

RF Exposure Evaluation declaration

Product Name	: Heart Rate Monitor
Model No.	: HRM
FCC ID.	:RJIHRM01

Applicant : Holux Technology, Inc

Address : No,1-1, Innovation Road I, Science-Based Industrial Park, Hsinchu 300, Taiwan, R.O.C.

Date of Receipt:	2010/07/21
Issued Date :	2010/08/05
Report No. :	107297R-RF-US-Exp
Report Version:	V1.0

The declaration results relate only to the samples calculated. The declaration shall not be reproduced except in full without the written approval of QuieTek Corporation.

1

30

1. **RF Exposure Evaluation**

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)	
(A) Limits for Occupational/ Control Exposures					
300-1500			F/300	6	
1500-100,000			5	6	
(B) Limits for General Population/ Uncontrolled Exposures					
300-1500			F/1500	6	

--

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

--

F= Frequency in MHz

1500-100,000

Friis Formula Friis transmission formula: $Pd = (Pout^{*}G)/(4^{*}pi^{*}r^{2})$

Where $Pd = power density in mW/cm^2$ Pout = output power to antenna in mW G = gain of antenna in linear scale Pi = 3.1416R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18° C and 78°_{\circ} RH.

QuieTek

1.3. Test Result of RF Exposure Evaluation

Product	Heart Rate Monitor
Test Mode	Mode 1: Transmit
Test Condition	RF Exposure Evaluation

Antenna Gain

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 2dBi or 1.58 in linear scale.

Output Power Into Antenna & RF Exposure Evaluation Distance:

Channel	Channel Frequency (MHz)	Output Power to Antenna (mW)	Power Density at R = 20 cm (mW/cm ²)
01	2403	0.0398	0.000013
39	2441	0.0913	0.000029
78	2480	0.0746	0.000023

The power density Pd (4th column) at a distance of 20 cm calculated from the Friis transmission formula is far below the limit of 1 mW/cm^2 .