

Hermon Laboratories Ltd. P.O.Box 23 Binyamina 30500, Israel Tel.+972 4628 8001

Fax.+972 4628 8277 e-mail: mail@hermonlabs.com

RADIO TEST REPORT

according to 47 CFR Part 15 subpart C §15.231(b)(2), §15.231(b)(3) and subpart B for

Electronics Line 3000 Ltd. EQUIPMENT UNDER TEST:

Magnetic door and window contact switch Models: EL2601, EL2602

This report is in conformity with ISO/IEC 17025. The A2LA logo endorsement applies only to the test methods and the standards that are listed in the scope of Hermon Laboratories accreditation.

The test results relate only to the items tested. This test report must not be reproduced in any form except in full with the approval of Hermon Laboratories Ltd.

Page 1 of 23

Document ID: ELERAD_FCC.15839.doc

Contents

С	onte	ents		2
1	Р	Proj	ect information	3
2			mary and signatures	
3			descriptiondescription	
	3.1		General	5
4	Т	est	results	6
	4.1		FIELD STRENGTH OF FUNDAMENTAL, § 15.231(B)(2)	6
	4.2		FIELD STRENGTH OF SPURIOUS RADIATION, § 15.231(B)(3)	7
	4.3		Unintentional radiated emissions test according to §15.109	9
Α	pper	ndix	c A - Plots	10
Α	pper	ndix	c B - Test equipment used for tests	18
Α	pper	ndix	c C – Antenna factors and cable loss	19
Α	pper	ndix	c C - General information	23
	TES	ST FA	CILITY DESCRIPTION	23
	Авв	BREV	VIATIONS AND ACRONYMS	23
	Spe	CIFI	CATION REFERENCES	23

1 Project information

Description of equipment under test

Test items Magnetic door and window contact switch

Manufacturer Electronics Line 3000 Ltd.

Types (Models) EL2601, EL2602

Equipment FCC code DSR

Applicant information

Applicant's responsible person Mr. Shaul Aviezer, Quality and Approvals Manager

Company Electronics Line 3000 Ltd.

Address 58, Amal street

P.O.Box 3253
City Petah Tikva
Postal code 49130
Country Israel

Telephone number +972 3921 1117
Telefax number +972 3725 6107

Test performance

Project number: 15839

Location Hermon Laboratories
Test performed on March 2, 2004

Purpose of test Class II permissive changes

Test specification(s) 47CFR Part 15, subpart C, §15.231(b)(2), §15.231(b)(3)

Document ID: ELERAD_FCC.15839.doc

2 Summary and signatures

The EUT, magnetic switch, was tested according to FCC part 15 subpart C, §§15.231(b)(2), 15.231(b)(3), and subpart B, found to comply with the standard requirements.

Test description	Specification reference	Tested by	Date tested	Test report paragraph	Verdict
Field strength of fundamental	15.231(b)(2)	Mr. A. Troupinsky, test engineer	March 2, 2004	4.1	Pass
Field strength of spurious radiation	15.231(b)(3)	Mr. A. Troupinsky, test engineer	March 2, 2004	4.2	Pass
Radiated emissions	15.109	Mr. A.Troupiansky, test engineer	March 2, 2004	4.3	Pass

Test	report	nre	nared	hv.
1 631	1 CPO1 t	PIC	pai cu	Dy.

Mrs. M. Cherniavsky, MScEE, certification engineer

Chan

Test report approved by:

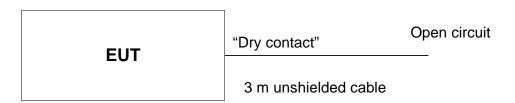
Mr. Michael Nikishin, MScEE, group leader

Mr. Edward Usoskin, PhD, C.E.O.

Marce-

Document ID: ELERAD_FCC.15839.doc

3 EUT description


3.1 General

The EUT, model numbers EL2601, EL2602, is a magnetic door and window contact transmitter operating at 418 MHz and designed for use with Electronics Line's supervised receivers. The EL2601 model contains a read switch that is not assembled on the EL2602 device. The device utilizes integral, built-in whip antenna and is powered by 3.6 V lithium battery; its controller clock generates 4 MHz.

Change in certified equipment: The device is used with 3 m length unshielded cable connected to "dry contact" port. The EUT test configuration is shown in Figure 3.1.1.

Figure 3.1.1

EUT test configuration

Document ID: ELERAD_FCC.15839.doc

4 Test results

4.1 Field strength of fundamental, § 15.231(b)(2)

METHOD OF MEASUREMENT: ANSI 63.4 §13.1.5 DATE of TEST: ANSI 63.4 §13.1.5

AMBIENT TEMPERATURE: 23°C
RELATIVE HUMIDITY: 52 %
AIR PRESSURE: 1015 hPa

TEST PERFORMED IN: Anechoic chamber

DISTANCE BETWEEN ANTENNA AND EUT: 3 m
MODULATION: ON

ANTENNA TYPE: Log periodic MEASUREMENT UNCERTAINTY: ± 5.3 dB

	§ 15.231 (b)	§ 15.231 (e)
The EUT complies with the requirements of	X	

Peak detector

Frequency,	Measured field strength,	Antenna polarization	Antenna height,	Turntable position,	Specification limit,	Margin,	Verdict
MHz	dB(μV/m)		m	(°)	dB(μV/m)	dB	
418.0	74.3	Horizontal	1.35	205	80.3	6.0	Pass

The recorded test result was obtained throughout measurements in the EUT Y-axis orthogonal position (as wall-mounted device in vertical position).

Turntable position in degrees, EUT front panel = 0° . Margin = dB below (negative if above) specification limit.

LIMIT § 15.231 (b)

Fundamental frequency,	Field strength of fundamental @ 3 m,
MHz	dB(μV/m)
418	80.3

The above field strength limits are based on average limits.

The section 15.35 requirements for limiting peak emissions provided.

TEST PROCEDURE

The EUT was tested, being placed on a wooden 80 cm height table, in two typical installation positions: as vertically and horizontally wall-mounted device (along orthogonal Y and Z axes). To find maximum radiation the turntable was rotated 360°, measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

TEST EQUIPMENT USED:

HL 0465	HL 0521	HL 0589	HL 0592	HL 0593	HL 0594	HL 0604
HL 2009						

Document ID: ELERAD_FCC.15839.doc

4.2 Field strength of spurious radiation, § 15.231(b)(3)

METHOD OF MEASUREMENT: ANSI 63.4 §13.1.4 DATE of TEST: ANSI 63.4 §13.1.4

AMBIENT TEMPERATURE: 23°C
RELATIVE HUMIDITY: 52 %
AIR PRESSURE: 1015 hPa
TEST PERFORMED IN: Anechoic chamber

DISTANCE BETWEEN ANTENNA AND EUT: 3 m
DETECTOR USED: Peak
MEASUREMENT UNCERTAINTY: ± 6 dB max

The frequency spectrum was investigated from the lowest radio frequency signal generated in the equipment, without going below 9 kHz, up to the tenth harmonic (4.2 GHz)

Test was performed with loop antenna

Frequency,	Antenna polarization	RBW,	VBW,	Radiated emission,	Limit @ 3 m,	Margin,	Verdict
MHz		kHz	kHz	dB (μV/m)	dB(μV/m)	dB	
0.009 - 0.150	V	0.2	0.3		s were found be refer to Plot No.2	,	Pass
0.150 - 30	V	9	30	All emissions were found below the limit, refer to Plot No.3		Pass	

Test was performed with biconilog antenna in 30 – 1000 MHz range and with double ridged guide - in 1000 to 4200 MHz range

Frequency,	Antenna height,	Turntable position,	Radiated emissions, peak,	Limit (average) @ 3 m,	Margin,	Verdict
MHz	m	(°)	dB (μV/m)	dB (μV/m)	dB	
1253.830	1.56	325	43.2	60.3	17.1	Pass
1671.920	1.00	335	43.8	54.0	10.2	Pass
2089.810	1.00	325	48.1	60.3	12.2	Pass

The recorded test result was obtained throughout measurements in the EUT Y-axis orthogonal position (as wall-mounted device in vertical position) and in vertical antenna polarization. For full test results refer to Plots A1 to A7.

Notes to table:

Antenna polarization: V- vertical, H- horizontal

Resolution bandwidth (RBW) and video bandwidth (VBW) settings are shown in the plots

Turntable position in degrees, EUT front panel = 0° . Margin = dB below (negative if above) specification limit.

Document ID: ELERAD_FCC.15839.doc

TEST PROCEDURE

The EUT was tested, being placed on a wooden 80 cm height turntable in two typical installation positions as wall-mounted device in vertical and horizontal (orthogonal Y and Z) axes.

9 kHz - 30 MHz frequency range. The loop antenna was positioned with its plane vertical. The loop center was 1 meter above the ground plane. To find maximum radiation the turntable was rotated 360° and the measuring antenna was rotated about its vertical axis.

30 MHz – 4.2 GHz frequency range. To find maximum radiation the turntable was rotated 360° , measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

TEST EQUIPMENT USED IN ANECHOIC CHAMBER:

HL 0446	HL 0465	HL 0521	HL 0589	HL 0592	HL 0593	HL 0594
HL 0604	HL 1984	HL 2009				

Document ID: ELERAD_FCC.15839.doc

4.3 Unintentional radiated emissions test according to §15.109

METHOD OF MEASUREMENT: ANSI 63.4 §11.6 / ANSI 63.4 §12.1.4

DATE of TEST: March 2, 2004

AMBIENT TEMPERATURE: 23°C RELATIVE HUMIDITY: 52 % AIR PRESSURE: 1015 hPa

TEST PERFROMED IN: Anechoic chamber

DISTANCE BETWEEN ANTENNA AND EUT: 3 m
THE EUT WAS TESTED AS: Table-top
FREQUENCY RANGE: 30 MHz – 1 GHz
DETECTOR TYPE: Quasi-peak
RESOLUTION BANDWIDTH: 120 kHz
ANTENNA TYPE: Biconilog

The EUT highest used frequency (not including operating frequency), MHz	Upper frequency of measurement range, MHz
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or
	40 GHz, whichever is lower

LIMIT § 15.109

Frequency, MHz	Class B equipment @ 3 m dB(μV/m)
30 - 88	40
88 - 216	43.5
216 - 960	46
960 - 5000	54

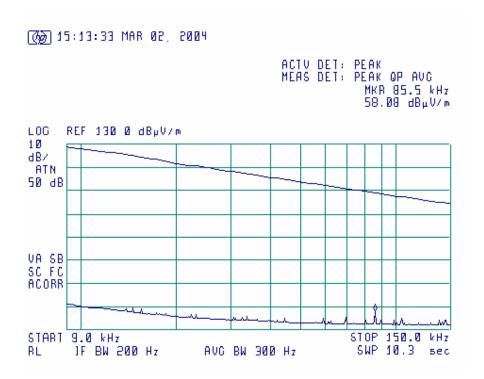
TEST RESULTS:

All the measured emissions were found at least 20 dB below specified limit, refer to Plot A8.

TEST PROCEDURE

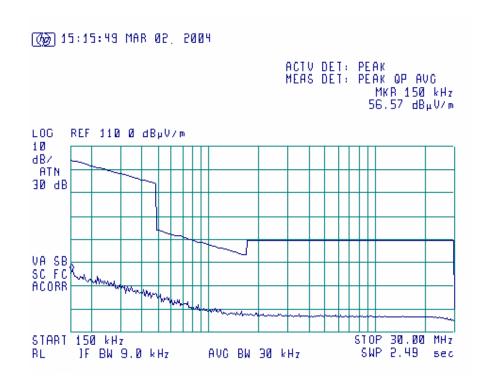
The EUT was placed on a wooden 80 cm height table in two typical installation positions as wall-mounted device in vertical and horizontal (orthogonal Y and Z) axes. To find maximum radiation the turntable was rotated 360° , measuring antenna height was changed from 1 to 4 m, and the antennas polarization was changed from vertical to horizontal.

TEST EQUIPMENT USED:

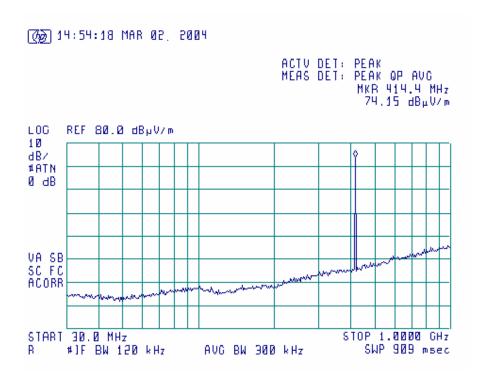

HL 0465	HL 0521	HL 0589	HL 0592	HL 0593	HL 0594	HL 0604
HL 2009						

Document ID: ELERAD FCC.15839.doc

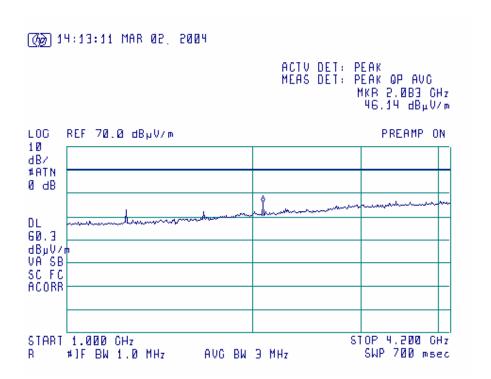
Appendix A - Plots


Plot A 1
Spurious emissions measurement test results in the anechoic chamber in 9 – 150 kHz range, vertical and horizontal antenna polarization

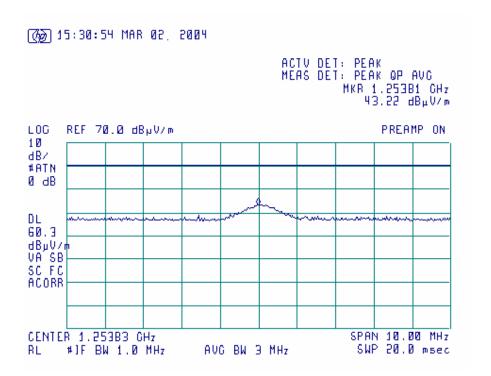
Document ID: ELERAD_FCC.15839.doc

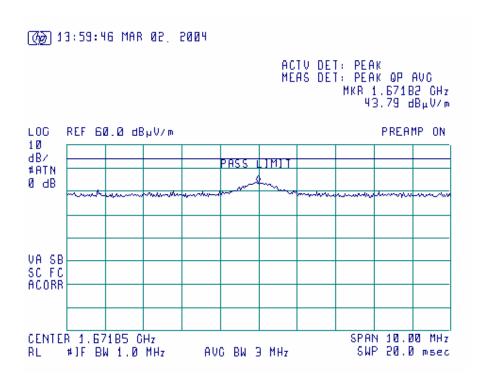


Plot A 2
Spurious emissions measurement test results in the anechoic chamber in 150 kHz – 30 MHz range, vertical and horizontal antenna polarization

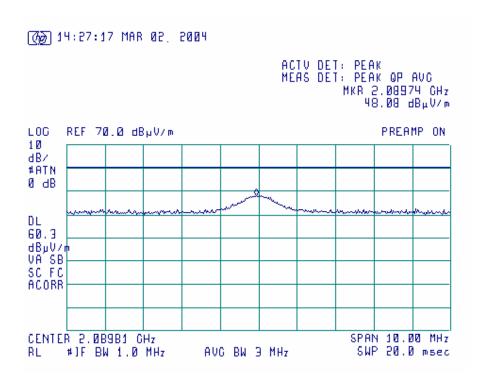


Plot A 3
Spurious emissions measurement test results in the anechoic chamber in 30 - 1000 MHz range, vertical and horizontal antenna polarization

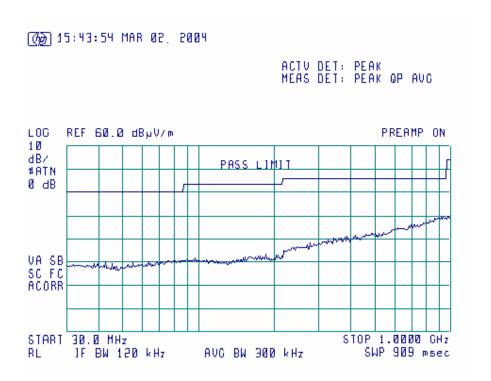



Plot A 4
Spurious emissions measurement test results in the anechoic chamber in 1000 – 4200 MHz range, vertical and horizontal antenna polarization

Plot A 5
Spurious emissions measurement test results in the anechoic chamber, 3rd harmonic vertical and horizontal antenna polarization



Plot A 6
Spurious emissions measurement test results in the anechoic chamber, 4th harmonic, vertical and horizontal antenna polarization



Plot A 7
Spurious emissions measurement test results in the anechoic chamber, 5th harmonic, vertical and horizontal antenna polarization

Plot A 8 Unintentional radiated emissions test results, vertical and horizontal antenna polarization

Document ID: ELERAD_FCC.15839.doc Date of Issue: April 2004

Appendix B - Test equipment used for tests

HL	Description	Man	Due		
Serial No.		Name	Model No.	Serial No.	- calibration Month/ year
0446	Active loop antenna, 10 kHz - 30 MHz	Electro- Mechanics	6502	2857	10/04
0465	Anechoic chamber 9 (L) x 6.5 (W) x 5.5 (H) m	Hermon Labs	AC-1	023	10/05 check
0521	Spectrum analyzer with RF filter section (EMI receiver 9 kHz - 6.5 GHz)	Hewlett Packard	8546A	0319	9/04
0589	Cable coaxial, GORE A2POL118.2, 3 m	Hermon Labs	GORE-3	589	11/04
0592	Position controller	Hermon Labs	L2-SR3000	100	5/04 check
0593	Antenna mast, 1-4 m/ 1-6 m Pneumatic	Hermon Labs	AM-F1	101	2/05 check
0594	Turntable for Anechoic Chamber, flush mounted, d=1.2 m, pneumatic	Hermon Labs	WDC1	102	1/05 check
0604	Antenna biconilog log- periodic/T Bow-Tie, 26 - 2000 MHz	EMCO	3141	9611-1011	1/05
1562	Oscilloscope 100 MHz, DMM	Tektronix	THS720A	9444	9/04
1984	Antenna, double ridged waveguide horn, 1-18 GHz, 300 W, N-type	EMC Test Systems	3115	9911-5964	3/05
2009	Cable RF, 8 m	Alpha Wire	RG-214	C-56	12/04

Document ID: ELERAD_FCC.15839.doc Date of Issue: April 2004

Appendix C – Antenna factors and cable loss

Antenna factor Active loop antenna Model 6502 S/N 2857

Frequency, MHz	Magnetic antenna factor, dB	Electric antenna factor, dB
0.009	-32.8	18.7
0.010	-33.8	17.7
0.020	-38.3	13.2
0.050	-41.1	10.4
0.075	-41.3	10.2
0.100	-41.6	9.9
0.150	-41.7	9.8
0.250	-41.6	9.9
0.500	-41.8	9.8
0.750	-41.9	9.7
1.000	-41.4	10.1
2.000	-41.5	10.0
3.000	-41.4	10.2
4.000	-41.4	10.1
5.000	-41.5	10.1
10.000	-41.9	9.6
15.000	-41.9	9.6
20.000	-42.2	9.3
25.000	-42.8	8.7
30.000	-44.0	7.5

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Document ID: ELERAD_FCC.15839.doc

Antenna factor Biconilog antenna EMCO Model 3141 Ser.No.1011

Frequency, MHz	Antenna Factor, dB(1/m)	Frequency, MHz	Antenna Factor, dB(1/m)
26	7.8	940	24.0
28	7.8	960	24.1
30	7.8	980	24.5
40	7.2	1000	24.9
60	7.1	1020	25.0
70	8.5	1040	25.2
80	9.4	1060	25.4
90	9.8	1080	25.6
100	9.7	1100	25.7
110	9.3	1120	26.0
120	8.8	1140	26.4
130	8.7	1160	27.0
140	9.2	1180	27.0
150	9.8	1200	26.7
160	10.2	1220	26.5
170	10.4	1240	26.5
180	10.4	1260	26.5
190	10.3	1280	26.6
200	10.6	1300	27.0
220	11.6	1320	27.8
240	12.4	1340	28.3
260	12.8 13.7	1360 1380	28.2 27.9
280 300	14.7	1400	27.9
320	15.2	1420	27.9
340	15.4	1440	27.8
360	16.1	1460	27.8
380	16.4	1480	28.0
400	16.6	1500	28.5
420	16.7	1520	28.9
440	17.0	1540	29.6
460	17.7	1560	29.8
480	18.1	1580	29.6
500	18.5	1600	29.5
520	19.1	1620	29.3
540	19.5	1640	29.2
560	19.8	1660	29.4
580	20.6	1680	29.6
600	21.3	1700	29.8
620	21.5	1720	30.3
640	21.2	1740	30.8
660	21.4	1760	31.1
680	21.9	1780	31.0
700	22.2	1800	30.9
720	22.2	1820	30.7
740	22.1	1840	30.6
760	22.3	1860	30.6
780	22.6	1880	30.6
800	22.7	1900	30.6
820	22.9	1920	30.7
840	23.1	1940	30.9
860	23.4	1960	31.2
880	23.8	1980	31.6
900	24.1	2000	32.0
920	24.1	J	

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Document ID: ELERAD_FCC.15839.doc Date of Issue: April 2004

Antenna factor Double-ridged wave guide horn antenna Model 3115, S/N 9911-5964, HL1984

Frequency, MHz	Antenna factor, dB(1/m)
1000.0	24.7
1500.0	25.7
2000.0	27.6
2500.0	28.9
3000.0	31.2
3500.0	32.0
4000.0	32.5
4500.0	32.7
5000.0	33.6
5500.0	35.1
6000.0	35.4
6500.0	34.9
7000.0	36.1
7500.0	37.8
8000.0	38.0
8500.0	38.1
9000.0	39.1
9500.0	38.3
10000.0	38.6
10500.0	38.2
11000.0	38.7
11500.0	39.5
12000.0	40.0
12500.0	40.4
13000.0	40.5
13500.0	41.1
14000.0	41.6
14500.0	41.7
15000.0	38.7
15500.0	38.2
16000.0	38.8
16500.0	40.5
17000.0	42.5
17500.0	45.9
18000.0	49.4

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Document ID: ELERAD_FCC.15839.doc

Cable loss RF cable 8 m, model RG-214, HL 2009

No.	Frequency, MHz	Cable loss, dB	Tolerance (Specification), dB	Measurement uncertainty, dB
1	1	0.10		
2	10	0.14		
3	30	0.25		
4	50	0.34		
5	100	0.53		
6	300	0.99		
7	500	1.31		
8	800	1.73		
9	1000	1.98		
10	1100	2.11	NA	±0.12
11	1200	2.21		
12	1300	2.35		
13	1400	2.46		
14	1500	2.55		
15	1600	2.68		
16	1700	2.78		
17	1800	2.88		
18	1900	2.98		
19	2000	3.09		

Document ID: ELERAD_FCC.15839.doc Date of Issue: April 2004

Appendix C - General information

Test facility description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility. Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47) and by Industry Canada for electromagnetic emissions (file numbers IC 2186-1 for OATS and IC 2186-2 for anechoic chamber), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, C-845 for conducted emissions site), assessed by TNO Certification EP&S (Netherlands) for a number of EMC, telecommunications, environmental, safety standards, and by AMTAC (UK) for safety of medical devices. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01) and approved by Israel Ministry of environmental protection, radiation hazards department (Permit number 1158).

Address: PO Box 23, Binyamina 30500, Israel.

Telephone: +972 4628 8001
Fax: +972 4628 8277
e-mail: mail@hermonlabs.com
website: www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, QA manager.

Abbreviations and acronyms

The following abbreviations and acronyms are applicable to this test report:

dB decibel

dBm decibel referred to one milliwatt dB(μV) decibel referred to one microvolt

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

EMC electromagnetic compatibility

EUT equipment under test

GHz gigahertz
H height
Hz hertz
kHz kilohertz
kV kilovolt
L length

LNA low noise amplifier

m meter
MHz megahertz
NA not applicable
QP quasi-peak
RF radio frequency
RE radiated emission
rms root mean square

s second V volt W width

Specification references

47CFR part 15: 2003 Radio Frequency Devices

ANSI C63.2:1996 American National Standard for Instrumentation-Electromagnetic Noise and

Field Strength, 10 kHz to 40 GHz-Specifications.

ANSI C63.4:2001 American National Standard for Methods of Measurement of Radio-Noise

Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of

9 kHz to 40 GHz.

Document ID: ELERAD_FCC.15839.doc