MHz(20MHz)

Date: 26.MAY.2017 17:12:00

802.11n Channel Low 2422MHz (40MHz)


Date: 26.MAY.2017 17:14:17


Page 32 of 116

802.11n Channel Middle 2437MHz(40MHz)

Date: 26.MAY.2017 17:15:50

802.11n Channel High 2452MHz(40MHz)

Date: 26.MAY.2017 17:17:14

Report No.: ATE20170747 Page 33 of 116

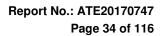
8. MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER

8.1.Block Diagram of Test Setup

8.2. The Requirement For Section 15.247(b)(3)

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

8.3.EUT Configuration on Measurement


The equipment is installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

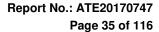
- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

8.5.Test Procedure

- 8.5.1.The EUT was tested according to DTS test procedure of Apr 05, 2017 KDB5580 74 D01 DTS Meas Guidance v04 for compliance to FCC 47CFR 15.247 requirements.
- 8.5.2. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.3.Set RBW = 1-5% of the OBW, not to exceed 1 MHz, VBW \geq 3 x RBW, Sweep time = auto, Set span to at least 1.5 times the OBW, Detector = RMS.
- 8.5.4. Measurement the Maximum conducted (average) output power.

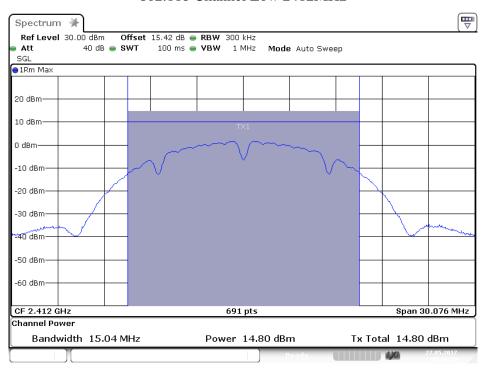
8.6.Test Result

Final power= Ave output power+10log(1/ duty cycle)

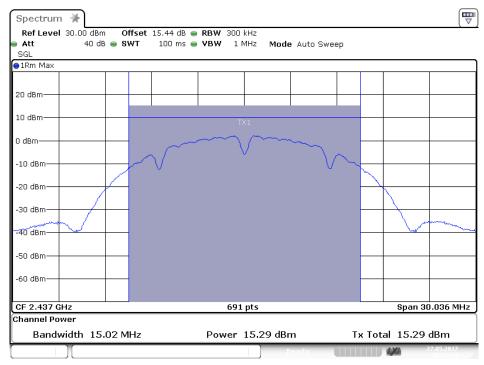

The test was performed with 802.11b							
Channel	Frequency (MHz)	Ave output power (dBm)	10log(1/ duty cycle)	Final power (dBm)	Final power (mW)	Limits dBm / W	
Low	2412	14.80	0	14.80	30.20	30 dBm / 1 W	
Middle	2437	15.29	0	15.29	33.81	30 dBm / 1 W	
High	2462	15.47	0	15.47	35.24	30 dBm / 1 W	

The test was performed with 802.11g							
Channel	Frequency (MHz)	Ave output power (dBm)	10log(1/ duty cycle)	Final power (dBm)	Final power (mW)	Limits dBm / W	
Low	2412	10.67	0	10.67	11.67	30 dBm / 1 W	
Middle	2437	11.16	0	11.16	13.06	30 dBm / 1 W	
High	2462	11.15	0	11.15	13.03	30 dBm / 1 W	

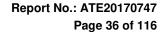
The test was performed with 802.11n (20MHz)							
Channel	Frequency (MHz)	Ave output power (dBm)	10log(1/ duty cycle)	Final power (dBm)	Final power (mW)	Limits dBm / W	
Low	2412	10.67	0	10.67	11.67	30 dBm / 1 W	
Middle	2437	11.12	0	11.12	12.94	30 dBm / 1 W	
High	2462	11.30	0	11.30	13.49	30 dBm / 1 W	


The test was performed with 802.11n (40MHz)							
Channel	Frequency (MHz)	Ave output power (dBm)	10log(1/ duty cycle)	Final power (dBm)	Final power (mW)	Limits dBm / W	
Low	2422	9.14	0	9.14	8.20	30 dBm / 1 W	
Middle	2437	9.40	0	9.40	8.71	30 dBm / 1 W	
High	2452	9.18	0	9.18	8.28	30 dBm / 1 W	

The spectrum analyzer plots are attached as below.

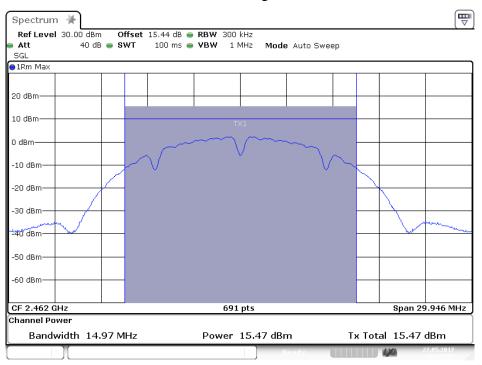


802.11b Channel Low 2412MHz

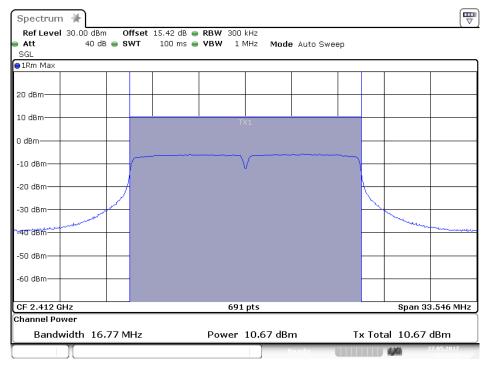


Date: 27.MAY.2017 10:11:56

802.11b Channel Middle 2437MHz



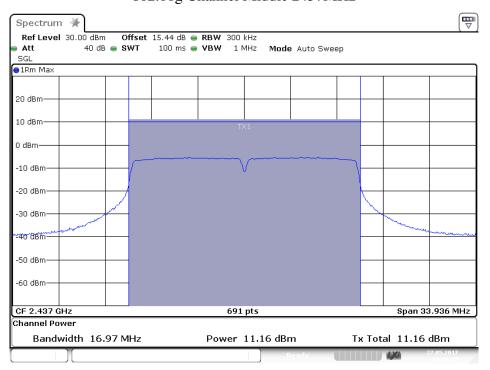
Date: 27.MAY.2017 10:15:39



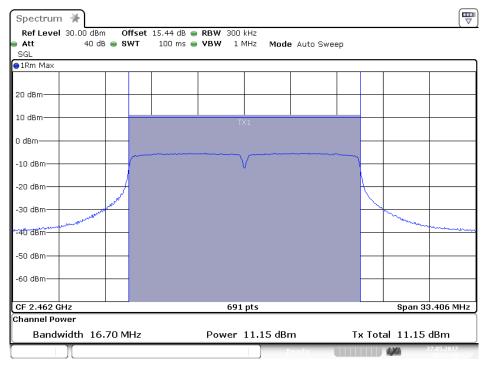
802.11b Channel High 2462MHz

Date: 27.MAY.2017 10:18:00

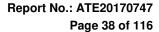
802.11g Channel Low 2412MHz



Date: 27.MAY.2017 10:23:19

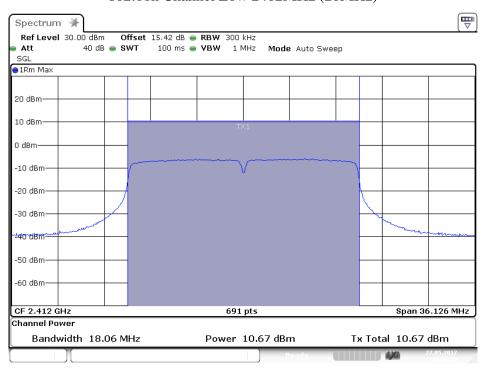


802.11g Channel Middle 2437MHz

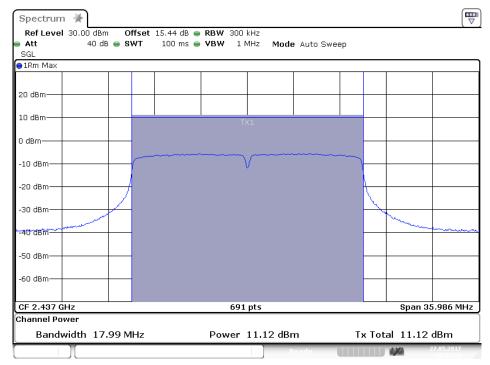


Date: 27.MAY.2017 10:21:45

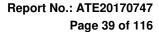
802.11g Channel High 2462MHz



Date: 27.MAY.2017 10:19:46

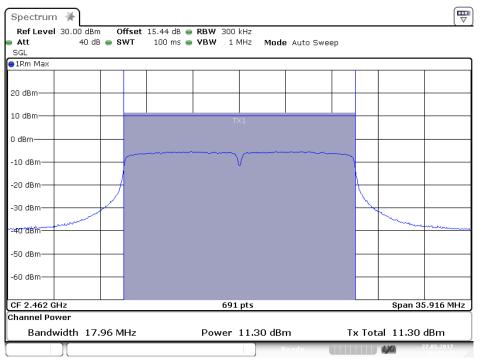


802.11n Channel Low 2412MHz (20MHz)

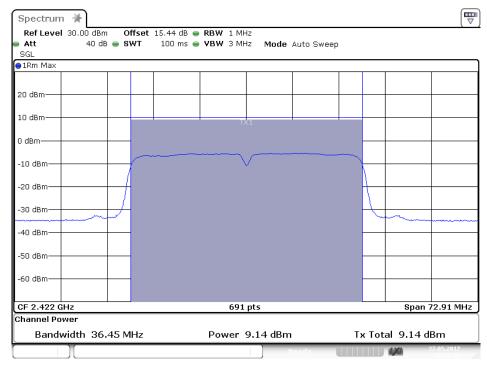


Date: 27.MAY.2017 10:25:06

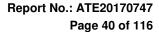
802.11n Channel Middle 2437MHz (20MHz)



Date: 27.MAY.2017 10:26:50

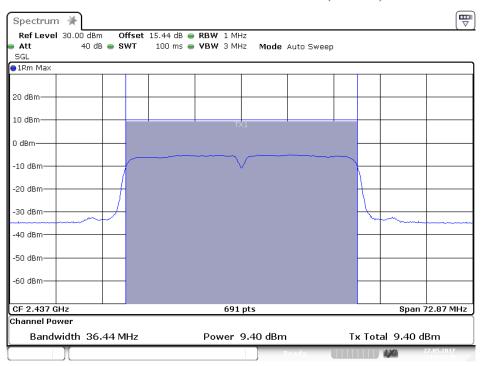


802.11n Channel High 2462MHz (20MHz)

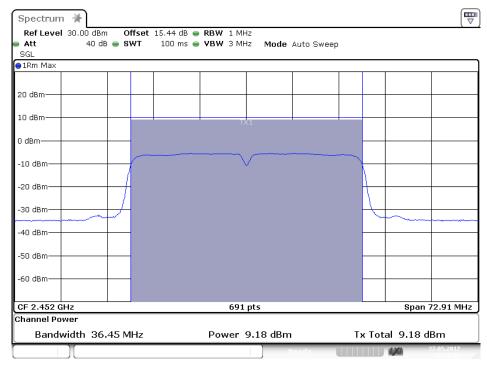


Date: 27.MAY.2017 10:28:26

802.11n Channel Low 2422MHz (40MHz)



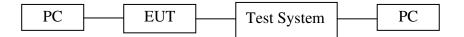
Date: 27.MAY.2017 10:33:36



802.11n Channel Middle 2437MHz (40MHz)

Date: 27.MAY.2017 10:31:45

802.11n Channel High 2452MHz (40MHz)


Date: 27.MAY.2017 10:30:28

Report No.: ATE20170747 Page 41 of 116

9. POWER SPECTRAL DENSITY MEASUREMENT

9.1.Block Diagram of Test Setup

9.2. The Requirement For Section 15.247(e)

Section 15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2.Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

9.5.Test Procedure

9.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.

9.5.2.Measurement Procedure AVGPSD-2:

This procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., duty cycle < 98%), and when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty is constant (i.e., duty cycle variations are less than $\pm 2\%$):

Measure the dyty cycle(x) of the transmitter output signal as described in Section 6.0.

Page 42 of 116

Set instrument center frequency to DTS channel center frequency.

Set span to at least $1.5 \times OBW$.

Set RBW to: $3kHz \le RBW \le 100kHz$.

Set $VBW \ge 3 \times RBW$

Detector=power averaging(RMS) or sample detector(when RMS not available).

Ensure that the number of measurement points in sweep $\geq 2 \times \text{span/RBW}$.

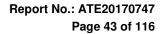
Sweep time=auto couple.

Do not use sweep triggering. Allow sweep to "free run".

Employ trace averaging(RMS) mode over a minimum of 100 traces.

Use the peak maker function to determine the maximum amplitude level.

Add $10\log(1/x)$, where x is the duty cycle measured in step(a, to the measured PSD to compute the average PSD during the actual transmission time.

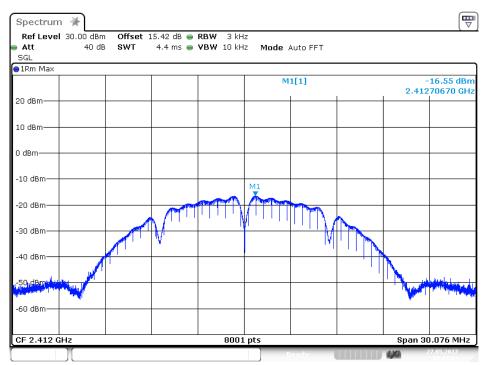

If resultant value exceeds the limit, then reduce RBW(no less than 3kHz) and repeat(note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

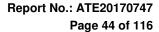
9.6.Test Result

The test was performed with 802.11b									
Channel Frequency (MHz) AVG Power Spectral Density (dBm) 10log(1/ duty cycle) Final Power Spectral Density (dBm) Lim (dBm)									
Low	2412	-16.55	0	-16.55	8 dBm				
Middle	2437	-15.98	0	-15.98	8 dBm				
High	2462	-15.84	0	-15.84	8 dBm				

The test was performed with 802.11g									
Channel Frequency (MHz) AVG Power Spectral Density (dBm) 10log(1/ duty Spectral Power Spectral Density (dBm) Spectral Density (dBm)									
Low	2412	-19.19	0	-19.19	8 dBm				
Middle	2437	-18.78	0	-18.78	8 dBm				
High	2462	-18.66	0	-18.66	8 dBm				

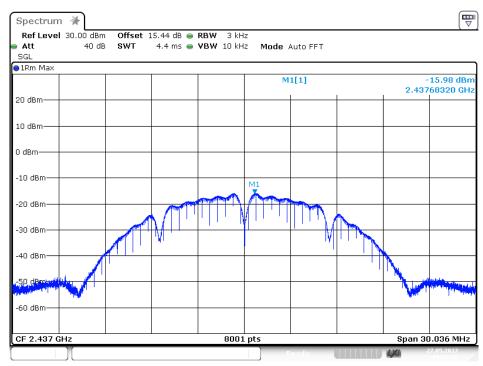
The test was performed with 802.11n (20MHz)									
Channel Frequency (MHz) AVG Power Spectral Density (dBm) 10log(1/ duty cycle) Final Power Spectral Density (dBm) Limits (dBm)									
Low	2412	-18.88	0	-18.88	8 dBm				
Middle	2437	-18.45	0	-18.45	8 dBm				
High	2462	-18.55	0	-18.55	8 dBm				



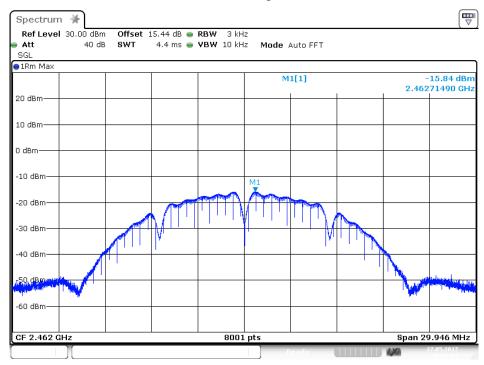

The test was performed with 802.11n (40MHz)								
Channel Frequency (MHz) AVG Power Spectral Density (dBm) 10log(1/ duty Spectral Density Cycle) Spectral Density (dBm)								
Low	2422	-23.45	0	-23.45	8 dBm			
Middle	2437	-23.09	0	-23.09	8 dBm			
High	2452	-23.68	0	-23.68	8 dBm			

The spectrum analyzer plots are attached as below.

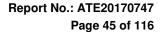
802.11b Channel Low 2412MHz



Date: 27.MAY.2017 10:12:04

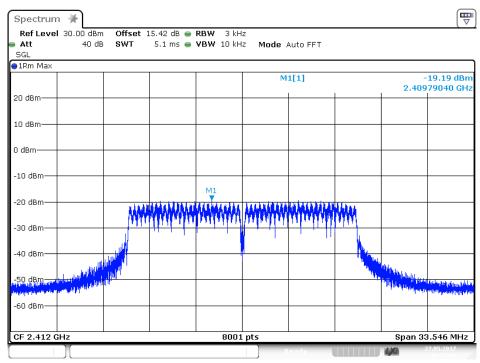


802.11b Channel Middle 2437MHz

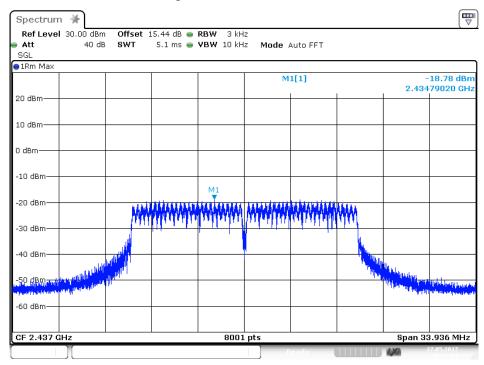


Date: 27.MAY.2017 10:15:47

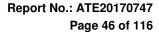
802.11b Channel High 2462MHz



Date: 27.MAY.2017 10:18:07

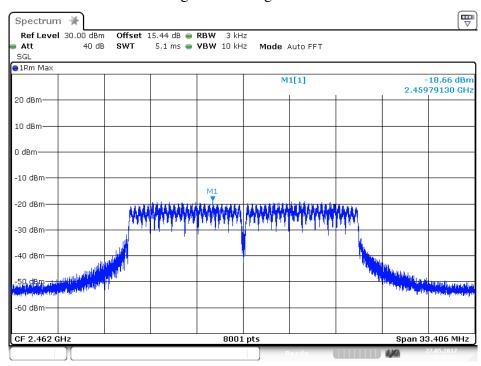


802.11g Channel Low 2412MHz

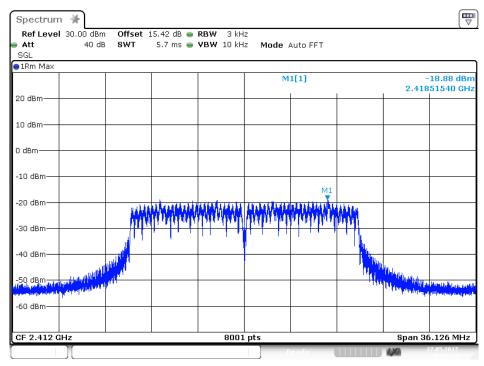


Date: 27.MAY.2017 10:23:26

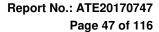
802.11g Channel Middle 2437MHz



Date: 27.MAY.2017 10:21:53

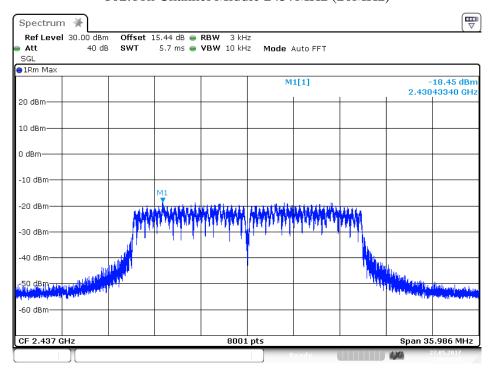


802.11g Channel High 2462MHz

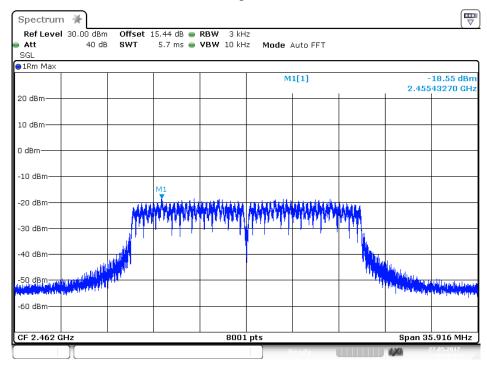


Date: 27.MAY.2017 10:19:54

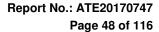
802.11n Channel Low 2412MHz (20MHz)



Date: 27.MAY.2017 10:25:14

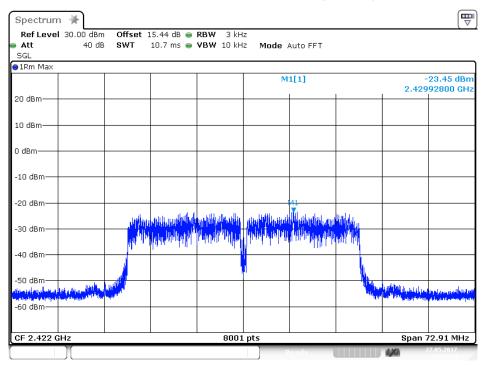


802.11n Channel Middle 2437MHz (20MHz)

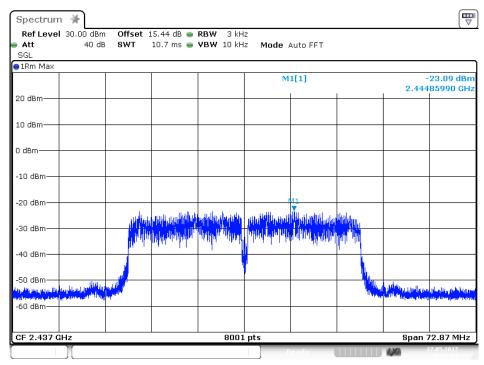


Date: 27.MAY.2017 10:26:58

802.11n Channel High 2462MHz(20MHz)



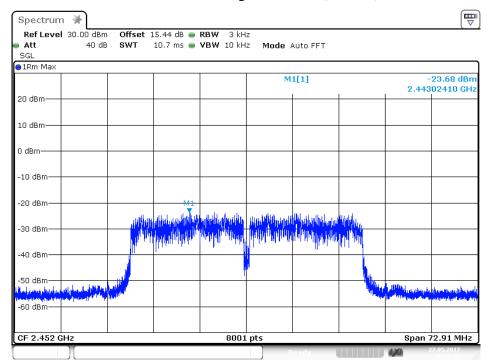
Date: 27.MAY.2017 10:28:33



802.11n Channel Low 2422MHz (40MHz)

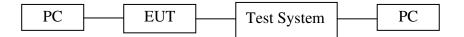
Date: 27.MAY.2017 10:33:44

802.11n Channel Middle 2437MHz(40MHz)


Date: 27.MAY.2017 10:31:53

Page 49 of 116

802.11n Channel High 2452MHz(40MHz)


Date: 27.MAY.2017 10:30:36

Page 50 of 116

10.BAND EDGE COMPLIANCE TEST

10.1.Block Diagram of Test Setup

10.2. The Requirement For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

10.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

10.4. Operating Condition of EUT

- 10.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 10.4.2. Turn on the power of all equipment.
- 10.4.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHzMHz. We select 2412MHz, 2462MHz and 2422MHz, 2452MHz TX frequency to transmit.

10.5.Test Procedure

Conducted Band Edge:

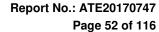
10.5.1. The transmitter output was connected to the spectrum analyzer via a low loss cable.

Page 51 of 116

10.5.2.Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

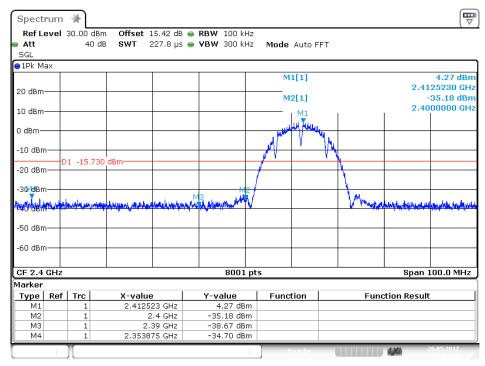
Radiate Band Edge:

- 10.5.3. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- 10.5.4. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 10.5.5.EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 10.5.6.Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
- 10.5.7.RBW=1MHz, VBW=1MHz
- 10.5.8. The band edges was measured and recorded.

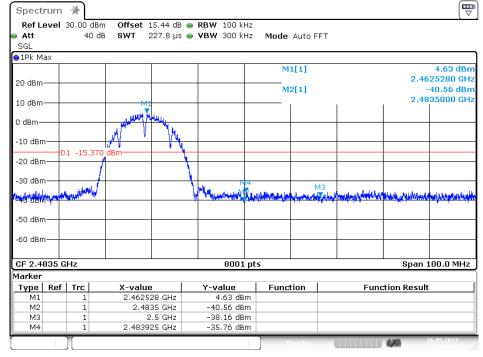

10.6.Test Result

The test was performed with 802.11b										
Frequency Result of Band Edge Limit of Band Edge										
(MHz)										
2400	39.45	> 20dBc								
2483.5	2483.5 45.19 > 20dBc									

The test was performed with 802.11g											
Frequency Result of Band Edge Limit of Band Edge											
(MHz)	(MHz) (dBc) (dBc)										
2400 34.94 > 20dBc											
2483.5	2483.5 35.06 > 20dBc										


The test was performed with 802.11n (20MHz)										
34.94	Result of Band Edge Limit of Band Edge (dBc) (dBc)									
35.06	31.03	> 20dBc								
2483.5	2483.5 38.55 > 20dBc									

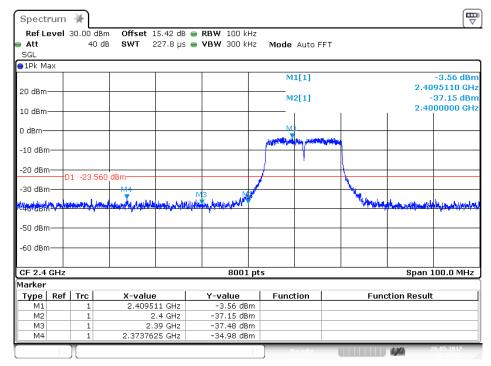
The test was performed with 802.11n (40MHz)									
Frequency Result of Band Edge Limit of Band Edge									
(MHz)	(dBc)	(dBc)							
2400	31.40	> 20dBc							
2483.5 32.46 > 20dBc									

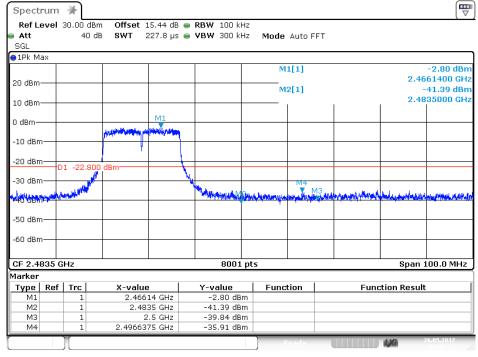


802.11b Channel Low 2412MHz

Date: 26.MAY.2017 17:02:09

802.11b Channel High 2462MHz

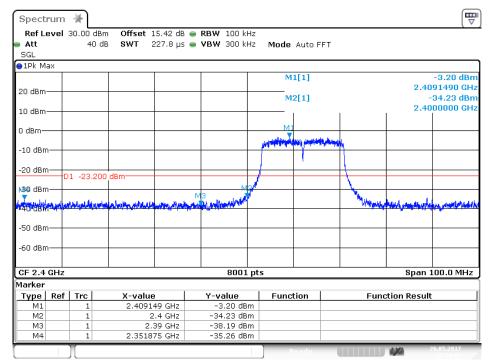

Date: 26.MAY.2017 17:04:03

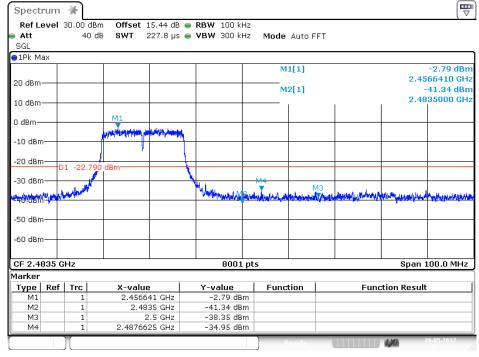

Page 53 of 116

802.11g Channel Low 2412MHz

Date: 26.MAY.2017 17:07:53

802.11g Channel High 2462MHz

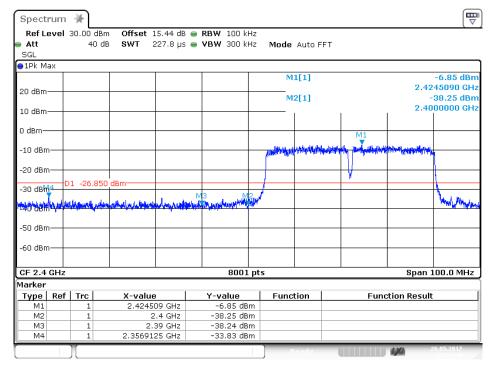

Date: 26.MAY.2017 17:05:13

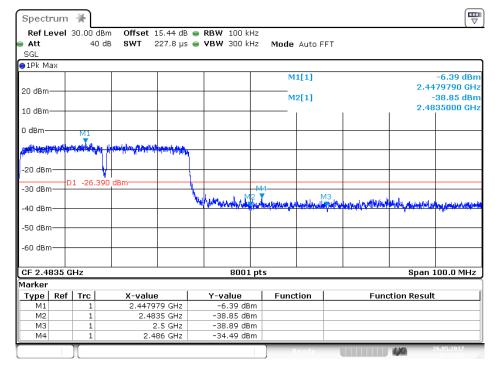

Page 54 of 116

802.11n Channel Low 2412MHz (20MHz)

Date: 26.MAY.2017 17:10:05

802.11n Channel High 2462MHz (20MHz)


Date: 26.MAY.2017 17:12:23


Page 55 of 116

802.11n Channel Low 2422MHz (40MHz)

Date: 26.MAY.2017 17:14:40

802.11n Channel High 2452MHz (40MHz)

Date: 26.MAY.2017 17:17:38

Page 56 of 116

Radiated Band Edge Result

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:
 - Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.

Test Procedure:

The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

Let the EUT work in TX modes then measure it. We select 2412MHz, 2462MHz TX frequency to transmit(802.11b/g/n20 mode). We select 2422MHz, 2452MHz TX frequency to transmit(802.11n40 mode).

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 2.The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 3.All modes of operation were investigated and the worst-case emissions are reported.

Page 57 of 116

Site: 2# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Horizontal

Power Source: AC 120V/60Hz

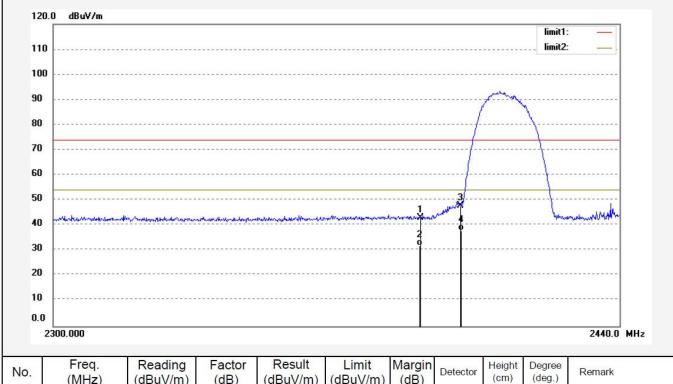
Date: 2017/05/18 Time: 9/10/14

Engineer Signature: star

Distance: 3m

Job No.: star2016 #2044 Standard: FCC PK

Test item: Radiation Test


Temp.(C)/Hum.(%) 23 C / 48 %

EUT: K1 SMARTHOME DIY KIT

Mode: TX Channel 1(802.11b)

Model: K1

Manufacturer: Chuango

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	6.26	36.73	42.99	74.00	-31.01	peak			
2	2390.000	-4.68	36.73	32.05	54.00	-21.95	AVG			
3	2400.000	10.99	36.78	47.77	74.00	-26.23	peak			
4	2400.000	1.27	36.78	38.05	54.00	-15.95	AVG			

Page 58 of 116

Site: 2# Chamber

Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Vertical

Power Source: AC 120V/60Hz

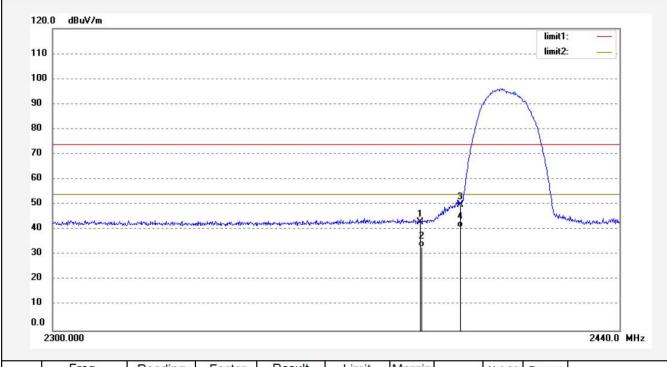
Date: 2017/05/18 Time: 9/11/14

Engineer Signature: star

Distance: 3m

Job No.: star2016 #2045

Standard: FCC PK
Test item: Radiation Test


Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: K1 SMARTHOME DIY KIT

Mode: TX Channel 1(802.11b)

Model: K1

Manufacturer: Chuango

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	6.33	36.73	43.06	74.00	-30.94	peak			
2	2390.000	-3.49	36.73	33.24	54.00	-20.76	AVG			
3	2400.000	13.24	36.78	50.02	74.00	-23.98	peak			
4	2400.000	4.27	36.78	41.05	54.00	-12.95	AVG			

Page 59 of 116

Site: 2# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

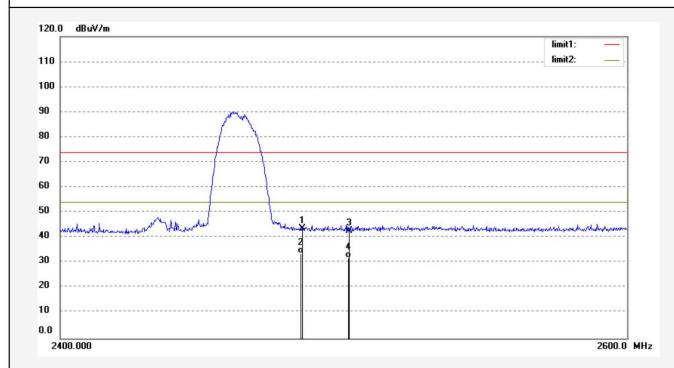
Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2017/05/18 Time: 9/08/32

Engineer Signature: star

Distance: 3m


Job No.: star2016 #2043 Standard: FCC PK Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: K1 SMARTHOME DIY KIT
Mode: TX Channel 11(802.11b)

Model: K1

Manufacturer: Chuango

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	6.66	37.13	43.79	74.00	-30.21	peak	8		
2	2483.500	-3.27	37.13	33.86	54.00	-20.14	AVG			
3	2500.000	5.68	37.20	42.88	74.00	-31.12	peak			
4	2500.000	-5.28	37.20	31.92	54.00	-22.08	AVG			

Page 60 of 116

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

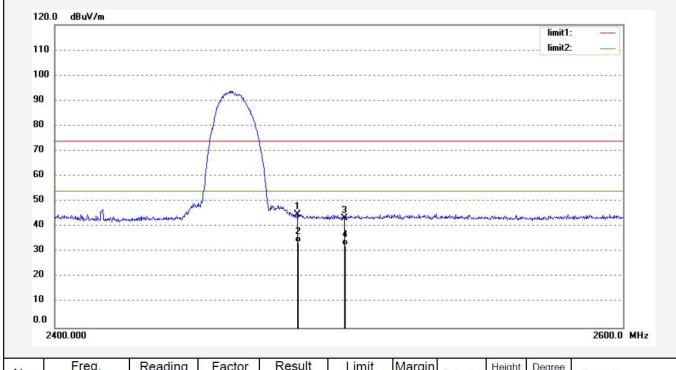
Tel:+86-0755-26503290 Fax:+86-0755-26503396

Site: 2# Chamber

Job No.: star2016 #2042 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz

Date: 2017/05/18 Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/07/33


K1 SMARTHOME DIY KIT EUT: Engineer Signature: star

Mode: TX Channel 11(802.11b) Distance: 3m

Model: K1

Manufacturer: Chuango

Test item: Radiation Test

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	7.65	37.13	44.78	74.00	-29.22	peak			
2	2483.500	-3.40	37.13	33.73	54.00	-20.27	AVG			
3	2500.000	6.04	37.20	43.24	74.00	-30.76	peak			
4	2500.000	-4.59	37.20	32.61	54.00	-21.39	AVG			

8

Report No.: ATE20170747 Page 61 of 116

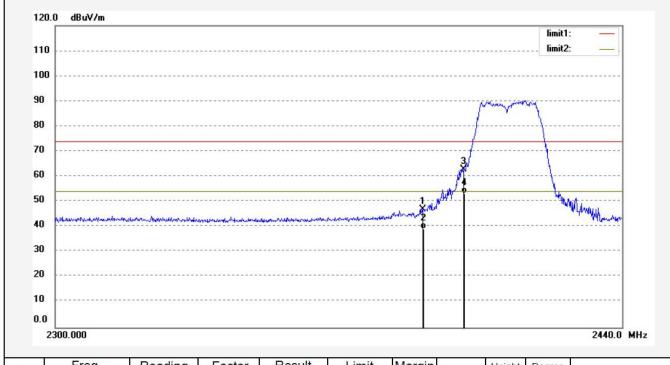
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2016 #2038 Polarization: Horizontal

Standard: FCC PK
Power Source: AC 120V/60Hz

 Test item:
 Radiation Test
 Date: 2017/05/18


 Temp.(C)/Hum.(%) 23 C / 48 %
 Time: 8/58/43

 EUT:
 K1 SMARTHOME DIY KIT
 Engineer Signatur

EUT: K1 SMARTHOME DIY KIT Engineer Signature: star Mode: TX Channel 1(802.11g) Distance: 3m

Model: K1

Manufacturer: Chuango

No.	Freq.	Reading	Factor	Result		Margin	Detector	Height (cm)	Degree (deg.)	Remark
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		(CIII)	(deg.)	
1	2390.000	10.32	36.73	47.05	74.00	-26.95	peak			
2	2390.000	2.39	36.73	39.12	54.00	-14.88	AVG			
3	2400.000	26.06	36.78	62.84	74.00	-11.16	peak			
4	2400.000	16.34	36.78	53.12	54.00	-0.88	AVG			

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

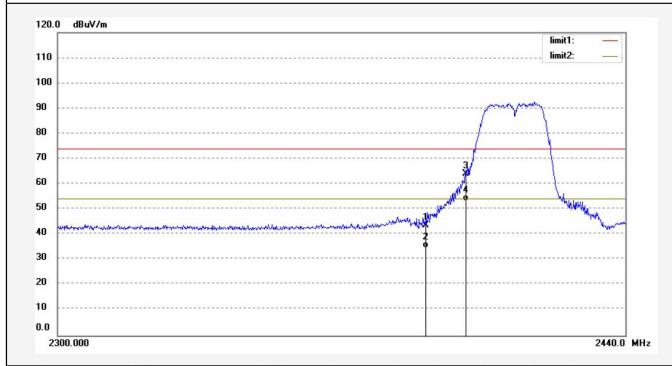
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20170747

Page 62 of 116

Job No.: star2016 #2037 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz


Test item: Radiation Test Date: 2017/05/18
Temp.(C)/Hum.(%) 23 C / 48 % Time: 8/57/41

EUT: K1 SMARTHOME DIY KIT Engineer Signature: star

Mode: TX Channel 1(802.11g) Distance: 3m

Model: K1

Manufacturer: Chuango

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	6.88	36.73	43.61	74.00	-30.39	peak			
2	2390.000	-2.00	36.73	34.73	54.00	-19.27	AVG			
3	2400.000	27.35	36.78	64.13	74.00	-9.87	peak			
4	2400.000	16.47	36.78	53.25	54.00	-0.75	AVG			

Report No.: ATE20170747 Page 63 of 116

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2016 #2040 Polarization: Horizontal

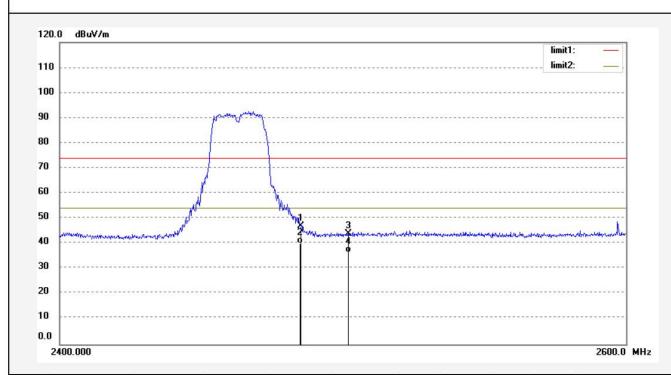
Standard: FCC PK Test item: Radiation Test Date: 2017/05/18

Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/03/09 EUT: K1 SMARTHOME DIY KIT

Mode: TX Channel 11(802.11g)

Model: K1

Manufacturer: Chuango


Note: Report No.:ATE20170747

Power Source: AC 120V/60Hz

Engineer Signature: star

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	9.88	37.13	47.01	74.00	-26.99	peak			
2	2483.500	2.81	37.13	39.94	54.00	-14.06	AVG			
3	2500.000	6.78	37.20	43.98	74.00	-30.02	peak			
4	2500.000	-0.83	37.20	36.37	54.00	-17.63	AVG			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20170747

Page 64 of 116

Job No.: star2016 #2041 Polarization:

Power Source: AC 120V/60Hz

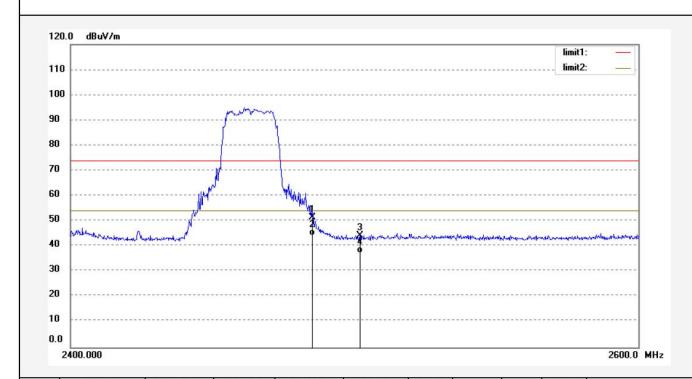
Date: 2017/05/18 Time: 9/04/10

Engineer Signature: star

Vertical

Distance: 3m

Job No.: star2016 #2041 Standard: FCC PK


Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: K1 SMARTHOME DIY KIT

Mode: TX Channel 11(802.11g)

Model: K1

Manufacturer: Chuango

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	14.31	37.13	51.44	74.00	-22.56	peak			
2	2483.500	7.14	37.13	44.27	54.00	-9.73	AVG			
3	2500.000	7.20	37.20	44.40	74.00	-29.60	peak			
4	2500.000	0.00	37.20	37.20	54.00	-16.80	AVG			

Report No.: ATE20170747 Page 65 of 116

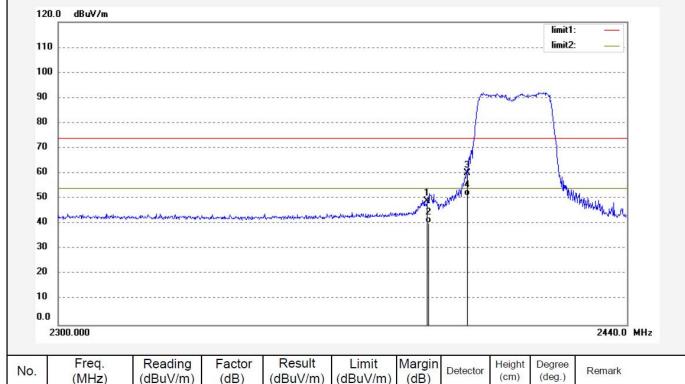
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2016 #2047 Polarization: Horizontal Standard: FCC PK

Power Source: AC 120V/60Hz Test item: Radiation Test Date: 2017/05/18 Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/14/55


EUT: Engineer Signature: star K1 SMARTHOME DIY KIT Mode: Distance: 3m

Model: K1

Manufacturer: Chuango

Note: Report No.:ATE20170747

TX Channel 1(802.11n) 20MHz

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	12.31	36.73	49.04	74.00	-24.96	peak			
2	2390.000	3.59	36.73	40.32	54.00	-13.68	AVG			
3	2400.000	23.29	36.78	60.07	74.00	-13.93	peak			
4	2400.000	14.27	36.78	51.05	54.00	-2.95	AVG			

ATC[®]

Page 66 of 116

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

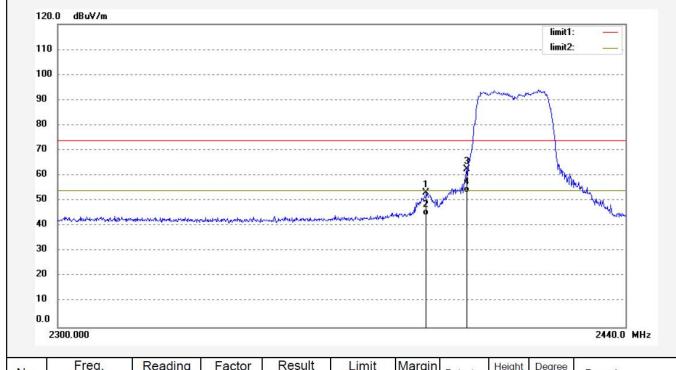
ACCURATE TECHNOLOGY CO., LTD.

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20170747

Job No.: star2016 #2046 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz


Test item: Radiation Test Date: 2017/05/18
Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/13/23

EUT: K1 SMARTHOME DIY KIT Engineer Signature: star

Mode: TX Channel 1(802.11n) 20MHz Distance: 3m

Model: K1

Manufacturer: Chuango

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	16.67	36.73	53.40	74.00	-20.60	peak			
2	2390.000	7.41	36.73	44.14	54.00	-9.86	AVG			
3	2400.000	25.64	36.78	62.42	74.00	-11.58	peak			
4	2400.000	16.47	36.78	53.25	54.00	-0.75	AVG			

ACCURATE TECHNOLOGY CO., LTD.

uan Rd, Tel:+86-0755-26503290 P.R.China Fax:+86-0755-26503396

Report No.: ATE20170747

Site: 2# Chamber

Page 67 of 116

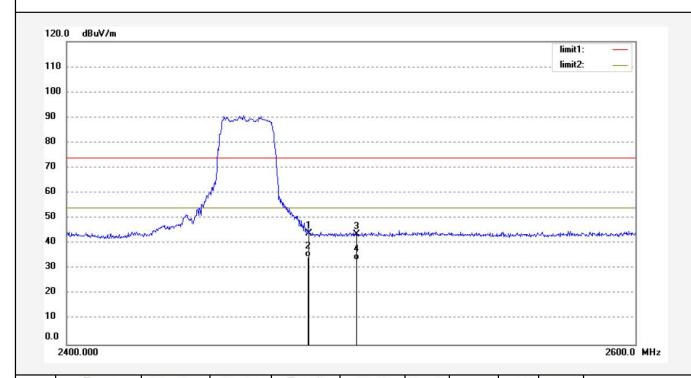
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Horizontal

 Standard:
 FCC PK
 Power Source:
 AC 120V/60Hz

 Test item:
 Radiation Test
 Date: 2017/05/18

 Temp.(C)/Hum.(%)
 23 C / 48 %
 Time: 9/17/20


EUT: K1 SMARTHOME DIY KIT Engineer Signature: star

Mode: TX Channel 11(802.11n) 20MHz Distance: 3m

Model: K1

Manufacturer: Chuango

Job No.: star2016 #2048

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	6.68	37.13	43.81	74.00	-30.19	peak			
2	2483.500	-2.47	37.13	34.66	54.00	-19.34	AVG			
3	2500.000	6.53	37.20	43.73	74.00	-30.27	peak			
4	2500.000	-3.71	37.20	33.49	54.00	-20.51	AVG			

(ATC)[®]

Report No.: ATE20170747 Page 68 of 116

Site: 2# Chamber

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd,
Science & Industry Park,Nanshan Shenzhen,P.R.China

Tel:+86-0755-26503290

Fax:+86-0755-26503396

Polarization: Vertical

Power Source: AC 120V/60Hz

Date: 2017/05/18 Time: 9/18/04

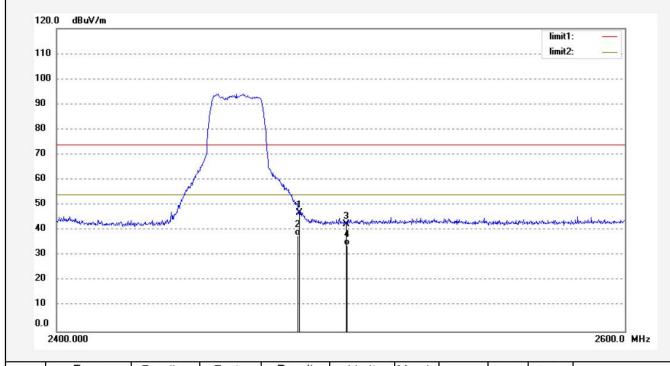
Engineer Signature: star

Distance: 3m

Job No.: star2016 #2049

Standard: FCC PK

Test item: Radiation Test


Temp.(C)/Hum.(%) 23 C / 48 %

EUT: K1 SMARTHOME DIY KIT

Mode: TX Channel 11(802.11n) 20MHz

Model: K1

Manufacturer: Chuango

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	9.81	37.13	46.94	74.00	-27.06	peak			
2	2483.500	0.71	37.13	37.84	54.00	-16.16	AVG			
3	2500.000	5.33	37.20	42.53	74.00	-31.47	peak			
4	2500.000	-3.03	37.20	34.17	54.00	-19.83	AVG			

Page 69 of 116

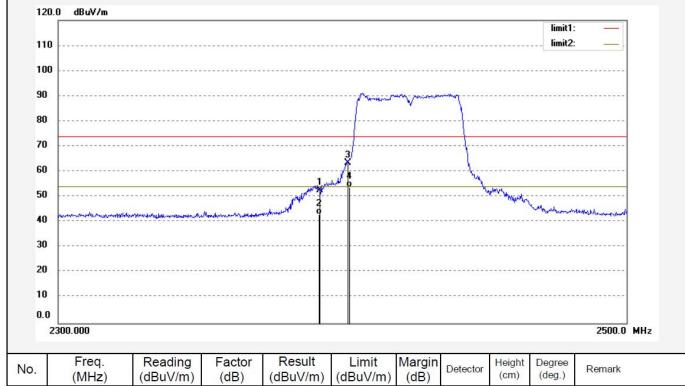
ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2016 #2052 Polarization: Horizontal

Standard: FCC PK Power Source: AC 120V/60Hz Test item: Radiation Test Date: 2017/05/18


Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/30/29

EUT: K1 SMARTHOME DIY KIT Engineer Signature: star Mode: TX Channel 3(802.11n)40MHz Distance: 3m

Model: K1

Manufacturer: Chuango

Report No.:ATE20170747 Note:

No.	Freq. (MHz)	(dBuV/m)	Factor (dB)	(dBuV/m)	(dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	15.91	36.73	52.64	74.00	-21.36	peak			
2	2390.000	6.29	36.73	43.02	54.00	-10.98	AVG			
3	2400.000	26.81	36.78	63.59	74.00	-10.41	peak			
4	2400.000	17.14	36.78	53.92	54.00	-0.08	AVG			

Report No.: ATE20170747 Page 70 of 116

Site: 2# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization: Vertical

Power Source: AC 120V/60Hz

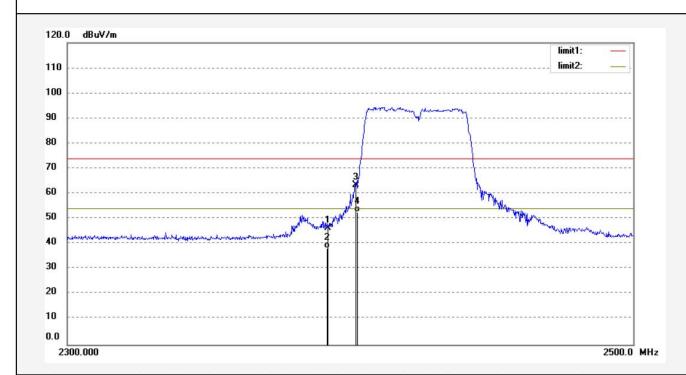
Date: 2017/05/18 Time: 9/31/24

Engineer Signature: star

Distance: 3m

Job No.: star2016 #2053

Standard: FCC PK


Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: K1 SMARTHOME DIY KIT Mode: TX Channel 3(802.11n)40MHz

Model: K1

Manufacturer: Chuango

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2390.000	9.58	36.73	46.31	74.00	-27.69	peak			
2	2390.000	1.55	36.73	38.28	54.00	-15.72	AVG			
3	2400.000	26.58	36.78	63.36	74.00	-10.64	peak			
4	2400.000	16.00	36.78	52.78	54.00	-1.22	AVG			

ACCURATE TECHNOLOGY CO., LTD.

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Time: 9/34/01

Report No.: ATE20170747

Page 71 of 116

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: star2016 #2055 Polarization: Horizontal

Standard: FCC PK Power Source: AC 120V/60Hz
Test item: Radiation Test Date: 2017/05/18

EUT: K1 SMARTHOME DIY KIT Engineer Signature: star

Mode: TX Channel 9(802.11n)40MHz Distance: 3m

Model: K1

Manufacturer: Chuango

Note: Report No.:ATE20170747

Temp.(C)/Hum.(%) 23 C / 48 %

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	14.58	37.13	51.71	74.00	-22.29	peak			
2	2483.500	5.28	37.13	42.41	54.00	-11.59	AVG			
3	2500.000	7.01	37.20	44.21	74.00	-29.79	peak			
4	2500.000	-1.61	37.20	35.59	54.00	-18.41	AVG			

ATC

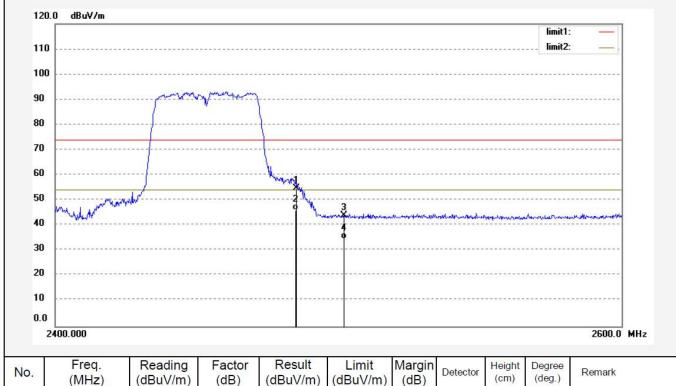
Report No.: ATE20170747 Page 72 of 116

ACCURATE TECHNOLOGY CO., LTD.

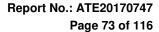
F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: star2016 #2054 Polarization: Vertical

Standard: FCC PK Power Source: AC 120V/60Hz


Test item: Radiation Test Date: 2017/05/18
Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/33/04

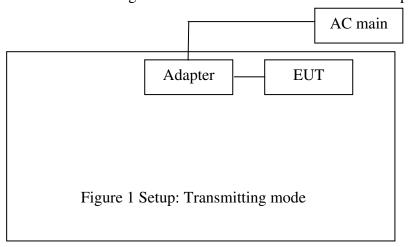
EUT: K1 SMARTHOME DIY KIT Engineer Signature: star

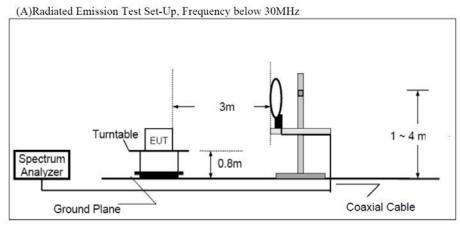

Mode: TX Channel 9(802.11n)40MHz Distance: 3m

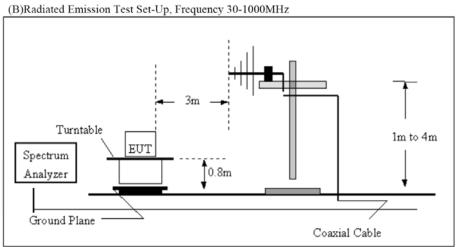
Model: K1

Manufacturer: Chuango

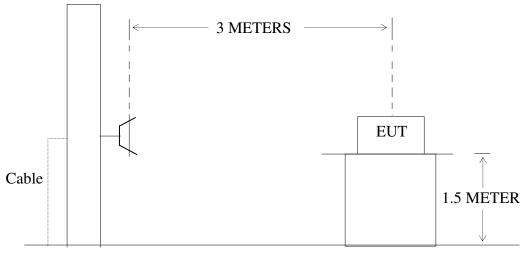
No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2483.500	17.54	37.13	54.67	74.00	-19.33	peak			
2	2483.500	8.91	37.13	46.04	54.00	-7.96	AVG			
3	2500.000	6.84	37.20	44.04	74.00	-29.96	peak			
4	2500.000	-2.54	37.20	34.66	54.00	-19.34	AVG			




11. RADIATED SPURIOUS EMISSION TEST


11.1.Block Diagram of Test Setup

11.1.1.Block diagram of connection between the EUT and peripherals


11.1.2.Semi-Anechoic Chamber Test Setup Diagram

(C) Radiated Emission Test Set-Up, Frequency above 1GHz

GROUND PLANE

11.2.The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Page 75 of 116

11.3.Restricted bands of operation

11.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

permitted in any of the frequency bands fisted below:									
MHz	MHz	MHz	GHz						
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5						
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4						
6.31175-6.31225	123-138	2200-2300	14.47-14.5						
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4						
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$						
13.36-13.41									

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

11.4.Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Page 76 of 116

11.5. Operating Condition of EUT

- 11.5.1. Setup the EUT and simulator as shown as Section 10.1.
- 11.5.2. Turn on the power of all equipment.
- 11.5.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412-2462 and 2422-2452MHz. We select 2412MHz, 2437MHz, 2462MHz and 2422MHz, 2437MHz, 2452MHz TX frequency to transmit.

11.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The worst-case data rate for this channel to be 1Mbps for 802.11b mode and 6Mbps for 802.11g mode and 150Mbps for 802.11n mode, based on previous with 802.11 WLAN product design architectures.

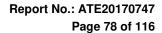
The frequency range from 30MHz to 25000MHz is checked.

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.



Page 77 of 116

11.7. The Field Strength of Radiation Emission Measurement Results

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. *: Denotes restricted band of operation.
- 3. The EUT is tested radiation emission at each test mode (802.11 b/g/n) in three axes. The worst emissions are reported in all test mode and channels.
- 4. The radiation emissions from 18-25GHz and 9KHz-30MHz are not reported, because the test values lower than the limits of 20dB.
 - 5. We tested 802.11b,g,n mode and recorded the worst case data(802.11b) for radiated emission test below 1GHz.

Site: 1# Chamber

Tel:+86-0755-26503290

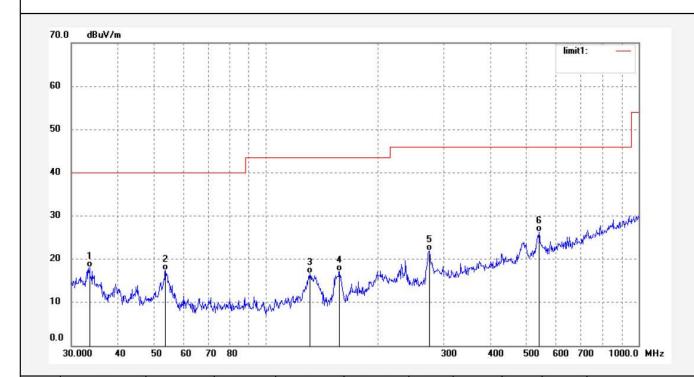
Fax:+86-0755-26503396

Below 1G

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: DING #3620 Polarization: Horizontal
Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz


Test item: Radiation Test Date: 2017/05/18
Temp.(C)/Hum.(%) 25 C / 55 % Time: 18:51:24

EUT: K1 SMARTHOME DIY KIT Engineer Signature: DING

Mode: TX 2412MHz Distance: 3m

Model: K1

Manufacturer: CHUANGO

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	33.5700	33.75	-15.59	18.16	40.00	-21.84	QP			
2	53.7559	38.80	-21.41	17.39	40.00	-22.61	QP			
3	131.2235	38.87	-22.16	16.71	43.50	-26.79	QP			
4	157.5290	38.93	-21.64	17.29	43.50	-26.21	QP			
5	274.4464	38.83	-16.92	21.91	46.00	-24.09	QP			
6	540.7072	36.35	-9.93	26.42	46.00	-19.58	QP			

ATC[®]

Report No.: ATE20170747

Page 79 of 116

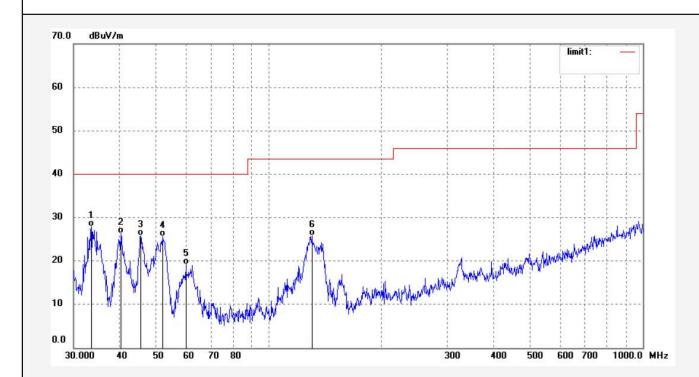
Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: DING #3621 Polarization: Vertical

Standard: FCC Class B 3M Radiated Power Source: AC 120V/60Hz


Test item: Radiation Test Date: 2017/05/18
Temp.(C)/Hum.(%) 25 C / 55 % Time: 18:52:22

EUT: K1 SMARTHOME DIY KIT Engineer Signature: DING

Mode: TX 2412MHz Distance: 3m

Model: K1

Manufacturer: CHUANGO

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	33.4522	43.50	-15.56	27.94	40.00	-12.06	QP			
2	40.1581	44.41	-18.13	26.28	40.00	-13.72	QP			
3	45.4130	44.81	-19.07	25.74	40.00	-14.26	QP			
4	51.8998	46.68	-21.11	25.57	40.00	-14.43	QP			
5	59.9418	40.92	-21.80	19.12	40.00	-20.88	QP			
6	130.3048	47.94	-22.14	25.80	43.50	-17.70	QP			

ATC[®]

Page 80 of 116

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

ACCURATE TECHNOLOGY CO., LTD.

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20170747

Job No.: DING #3623

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 25 C / 55 %

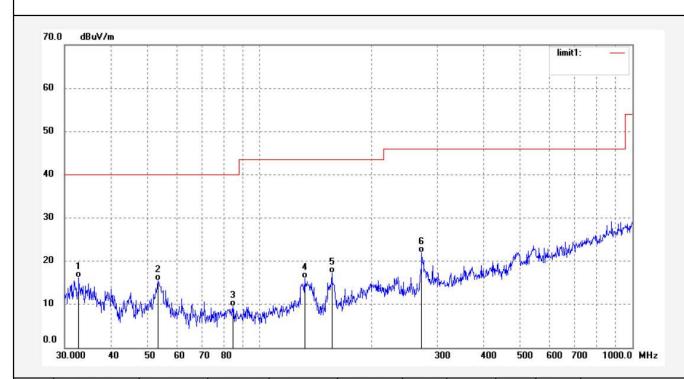
EUT: K1 SMARTHOME DIY KIT

Mode: TX 2437MHz

Model: K1

Manufacturer: CHUANGO

Note: Report NO.:ATE20170747


Polarization: Horizontal

Power Source: AC 120V/60Hz

Date: 2017/05/18 Time: 18:54:55

Engineer Signature: DING

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	32.7544	31.59	-15.39	16.20	40.00	-23.80	QP			
2	53.3794	36.80	-21.36	15.44	40.00	-24.56	QP			
3	84.8783	31.48	-21.96	9.52	40.00	-30.48	QP			
4	132.1489	38.23	-22.18	16.05	43.50	-27.45	QP			
5	156.4259	39.04	-21.76	17.28	43.50	-26.22	QP			
6	272.5246	38.92	-16.98	21.94	46.00	-24.06	QP			