FCC Test Report

Product Name	: Heart-Rate Smartband
Trade Name	: Holux
Model No.	:Impulse 8060
FCC ID.	RJI-IMPULSE8060

Applicant : HOLUX Technology, Inc

Address : No. 1-1, Innovation Road I, Science-Based Industrial Park, Hsinchu, Taiwan, 30076

Date of Receipt	:Apr. 19, 2018
Issued Date	:May 11, 2018
Report No.	: 1840215R-RFUSP01V00
Report Version	: V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of DEKRA Testing and Certification Co., Ltd.

Test Report Certification

Issued Date : May 11, 2018 Report No. : 1840215R-RFUSP01V00

Product Name	:	Heart-Rate Smartband					
Applicant	:	HOLUX Technology, Inc					
Address	.	No. 1-1, Innovation Road I, Science-Based Industrial Park,					
	· ।	Hsinchu, Taiwan, 30076					
Manufacturer	:	HOLUX Technology, Inc					
Model No.	:	Impulse 8060					
FCC ID.	:	RJI-IMPULSE8060					
EUT Voltage	: /	AC 120V/60Hz (Power by Notebook PC)					
Testing Voltage	: /	AC 120V/60Hz (Power by Notebook PC)					
Trade Name	:	Holux					
Applicable Standard	:	FCC CFR Title 47 Part 15 Subpart C Section 15.247: 2017					
Laboratory Name	:	Hsin Chu Laboratory					
Address	:	No.372-2, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu					
	(County 310, Taiwan, R.O.C.					
	-	TEL: +886-3-582-8001 / FAX: +886-3-582-8958					
Test Result	: (Complied					
		(1 - 1)					
Documented By	:	Conol /si					
		(Carol Tsai / Senior Engineering Adm. Specialist.)					
		(Caror Isar / Senior Engineering Adm. Specialist)					
Tested By	:	Ricky lee					
,		J CCC					
		(Ricky Lee / Senior Engineer)					
		Roy Wang					
Approvea By	:	· · · · · · · · · · · · · · · · · · ·					
		(Roy Wang / Director)					

Revision History

Report No.	Version	Description	Issued Date
1840215R-RFUSP01V00	V1.0	Initial issue of report	May 11, 2018

TABLE OF CONTENTS

Description

Page

1.	General Information	6
1.1.	EUT Description	6
1.2.	Test Mode	7
1.3.	Tested System Details	8
1.4.	Configuration of tested System	8
1.5.	EUT Exercise Software	8
1.6.	Test Facility	9
1.7.	List of Test Equipment	10
1.8.	Measurement Uncertainty	12
1.9.	Duty cycle	13
2.	Conducted Emission	14
2.1.	Test Setup	14
2.2.	Limits	14
2.3.	Test Procedure	15
2.4.	Test Specification	15
2.5.	Test Result	16
3.	Peak Power Output	18
3.1.	Test Setup	18
3.2.	Test procedures	18
3.3.	Limits	18
3.4.	Test Specification	18
3.5.	Test Result	19
4.	Radiated Emission	20
4.1.	Test Setup	20
4.2.	Limits	21
4.3.	Test Procedure	21
4.4.	Test Specification	21
4.5.	Test Result	22
5.	RF antenna conducted test	36
51	Test Setup	36
52	l imits	36
5.3	Test Procedure	36
54	Test Specification	36
5.5.	Test Result	37
6.	Band Edge	42
6.1	Test Setup	42
62	l imits	42
6.3	Test Procedure	42
64	Test Specification	42
6.5	Test Result	43
0.0.		10

DEKRA

7.	Occupied Bandwidth	
7.1.	Test Setup	
7.2.	Limits	50
7.3.	Test Procedures	
7.4.	Test Specification	50
7.5.	Test Result	51
8.	Power Density	54
8.1.	Test Setup	54
8.2.	Limits	54
8.3.	Test Procedures	54
8.4.	Test Specification	54
8.5.	Test Result	55
Attachment 1.		
	Test Setup Photograph	
Attachment 2.		61
	EUT External Photograph	61
Attachment 3.	-	65
	EUT Internal Photograph	65

1. General Information

1.1. EUT Description

Product Name	Heart-Rate Smartband
Trade Name	Holux
Model No.	Impulse 8060
Frequency Range/Channel Number	2402~2480MHz / 40 Channels
Type of Modulation	BLE (GFSK)

Antenna Information	
MFR. / Model No.	Shanghai Hicling Electronic Technology Co,.Ltd / SZDX1841
Antenna Type	PIFA
Antenna Gain	1.7dBi

Working Frequency of Each Channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 00	2402 MHz	Channel 10	2422 MHz	Channel 20	2442 MHz	Channel 30	2462 MHz
Channel 01	2404 MHz	Channel 11	2424 MHz	Channel 21	2444 MHz	Channel 31	2464 MHz
Channel 02	2406 MHz	Channel 12	2426 MHz	Channel 22	2446 MHz	Channel 32	2466 MHz
Channel 03	2408 MHz	Channel 13	2428 MHz	Channel 23	2448 MHz	Channel 33	2468 MHz
Channel 04	2410 MHz	Channel 14	2430 MHz	Channel 24	2450 MHz	Channel 34	2470 MHz
Channel 05	2412 MHz	Channel 15	2432 MHz	Channel 25	2452 MHz	Channel 35	2472 MHz
Channel 06	2414 MHz	Channel 16	2434 MHz	Channel 26	2454 MHz	Channel 36	2474 MHz
Channel 07	2416 MHz	Channel 17	2436 MHz	Channel 27	2456 MHz	Channel 37	2476 MHz
Channel 08	2418 MHz	Channel 18	2438 MHz	Channel 28	2458 MHz	Channel 38	2478 MHz
Channel 09	2420 MHz	Channel 19	2440 MHz	Channel 29	2460 MHz	Channel 39	2480 MHz

- 1. This device is a Heart-Rate Smartband support BLE transmitting and receiving function.
- 2. Regards to the frequency band operation; the lowest

 middle and highest frequency of channel were selected to perform the test, and then shown on this report.

1.2. Test Mode

DEKRA has verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Test Mode	Mode 1: Transmit

Test Items	Modulation	Channel	Result
Conducted Emission	GFSK	19	Complies
Peak Power Output	GFSK	00/19/39	Complies
Radiated Emission	GFSK	00/19/39	Complies
RF antenna conducted test	GFSK	00/19/39	Complies
Radiated Emission Band Edge	GFSK	00/19/39	Complies
Occupied Bandwidth &	GFSK	00/19/39	Complies
DTS Bandwidth			
Power Density	GFSK	00/19/39	Complies

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

	· · · · · · · · · · · · · · · · · · ·					
Pro	oduct	Manufacturer	Model No.	Serial No.	FCC ID	Power Cord
1	Fixtur	HOLUX	N/A	N/A	DoC	
2	Notebook PC	IBM	Think Pad 570	27L8835	DoC	Non-Shielded, 1.8m,
						one ferrite core bonded

1.4. Configuration of tested System

1.5. EUT Exercise Software

1	Setup the EUT as shown in Section 1.4.
2	Execute the "putty" on the laptop.
3	Configure the test mode, the test channel, and the data rate.
4	Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

ltems	Test Item	Required (IEC 68-1)	Actual	Test Site
Temperature (°C)		15 - 35	24	
Humidity (%RH)	FUC PART 15 C 15.247	25 - 75	45	3
Barometric pressure (mbar)	Conducted Emission	860 - 1060	950-1000	
Temperature (°C)		15 - 35	24	
Humidity (%RH)	FCC PART 15 C 15.247	25 - 75	45	3
Barometric pressure (mbar)	Peak Power Output	860 - 1060	950-1000	
Temperature (°C)		15 - 35	25	
Humidity (%RH)	FUC PART 15 C 15.247	25 - 75	54	2
Barometric pressure (mbar)	Radialed Emission	860 - 1060	950-1000	
Temperature (°C)		15 - 35	24	
Humidity (%RH)	PE optoppo conducted test	25 - 75	45	3
Barometric pressure (mbar)	RF antenna conducted test	860 - 1060	950-1000	
Temperature (°C)		15 - 35	25	
Humidity (%RH)	FUC PART 15 C 15.247	25 - 75	50	2
Barometric pressure (mbar)	Danu Euge	860 - 1060	950-1000	
Temperature (°C)	FCC PART 15 C 15.247	15 - 35	24	
Humidity (%RH)	Occupied Bandwidth &	25 - 75	45	3
Barometric pressure (mbar)	DTS Bandwidth	860 - 1060	950-1000	
Temperature (°C)		15 - 35	24	
Humidity (%RH)	POU PART 15 U 15.247	25 - 75	45	3
Barometric pressure (mbar)	rower Density	860 - 1060	950-1000	

Note: Test site information refers to Laboratory Information.

USA : FCC, Registration Number: TW3024

The related certificate for our laboratories about the test site and management system can be downloaded from DEKRA Testing and Certification Co., Ltd. Web Site :

http://www.dekra.com.tw/english/about/certificates.aspx?bval=5

The address and introduction of DEKRA Testing and Certification Co., Ltd. laboratories can be founded in our Web site : <u>http://www.dekra.com.tw/index_en.aspx</u>

If you have any comments, Please don't hesitate to contact us. Our test sites as below:

- 1 No. 75-2, 3rd Lin, WangYe Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan (R.O.C.) TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : <u>info.tw@dekra.com</u>
- 2 No.372, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County 31061, Taiwan, R.O.C.
- TEL: +886-3-582-8001 / FAX: +886-3-582-8958 E-Mail : <u>info.tw@dekra.com</u> 3 No.372-2, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu County 31061, Taiwan, R.O.C.
- TEL: +886-3-582-8001 / FAX: +886-3-582-8958 E-Mail : <u>info.tw@dekra.com</u>

1.7. List of Test Equipment

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Test Receiver	R&S	ESCS 30	836858/023	2018/03/02	2019/03/01
LISN	R&S	ESH3-Z5	836679/021	2017/10/30	2018/10/29
LISN	R&S	ENV216	100096	2017/08/02	2018/08/01
Coaxial Cable	Harbour	RG-400	SR9-H	2017/08/15	2018/08/14
Quietek EMI system	Quietek	Version 2.2	SR9-H	N/A	N/A

Peak Power Output / SR10-H

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
High Speed Peak Power	Amritan		1000004	0040/04/00	0040/04/04
Meter Dual Input	Annisu	ML2496A	1602004	2018/01/02	2019/01/01
Pulse Power Sensor	Anritsu	MA2411B	1531043	2018/01/02	2019/01/01
Pulse Power Sensor	Anritsu	MA2411B	1531044	2018/01/02	2019/01/01
Power Meter	Keysight	8990B	MY51000248	2017/06/19	2018/06/18
Power Sensor	Keysight	N1923A	MY57240005	2017/06/19	2018/06/18

Radiated Emission / CB4-H

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Signal Analyzer	R&S	FSVA40	101455	2017/11/21	2018/11/20
Signal & Spectrum Analyzer	R&S	FSV40	101049	2018/01/10	2019/01/09
EXA Signal Analyzer	Keysight	N9010A	MY51440132	2018/03/05	2019/03/04
Bilog Antenna	Teseq	CBL6112D	23191	2017/06/28	2018/06/27
Horn Antenna	Schwarzbeck	BBHA 9120D	639	2017/06/14	2018/06/13
Horn Antenna	Schwarzbeck	BBHA 9170	202	2018/01/31	2019/01/30
Pre-Amplifier	Dekra	AP-025C	201801236	2018/02/26	2019/02/25
Pre-Amplifier	EMCI	EMC11830I	980366	2018/01/08	2019/01/07
Pre-Amplifier	Dekra	AP-400C	201801231	2017/12/13	2018/12/12

RF antenna conducted test / SR10-H

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Spectrum Analyzer	Keysight	N9030B	MY57140404	2017/06/13	2018/06/12
Spectrum Analyzer	Keysight	N9010B	MY57110159	2017/06/05	2018/06/04
Spectrum Analyzer	Agilent	N9010A	US47140172	2017/07/26	2018/07/25
Signal & Spectrum Analyzer	R&S	FSV40	101049	2018/01/10	2019/01/09

Band Edge / CB4-H

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Signal Analyzer	R&S	FSVA40	101455	2017/11/21	2018/11/20
Signal & Spectrum Analyzer	R&S	FSV40	101049	2018/01/10	2019/01/09
EXA Signal Analyzer	Keysight	N9010A	MY51440132	2018/03/05	2019/03/04
Bilog Antenna	Teseq	CBL6112D	23191	2017/06/28	2018/06/27
Horn Antenna	Schwarzbeck	BBHA 9120D	639	2017/06/14	2018/06/13
Horn Antenna	Schwarzbeck	BBHA 9170	202	2018/01/31	2019/01/30
Pre-Amplifier	Dekra	AP-025C	201801236	2018/02/26	2019/02/25
Pre-Amplifier	EMCI	EMC11830I	980366	2018/01/08	2019/01/07
Pre-Amplifier	Dekra	AP-400C	201801231	2017/12/13	2018/12/12

Occupied Bandwidth & DTS Bandwidth / SR10-H

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Spectrum Analyzer	Keysight	N9030B	MY57140404	2017/06/13	2018/06/12
Spectrum Analyzer	Keysight	N9010B	MY57110159	2017/06/05	2018/06/04
Spectrum Analyzer	Agilent	N9010A	US47140172	2017/07/26	2018/07/25
Signal & Spectrum Analyzer	R&S	FSV40	101049	2018/01/10	2019/01/09

Power Density / SR10-H

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Spectrum Analyzer	Keysight	N9030B	MY57140404	2017/06/13	2018/06/12
Spectrum Analyzer	Keysight	N9010B	MY57110159	2017/06/05	2018/06/04
Spectrum Analyzer	Agilent	N9010A	US47140172	2017/07/26	2018/07/25
Signal & Spectrum Analyzer	R&S	FSV40	101049	2018/01/10	2019/01/09

1.8. Measurement Uncertainty

Test Item	Uncertainty
Conducted Emission	± 2.26 dB
Peak Power Output	± 1.27 dB
Radiated Emission (30MHz \sim 1GHz)	± 3.43 dB
Radiated Emission (1GHz~26.5GHz)	± 3.65 dB
RF antenna conducted test	± 1.27 dB
Pond Edge	Conducted is defined as ± 1.27 dB
	Radiated is defined as \pm 3.9 dB
Occupied Bandwidth & DTS Bandwidth	± 50 kHz
Power Density	± 1.27 dB

1.9. Duty cycle

On Time (ms)	ON+Off Time (ms)	Duty Cycle (%)	Off Set (dB)
1.059	1.179	≒90	0.93

🔤 Key	ysight S	Spect	rum A	nalyzer	r - Swe	pt SA															_		3
<mark>⊮</mark> Cen	ter	Fre	RF q 2	2.402	50 Ω 200	DC	0 GH	lz] Tr	ig Dela ig: Vid	NSE:INT ay104.0	µs	Avg T	ype	: Voltage	04:2	7:04 PM TRACE	Apr 2	23, 2018 2 3 4 5 0	5	Frequency	
							PN IFG	NO: Fast Sain:Lov	v V	#A	tten: 3	30 dB		Ext Ga	ain: ·	-1.00 dB		DET	T P I	NNN	Ň	Auto Tun	e
10 di	B/div	1	Ref	20.0	00 c	lBm										4	ΔMkr	3 1. 1	179 .6	9 ms 9 dB			Ĭ
Log 10.0											7x 1			(24	L 3∆1						Center Free	a
0.00										\neg	¥—			Ť	Y				F	TRIG LVL		2.402000000 GH	z
-10.0																					╞		-
-30.0																			_			Start Free 2.402000000 GH	q
-40.0										-	L.				1.10				Lu		┢		_
-50.0 -60.0					P	Π				η					וויי			ſ	N)			Stop Free	q
-70.0																						2.402000000 GH	z
Cen	ter 2	2.40)20	0000	00 G	Hz												Sp	par	0 Hz		CF Step	р
Res	BW	8 I TRC	VIH2 SCL	2		>		#V	BW	8.0	WIH Z	<u></u>	FUNCT		S1 FUN	weep 5.	.000 m	ns (10 UNGIO		1 pts;		8.000000 MH <u>luto</u> Mai	n
1	Ν Δ1	1	t	(Δ)			2.2 1.0	51 ms 59 ms	(Δ)		0.54 d 4.24	Bm dB								_	IF		-
3 4	Δ1	1	t	<u>(</u> Δ)			1.1	79 ms	(Δ)		1.69	dB										Freq Offse 0 H	¥ z
5 6 7																					E		_
8 9																						Scale Type	e
10 11																					L	og <u>Lii</u>	<u>n</u>
MSG		_	_							_	111				_	STATU	JS			•			

2. Conducted Emission

2.1. Test Setup

2.2. Limits

FCC Part 15 Subpart C Paragraph 15.207 Limits (dBuV)							
Frequency MHz	QP	AV					
0.15 - 0.50	66 - 56	56 - 46					
0.50 - 5.0	56	46					
5.0 - 30	60	50					

Remarks: In the above table, the tighter limit applies at the band edges.

2.3. Test Procedure

The EUT was setup according to ANSI C63.10:2013 and tested according to DTS test procedure of KDB558074 for compliance to FCC 47CFR 15.247 requirements. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. The EUT and simulators are connected to the main power through a line impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs.)

Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.

Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.

2.4. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.207: 2017

2.5. Test Result

Site : SR9-H	Time : 2018/05/07
Limit : CISPR_B_00M_QP	Margin : 10
Probe : SR9-H_LISN(16A)-6_0823 - Line1	Power : AC 120V/60Hz (Power by Notebook PC)
EUT : Heart-Rate Smartband	Note : 2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1		0.166	9.776	42.670	52.446	-12.731	65.177	QUASIPEAK
2		0.166	9.776	32.460	42.236	-12.941	55.177	AVERAGE
3		0.228	9.757	35.030	44.787	-17.731	62.518	QUASIPEAK
4		0.228	9.757	22.880	32.637	-19.881	52.518	AVERAGE
5		0.509	9.742	35.220	44.962	-11.038	56.000	QUASIPEAK
6	*	0.509	9.742	30.670	40.412	-5.588	46.000	AVERAGE
7		1.080	9.880	23.290	33.170	-22.830	56.000	QUASIPEAK
8		1.080	9.880	14.710	24.590	-21.410	46.000	AVERAGE
9		4.197	9.930	21.060	30.990	-25.010	56.000	QUASIPEAK
10		4.197	9.930	12.640	22.570	-23.430	46.000	AVERAGE
11		14.798	10.366	22.740	33.106	-26.894	60.000	QUASIPEAK
12		14.798	10.366	17.260	27.626	-22.374	50.000	AVERAGE

Note:

1. All Reading Levels are Quasi-Peak and average value.

2. " * ", means this data is the worst emission level.

3. Measurement Level = Reading Level + Correct Factor.

Site : SR9-H	Time : 2018/05/07
Limit : CISPR_B_00M_QP	Margin : 10
Probe : SR9-H_LISN(16A)-6_0823 - Line2	Power : AC 120V/60Hz (Power by Notebook PC)
EUT : Heart-Rate Smartband	Note : 2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV)	(dB)	(dBuV)	
1	*	0.158	9.767	42.320	52.087	-13.491	65.578	QUASIPEAK
2		0.158	9.767	31.310	41.077	-14.501	55.578	AVERAGE
3		0.220	9.810	33.970	43.780	-19.027	62.807	QUASIPEAK
4		0.220	9.810	22.890	32.700	-20.107	52.807	AVERAGE
5		0.330	9.800	26.840	36.640	-22.819	59.459	QUASIPEAK
6		0.330	9.800	20.570	30.370	-19.089	49.459	AVERAGE
7		0.482	9.790	25.050	34.840	-21.464	56.304	QUASIPEAK
8		0.482	9.790	14.530	24.320	-21.984	46.304	AVERAGE
9		3.888	9.900	20.220	30.120	-25.880	56.000	QUASIPEAK
10		3.888	9.900	10.280	20.180	-25.820	46.000	AVERAGE
11		14.158	10.313	21.890	32.203	-27.797	60.000	QUASIPEAK
12		14.158	10.313	15.950	26.263	-23.737	50.000	AVERAGE

1. All Reading Levels are Quasi-Peak and average value.

2. " * ", means this data is the worst emission level.

3. Measurement Level = Reading Level + Correct Factor.

3. Peak Power Output

3.1. Test Setup

3.2. Test procedures

The EUT was setup according to ANSI C63.10: 2013; tested according to DTS test procedure of KDB558074 D01V04 for compliance to FCC 47CFR 15.247 requirements.

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247.

3.5. Test Result

Product	Heart-Rate Smartband					
Test Item	Peak Power Output					
Test Mode	Mode 1: Transmit					
Date of Test	2018/04/23	Test Site	SR10-H			

GFSK

Channel No.	Frequency	Measure Level	Limit	Deput	
Channel No.	(MHz)	(dBm)	(dBm)	Result	
0	2402	4.400	30	Pass	
19	2440	4.410	30	Pass	
39	2480	4.390	30	Pass	

4. Radiated Emission

4.1. Test Setup

Under 1GHz Test Setup:

Above 1GHz Test Setup:

4.2. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 Limits							
Frequency MHz	uV/m	dBuV/m					
30 - 88	100	40					
88 - 216	150	43.5					
216 - 960	200	46					
Above 960	500	54					

Remarks : 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

4.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB558074 D01V04 for compliance to FCC 47CFR 15.247 requirements. The EUT and its simulators are placed on a turn table which is 0.8 or 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

On any frequency or frequencies form 9KHz(inculde The the lowest oscillator frequency generated within the device up to the 10th harmonic) to 1000 MHz, the limits shown are based on measuring equipment employing a quasi-peak detector function and on any frequency or frequencies above 1000 MHz the radiated limits shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurement are included emission measurement below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

4.4. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247

4.5. Test Result

30MHz-1GHz Spurious

Site : CB4-H	Time : 2018/04/25
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H FCC EFS S2 30M-1GHz 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
HORIZONTAL	
EUT : Heart-Rate Smartband	Note : 2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		72.195	-27.416	47.814	20.399	-19.601	40.000	QUASIPEAK
2		147.370	-21.524	40.869	19.345	-24.155	43.500	QUASIPEAK
3		228.365	-20.543	42.149	21.607	-24.393	46.000	QUASIPEAK
4		371.925	-17.687	47.865	30.178	-15.822	46.000	QUASIPEAK
5	*	480.080	-13.524	45.688	32.165	-13.835	46.000	QUASIPEAK
6		628.975	-11.900	44.058	32.157	-13.843	46.000	QUASIPEAK

- 1. All Reading Levels is Quasi-Peak value.
- 2. "*", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The Emission under 30MHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/25
Limit : FCC_CLASS_B_03M_QP	Margin : 6
Probe : CB4-H_FCC_EFS_S2_30M-1GHz_1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
VERTICAL	
EUT : Heart-Rate Smartband	Note : 2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		70.255	-27.689	53.990	26.301	-13.699	40.000	QUASIPEAK
2		107.600	-21.915	49.549	27.634	-15.866	43.500	QUASIPEAK
3		207.510	-22.123	43.295	21.172	-22.328	43.500	QUASIPEAK
4	*	379.200	-16.475	49.312	32.837	-13.163	46.000	QUASIPEAK
5		568.835	-12.940	40.809	27.868	-18.132	46.000	QUASIPEAK
6		674.565	-10.250	39.507	29.257	-16.743	46.000	QUASIPEAK

- 1. All Reading Levels is Quasi-Peak value.
- 2. " * ", means this data is the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The Emission under 30MHz were not included is because their levels are too low.

Harmonic & Spurious:

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
HORIZONTAL	
EUT : Heart-Rate Smartband	Note : 2402MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4804.000	8.252	48.830	57.083	-16.917	74.000	PEAK
2	*	7206.000	16.729	42.870	59.599	-14.401	74.000	PEAK
3		9608.000	23.184	35.330	58.515	-15.485	74.000	PEAK
4		12010.000	26.768	32.470	59.238	-14.762	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
HORIZONTAL	
EUT : Heart-Rate Smartband	Note : 2402MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4804.000	8.252	42.680	50.933	-3.067	54.000	AVERAGE
2		7206.000	16.729	32.750	49.479	-4.521	54.000	AVERAGE
3		12010.000	26.768	18.250	45.018	-8.982	54.000	AVERAGE

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
VERTICAL	
EUT : Heart-Rate Smartband	Note : 2402MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4804.000	8.252	43.460	51.713	-22.287	74.000	PEAK
2	*	7206.000	16.729	46.230	62.959	-11.041	74.000	PEAK
3		9608.000	23.184	33.210	56.395	-17.605	74.000	PEAK
4		12010.000	26.768	31.930	58.698	-15.302	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
EUT : Heart-Rate Smartband	Note : 2402MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	7206.000	16.729	36.590	53.319	-0.681	54.000	AVERAGE
2		12010.000	26.768	18.240	45.008	-8.992	54.000	AVERAGE

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
HORIZONTAL	
EUT : Heart-Rate Smartband	Note : 2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4880.000	8.404	48.760	57.164	-16.836	74.000	PEAK
2		7320.000	17.096	41.220	58.316	-15.684	74.000	PEAK
3		9760.000	23.225	34.980	58.205	-15.795	74.000	PEAK
4	*	12200.000	26.120	32.510	58.630	-15.370	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
HORIZONTAL	
EUT : Heart-Rate Smartband	Note : 2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4880.000	8.404	42.610	51.014	-2.986	54.000	AVERAGE
2		7320.000	17.096	29.960	47.056	-6.944	54.000	AVERAGE
3		12200.000	26.120	18.350	44.470	-9.530	54.000	AVERAGE

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
VERTICAL	
EUT : Heart-Rate Smartband	Note : 2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4880.000	8.404	46.010	54.414	-19.586	74.000	PEAK
2	*	7320.000	17.096	44.780	61.876	-12.124	74.000	PEAK
3		9760.000	23.225	32.660	55.885	-18.115	74.000	PEAK
4		12200.000	26.120	32.950	59.070	-14.930	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
EUT : Heart-Rate Smartband	Note : 2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
			(ub)	(ubuv)	(ubuv/iii)	(UB)	(ubuv/iii)	
1		4880.000	8.404	39.960	48.364	-5.636	54.000	AVERAGE
2	*	7320.000	17.096	34.760	51.856	-2.144	54.000	AVERAGE
3		12200.000	26.120	18.310	44.430	-9.570	54.000	AVERAGE

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
HORIZONTAL	
EUT : Heart-Rate Smartband	Note : 2480MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4960.000	8.607	47.140	55.747	-18.253	74.000	PEAK
2		7440.000	17.822	38.880	56.702	-17.298	74.000	PEAK
3	*	9920.000	23.731	33.620	57.351	-16.649	74.000	PEAK
4		12400.000	25.659	30.640	56.299	-17.701	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
HORIZONTAL	
EUT : Heart-Rate Smartband	Note : 2480MHz

		Frequency (MHz)	Correct Factor	Reading Level	Measure Level (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Detector Type
		(2)	(42)	(4241)	(azatini)	(42)	(4241/11)	
1	*	4960.000	8.607	41.530	50.137	-3.863	54.000	AVERAGE
2		7440.000	17.822	27.790	45.612	-8.388	54.000	AVERAGE
3		12400.000	25.659	16.930	42.589	-11.411	54.000	AVERAGE

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
EUT : Heart-Rate Smartband	Note : 2480MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		4960.000	8.607	47.490	56.097	-17.903	74.000	PEAK
2	*	7440.000	17.822	43.090	60.912	-13.088	74.000	PEAK
3		9920.000	23.731	32.450	56.181	-17.819	74.000	PEAK
4		12400.000	25.659	30.830	56.489	-17.511	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
VERTICAL	
EUT : Heart-Rate Smartband	Note : 2480MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1	*	4960.000	8.607	42.360	50.967	-3.033	54.000	AVERAGE
2		7440.000	17.822	32.990	50.812	-3.188	54.000	AVERAGE
3		12400.000	25.659	16.910	42.569	-11.431	54.000	AVERAGE

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The Emission above 13GHz were not included is because their levels are too low.

5. **RF** antenna conducted test

5.1. Test Setup

RF Conducted Measurement:

5.2. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on an RF conducted or radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB558074 D01V04 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.4. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247.

Pass

Pass

5.5. Test Result

19

39

2440

2480

Product	Heart-Rate Smartban	leart-Rate Smartband										
Test Item	RF antenna conducte	F antenna conducted test										
Test Mode	lode 1: Transmit											
Date of Test 2018/04/23 Test Site SR10-H												
GFSK												
Channel	Frequency	Measure Level	Limit		Result							
Channel	(MHz)	(dBc)	(dBc)		Result							
$0 \qquad 2402 \qquad 26.582 \qquad \geqq 20 \qquad Pass$												

Channel 00

24.006

24.703

 ≥ 20

≧20

🔤 Ke	ysight S	Spect	rum A	Analyzer - Sw	vept SA											
<mark>يري</mark> Cen	ter	Fre	RF q 2	50 s	2 DC	GHz		SEI	NSE:INT		Avg Typ	e: Log-Pwr	05:35:28 PI TRAC	4 Apr 23, 2018 E 1 2 3 4 5 6	F	requency
10 d	D (diu		Pol	20.00	dBm	PNO: Fast IFGain:Lov	v	#Atten: 3	e Run 0 dB		Avg Hold Ext Gain:	:>100/100 -1.00 dB	Mkr2 1. 37	96 MHz		Auto Tune
10.0 10.0 0.00				20.00					2∆ 3	}					2.40	Center Freq 00000000 GHz
-20.0 -30.0 -40.0								>	N3 1						2.3	Start Freq 50000000 GHz
-50.0 -60.0 -70.0	يە∆م.	de se al	***	Andrey, Partona		White and a second second	an a	mashandi		WWW	Marriel Charles		i ^{ght} heisiteacharta	strad from the	2.4	Stop Freq 50000000 GHz
Cen #Re	ter 2 s BV	2.4(N 1 TRC)00 00 SCL	0 GHz kHz	X	#V	/BW 3	300 kHz Y		FUNCTIO		weep 1.:	Span 1 333 ms (1 FUNCTIO	00.0 MHz 0001 pts) DN VALUE	1 <u>Auto</u>	CF Step 0.000000 MHz Man
1 2 3 4 5 6	N ∆3 F	1 1	f f f	<u>(</u> Δ)	2.40	01 96 GHz 1.96 MHz 00 00 GHz	<u>(Δ)</u> -:	4.743 df 37.893 33.150 df	3m dB 3m					E		Freq Offset 0 Hz
7 8 9 10 11															Log	Scale Type <u>Lin</u>
MSG												STATUS	5			

uu K	eysight	Spect	rum /	Analyzer	- Swep	t SA													
<mark>וא</mark> Cer	nter	Fre	RF q	2.440	⁵⁰ Ω)000	DC 0000) GH	z		Triau E	ENSE:	INT	Avg	Type	: Log-Pwr	05:37:50 P TRA	M Apr 23, 2018 CE 1 2 3 4 5 6	F	requency
_							PI IFC	NO: Fas Gain:Lo	t 🕞 w	#Atten:	30 di	3 3	Ext G	Bain:	-1.00 dB				Auto Tune
10 c	IB/div	,	Rei	f 20.0	0 di	Bm									ΔΜ	kr4 -47 61	.30 MHZ .516 dB		
Log 10.0											4/	∆5							Center Freq
0.00) —		-								Å							2.4	40000000 GHz
-10.0 -20.0																			Start Eron
-30.0)		_							1								2.3	90000000 GHz
-40.0 -50.0)									م ر لارفود د		h _{hte}							
-60.0) 	ww.X	(3 4			~~~~~	<u>htyph</u>		sun the	white and the second	-	""W MALA	Alexander and	ار بر از _ا ین ا	*****		have the second s	2.4	Stop Freq 90000000 GHz
-70.0		2.4			_														07.04
#Re	es B	2.44 W 1	00	kHz	2			#\	/BW	300 kH	z			S	weep 1.:	333 ms (1	00.0 MH2 0001 pts)	1	0.000000 MHz
MKR 1	MODE N	TRC	SCL f			X 2.4	139 9	6 GHz		Y 4.754	dBm	FUN	CTION	FUN	ICTION WIDTH	FUNCTI	ON VALUE	<u>Auto</u>	- Wiali
2	Δ3 F	1	f f	(Δ)		2.3	42.8 397 1	1 MHz 5 GHz	(Δ)	61.60 -56.849	4 dB dBm								Freq Offset
4 5 6	<u>Δ</u> 5 F	1	f	(Δ)		2.4	47.3	6 GHz	(Δ)	-56.762	dBm						E		0 Hz
7																			Scale Type
9 10 11																		Log	<u>Lin</u>
•										m							•		
MSG															STATUS	\$			

Channel 39	
------------	--

K-		Caract		and and the												
Ke	ysight	spect	rum #	Analyzer - Sw	ept SA				OF NOT	7.8.IT			05-06-46-0			
Cen	ter	Fre	eq 2	2.48350	00000 GH	łz		Tria: F	ree Ri	<u>INI </u>	Avg Ty	pe: Log-Pwr	U5:36:46 P TRAC TY	M Apr 23, 2018 CE 1 2 3 4 5 6 PE M WWWWW		Frequency
					P IF	NO: Fast Gain:Lov	v v	#Atten	: 30 di	В	Ext Gair	n: -1.00 dB	D	ET P NNNN		
10 d	B/div	,	Ref	f 20.00 (dBm							Δ	.0. Mkr2 52	54 MHz .796 dB		Auto Tune
Log									2∆3							
10.0								Ţ								Center Freq
0.00								[]							2.4	183500000 GHz
-10.0									$\left\{ \right\}$							
-20.0																Start Freq
-30.0								1							2.4	133500000 GHz
-40.0	-		-					I	n Nu							
-50.0			-				للمغلب	And And	- " iva	<i>Н</i> и						Stop Fred
-60.0	***	~ <u>~</u> ~	م. الجويد	and and a second with the	y mitter	W.ensteiner	PH/LA II.			W HAR	a the second states of the	man		hulmon hur	25	533500000 GHz
-70.0																
Con	tor	2 4 9	226										Enon 1			
#Re	s Bl	2.40 W 1	00	kHz		#V	вw	300 ki	١z		:	Sweep 1.	333 ms (1	0001 pts)		сг этер 10.000000 MHz
		TRO	001		V			N		EUN			, EUNICE		Auto	Man
1	N	1 1	f		2.479 9	6 GHz		4.745	dBm	FUN	STION F	UNCTION WIDTH	FUNCTI			
2	∆3	1	f	<u>(</u> Δ)	-3.5	4 MHz	(Δ)	52.7	96 dB							Fred Offset
4	F	1	T		2.483 5	UGHZ		-48.051	aBm							0.47
5														=		0112
7																
8																Scale Type
10															Log	Lin
11																
MSG												STATU	s			

Product	Heart-Rate Smartband		
Test Item	RF antenna conducted test		
Test Mode	Mode 1: Transmit		
Date of Test	2018/04/23	Test Site	SR10-H

Channel 00 (30MHz-25GHz)- GFSK

Keysight Spectrum Analyzer - Swept SA					
RF 50 Ω DC Start Freg 30.000000 MHz		SENSE:INT	05:09: g Type: Log-Pwr	44 PM Apr 23, 2018 TRACE 1 2 3 4 5 6	Frequency
10 dB(div	PNO: Fast 🖵 Trig IFGain:Low #At	g:FreeRun Avg ten:30 dB Ext	Hold:>10/10 Gain: -1.00 dB ΔMkr2 -4. 3	B04 9 GHz 26.582 dB	Auto Tune
Log 2Δ3 10.0 2Δ3 .000 .000					Center Freq 12.515000000 GHz
-20.0	X 3				Start Freq 30.000000 MHz
-50.0 -60.0 -70.0					Stop Freq 25.00000000 GHz
Start 30 MHz #Res BW 100 kHz	#VBW 300	KHz FUNCTION	Sto Sweep 82.67 ms	p 25.00 GHz 5 (40001 pts) NCTION VALUE	CF Step 2.497000000 GHz <u>Auto</u> Man
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	02 2 GHz 4.7 04 9 GHz (Δ) 26 07 0 GHz -21.8	47 dBm 5582 dB 34 dBm		E	Freq Offset 0 Hz
7 8 9 10 11					Scale Type
MSG			STATUS		

Channel 19 (30MHz-25GHz)- GFSK

🔤 Keysight S	pectrum A	nalyzer - Swept S	SA								_	
📕 Start Fr	RF				SENSE:IN	NT		e: Loa-Pwr	05:11:35 PI	Apr 23, 2018	Fred	luency
	.	0000001	PNO: Fas IFGain:Lo	t Trig: w #Atte	Free Rur en: 30 dB	n	Avg Hold Ext Gain:	:>10/10 -1.00 dB	۲۷۴ DE		А	uto Tune
10 dB/div	Ref	20.00 dB	m						24	.006 dB		
10.0	4 2	2Δ3									Ce	nter Freq
0.00											12.5150	00000 GHz
-20.0												Start Fred
-30.0											30.0	00000 MHz
-50.0			ب الم		س و الما سال	والونتوي	and we have a set of	وي المحمد الروم		ng mangan tanàna kaominina dia mampika minina dia kaominina dia kaominina dia kaominina dia kaominina dia kaomi	ę	Stop Freq
-70.0											25.0000	00000 GHz
Start 30 #Res BV	MHz / 100	kHz	#\	/BW 300	≺Hz		s	weep 82	Stop 2 .67 ms (4	5.00 GHz 0001 pts)	2.4970	CF Step
MKR MODE	TRC SCL		× 2.440 2 GHz	Y	1 dBm	FUNC	TION FUI	NCTION WIDTH	FUNCTION	DN VALUE	Auto	Man
2 Δ3 3 F 4 5	1 f 1 f	(Δ)	-4.879 8 GHz 7.320 0 GHz	(Δ) 24. -20.48	006 dB 5 dBm					E	Fr	e q Offset 0 Hz
7 7 8										=	S	cale Type
10 11											Log	Lin
•				m					I	•		
MSG								STATUS	5			

🔤 Kej	ysight !	Spectr	um /	Analyzer - Sv	vept SA											
ı,xı Star	t Fr	eq	RF 30	50 S				SEI	NSE:INT	-	Avg Ty	be: Log-Pwr	05:13:07 P TRA	M Apr 23, 2018 CE 1 2 3 4 5 6 PE M WWWWW	F	requency
						PNO: Fa IFGain:Lo	st 🖕	#Atten: 3	0 dB		Ext Gair	:: -1.00 dB	D	ET P NNNNN		Auto Tune
10 d	B/div		Rei	1 20.00	dBm							ΔΜκ	r2 -4.95 24	9 7 GHz .703 dB		
Log 10.0			-	2∆3					[Center Frea
0.00			┦												12.5	15000000 GHz
-10.0 -20.0																
-30.0					_	///3									з	Start Freq 0.000000 MHz
-40.0			-		-	-										
-50.0 -60.0				در افغان افغ	-		فأواردهم	بالمرية ويام يطاطعن	-	and all	delik, de basteriada y					Stop Freq
-70.0			-			_									25.0	00000000 GHz
Star	t 30	MI	iz		1				•				Stop 2	5.00 GHz		CF Step
#Re	S BL	N 1	SCI	KHZ	×	#	VBW	300 KHZ		FUNC		Sweep 82	2.67 ms (4		Auto	Man
1	N Δ3	1	f	(Δ)	2.48	30 2 GHz 59 7 GHz	z z (Δ)	3.341 dl	Bm dB	- one						
3	F	1	f		7.43	89 8 GHz	z	-21.362 di	Bm							Freq Offset 0 Hz
5 6 7							-							E		
8		_					-									Scale Type
10 11															Log	Lin
I ∢ MSG	_	_	-				_	m	_	_		STATU	s	Þ		

Channel 39 (30MHz-25GHz)- GFSK

6. Band Edge

6.1. Test Setup

RF Radiated Measurement:

6.2. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

6.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB558074 D01V04 for compliance to FCC 47CFR 15.247 requirements. The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

6.4. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247.

6.5. Test Result

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
HORIZONTAL	
EUT : Heart-Rate Smartband	Note : 2402MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	14.229	30.088	44.317	-29.683	74.000	PEAK
2		2338.380	14.371	34.888	49.259	-24.741	74.000	PEAK
3		2390.000	14.881	30.545	45.426	-28.574	74.000	PEAK
4	*	2401.640	14.912	84.297	99.209	25.209	74.000	PEAK
5		2483.500	15.408	28.916	44.324	-29.676	74.000	PEAK
6		2500.000	15.434	29.902	45.337	-28.663	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.
- 7. The fundamental for reference only, it's not restricted by unwanted emission limit.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
EUT : Heart-Rate Smartband	Note : 2402MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	14.229	29.221	43.450	-30.550	74.000	PEAK
2		2338.060	14.369	33.330	47.699	-26.301	74.000	PEAK
3		2390.000	14.881	29.798	44.679	-29.321	74.000	PEAK
4	*	2401.640	14.912	78.874	93.786	19.786	74.000	PEAK
5		2483.500	15.408	30.050	45.458	-28.542	74.000	PEAK
6		2500.000	15.434	29.214	44.649	-29.351	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.
- 7. The fundamental for reference only, it's not restricted by unwanted emission limit.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
HORIZONTAL	
EUT : Heart-Rate Smartband	Note : 2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	14.229	30.259	44.488	-29.512	74.000	PEAK
2		2311.620	14.238	36.096	50.334	-23.666	74.000	PEAK
3		2390.000	14.881	30.959	45.840	-28.160	74.000	PEAK
4	*	2440.280	14.961	84.185	99.145	25.145	74.000	PEAK
5		2483.500	15.408	29.943	45.351	-28.649	74.000	PEAK
6		2500.000	15.434	29.943	45.378	-28.622	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.
- 7. The fundamental for reference only, it's not restricted by unwanted emission limit.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
EUT : Heart-Rate Smartband	Note : 2440MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	14.229	28.689	42.918	-31.082	74.000	PEAK
2		2375.460	14.636	33.541	48.177	-25.823	74.000	PEAK
3		2390.000	14.881	29.476	44.357	-29.643	74.000	PEAK
4	*	2440.280	14.961	78.319	93.279	19.279	74.000	PEAK
5		2483.500	15.408	28.748	44.156	-29.844	74.000	PEAK
6		2500.000	15.434	29.347	44.782	-29.218	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.
- 7. The fundamental for reference only, it's not restricted by unwanted emission limit.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
HORIZONTAL	
EUT : Heart-Rate Smartband	Note : 2480MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	14.229	30.712	44.941	-29.059	74.000	PEAK
2		2390.000	14.881	30.559	45.440	-28.560	74.000	PEAK
3	*	2479.620	15.396	83.828	99.225	25.225	74.000	PEAK
4		2483.500	15.408	41.245	56.653	-17.347	74.000	PEAK
5		2484.380	15.412	39.932	55.343	-18.657	74.000	PEAK
6		2500.000	15.434	30.026	45.461	-28.539	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.
- 7. The fundamental for reference only, it's not restricted by unwanted emission limit.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_AV	Margin : 6
Probe : CB4-H_FCC_EFS_B432_1-18GHz_3M_1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
HORIZONTAL	
EUT : Heart-Rate Smartband	Note : 2480MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	14.229	20.445	34.674	-19.326	54.000	AVERAGE
2		2351.800	14.431	29.876	44.308	-9.692	54.000	AVERAGE
3		2390.000	14.881	19.898	34.779	-19.221	54.000	AVERAGE
4	*	2479.900	15.398	77.155	92.553	38.553	54.000	AVERAGE
5		2483.500	15.408	25.161	40.569	-13.431	54.000	AVERAGE
6		2500.000	15.434	18.738	34.173	-19.827	54.000	AVERAGE

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.
- 7. The fundamental for reference only, it's not restricted by unwanted emission limit.

Site : CB4-H	Time : 2018/04/23
Limit : FCC_SpartC_15.209_03M_PK	Margin : 6
Probe : CB4-H FCC EFS B432 1-18GHz 3M 1116 -	Power : AC 120V/60Hz (Power by Notebook PC)
EUT : Heart-Rate Smartband	Note : 2480MHz

		Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Detector Type
		(MHz)	(dB)	(dBuV)	(dBuV/m)	(dB)	(dBuV/m)	
1		2310.000	14.229	30.405	44.634	-29.366	74.000	PEAK
2		2390.000	14.881	29.631	44.512	-29.488	74.000	PEAK
3	*	2479.640	15.396	78.548	93.945	19.945	74.000	PEAK
4		2483.500	15.408	36.142	51.550	-22.450	74.000	PEAK
5		2483.600	15.409	36.842	52.251	-21.749	74.000	PEAK
6		2500.000	15.434	28.957	44.392	-29.608	74.000	PEAK

- 1. All reading above 1GHz is performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection. If the readings given are average, peak measurement should also be supplied.
- 7. The fundamental for reference only, it's not restricted by unwanted emission limit.

7. Occupied Bandwidth

7.1. Test Setup

7.2. Limits

The 6 dB bandwidth: \geq 500 kHz. Occupied Bandwidth: NA

7.3. Test Procedures

The EUT was setup according to ANSI C63.10: 2013; tested according to DTS test procedure of KDB558074 D01V04 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 1% of EBW, Span greater than RBW.

7.4. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247

7.5. Test Result

Product	Heart-Rate Smartband		
Test Item	DTS Bandwidth		
Test Mode	Mode 1: Transmit		
Date of Test	2018/04/23	Test Site	SR10-H

Channel No.	Frequency	Measure Level	Limit	Decult
Channel No.	(MHz)	(KHz)	(KHz)	Result
0	2402	0.845	≧500	Pass
19	2440	0.839	≧500	Pass
39	2480	0.881	≥500	Pass

Keysight S	Spectrum Analyzer - Occ	upied BW								
L <mark>XI</mark>	RF 50 Ω	DC		SEN	ISE:INT			04:15:03 F	M Apr 23, 2018	Frequency
Center	Freq 2.40200	0000 GH	Z	Center Freq: 2.402000000 GHz			Radio Std: None		requeries	
		#IFG	iain:Low	#Atten: 20) dB	Ext Gain	: -1.00 dB	Radio Dev	vice: BTS	
15 dB/div	Pef 30.00) dBm								
Log			·							
15.0										Center Freq
0.00					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					2.402000000 GHz
-15.0					``	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
20.0										
-50.0									The second second	
-45.U www.									· · · · · · · · · · · · · · · · · · ·	
-60.0										
-75.0										
-90.0										
-105										
Center 🔅	2.402 GHz							Sp	an 5 MHz	CF Step
#Res BV	V 100 kHz			#VB	W 300 H	(Hz		Sweep	1.333 ms	500.000 kHz
•					Total D	ower	42.5) dDm		<u>Auto</u> Man
	ipled Band	wiath			TOTAL	ower	12.2			
		1.88	81 MH	z						Freg Offset
.					W - 6 O					0 Hz
Trans	smit Freq Err	or -	39.085 K	HZ	% OT U	BW POW	er 99	9.00 %		
x dB	Bandwidth		844.5 k	Hz	x dB		-6.	00 dB		
MSG							STATUS	S		

			Unc						
🔤 Keysight 🔤	Spectrum Analyzer - Occu	pied BW							×
L XI	RF 50 Ω	DC	SENSE:I	NT		04:16:13 P	M Apr 23, 2018	Erequenci	
Center	Freq 2.440000)000 GHz	Center Freq:	2.440000000 GHz		Radio Std	: None	Frequency	У
		#IEColorian	#Atten: 20 dB	n Avg Ho EvtGai	10:>100/100	Padio Dev	ice: BTS		
_		#IFGaIn:Low	#Atten: 20 db		n1.00 ab	Raulo Dev	ICE. DT3		
15 dB(div	Ref 30.00	dBm							
Log									
15.0								Center	Fred
								Center	1 ICY
0.00								2.440000000	GHZ
-15.0					<u> </u>				
-30.0									
-30.0							h-1		
-45.0	~ ~						- The		
-60.0									
-75.0									
-90.0									
105									
-105									
	2.44.045								
			40 (BLA)	000 1.11-		sp		CF	Step
#Res Bi	N 100 KHZ		#VBW	300 KHZ		Sweep	1.333 ms	500.000) kHz
			_			=		Auto	Man
Occ	upied Bandv	vidth	ТС	otal Power	12.0) dBm			
		4 0004 M	LI						
		1.8981 1	ΠZ					Freq O	ffset
L _								· ·	0 HZ
Tran	smit Freq Erro	or -36.821	kHz %	of OBW Pov	ver 99	0.00 %			0112
	Pandwidth	920.2		AD	6				
Xub	Danuwiutii	039.3		uв	-0.	00 UB			
MSG					STATUS	5			

Keysight S	pectrum Analyzer - Occi	upied BW							
LXI	RF 50 Ω	DC		SENSE:INT			04:21:21 P	M Apr 23, 2018	Frequency
Center F	Freq 2.48000	0000 GHz	Center	Freq: 2.4800	00000 GHz	d->100/100	Radio Std	: None	rrequericy
	7	#IEGain:Low	, Atten:	20 dB	Ext Gair	n: -1.00 dB	Radio Dev	ice: BTS	
		#I Gam.Lov							
15 dB/div	Ref 30.00) dBm							
Log									
15.0									Center Freq
0.00									2.480000000 GHz
15.0									
-15.0						- And a start of the start of t			
-30.0	man 1						the second	h	
-45.0	and the second s							Jan Martin	
-60.0									
-00.0									
-75.0									
-90.0									
-105									
100									
Center 2	2.48 GHz						Sp	an 5 MHz	0.00
#Res BM	V 100 kHz		#V	/BW 300	kHz		Sweep	1.333 ms	CF Step
									SUU.UUU KHZ
000	inied Bandy	width		Total F	ower	11.	9 dBm		<u>Auto</u> Man
					• • • • •		• u_		
		1.7930	MHz						Freg Offset
Trans	mit Freq Err	or -47.50	58 kHz	% of O	BW Pov	ver 9	9.00 %		0 112
v dD I	Dondwidth	000	5 643	v dD		6			
	Banuwium	000	.э кнг	хив		-0	.00 UB		
MSG						STATU	JS		

8. Power Density

8.1. Test Setup

8.2. Limits

The peak power spectral density conducted from the intentional radiated to the antenna shall not be greater than +8dBm in any 3kHz band during any time interval of continuous transmission.

8.3. Test Procedures

The EUT was setup according to ANSI C63.10: 2013; tested according to DTS test procedure of KDB558074 D01V04 for compliance to FCC 47CFR 15.247 requirements.

8.4. Test Specification

According to FCC Part 15 Subpart C Paragraph 15.247

8.5. Test Result

Product	Heart-Rate Smartband		
Test Item	Power Density		
Test Mode	Mode 1: Transmit		
Date of Test	2018/04/26	Test Site	SR7

Channel No.	Frequency (MHz)	Measure Level (dBm/3kHz)	Limit (dBm/3kHz)	Result
0	2402	4.393	≦8	Pass
19	2440	4.360	≦8	Pass
39	2480	4.329	≦8	Pass

Keysight Spectrum Analyzer - Swept SA				
	SENSE:INT		06:18:49 PM Apr 26, 2018	Frequency
Center Freq 2.402000000 GHZ PNO: Wide G IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold:>100/100 Ext Gain: -1.00 dB Mkr1 2	2.401 960 5 GHz	Auto Tune
10 dB/div Ref 20.00 dBm	T T		4.393 dBm	
10.0	1			Center Freq 2.402000000 GHz
-10.0				Start Freq 2.399500000 GHz
-20.0				Stop Freq 2.404500000 GHz
-40.0			ma man	CF Step 500.000 kHz <u>Auto</u> Man
-50.0 4***				Freq Offset 0 Hz
-70.0				Scale Type
Center 2.402000 GHz #Res BW 100 kHz #VBW	300 kHz	Sweep 1	Span 5.000 MHz 333 ms (10001 pts)	Log <u>Lin</u>
MSG		STATU	s	

