

FCC TEST REPORT

Product : Monster Bluetooth Headphones
Trade mark : Monster
Model/Type reference : 190693
Serial Number : N/A
Report Number : EED32J00013903
FCC ID : RJE190693
Date of Issue : Feb. 21, 2017
Test Standards : 47 CFR Part 15 Subpart B (2015)
Test result : PASS

Prepared for:

Monster LLC

3837 Bay Lake Trail, Suite 103, North Las Vegas, NV 89030 USA

Prepared by:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District,

Shenzhen, Guangdong, China

TEL: +86-755-3368 3668

FAX: +86-755-3368 3385

Tested By:

Tom-chen

Compiled by:

Kevin Ian

Tom chen (Test Project)

Kevin Ian (Project Engineer)

Reviewed by:

Kevin Yang

Kevin yang (Reviewer)

Approved by:

Sheek Luo

Sheek Luo (Lab supervisor)

Date:

Feb. 21, 2017

Check No.: 2496567469

Report No. : EED32J00013903

Page 2 of 22

2 Version

Version No.	Date	Description
00	Feb. 21, 2017	Original

3 Test Summary

Test Item	Test Requirement	Test method	Result
Radiated Emission	47 CFR Part 15B	ANSI C63.4-2014	PASS
Conducted Emission (150KHz to 30MHz)	47 CFR Part 15B	ANSI C63.4-2014	PASS

Remark:

The tested samples and the sample information are provided by the client.

4 Contents

	Page
1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENTS	4
5 GENERAL INFORMATION	5
5.1 CLIENT INFORMATION	5
5.2 GENERAL DESCRIPTION OF EUT	5
5.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	5
5.4 TEST ENVIRONMENT AND MODE	5
5.5 DESCRIPTION OF SUPPORT UNITS	5
5.6 TEST LOCATION	6
5.7 TEST FACILITY	6
5.8 DEVIATION FROM STANDARDS	7
5.9 ABNORMALITIES FROM STANDARD CONDITIONS	7
5.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	7
5.11 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	7
6 EQUIPMENT LIST	8
7 TEST RESULTS AND MEASUREMENT DATA	10
7.1 CONDUCTED EMISSIONS	10
7.2 RADIATED EMISSION	13
APPENDIX 1 PHOTOGRAPHS OF TEST SETUP	20
APPENDIX 2 PHOTOGRAPHS OF EUT	22

5 General Information

5.1 Client Information

Applicant:	Monster LLC
Address of Applicant:	3837 Bay Lake Trail, Suite 103, North Las Vegas, NV 89030 USA
Manufacturer:	Monster LLC
Address of Manufacturer:	3837 Bay Lake Trail, Suite 103, North Las Vegas, NV 89030 USA
Factory:	CRESYN ELECTRONICS (DONGGUAN) CO., LTD
Address of Factory:	Lin-Cun Industry Zone, Tangxia, Dongguan, Guangdong, China

5.2 General Description of EUT

Product Name:	Monster Bluetooth Headphones
Model No.(EUT):	190693
Trade mark:	Monster
EUT Supports Radios application:	BT4.1 Dual mode
Power Supply:	3.7V/560mAh(Lithium Battery)
USB cable:	60cm(Unshielded)

5.3 Product Specification subjective to this standard

Test Voltage:	AC 120V, 60Hz
Sample Received Date:	Feb. 07, 2017
Sample tested Date:	Feb. 07, 2017 to Feb. 21, 2017

5.4 Test Environment and Mode

Operating Environment:	
Temperature:	22°C
Humidity:	55% RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Play Audio:	Connect the EUT to Laptop by USB cable(or Audio cable) and play the Audio Signal.

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

Associated equipment name	Manufacture	model	Serial number	Supplied by
AE1	L.Selectron	OP-308	F0729003225KOSG	CTI
AE2	Lenovo	E46L	EB22995690	CTI
AE3	L.Selectron	KB-101A	C0503005704BTZJ	CTI

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

5.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2 .

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

5.8 Deviation from Standards

None.

5.9 Abnormalities from Standard Conditions

None.

5.10 Other Information Requested by the Customer

None.

5.11 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9×10^{-8}
2	Radiated Spurious emission	4.5dB (30MHz-1GHz)
		4.8dB (1GHz-12.75GHz)
3	Conduction emission	3.6dB (9kHz to 150kHz)
		3.2dB (150kHz to 30MHz)
4	Temperature	0.64°C
5	Humidity	2.8%
6	DC power voltages	0.025%

Report No. : EED32J00013903

Page 8 of 22

6 Equipment List

Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017
ISN	TESEQ GmbH	ISN T800	30297	01-27-2017	01-25-2018

3M Semi/full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	TTE20130797	06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-16-2017	02-15-2018
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-11-2017	01-10-2018
Cable line	Fulai(6M)	SF106	5220/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5216/6A	01-11-2017	01-10-2018
Cable line	Fulai(3M)	SF106	5217/6A	01-11-2017	01-10-2018
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	TTF20120439	01-11-2017	01-10-2018
High-pass filter	MICRO-TRONICS	SPA-F-63029-4	003	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395-001	TTF20120434	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393-001	TTF20120435	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396-002	TTF20120436	01-11-2017	01-10-2018
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394-001	TTF20120437	01-11-2017	01-10-2018

7 Test results and Measurement Data

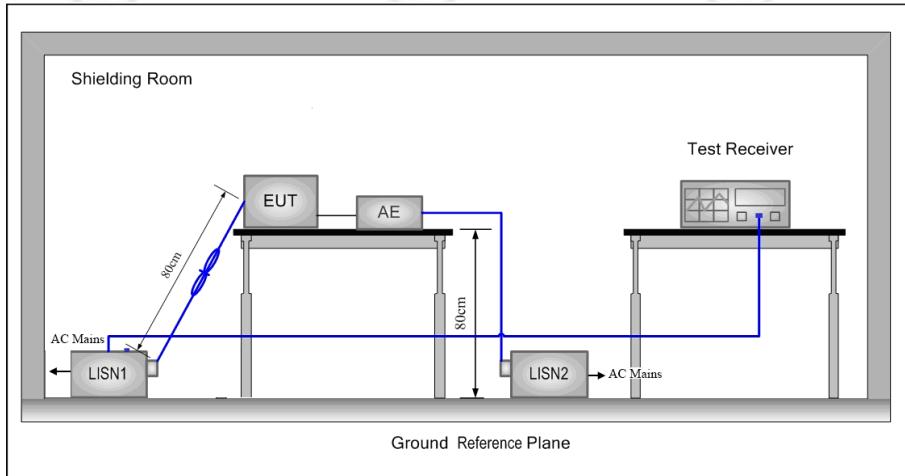
7.1 Conducted Emissions

Test Requirement: 47 CFR Part 15B

Test Method: ANSI C63.4

Test frequency range: 150kHz to 30MHz

Limit:


Frequency range (MHz)	Limit (dB μ V)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

Test Procedure:

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4 on conducted measurement.

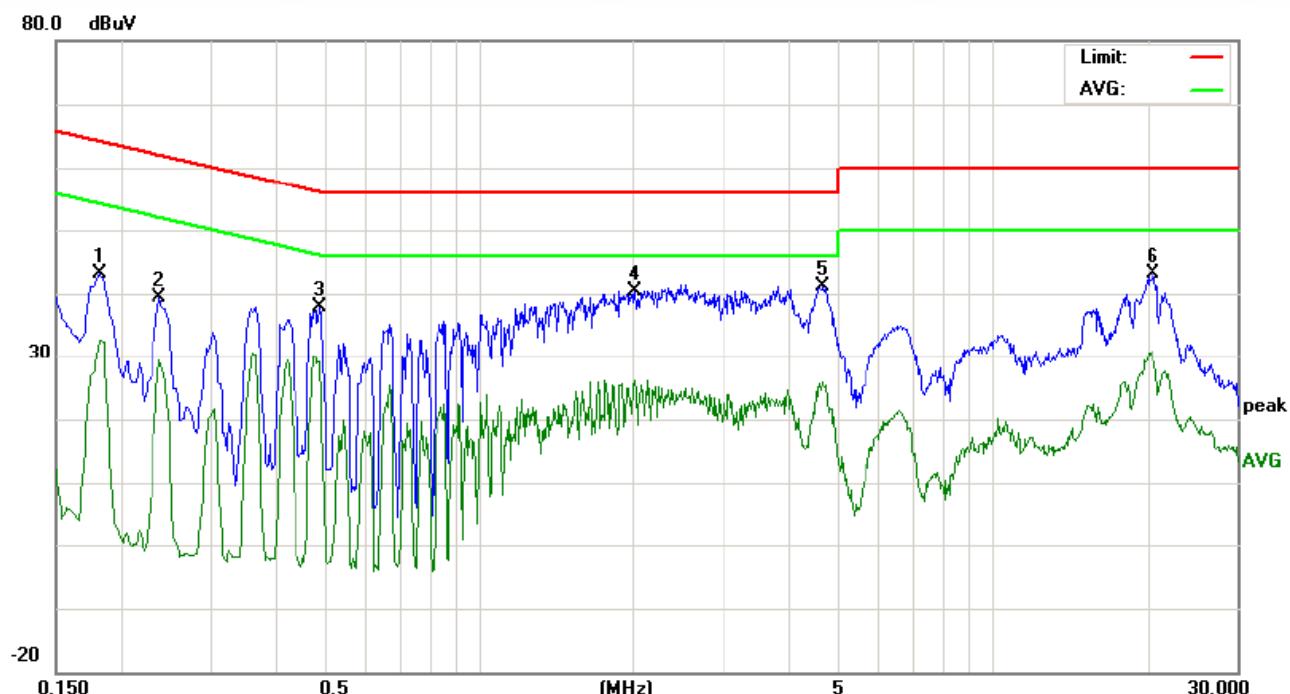
Test Setup:

Instruments Used:

Refer to section 6 for details

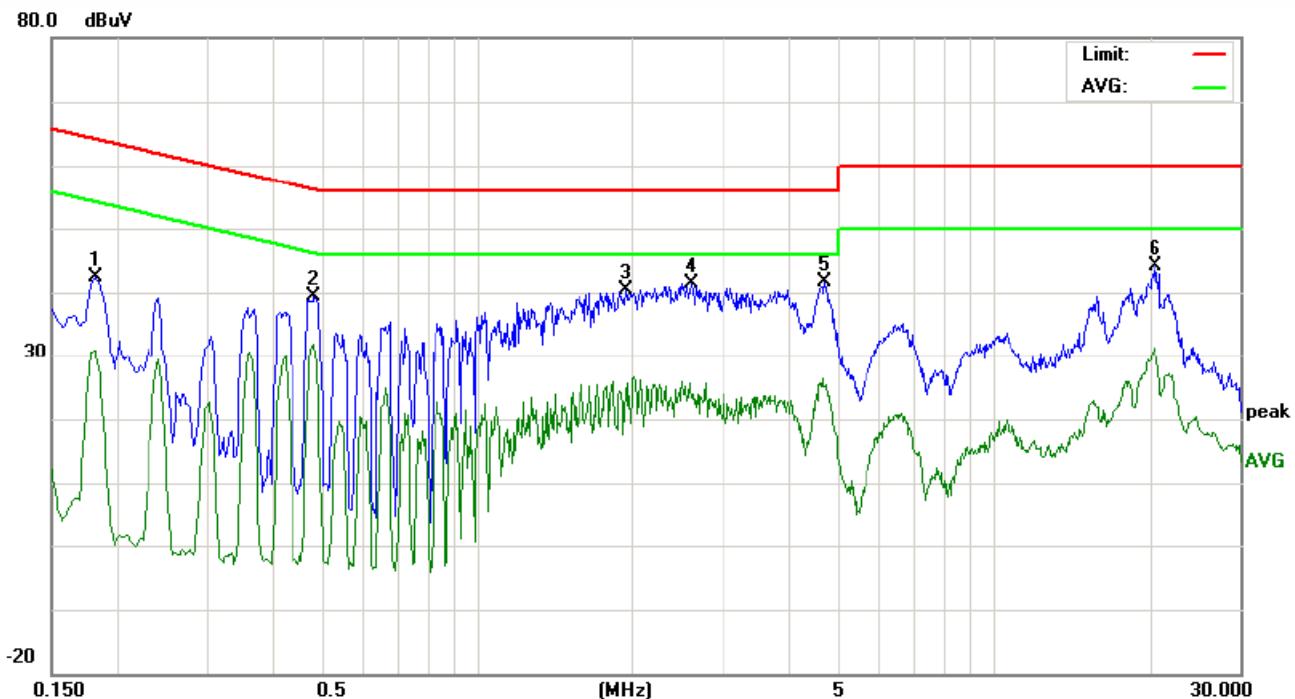
Test Results:

Pass


Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.


USB Port Play:

Live Line:

No.	Freq.	Reading_Level (dBuV)			Correct Factor		Measurement (dBuV)			Limit (dBuV)		Margin (dB)		P/F	Comment
		MHz	Peak	QP	Avg	dB	peak	QP	Avg	QP	Avg	QP	Avg		
1	0.1819	33.40		22.75	9.80	43.20		32.55	64.39	54.39	-21.19	-21.84	P		
2	0.2379	29.51		19.62	9.80	39.31		29.42	62.17	52.17	-22.86	-22.75	P		
3	0.4899	27.96		19.23	9.90	37.86		29.13	56.17	46.17	-18.31	-17.04	P		
4	2.0139	30.27		16.20	10.00	40.27		26.20	56.00	46.00	-15.73	-19.80	P		
5	4.6939	31.20		15.67	10.00	41.20		25.67	56.00	46.00	-14.80	-20.33	P		
6	20.6259	33.33		19.88	9.80	43.13		29.68	60.00	50.00	-16.87	-20.32	P		

Neutral Line:

No.	Freq.	Reading_Level (dBuV)			Correct Factor		Measurement (dBuV)			Limit (dBuV)			Margin (dB)	
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F
1	0.1819	32.65		21.17	9.80	42.45		30.97	64.39	54.39	-21.94	-23.42	P	
2	0.4860	29.36		22.02	9.90	39.26		31.92	56.24	46.24	-16.98	-14.32	P	
3	1.9420	30.35		14.23	9.98	40.33		24.21	56.00	46.00	-15.67	-21.79	P	
4	2.6060	31.47		13.29	10.00	41.47		23.29	56.00	46.00	-14.53	-22.71	P	
5	4.7099	31.65		15.11	10.00	41.65		25.11	56.00	46.00	-14.35	-20.89	P	
6	20.6500	34.34		20.72	9.80	44.14		30.52	60.00	50.00	-15.86	-19.48	P	

Notes:

1. The following Quasi-Peak and Average measurements were performed on the EUT:
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
3. All modes are tested, only the worst mode USB Port Play is reported.

7.2 Radiated Emission

Test Requirement: 47 CFR Part 15B

Test Method: ANSI C63.4

Test site: Measurement Distance: 3m (Semi-Anechoic Chamber)

Receiver setup:

Frequency	Detector	RBW	VBW	Remark
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value
Above 1GHz	Peak	1MHz	3MHz	Peak Value

Limit:

Frequency	Limit (dB μ V/m @3m)	Remark
30MHz-88MHz	40.0	Quasi-peak Value
88MHz-216MHz	43.5	Quasi-peak Value
216MHz-960MHz	46.0	Quasi-peak Value
960MHz-1GHz	54.0	Quasi-peak Value
Above 1GHz	54.0	Average Value
	74.0	Peak Value

Test Procedure:

Below 1GHz test procedure as below:

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber (Above 18GHz the distance is 1 meter).
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

Test Setup:

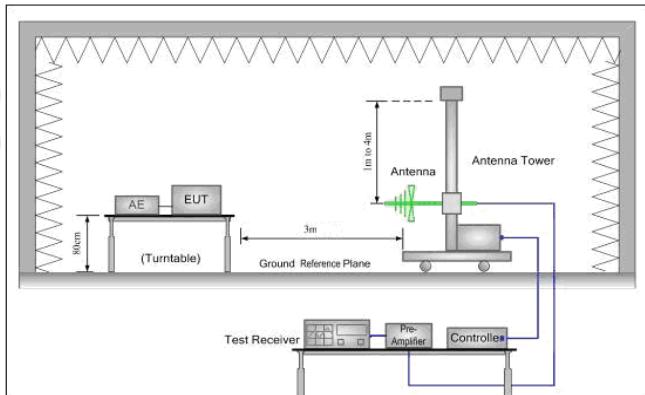


Figure 1. 30MHz to 1GHz

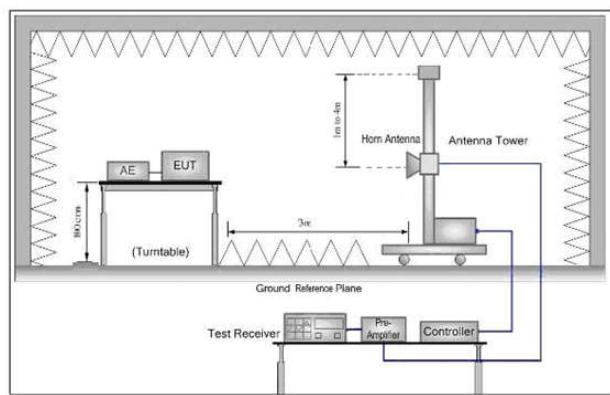
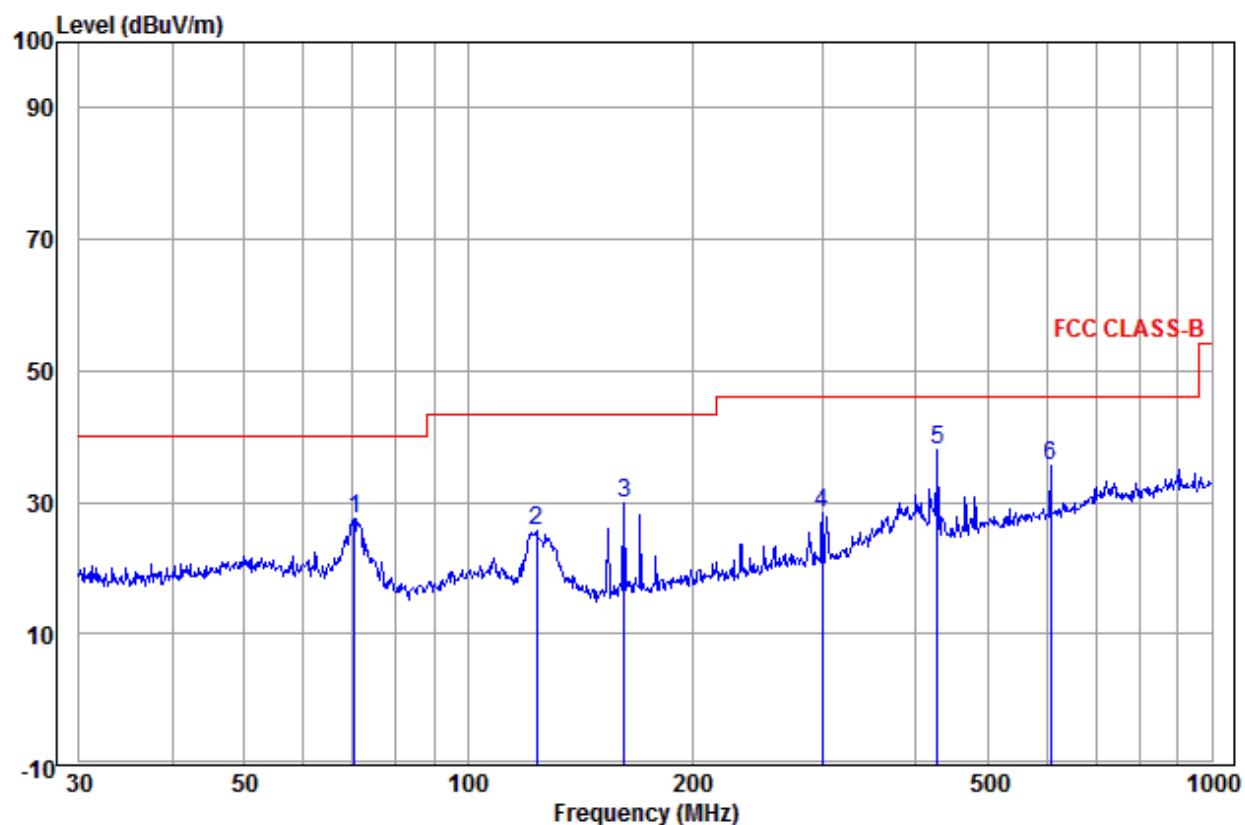


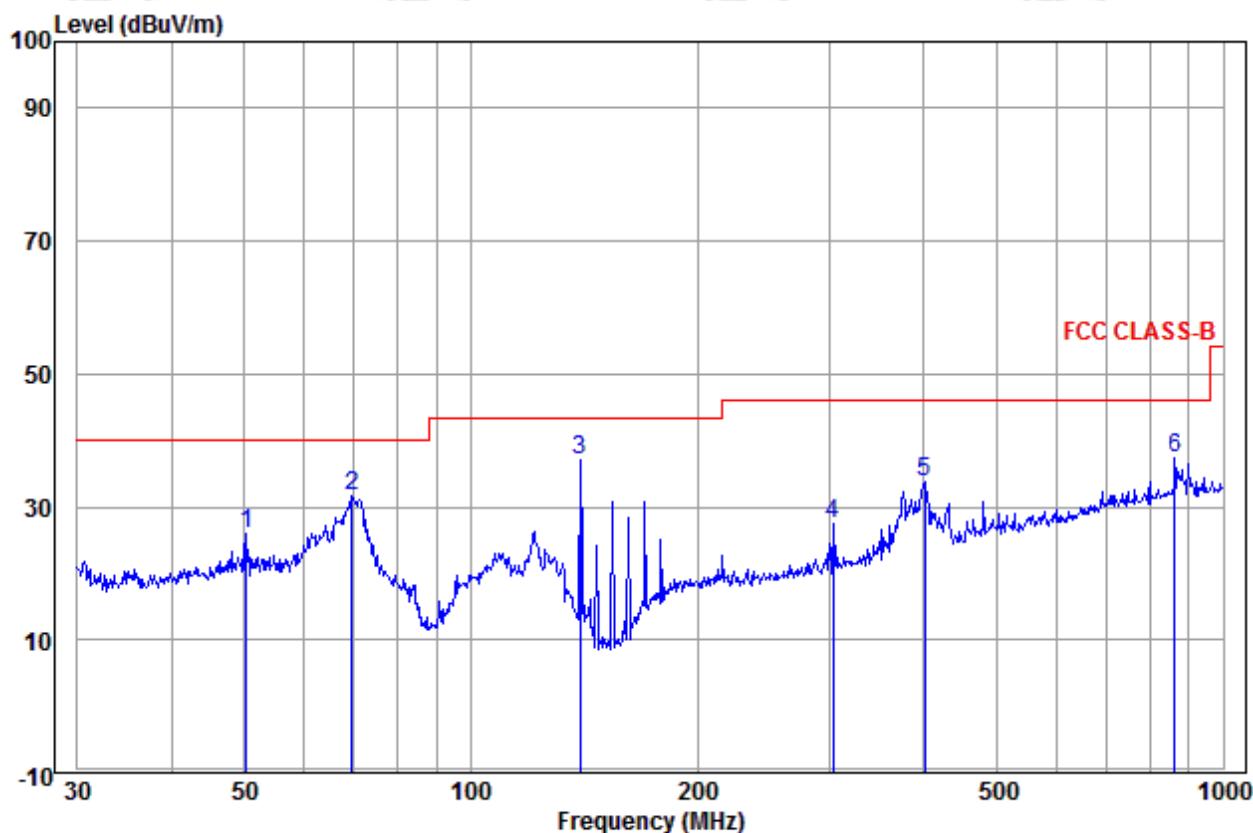
Figure 2. Above 1 GHz


Instruments Used:

Refer to section 6 for details

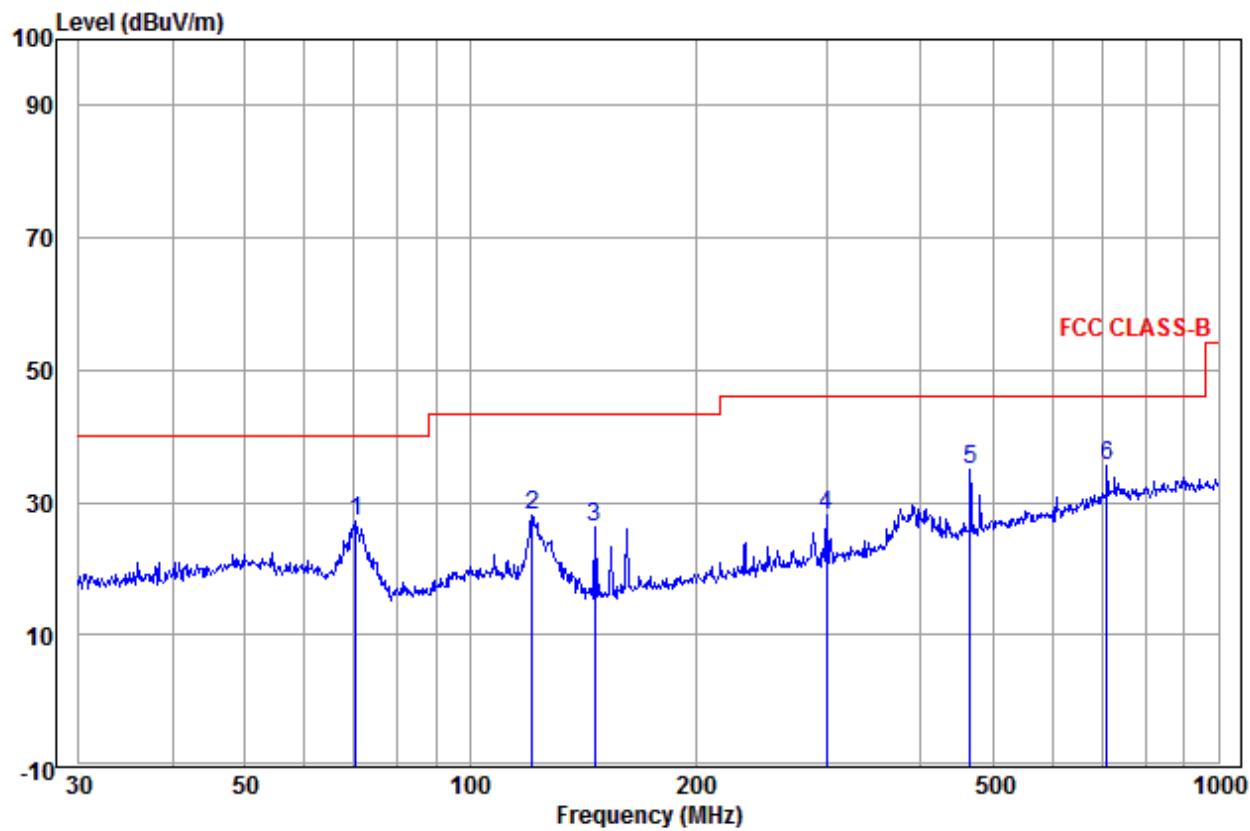
Test Results:

Pass

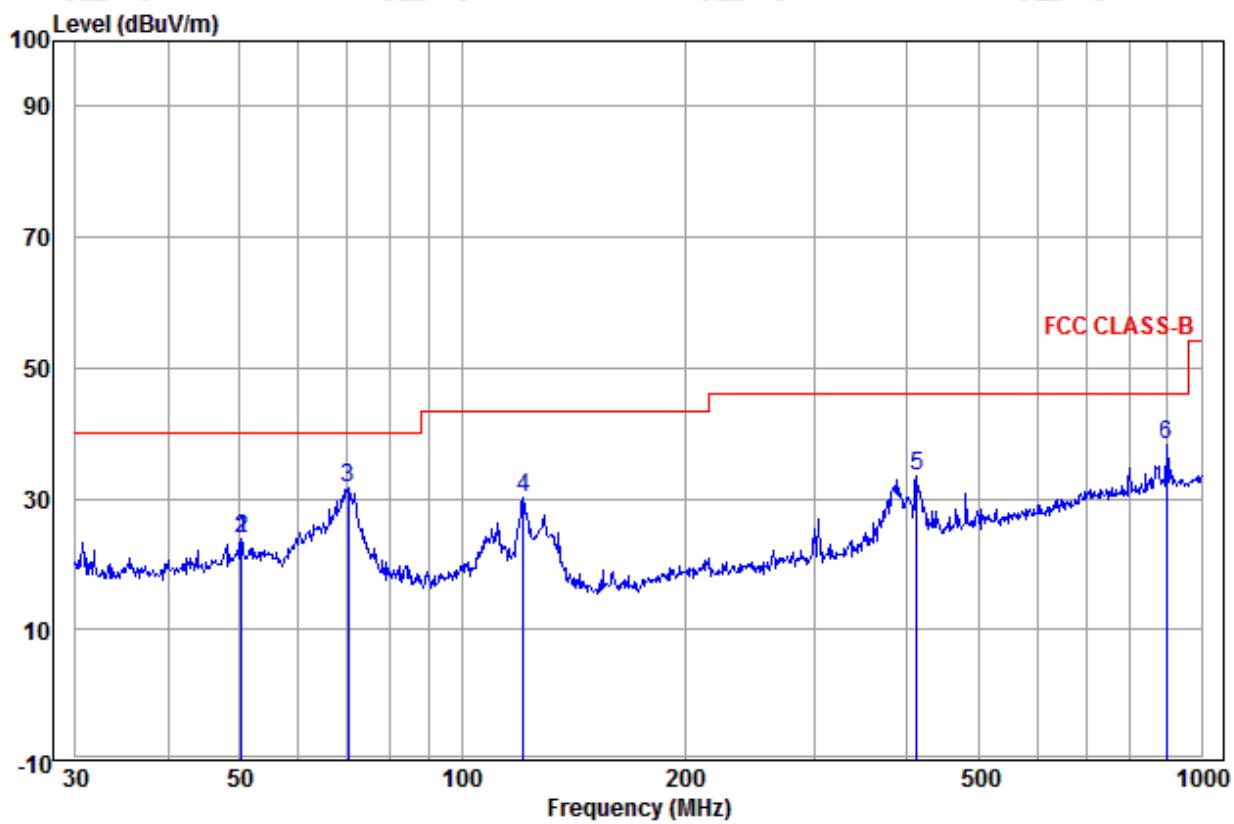

Test Data:
Below 1GHz
USB Port Play
Horizontal

	Ant Freq	Cable Factor	Read Loss	Level	Limit Level	Line Limit	Over Remark
--	----------	--------------	-----------	-------	-------------	------------	-------------

	Ant Freq	Cable Factor	Read Loss	Level	Limit Level	Line Limit	Over Remark
1	70.337	10.34	1.45	15.74	27.53	40.00	-12.47
2	123.699	11.36	1.58	12.62	25.56	43.50	-17.94
3	162.041	10.21	1.75	17.90	29.86	43.50	-13.64
4	299.316	13.49	2.38	12.56	28.43	46.00	-17.57
5 pp	428.019	16.76	2.91	18.38	38.05	46.00	-7.95
6	607.787	18.93	3.52	13.24	35.69	46.00	-10.31


Vertical

	Ant Freq	Factor	Cable Loss	Read Level	Limit		Over Limit	Remark
					MHz	dB/m	dB	dBuV
1	50.232	15.07	1.40	9.59	26.06	40.00	40.00	-13.94
2	69.600	10.53	1.45	19.78	31.76	40.00	40.00	-8.24
3 pp	139.851	10.30	1.58	25.09	36.97	43.50	43.50	-6.53
4	303.544	13.60	2.41	11.40	27.41	46.00	46.00	-18.59
5	401.839	16.33	2.81	14.48	33.62	46.00	46.00	-12.38
6	863.056	22.03	4.22	11.04	37.29	46.00	46.00	-8.71


AUDIO Port Play

Horizontal

	Ant Freq	Cable Factor	Read Loss	Read Level	Limit Level	Over Line	Over Limit	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	70.337	10.34	1.45	15.46	27.25	40.00	-12.75	
2	121.123	11.55	1.57	14.97	28.09	43.50	-15.41	
3	146.888	9.88	1.58	14.79	26.25	43.50	-17.25	
4	299.316	13.49	2.38	12.08	27.95	46.00	-18.05	
5	465.599	17.52	3.04	14.36	34.92	46.00	-11.08	
6 pp	709.182	20.76	3.91	10.78	35.45	46.00	-10.55	

Vertical

	Ant Freq	Cable Factor	Read Loss	Level Level	Limit Line	Over Level	Remark
--	----------	--------------	-----------	-------------	------------	------------	--------

	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	50.232	15.07	1.40	7.27	23.74	40.00	-16.26
2	50.232	15.07	1.40	7.27	23.74	40.00	-16.26
3	70.090	10.38	1.45	19.91	31.74	40.00	-8.26
4	121.123	11.55	1.57	17.01	30.13	43.50	-13.37
5	411.824	16.50	2.85	14.02	33.37	46.00	-12.63
6 pp	896.997	22.37	4.33	11.58	38.28	46.00	-7.72

Above 1GHz

USB Port Play:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dB μ V)	Level (dB μ V/m)	Limit (dB μ V/m)	Over Limit (dB)	Result	Antenna Polaxis
1113.497	30.01	2.41	44.51	54.57	42.48	74.00	-31.52	Pass	H
1669.365	31.18	2.98	43.81	50.99	41.34	74.00	-32.66	Pass	H
1892.439	31.54	3.15	43.60	50.18	41.27	74.00	-32.73	Pass	H
2498.247	32.74	4.54	44.16	49.21	42.33	74.00	-31.67	Pass	H
3176.198	33.44	5.58	44.68	48.94	43.28	74.00	-30.72	Pass	H
4988.864	35.08	5.04	44.60	46.03	41.55	74.00	-32.45	Pass	H
1160.344	30.13	2.47	44.44	53.51	41.67	74.00	-32.33	Pass	V
1919.760	31.58	3.17	43.57	53.93	45.11	74.00	-28.89	Pass	V
2393.094	32.54	4.29	44.03	55.48	48.28	74.00	-25.72	Pass	V
3020.781	33.58	5.62	44.70	48.87	43.37	74.00	-30.63	Pass	V
4081.772	33.01	5.40	44.60	47.36	41.17	74.00	-32.83	Pass	V
4988.864	35.08	5.04	44.60	48.27	43.79	74.00	-30.21	Pass	V

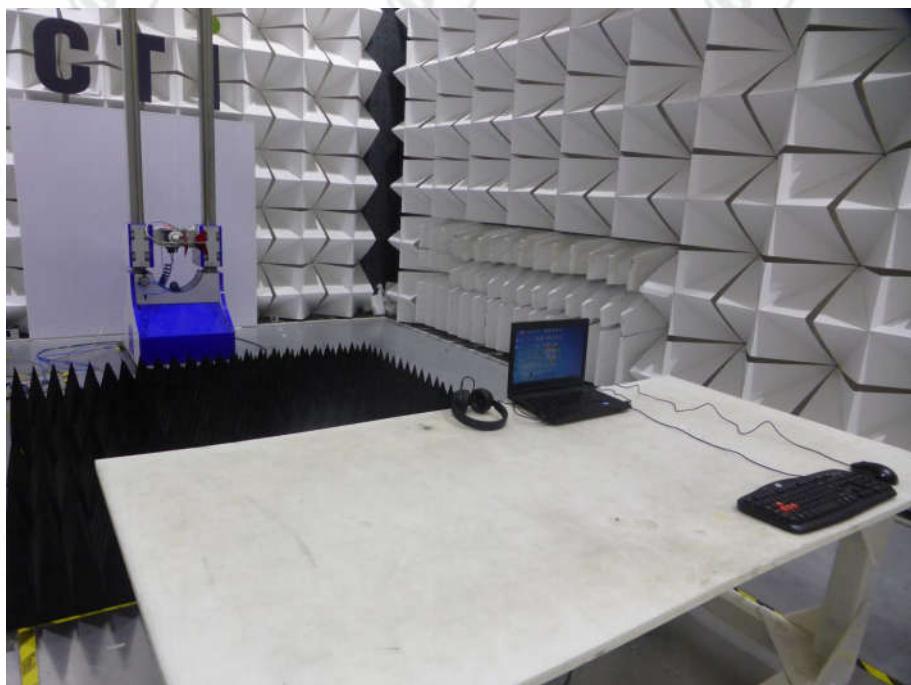
AUDIO Port Play:

Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dB μ V)	Level (dB μ V/m)	Limit (dB μ V/m)	Over Limit (dB)	Result	Antenna Polaxis
1105.545	29.99	2.40	44.53	51.09	38.95	74.00	-35.05	Pass	H
1383.074	30.64	2.71	44.14	49.30	38.51	74.00	-35.49	Pass	H
1858.833	31.49	3.13	43.63	49.34	40.33	74.00	-33.67	Pass	H
2589.395	32.91	4.75	44.26	48.57	41.97	74.00	-32.03	Pass	H
3256.879	33.37	5.57	44.67	49.10	43.37	74.00	-30.63	Pass	H
4727.779	34.52	5.14	44.60	46.17	41.23	74.00	-32.77	Pass	H
1315.398	30.49	2.64	44.23	51.41	40.31	74.00	-33.69	Pass	V
1892.439	31.54	3.15	43.60	52.59	43.68	74.00	-30.32	Pass	V
2133.821	32.00	3.61	43.69	52.95	44.87	74.00	-29.13	Pass	V
2397.385	32.55	4.30	44.04	54.04	46.85	74.00	-27.15	Pass	V
3216.286	33.41	5.58	44.68	49.38	43.69	74.00	-30.31	Pass	V
4796.035	34.67	5.11	44.60	49.03	44.21	74.00	-29.79	Pass	V

Remark:


1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading - Correct Factor


Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Test Model No.: 190693

Radiated emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Report No. : EED32J00013903

Page 21 of 22

Conducted Emissions Test Setup

Report No. : EED32J00013903

Page 22 of 22

APPENDIX 2 PHOTOGRAPHS OF EUT

Refer to Report No.EED32J00013901 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.