

*FCC PART 15, SUBPART C
TEST REPORT*

for

FM TRANSMITTER
M/N: ICARPLAY-250
FCC ID: RJE190075-00

Prepared for

EVER WIN INTERNATIONAL CORP.
9504 TOPANGA CANYON BLVD
CHATSWORTH, CA 91311

Prepared by: _____

REYNALD O. RAMIREZ

Approved by: _____

RUBY A. HALL

COMPATIBLE ELECTRONICS INC.
2337 TROUTDALE DRIVE
AGOURA, CALIFORNIA 91301
(818) 597-0600

DATE: NOVEMBER 8, 2007

	REPORT BODY	APPENDICES					TOTAL
		A	B	C	D	E	
PAGES	17	2	2	2	13	12	48

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
2. ADMINISTRATIVE DATA	6
2.1 Location of Testing	6
2.2 Traceability Statement	6
2.3 Cognizant Personnel	6
2.4 Date Test Sample was Received	6
2.5 Disposition of the Test Sample	6
2.6 Abbreviations and Acronyms	6
3. APPLICABLE DOCUMENTS	7
4. DESCRIPTION OF TEST CONFIGURATION	8
4.1 Description of Test Configuration - EMI	8
4.1.1 Photograph of Test Configuration - EMI	8
4.1.2 Cable Construction and Termination	9
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1 EUT and Accessory List	10
5.2 EMI Test Equipment	11
6. TEST SITE DESCRIPTION	12
6.1 Test Facility Description	12
6.2 EUT Mounting, Bonding and Grounding	12
7. TEST PROCEDURES	13
7.1 RF Emissions	13
7.1.1 Conducted Emissions Test	13
7.1.2 Radiated Emissions Test	14
7.1.3 RF Emissions Test Results	15
7.1.4 Sample Calculations	16
8. TEST PROCEDURE DEVIATIONS	17
9. CONCLUSIONS	17

LIST OF APPENDICES

APPENDIX	TITLE
A	Laboratory Accreditations
B	Modifications to the EUT
C	Additional Models Covered Under This Report
D	Diagrams, Charts and Photos <ul style="list-style-type: none">• Test Setup Diagrams• Antenna and Amplifier Gain Factors• Radiated Emissions Photos
E	Data Sheets

LIST OF FIGURES

FIGURE	TITLE
1	Plot Map And Layout of Test Site

GENERAL REPORT SUMMARY

This electromagnetic emission report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form except in full, without the written permission of Compatible Electronics.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested: FM Transmitter
Model Number: iCarPlay-250
SN: None

Product Description: This is an FM Transmitter.

Modifications: The EUT was not modified during the testing.

Manufacturer: Ever Win International Corp.
9504 Topanga Canyon Blvd
Chatsworth, CA 91311

Test Date: November 2, 2007

Test Specifications: EMI requirements
FCC CFR Title 47, Part 15 Subpart A, B and C sections 15.31 (e), 15.109, 15.205, 15.209 and 15.239
Test Procedure: ANSI C63.4: 2003.

Industry Canada Lab Code 2154B-1

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 150 kHz - 30 MHz.	This is a DC powered device that does not plug into AC Mains therefore this test was deemed unnecessary.
2	Radiated RF Emissions, 9 kHz – 1079 MHz.	Complies with the limits of FCC CFR Title 47, Part 15 Subpart C 15.205, 15.209 and 15.239 and the requirements of 15.31(e).

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the FM Transmitter Model Number: ICarPlay-250. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 2003. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the specification limits defined in FCC CFR Title 47, Part 15 Subpart A (15.31e), Subpart B, 15.109 Subpart C 15.205, 15.209 and 15.239.

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 2337 Troutdale Drive, Agoura, California 91301.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Ever Win International Corp.

Alex Samson R & D Engineer

Compatible Electronics Inc.

Reynald O. Ramirez Sr. Test Engineer
Ruby A. Hall Lab Manager

2.4 Date Test Sample was Received

The test sample was received on November 2, 2007.

2.5 Disposition of the Test Sample

The test sample remains at Compatible Electronics Inc.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
FCC CFR Title 47, Subpart C Subpart B	FCC Rules – Intentional Radiators. FCC Rules - Unintentional Radiators
Subpart A	General
CISPR 16 1993	Specification for radio disturbance and immunity measuring apparatus and methods.
ANSI C63.4 2003	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

The EUT was set-up in a tabletop configuration. The EUT was connected to an iPod MP3 Player via the dock connector port. The input connector of the EUT allows the audio device, an iPod MP3 Player in this case, to be charged by the vehicle battery while connected. The volume on the iPod MP3 Player was set at its maximum level. The EUT was continuously transmitting in this mode throughout the test. The output was monitored through a receiver which was located with the EUT. The EUT transmitting antenna is a fixed element; which connects directly to the PCB board.

The highest emissions were found when the EUT was running in the above configuration. The EUT was tested in X, Y and Z axis even though it is intended for use in a dashboard mounted cigarette lighter port. The cables were moved to maximize the emissions. The final radiated data was taken in this mode of operation. All initial investigations were performed with the spectrum analyzer in manual mode scanning the frequency range continuously. The cables were routed as shown in the photographs in Appendix D.

4.1.1 Photograph of Test Configuration - EMI

4.1.2 Cable Construction and Termination

Cable 1 This is a 1 meter foil shielded USB cable that connects the EUT to the iPod. The cable has a Car accessory port, power adapter at one end and has a 25 pin inline locking connector at the iPod end.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT**5.1 EUT and Accessory List**

#	EQUIPMENT TYPE	MANUFACTURER	MODEL	SERIAL NUMBER
1	FM TRANSMITTER (EUT)	EVER WIN INTERNATIONAL CORP.	ICARPLAY-250	S/N: NONE FCC ID: RJE190075-00
2	MP3 PLAYER	APPLE	A1137	S/N: YM536Y57SZB
	CAR ACCESSORY PORT POWER ADAPTER	EVER WIN INTERNATIONAL CORP.	NONE	NONE
	BATTERY	PANASONIC	LC-RA1212P1	NONE

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
EMI Receiver	Rohde & Schwarz	ESIB-40	100218	Feb. 07, 2007	Feb. 07, 2008
Preamplifier	Com Power	PA-103	1619	Dec. 27, 2006	Dec. 27, 2007
Microwave Amplifier	Com-Power	PA-122	181915	Apr. 10, 2007	Apr. 10, 2008
Biconical Antenna	Com Power	AB-900	15283	Dec. 28, 2006	Dec. 28, 2007
Log Periodic Antenna	Com Power	AL-100	16200	Dec. 28, 2006	Dec. 28, 2007
Horn Antenna	A.R.A.	DRG-118	1015	Jul. 26, 2006	Jul. 26, 2008
Antenna Mast	Com Power	AM-400	N/A	N/A	N/A
EM Loop Antenna Active	Com-Power	AL-130	17067	Sep. 19, 2007	Sep. 19, 2008
Turntable	Com Power	TTW-595	N/A	N/A	N/A
Computer	Hewlett Packard	Pavilion 4530	US91912022	N/A	N/A
Printer	Hewlett Packard	C6427B	MY066160TW	N/A	N/A
EMI Application Software	Rohde & Schwarz	ESIB-K1	1.20	N/A	N/A

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 7.1.2 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 RF Emissions

7.1.1 Conducted Emissions Test

The EUT is DC powered and does not connect to AC Mains therefore this test was deemed unnecessary.

The Spectrum Analyzer was used as a measuring meter along with the quasi-peak adapter. The data was collected with the Spectrum Analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A 10 dB attenuation pad was used for the protection of the Spectrum Analyzer input stage, and the Spectrum Analyzer offset was adjusted accordingly to read the actual data measured. The LISN output was read by the Spectrum Analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for the conducted emissions test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The initial test data was taken in manual mode while scanning the frequency ranges of 150 kHz to 1.6 MHz, 1.6 MHz to 5 MHz and 5 MHz to 30 MHz. The conducted emissions from the EUT were maximized for operating mode as well as cable placement. Once a predominant frequency (within 12 dB of the limit) was found, it was more closely examined with the spectrum analyzer span adjusted to 1 MHz.

7.1.2 Radiated Emissions Test

The EMI Receiver was used as the measuring meter. A preamplifier was used to increase the sensitivity of the instrument. The EMI Receiver was used in the Analyzer mode feature activated. In this mode, the EMI receiver can then record the actual frequency to be measured. This final reading is then taken accurately in the EMI Receiver mode, which takes into account the cable loss, amplifier gain and antenna factors, so that a true reading is compared to the true limit. A quasi-peak reading was taken only for those readings, which are marked accordingly on the data sheets. The effective measurement bandwidth used for the radiated emissions test was according to the frequency measured (120 kHz for 30 MHz to 1 GHz and above 1 GHz a 1 MHz bandwidth was used).

Broadband loop,biconical, log periodic and horn antennas were used as transducers during the measurement. The biconical antenna was used from 30 MHz to 300 MHz and the log periodic antenna was used from 300 MHz to 1000 MHz. The horn antenna was used for frequencies above 1 GHz. and the loop antenna was used below 30 MHz. The final data was taken with a frequency span of 1 MHz. Furthermore, the frequency span was reduced during the preliminary investigations as deemed necessary.

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength).

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3-meter test distance from 30 MHz to 2 GHz to obtain final test data. The final test data is located in Appendix E.

7.1.3 RF Emissions Test Results

The fundamental and up to the 10th harmonic emissions are within the specifications.

EVER WIN INTERNATIONAL CORP.
FM Transmitter

RADIATED EMISSIONS – SPURIOUS

The Frequency Band from 9 kHz to 1079 MHz was specifically scanned. Please see data in Appendix E.

RADIATED EMISSION – BAND EDGE 15.239 (a)

The emission from the intentional radiator are confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band lies wholly within the frequency range of 88-108 MHz. See Appendix E for the plots.

7.1.4 Sample Calculations

A correction factor for the antenna, cable and a distance factor (if any) must be applied to the meter reading before a true field strength reading can be obtained. This Corrected Meter Reading is then compared to the specification limit in order to determine compliance with the limits.

The equation can be derived in the following manner:

Specification limit (μ V/m) $\log x 20$ = Specification Limit in dBuV

(Specification distance / test distance) $\log x 40$ = distance factor

Note: When using an Active Antenna, the Antenna factor shall be subtracted due to the combination of the internal amplification and antenna loss. At lower frequencies the cable loss is negligible.

OR

Corrected Meter Reading = meter reading + F - A + C

where: F = antenna factor
 A = amplifier gain
 C = cable loss

The correction factors for the antenna and the amplifier gain are attached in Appendix D of this report. The data sheets are attached in Appendix E.

The distance factor D is 0 when the test is performed at the required specification distance.

Average Measurements

The frequencies that were averaged were done manually by narrowing the video filter down to 10 Hz and setting the sweep time to AUTO on the spectrum analyzer to keep the amplitude reading calibrated.

8. TEST PROCEDURE DEVIATIONS

There were no deviations from the test procedures.

9. CONCLUSIONS

The FM Transmitter Model Number: ICarPlay-250 meets all of the requirements of the FCC CFR, Title 47, Part 15 Subpart A, Section 15.31(e), Subpart B 15.109, Subpart C 15.205, 15.207, 15.209 and 15.239.

APPENDIX A***LABORATORY ACCREDITATIONS***

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Taiwan and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025 an ISO 9002 equivalent. Please follow the link to the NIST site for each of our facilities NVLAP certificate and scope of accreditation.

Silverado/Lake Forest Division: <http://ts.nist.gov/ts/htdocs/210/214/scopes/2005270.htm>

Brea Division: <http://ts.nist.gov/ts/htdocs/210/214/scopes/2005280.htm>

Agoura Division: <http://ts.nist.gov/ts/htdocs/210/214/scopes/2000630.htm>

Compatible Electronics has been accredited by ANSI and appointed by the FCC to serve as a Telecommunications Certification Body (TCB). Compatible Electronics ANSI TCB listing can be found at: http://www.ansi.org/public/ca/ansi_cp.html

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA). Compatible Electronics NIST US/EU CAB listing can be found at: <http://ts.nist.gov/ts/htdocs/210/gsig/emc-cabs-mar02.pdf>

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). Compatible Electronics NIST US/APEC CAB listing can be found at: <http://ts.nist.gov/ts/htdocs/210/gsig/apec/bsmi-cabs-may02.pdf>

Compatible Electronics has been validated by NEMKO against ISO/IEC 17025 under the NEMKO EMC Laboratory Authorization (ELA) program to all EN standards required by the European Union (EU) EMC Directive 89/336/EEC. Please follow the link to the Compatible Electronics' web site for each of our facilities NEMKO ELA certificate and scope of accreditation. <http://www.celectronics.com/certs.htm>

We are also certified/listed for IT products by the following country/agency:

Compatible Electronics VCCI listing can be found at:
http://www.vcci.or.jp/vcci_e/member/tekigo/setsubi_index_id.html

Just type "Compatible Electronics" into the Keyword search box.

Compatible Electronics FCC listing can be found at:
https://gullfoss2.fcc.gov/prod/oet/index_ie.html

Just type "Compatible Electronics" into the Test Firms search box.

Compatible Electronics IC listing can be found at:
http://spectrum.ic.gc.ca/~cert/labs/oats_lab_c_e.html

APPENDIX B***MODIFICATIONS TO THE EUT***

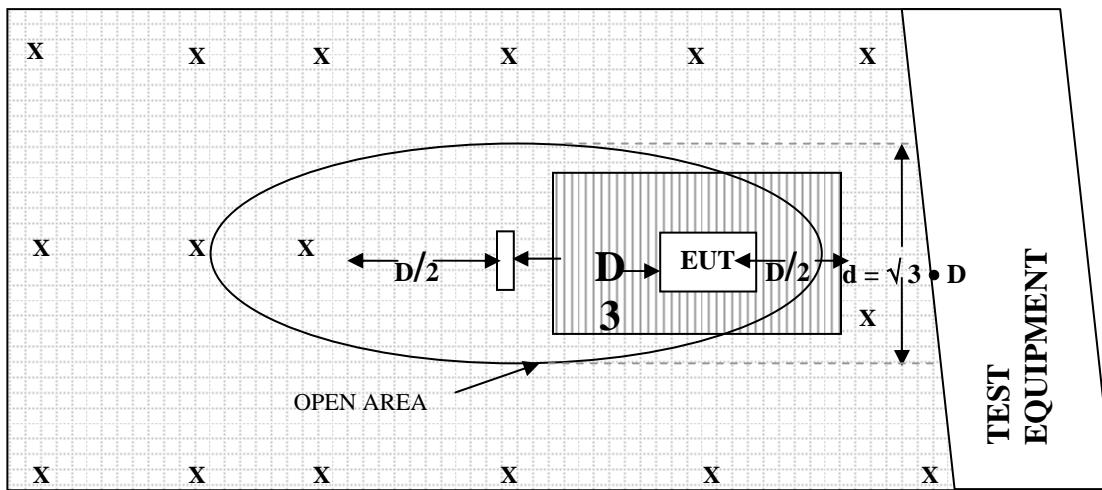
MODIFICATIONS TO THE EUT

There were no modifications made to the EUT during the test.

APPENDIX C***ADDITIONAL MODELS COVERED
UNDER THIS REPORT***

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST


FM TRANSMITTER
M/N: ICARPLAY-250
S/N: NONE

There were no additional models covered under this report.

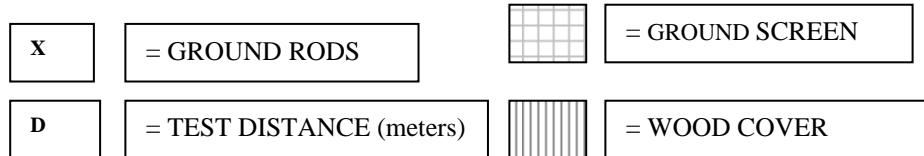

APPENDIX D***DIAGRAMS, CHARTS AND PHOTOS***

FIGURE 1: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

COM-POWER AL-130

ACTIVE LOOP ANTENNA

S/N: 17067

CALIBRATION DATE: SEPTEMBER 19, 2007

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
0.009	11.33	1	12.17
0.01	11.34	2	12.4
0.02	11.37	3	12.1
0.03	12.84	4	12.1
0.04	12.34	5	13.3
0.05	11.1	6	10.7
0.06	11.7	7	11.1
0.07	11.4	8	11.5
0.08	11.3	9	12.8
0.09	11.37	10	11.5
0.1	11.47	15	9.83
0.2	9.0	20	11.9
0.3	11.57	25	11.9
0.4	11.5	30	12.2
0.5	11.5		
0.6	11.97		
0.7	11.77		
0.8	11.87		
0.9	11.84		

COM-POWER AB-900

BICONICAL ANTENNA

S/N: 15283

CALIBRATION DATE: DEC. 28, 2006

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	11.21	120	13.42
35	8.45	125	14.16
40	11.54	140	14.21
45	12.75	150	14.06
50	9.69	160	14.31
55	10.24	175	14.51
60	10.27	180	15.19
65	9.86	200	16.51
70	7.96	225	14.84
80	9.72	250	16.72
90	10.69	275	20.75
100	13.23	300	17.82

COM-POWER AL-100

LOG PERIODIC ANTENNA

S/N: 16200

CALIBRATION DATE: DEC. 28, 2006

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
300	12.73	650	21.56
330	12.92	700	20.03
340	13.56	725	21.93
350	13.87	750	21.80
360	14.40	800	20.08
370	13.39	850	23.25
400	14.50	900	24.72
425	16.39	925	25.23
450	18.87	950	25.13
500	21.36	975	26.01
550	22.81	1000	25.25
600	23.77		

COM-POWER PA-103**PREAMPLIFIER****S/N: 1619****CALIBRATION DATE: DEC. 27, 2006**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	30.0	300	29.2
40	30.4	350	29.1
50	30.2	400	28.9
60	30.3	450	28.7
70	29.6	500	29.4
80	30.3	550	28.3
90	29.8	600	28.4
100	30.2	650	28.3
125	30.4	700	28.7
150	30.2	750	27.6
175	30.5	800	28.0
200	29.5	850	26.8
225	28.7	900	26.8
250	28.6	950	26.4
275	28.3	1000	26.8

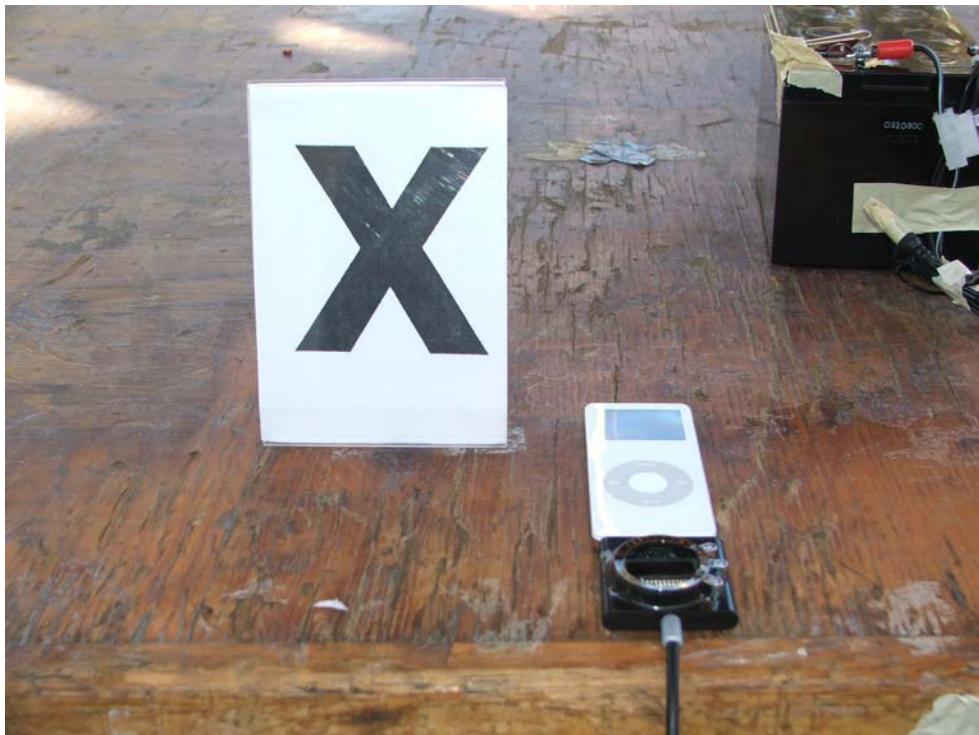
COM-POWER PA-122**PREAMPLIFIER****S/N: 181915****CALIBRATION DATE: APRIL 10, 2007**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
1000	32.3	7000	30.1
1100	32.0	7500	30.2
1200	31.9	8000	29.9
1300	31.8	8500	29.5
1400	31.7	9000	28.1
1500	32.0	9500	27.7
1600	31.8	10000	28.8
1700	32.0	11000	23.2
1800	31.3	12000	28.0
1900	31.8	13000	29.2
2000	30.5	14000	29.3
2500	30.5	15000	29.6
3000	30.6	16000	28.7
3500	30.7	17000	28.6
4000	30.3	18000	29.3
4500	30.4	19000	29.7
5000	30.3	20000	29.2
5500	29.9	21000	30.5
6000	29.9	22000	30.6
6500	30.1		

DRG-118/A**DOUBLE RIDGE HORN ANTENNA****S/N: 1015****CALIBRATION DATE: JULY 26, 2006**

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
1000	24.6	10000	39.2
1500	25.4	10500	40.2
2000	27.9	11000	39.4
2500	28.6	11500	40.0
3000	30.1	12000	40.7
3500	30.7	12500	40.6
4000	30.8	13000	40.0
4500	31.6	13500	41.1
5000	33.5	14000	42.7
5500	33.6	14500	43.1
6000	34.1	15000	41.9
6500	35.1	15500	38.8
7000	37.4	16000	39.6
7500	39.5	16500	39.0
8000	38.2	17000	41.6
8500	37.5	17500	43.5
9000	38.0	18000	45.5
9500	38.6		

FRONT VIEW


EVER WIN INTERNATIONAL CORP.
FM TRANSMITTER
MODEL: ICARPLAY-250
FCC PART 15 SUBPART C - RADIATED EMISSIONS – 11-2-07

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

REAR VIEW

EVER WIN INTERNATIONAL CORP.
FM TRANSMITTER
MODEL: ICARPLAY-250
FCC PART 15 SUBPART C - RADIATED EMISSIONS – 11-2-07

**PHOTOGRAPH SHOWING THE EUT CONFIGURATION
FOR MAXIMUM EMISSIONS**

X AXIS

EVER WIN INTERNATIONAL CORP.
FM TRANSMITTER
MODEL: ICARPLAY-250
FCC PART 15 SUBPART C - RADIATED EMISSIONS – 11-2-07

PHOTOGRAPH SHOWING THE EUT CONFIGURATION

Y AXIS

EVER WIN INTERNATIONAL CORP.
FM TRANSMITTER
MODEL: ICARPLAY-250
FCC PART 15 SUBPART C - RADIATED EMISSIONS – 11-2-07

PHOTOGRAPH SHOWING THE EUT CONFIGURATION

Z AXIS

EVER WIN INTERNATIONAL CORP.
FM TRANSMITTER
MODEL: ICARPLAY-250
FCC PART 15 SUBPART C - RADIATED EMISSIONS – 11-2-07

PHOTOGRAPH SHOWING THE EUT CONFIGURATION

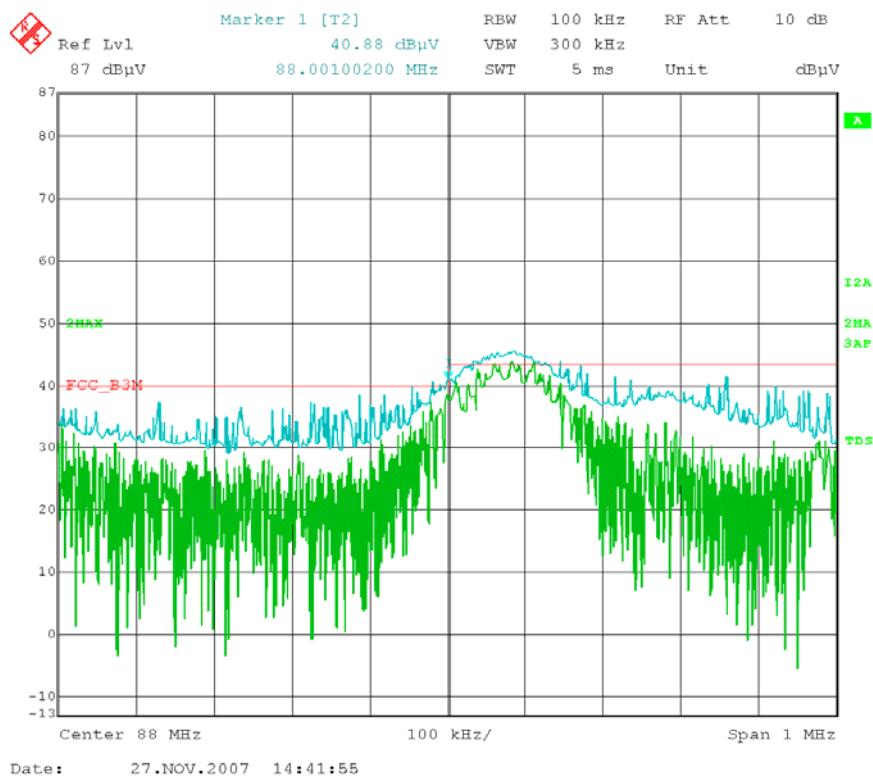
APPENDIX E***DATA SHEETS***

RADIATED EMISSIONS

COMPANY NAME: EverWin International DATE: 11/2/07

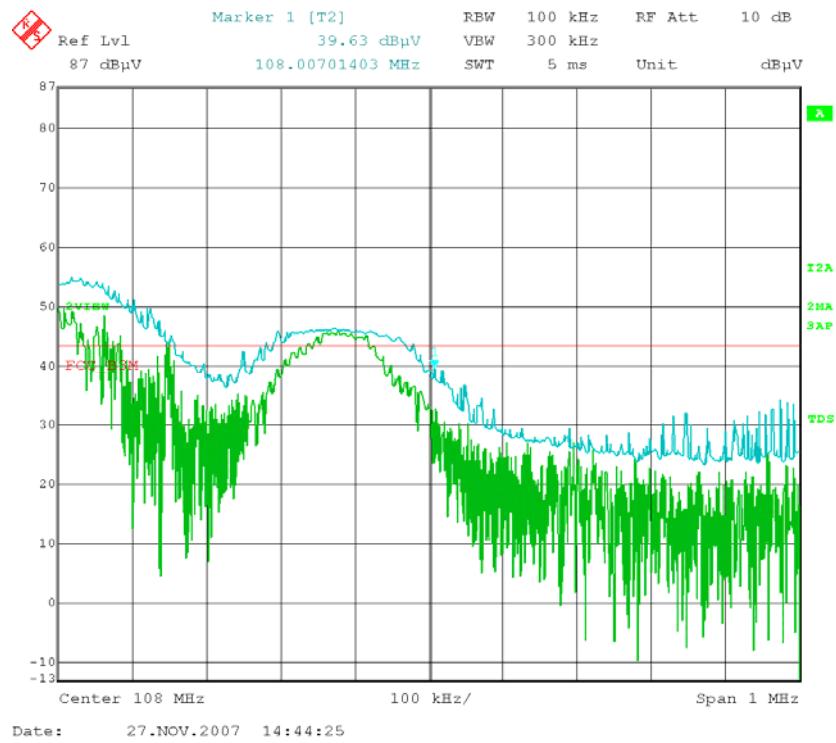
EUT: FM TX EUT S/N: #6

EUT MODEL: ICWP250 LOCATION: BREA SILVERADO AGOURA


SPECIFICATION: FCC CLASS: B TEST DISTANCE: 3M LAB: F

ANTENNA: LOOP BICONICAL LOG HORN POLARIZATION: VERT HORIZ

QUALIFICATION ENGINEERING MEG. AUDIT ENGINEER: R. Ramirez

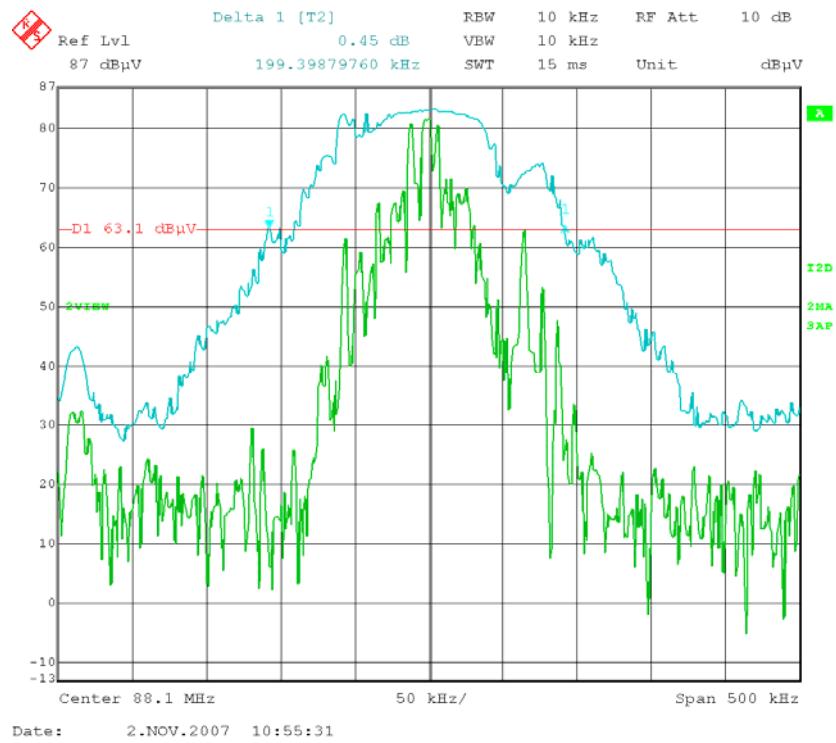

NOTES: Tested both TX & Rx modules

* DELTA = METER READING - CORRECTED LIMIT

EVER WIN INTERNATIONAL CORP.
 FM TRANSMITTER
 MODEL: ICARPLAY-250
 FCC PART 15 SUBPART C – BAND EDGE 88 MHz

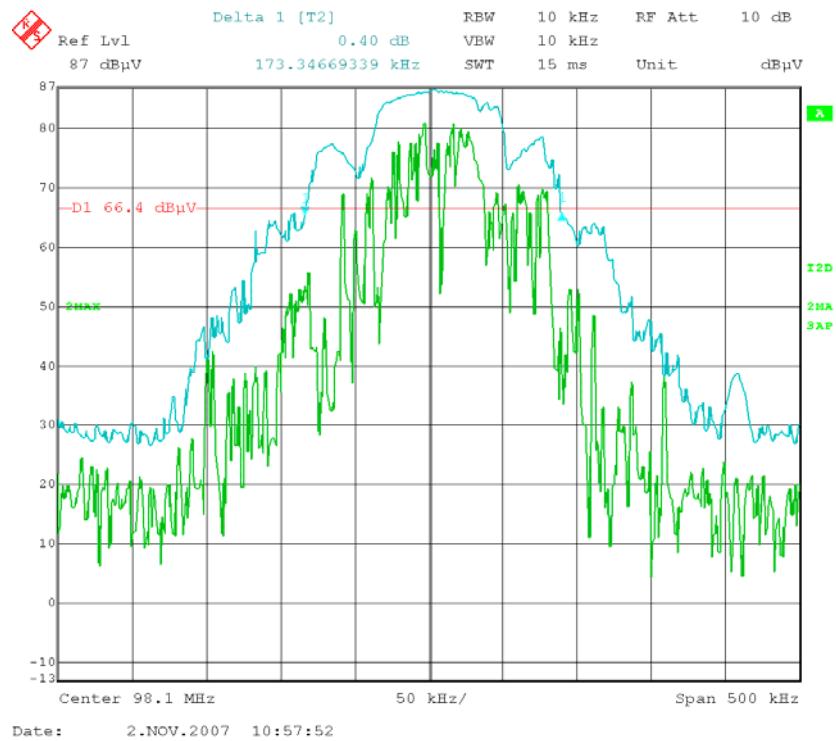
PHOTOGRAPH SHOWING THE LOWER BAND EDGE

EVER WIN INTERNATIONAL CORP.
FM TRANSMITTER
MODEL: ICARPLAY-250
FCC PART 15 SUBPART C – BAND EDGE 108 MHz

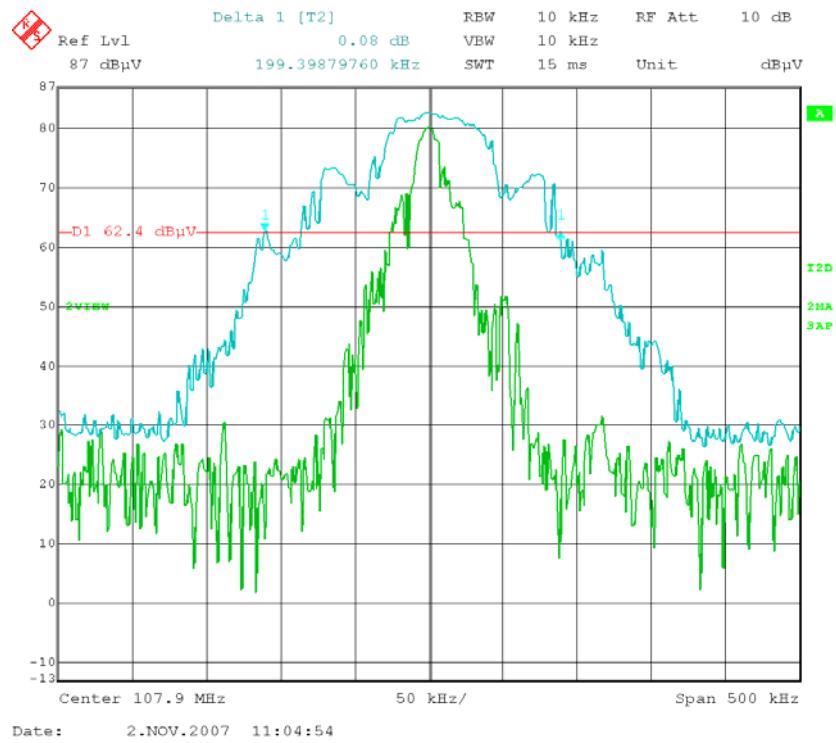

PHOTOGRAPH SHOWING THE UPPER BAND EDGE

FCC Class B

EverWin International
FM TX
ICWP250


Date: 11/2/07
Lab: F
Tested By: R. Ramirez
Test Distance 3 meters

Configuration: bandedge


EVER WIN INTERNATIONAL CORP.
FM TRANSMITTER
MODEL: ICARPLAY-250
FCC PART 15 SUBPART C – 15.239 (a)

**PHOTOGRAPH SHOWING THE LOW CHANNEL
88.1 MHz 199.39 kHz**

EVER WIN INTERNATIONAL CORP.
FM TRANSMITTER
MODEL: ICARPLAY-250
FCC PART 15 SUBPART C – 15.239 (a)

PHOTOGRAPH SHOWING THE MID CHANNEL
98.1 MHz 173.34 kHz

EVER WIN INTERNATIONAL CORP.
FM TRANSMITTER

MODEL: ICARPLAY-250

FCC PART 15 SUBPART C – 15.239 (a)

**PHOTOGRAPH SHOWING THE UPPER CHANNEL
107.9 MHz 199.39 kHz**

RADIATED EMISSIONS (FCC SECTION 15.239)

COMPANY	Everwin	DATE	11/2/07	
EUT	FM Transmitter	DUTY CYCLE	N/A	%
MODEL	ICWP250	PEAK TO AVG	N/A	dB
S/N	#6	TEST DIST.	3	Meters
TEST ENGINEER	Rey Ramirez	LAB	F	

Frequency MHz	Peak Reading (dBuV)	Average (A) or Quasi- Peak (QP)	Antenna Polar. (V or H)	Antenna Height (meters)	EUT Azimuth (degrees)	EUT Axis (X,Y,Z)	EUT Tx Channel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	Distance Factor (dB)	Mixer Factor (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)	Comments
88.1000	31.0		V	2.0	0	X	LOW	10.5	2.8	0.0	0.0	0.0	44.3	-3.7	48.0	
88.1000	31.7		V	2.0	0	Y	LOW	10.5	2.8	0.0	0.0	0.0	45.0	-3.0	48.0	
88.1000	31.7		V	2.0	0	Z	LOW	10.5	2.8	0.0	0.0	0.0	44.9	-3.1	48.0	
88.1000	29.4		H	2.5	0	X	LOW	10.5	2.8	0.0	0.0	0.0	42.6	-5.4	48.0	
88.1000	31.8	23.3 A	H	3.0	90	Y	LOW	10.5	2.8	0.0	0.0	0.0	36.6	-11.4	48.0	
88.1000	31.2		H	2.0	0	Z	LOW	10.5	2.8	0.0	0.0	0.0	44.4	-3.6	48.0	
98.1000	31.7	26.2 A	V	3.0	0	X	MED.	12.7	2.9	0.0	0.0	0.0	41.8	-6.2	48.0	
98.1000	32.4	27.0 A	V	1.5	0	Y	MED.	12.7	2.9	0.0	0.0	0.0	42.6	-5.4	48.0	
98.1000	32.7	27.5 A	V	2.0	0	Z	MED.	12.7	2.9	0.0	0.0	0.0	43.1	-4.9	48.0	
98.1000	31.2	24.4 A	H	4.0	90	X	MED.	12.7	2.9	0.0	0.0	0.0	40.0	-8.0	48.0	
98.1000	31.3	24.8 A	H	3.0	90	Y	MED.	12.7	2.9	0.0	0.0	0.0	40.4	-7.6	48.0	
98.1000	31.2	24.5 A	H	3.0	90	Z	MED.	12.7	2.9	0.0	0.0	0.0	40.1	-7.9	48.0	
107.9000	29.3	22.3 A	V	2.5	0	X	HIGH	13.3	3.0	0.0	0.0	0.0	38.6	-9.4	48.0	
107.9000	30.0	24.0 A	V	1.5	0	Y	HIGH	13.3	3.0	0.0	0.0	0.0	40.3	-7.7	48.0	
107.9000	30.6	24.0 A	V	1.5	0	Z	HIGH	13.3	3.0	0.0	0.0	0.0	40.3	-7.7	48.0	
107.9000	28.7		H	2.5	90	X	HIGH	13.3	3.0	0.0	0.0	0.0	44.9	-3.1	48.0	
107.9000	29.7	21.5 A	H	3.0	90	Y	HIGH	13.3	3.0	0.0	0.0	0.0	37.8	-10.2	48.0	
107.9000	28.0		H	3.5	90	Z	HIGH	13.3	3.0	0.0	0.0	0.0	44.3	-3.7	48.0	

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 1 of PAGE 10

RADIATED EMISSIONS (FCC SECTION 15.239)

COMPANY	Everwin	DATE	11/2/2007	
EUT	FM Transmitter	DUTY CYCLE	N/A	%
MODEL	ICWP250	PEAK TO AVG	N/A	dB
S/N	#6	TEST DIST.	3	Meters
TEST ENGINEER	Rey Ramirez	LAB	F	

Frequency MHz	Peak Reading (dBuV)	Average (A) or Quasi- Peak (QP)	Antenna Polar. (V or H)	Antenna Height (meters)	EUT Azimuth (degrees)	EUT Axis (X,Y,Z)	EUT Tx Channel	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	Distance Factor (dB)	Mixer Factor (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)	Comments
177.0000		A	H			X	LOW	14.8	3.5	30.4	0.0				43.5	No frequencies found
177.0000		A	H			Y	LOW	14.8	3.5	30.4	0.0				43.5	from the 3rd to the
177.0000		A	H			Z	LOW	14.8	3.5	30.4	0.0				43.5	10th harmonic
177.0000		A	V			X	LOW	14.8	3.5	30.4	0.0				43.5	
177.0000		A	V			Y	LOW	14.8	3.5	30.4	0.0				43.5	
177.0000		A	V			Z	LOW	14.8	3.5	30.4	0.0				43.5	
196.2000		A	H			X	MED.	16.3	3.7	29.7	0.0				43.5	
196.2000		A	H			Y	MED.	16.3	3.7	29.7	0.0				43.5	
196.2000		A	H			Z	MED.	16.3	3.7	29.7	0.0				43.5	
196.2000		A	V			X	MED.	16.3	3.7	29.7	0.0				43.5	
196.2000		A	V			Y	MED.	16.3	3.7	29.7	0.0				43.5	
196.2000		A	V			Z	MED.	16.3	3.7	29.7	0.0				43.5	
215.8000		A	H			X	HIGH	16.6	3.7	29.0	0.0				43.5	
215.8000		A	H			Y	HIGH	16.6	3.7	29.0	0.0				43.5	
215.8000		A	H			Z	HIGH	16.6	3.7	29.0	0.0				43.5	
215.8000		A	V			X	HIGH	16.6	3.7	29.0	0.0				43.5	
215.8000		A	V			Y	HIGH	16.6	3.7	29.0	0.0				43.5	
215.8000		A	V			Z	HIGH	16.6	3.7	29.0	0.0				43.5	

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

PAGE 2 of PAGE 10

FCC Class B

EverWin International
FM TX
ICWP250

Date: 11/2/2007
Lab: F
Tested By: R. Ramirez
Test Distance 3 meters

Configuration: spurious TX

FCC Class B

EverWin International
FM TX
ICWP250

Date: 11/2/2007
Lab: F
Tested By: R. Ramirez
Test Distance 3 meters

Configuration: spurious RX