

Shenzhen Huatongwei International Inspection Co., Ltd.

Keji S,12th, Road, Hi-tech Industrial Park, Shenzhen, Guangdong, China Phone:86-755-26748099 Fax:86-755-26748089 http://www.szhtw.com.cn

FCC PART 90 TEST REPORT

FCC Part 90

FCC ID...... RIQAW68XDB

Compiled by

(position+printed name+signature)..: File administrators Tim Zhang

Supervised by

(position+printed name+signature)..: Test Engineer Eric Zhang

Approved by

(position+printed name+signature)..: Manager Wenliang Li

Date of issue...... Dec 24, 2012

Testing Laboratory Name Shenzhen Huatongwei International Inspection Co., Ltd

Address Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China

Applicant's name...... Access Device Integrated Communications Corp.

Taiwan(R.O.C.)

Test specification:

Standard FCC Part 90: PRIVATE LAND MOBILE RADIO SERVICES

TRF Originator...... Shenzhen Huatongwei International Inspection CO., Ltd

Master TRF...... Dated 2006-06

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Dual Band Two-Way Radio

Trade Mark /

Manufacturer Access Device Integrated Communications Corp.

Model/Type reference...... AW-68

Listed Models AW-69,AW-68V,LT-9800,LT-9808

Ratings DC 7.4V

Modulation FM

Channel Separation...... 12.5KHz

VHF: 5 Watts(36.98dBm)/1 Watts(30.00dBm)

Operation Frequency Range From 136 MHz to 174 MHz and 400MHz to 480MHz

Result..... Positive

Report No.: TRE1212005901 Page 2 of 87 Issued:2012-12-24

TEST REPORT

Test Report No. : TRE1212005901 Dec 24, 2012

Date of issue

Equipment under Test : Dual Band Two-Way Radio

Model /Type : AW-68

Listed Models : AW-69,AW-68V,LT-9800,LT-9808

Applicant : Access Device Integrated Communications Corp.

Address : No.193,Sec.1,Chungching Road,Taya,Taichung City

42862, Taiwan (R.O.C.)

Manufacturer : Access Device Integrated Communications Corp.

Address : No.193, Sec. 1, Chungching Road, Taya, Taichung City

42862, Taiwan (R.O.C.)

Test Result according to the standards on page 4:	Positive
---	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

FCC ID: RIQAW68XDB

Issued:2012-12-24

Contents

TEST STANDARDS	4
SUMMARY	5
O M M A N I	
	5
	5
	5
	6
	6
	6
	6
	6
	6 6
Note	ь
TEST ENVIRONMENT	7
	7
	7
	8
	8
	8
	8
	9 9
Equipments Osed during the Test	9
TEST CONDITIONS AND RESULTS	12
Conducted Emissions Test (For Volunteer)	42
	12 17
•	29
	34
	48
	51
	53
	60
	62
	72
TEST SETUP PHOTOS OF THE EUT	79
	General Remarks Product Description Equipment under Test Short description of the Equipment under Test (EUT) EUT Configuration EUT configuration Related Submittal(s) / Grant (s) Modifications Note TEST ENVIRONMENT Address of the test laboratory Test Facility Environmental conditions Configuration of Tested System Discription of Tested Modes Statement of the measurement uncertainty Test Description Equipments Used during the Test TEST CONDITIONS AND RESULTS Conducted Emissions Test (For Volunteer) Occupied Bandwidth and Emission Mask Test Transmitter Radiated Spurious Emssion Spurious Emssion on Antenna Port Modulation Charcateristics Frequency Stability Test Maximum Transmitter Power Transmitter Frequency Behavior Receiver Radiated Spurious Emssion (For Volunteer) Receiver Conducted Spurious Emssion (For Volunteer)

Report No.: TRE1212005901 Page 4 of 87 Issued:2012-12-24

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 90: PRIVATE LAND MOBILE RADIO SERVICES.

<u>TIA/EIA 603 D June 2010:</u> Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC ID: RIQAW68XDB

Report No.: TRE1212005901 Page 5 of 87 Issued:2012-12-24

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Dec 17, 2012
Testing commenced on	1:	Dec 17, 2012
Testing concluded on	1:	Dec 24, 2012

2.2. Product Description

The Access Device Integrated Communications Corp.'s Model: AW-68 or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

Name of EUT	Dual Band Two-Way	Dual Band Two-Way Radio			
Model Number	AW-68, AW-69,AW-	AW-68, AW-69, AW-68V, LT-9800, LT-9808			
FCC ID	RIQAW68XDB				
Rated Output Power	UHF: 4 Watts(36.02dBm)/1 Watts(30.00dBm)				
	VHF: 5 Watts(36.98dBm)/1 Watts(30.00dBm)				
Madilation Type	FM for Analog Voice				
Modilation Type	Analog	11K0F3E for 12.5KHz Channel Separation			
Channel Separation	Analog Voice	12.5KHz			
Antenna Type	External				
Frequency Range	From 136 MHz to 174 MHz/From 400MHz to 480MHz				
Maximum Transmitter Power	Analog	5.395W for VHF Band			
iviaximum transmitter Power	Analog	4.613W for UHF Band			

2.3. Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 7.4V from battery

Test frequency list

Modulation Type	Band	Test Channel	Test Frequency
Analog/FM		Low	136.5000 MHz
	VHF	Middle	155.5000 MHz
		High	173.5000 MHz
	UHF	Low	400.5000 MHz
		Middle	440.5000 MHz
		High	479.5000 MHz

Report No.: TRE1212005901 Page 6 of 87 Issued:2012-12-24

2.4. Short description of the Equipment under Test (EUT)

136-174 MHz 400-480 MHz frequency band Dual Band Two-Way Radio.

For more details, refer to the user's manual of the EUT.

Serial number: Prototype

2.5. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.6. EUT operation mode

The EUT has been tested under typical operating condition and The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.7. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer

0	Power Cable	Length (m):	/
		Shield :	/
		Detachable :	/
0	Multimeter	Manufacturer:	/
		Model No. :	1

2.8. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: RIQAW68XDB filing to comply with FCC Part 90 Rules

2.9. Modifications

No modifications were implemented to meet testing criteria.

2.10. Note

The EUT is Dual Band Two-Way Radio, The functions of the EUT listed as below:

	Test Standards	Reference Report
Radio	FCC Part 90	TRE1212005901
EMF	OET 65	TRE1212005902

Report No.: TRE1212005901 Page 7 of 87 Issued:2012-12-24

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen Huatongwei International Inspection Co., Ltd Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Phone: 86-755-26715686 Fax: 86-755-26748089

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: August 02, 2007. Valid time is until Feb 28, 2015.

A2LA-Lab Cert. No. 2243.01

Shenzhen Huatongwei International Inspection Co., Ltd, EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until Sept 30, 2013.

FCC-Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd, EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 662850, Renewal date June 01, 2015.

IC-Registration No.: 5377

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377 on Jan 25, 2011. Valid time is until Jan 24, 2014

ACA

Shenzhen Huatongwei International Inspection Co., Ltd, EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

NEMKO-Aut. No.: ELA125

Shenzhen Huatongwei International Inspection Co., Ltd has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025:2005 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10; the Authorization is valid through July 07, 2013.

VCCI

The 3m Semi-anechoic chamber $(12.2m\times7.95m\times6.7m)$ and Shielded Room $(8m\times4m\times3m)$ of Shenzhen Huatongwei International Inspection Co., Ltd has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2484. Date of Registration: December 20, 2009. Valid time is until December 19, 2013.

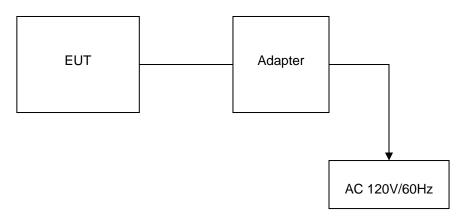
Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: December 20, 2009. Valid time is until December 19, 2013.

FCC ID: RIQAW68XDB

Report No.: TRE1212005901 Page 8 of 87 Issued:2012-12-24

DNV

Shenzhen Huatongwei International Inspection Co Ltd has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025(2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug 24, 2013..


3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 2-1 Equipment Used in Tested System

Adapter:

Model: NLA050120W1U

Input:100-240V~, 0.2A 50/60Hz

Output: DC 12V 0.5A Power Cable: 120cm

♦ Shielded
♦ Unshielded

3.5. Discription of Tested Modes

The EUT has been tested under normal operating condition. Five channels (the high, the middle and the low) are chosen for testing at each channel separation (12.5 KHz).

3.6. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Report No.: TRE1212005901 Page 9 of 87 Issued:2012-12-24

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-12.75 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

3.7. Test Description

FCC Rules	Description of Test	Test Result
§ 15.107	Conducted Emission	Complies
§ 15.109	Receiver Radiated Spurious Emssion	Complies
§ 15.109	Receiver Conducted Spurious Emssion	Complies
§ 90.205	Maximum Transmitter Power	Complies
§ 90.207	Modulation Characteristic	Complies
§ 90.209	Occupied Bandwidth	Complies
§ 90.210	Emission Mask	Complies
§ 90.213	Frequency Stability	Complies
§ 90.214	Transmitter Frequency Behavior	Complies
§ 90.210	Transmitter Radiated Spurious Emssion	Complies
§ 90.210	Spurious Emssion On Antenna Port	Complies
§ 2.1093	Radiofrequency radiation exposure evaluation	Complies

3.8. Equipments Used during the Test

AC Power Conducted Emission						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	10/27/2013		
EMI Test Receiver	Rohde&Schwarz	ESCS 30	100038	10/27/2013		
Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	10/27/2013		
EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	10/27/2013		
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/27/2013		

Modulation Characteristic							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/27/2013			

Transient Frequency Behavior									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Signal Generator	Rohde&Schwarz	SMT03	100059	10/27/2013					
Storage Oscilloscope	Tektronix	TDS3054B	B033027	10/27/2013					
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/27/2013					

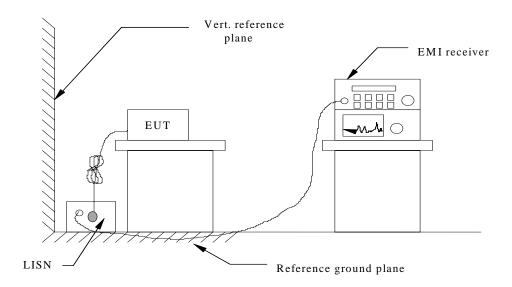
Transmitter Radiated Spurious Emssion & Receiver Radiated Spurious Emssion								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Ultra-Broadband Antenna	Rohde&Schwarz	HL562	100015	10/27/2013				
EMI Test Receiver	Rohde&Schwarz	ESI 26	100009	10/27/2013				
RF Test Panel	Rohde&Schwarz	TS / RSP	335015/ 0017	N/A				
HORN ANTENNA	Rohde&Schwarz	HF906	100039	10/27/2013				
Turntable	ETS	2088 2149		N/A				
Antenna Mast	ETS	2075	2346	N/A				
EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	10/27/2013				
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/27/2013				
Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	10/27/2013				
Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	10/27/2013				
HORN ANTENNA	ShwarzBeck	9120D	1012	10/27/2013				
HORN ANTENNA	ShwarzBeck	9120D	1011	10/27/2013				
TURNTABLE	MATURO	TT2.0		10/27/2013				
ANTENNA MAST	MATURO	TAM-4.0-P		10/27/2013				

Frequency Stability									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Communication Test Set	HP	HP8920B	US35010135	10/27/2013					
Signal Generator	Rohde&Schwarz	SMT03	100059	10/27/2013					
Climate Chamber	ESPEC	EL-10KA	05107008	10/27/2013					

Maximum Transmitter Power & Spurious Emssion On Antenna Port & Occupied Bandwidth & Emission Mask								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Receiver	Rohde&Schwarz	ESI 26	100009	10/27/2013				
Attenuator	R&S	ESH3-22	100449	10/27/2013				
RF COMMUNICATION TEST SET	HP	8920A	3813A10206	10/27/2013				
High-Pass Filter	Anritsu	MP526B	6220875256	10/27/2013				
High-Pass Filter	Anritsu	MP526D	6220878392	10/27/2013				
Spectrum Analzyer	Aglient	E4407B	MY44210775	10/27/2013				
Spectrum Analzyer	Rohde&Schwarz	FSP40	1164.4391.40	10/27/2013				

The calibration interval was one year.

Report No.: TRE1212005901 Page 12 of 87 Issued:2012-12-24


4. TEST CONDITIONS AND RESULTS

4.1. Conducted Emissions Test (For Volunteer)

TEST APPLICABLE

The EUT was tested according to ANSI C63.4 - 2009. The frequency spectrum from 0.15 MHz to 30 MHz was investigated. The LISN used was 50 ohm / 50 u Henry as specified by section 5.1 of ANSI C63.4 - 2009. Cables and peripherals were moved to find the maximum emission levels for each frequency.

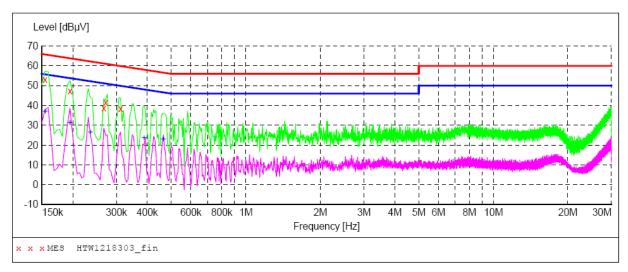
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.4-2009.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009.
- 4 If a EUT received DC power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

Conducted Power Line Emission Limit

For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following:

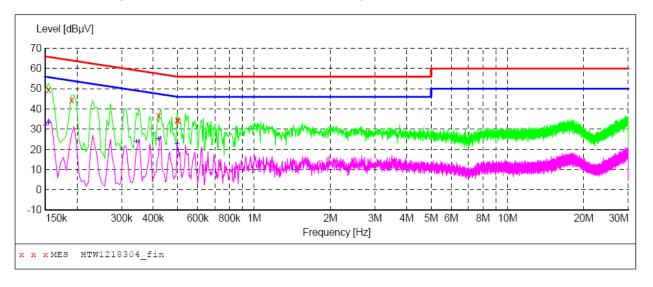

Frequency (MHz)	Maximum RF Line Voltage (dBμV)					
	CLAS	SS A	CLASS B			
(111112)	Q.P.	Ave.	Q.P.	Ave.		
0.15 - 0.50	79	66	66-56*	56-46*		
0.50 - 5.00	73	60	56	46		
5.00 - 30.0	73	60	60	50		

* Decreasing linearly with the logarithm of the frequency

TEST RESULTS

For VHF Band @ 12.5 KHz RX Mode

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage


MEASUREMENT RESULT: "HTW1218303 fin"

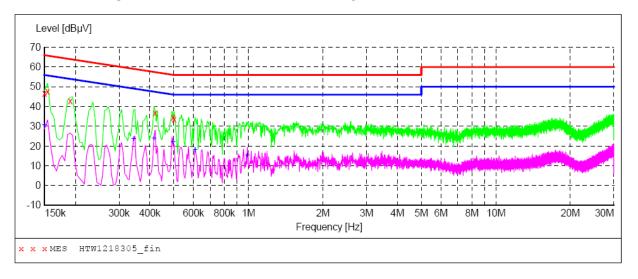
12	2/18/2012 9	9:21AM						
	Frequency MHz	Level dBµV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
	0.154500	53.00	10.2	66	12.8	QP	N	GND
	0.195000	47.40	10.2	64	16.4	QP	N	GND
	0.267000	38.70	10.2	61	22.5	QP	N	GND
	0.271500	41.40	10.2	61	19.7	QP	N	GND
	0.312000	38.50	10.2	60	21.4	QP	N	GND

MEASUREMENT RESULT: "HTW1218303 fin2"

12/18/2012 9	:21AM						
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154500	37.10	10.2	56	18.7	AV	N	GND
0.195000	31.50	10.2	54	22.3	AV	N	GND
0.235500	26.40	10.2	52	25.9	AV	N	GND
0.388500	23.50	10.2	48	24.6	AV	N	GND
0.465000	23.00	10.2	47	23.6	AV	N	GND

SCAN TABLE: "Voltage (9K-30M) FIN" Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "HTW1218304 fin"

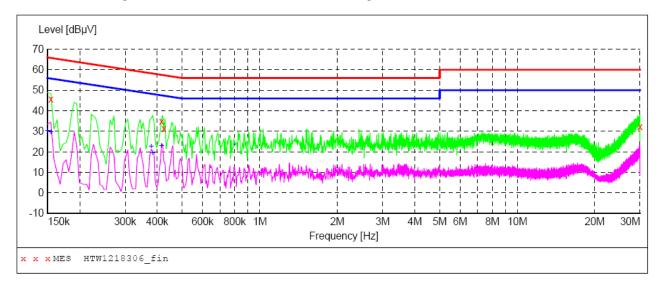

12/18/2012 S Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.154500	49.70	10.2	66	16.1	~	L1	GND
0.190500	44.50	10.2	64	19.5		L1	GND
0.420000	36.80	10.2	57	20.6	QP	L1	GND
0.496500	34.50	10.2	56	21.6	QP	L1	GND
0.501000	34.20	10.2	56	21.8	QP	L1	GND

MEASUREMENT RESULT: "HTW1218304_fin2"

12/18/2012	9:24AM						
Frequency MH:		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.150000	31.80	10.2	56	24.2	2/2/2	T ₁ 1	GND
0.154500		10.2	56	22.4	AV	L1	GND
0.343500	24.10	10.2	49	25.0	AV	L1	GND
0.420000	25.20	10.2	47	22.2	AV	L1	GND
0.496500	22.60	10.2	46	23.5	AV	L1	GND
0.501000	19.80	10.2	46	26.2	AV	L1	GND

For UHF Band @ 12.5 KHz RX Mode

SCAN TABLE: "Voltage (9K-30M) FIN"
Short Description: 150K-30M Voltage


MEASUREMENT RESULT: "HTW1218305 fin"

12/18/2012 9	:27AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dΒμV	dB	dBµV	dB			
0.150000	46.80	10.2	66	19.2	QP	L1	GND
0.154500	47.50	10.2	66	18.3	QP	L1	GND
0.190500	42.70	10.2	64	21.3	QP	L1	GND
0.420000	36.60	10.2	57	20.8	QP	L1	GND
0.496500	34.40	10.2	56	21.7	QP	L1	GND
0.501000	33.60	10.2	56	22.4	QP	L1	GND

MEASUREMENT RESULT: "HTW1218305 fin2"

12	2/18/2012 9: Frequency MHz		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.150000	30.70	10.2	56	25.3	AV	L1	GND
	0.343500	23.70	10.2	49	25.4	AV	L1	GND
	0.415500	24.00	10.2	48	23.5	AV	L1	GND
	0.496500	22.10	10.2	46	24.0	AV	L1	GND
	0.609000	18.20	10.2	46	27.8	AV	L1	GND
	0.991500	15.40	10.3	46	30.6	AV	T ₁ 1	GND

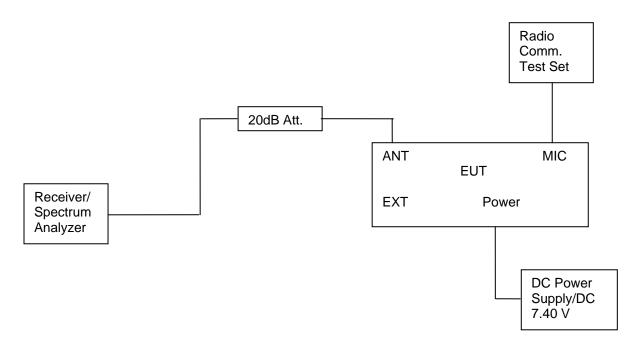
SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "HTW1218306 fin"

12	2/18/2012 9:	30AM						
	Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
	0.154500	45.70	10.2	66	20.1	QP	N	GND
	0.415500	34.70	10.2	58	22.8	QP	N	GND
	0.424500	31.20	10.2	57	26.2	QP	N	GND
	29.980500	32.30	11.3	60	27.7	QP	N	GND

MEASUREMENT RESULT: "HTW1218306_fin2"

12/18/2012 9	:30AM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PΕ
MHz	dΒμV	dB	dΒμV	dB			
0.150000	30.40	10.2	56	25.6	AV	N	GND
0.154500	29.70	10.2	56	26.1	AV	N	GND
0.379500	22.80	10.2	48	25.5	AV	N	GND
0.384000	19.40	10.2	48	28.8	AV	N	GND
0.415500	23.00	10.2	48	24.5	AV	N	GND


Report No.: TRE1212005901 Page 17 of 87 Issued:2012-12-24

4.2. Occupied Bandwidth and Emission Mask Test

TEST APPLICABLE

- (a). Occupied Bandwidth: The EUT was connected to the audio signal generator and the spectrum analyzer via the main RF connector, and through an appropriate attenuator. The EUT was controlled to transmit its maximum power. Then the bandwidth of 99% power can be measured by the spectrum analyzer.
- (b). Emission Mask B: For transmitters that are equipped with an audio low-pass filter pursuant to §90.211(a), the power of any emission must be below the unmodulated carrier power (P) as follows:
 - (1) On any frequency removed from the assigned frequency by more than 50 percent, but not more than 100 percent of the authorized bandwidth: At least 25 dB.
 - (2) On any frequency removed from the assigned frequency by more than 100 percent, but not more than 250 percent of the authorized bandwidth: At least 35 dB.
 - (3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.
- (c). Emission Mask D, 12.5 kHz channel bandwidth equipment: For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:
 - (1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f0: Zero dB.
 - (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd -2.88 kHz) dB.
 - (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

TEST CONFIGURATION

TEST PROCEDURE

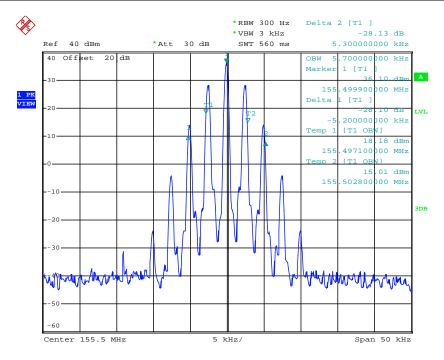
- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 The EUT was modulated by 2.5 KHz Sine wave audio signal; the level of the audio signal employed is 16 dB greater than that necessary to produce 50% of rated system deviation. Rated system deviation is 2.5 kHz (12.5 kHz channel spacing) and 5 kHz (25 kHz channel spacing).
- 3 Set EUT as normal operation.
- 4 Set SPA Center Frequency = fundamental frequency, RBW=300Hz, VBW= 3 KHz, span =50 KHz.
- 5 Set SPA Max hold. Mark peak, Set 99% Occupied Bandwidth and 26dB Occupied Bandwidth.
- 6 Set SPA Center Frequency=fundamental frequency, set =100Hz, VBW=1 KHz, span=50 KHz for 12.5 channel spacing.

TEST RESULTS

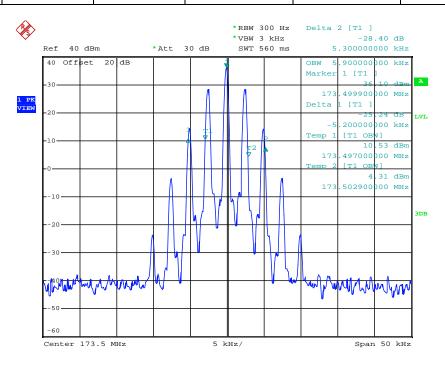
4.2.1 Occupied Bandwidth

Band	Channel	Test	Test	99% Occupied	26dB Occupied			
Dallu	Sparation	Channel	Frequency	Bandwidth	Band width			
		Low	136.5000 MHz	5.60 KHz	10.40 KHz			
VHF	12.5KHz	Middle	155.5000 MHz	5.70 KHz	10.50 KHz			
		High	173.5000 MHz	5.90 KHz	10.50 KHz			
	12.5KHz	Low	400.5000 MHz	5.90 KHz	10.50 KHz			
UHF		Middle	440.5000 MHz	5.80 KHz	10.50 KHz			
		High	479.5000 MHz	5.90 KHz	10.50 KHz			
Lim	it		11.25KHz for 12.5	KHz Channel Separ	tion			
Test Re	esults		Compliance					

Plots of 99% and 26dB Bandwidth Measurement

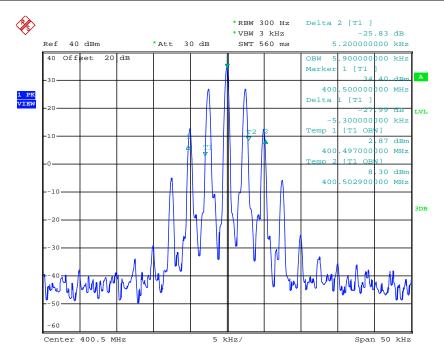

Modulation Type	Channel Separation	Freq.(MHz)	99% Bandwidth (KHz)	26dB Bandwidth (KHz)	FCC Limit (KHz)	Results
FM	12.5 KHz	136.5000	5.60	10.40	11.25	Complicance

Date: 20.DEC.2012 13:59:05

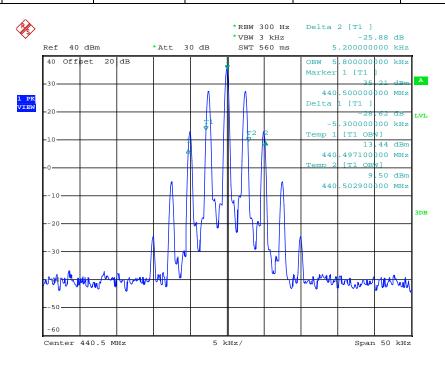

Report No.: TRE1212005901 Page 19 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	99% Bandwidth (KHz)	26dB Bandwidth (KHz)	FCC Limit (KHz)	Results
FM	12.5 KHz	155.5000	5.70	10.50	11.25	Complicance

Date: 20.DEC.2012 13:53:03

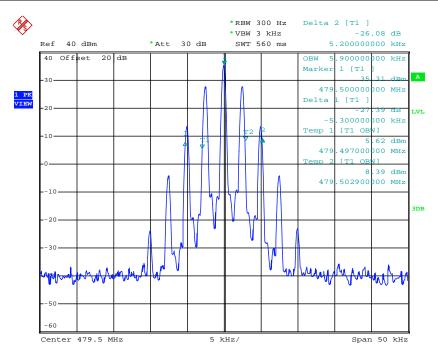

Modulation Type	Channel Separation	Freq.(MHz)	99% Bandwidth (KHz)	26dB Bandwidth (KHz)	FCC Limit (KHz)	Results
FM	12.5 KHz	173.5000	5.90	10.50	11.25	Complicance

Date: 20.DEC.2012 13:55:09


Report No.: TRE1212005901 Page 20 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	99% Bandwidth (KHz)	26dB Bandwidth (KHz)	FCC Limit (KHz)	Results
FM	12.5 KHz	400.5000	5.90	10.50	11.25	Complicance

Date: 20.DEC.2012 13:58:24


Modulation Type	Channel Separation	Freq.(MHz)	99% Bandwidth (KHz)	26dB Bandwidth (KHz)	FCC Limit (KHz)	Results
FM	12.5 KHz	440.5000	5.80	10.50	11.25	Complicance

Date: 20.DEC.2012 13:52:08

Report No.: TRE1212005901 Page 21 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	99% Bandwidth (KHz)	26dB Bandwidth (KHz)	FCC Limit (KHz)	Results
FM	12.5 KHz	479.5000	5.90	10.50	11.25	Complicance

Date: 20.DEC.2012 13:54:26

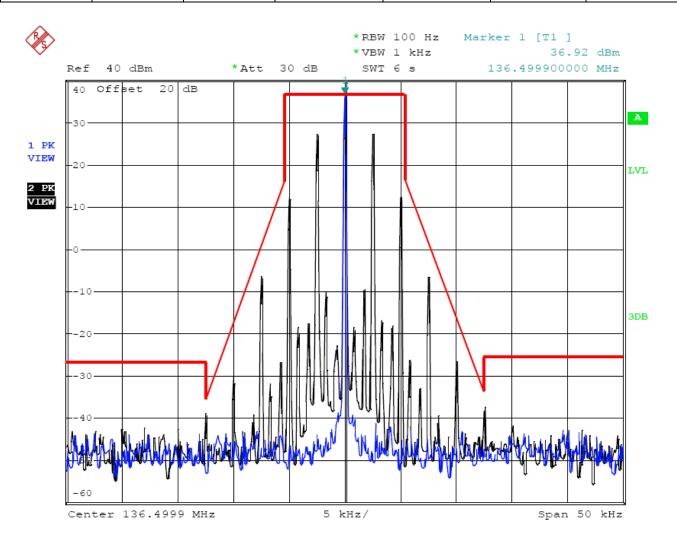
Report No.: TRE1212005901 Page 22 of 87 Issued:2012-12-24

4.2.2 Emission Mask

Modulation Type	Channel Sparation	Test Channel	Test Frequency	FCC Applicable Mask	RBW		
		Low	136.5000 MHz	D	100 Hz		
	12.5KHz	Middle	155.5000 MHz	D	100 Hz		
FM		High	173.5000 MHz	D	100 Hz		
LIAI	12.5KHz	Low	400.5000 MHz	D	100 Hz		
		Middle	440.5000 MHz	D	100 Hz		
		High	479.5000 MHz	D	100 Hz		
Test Re	sults	Compliance					

Plots of Emission Mask Measurement

Referred as the attached plot hereinafter

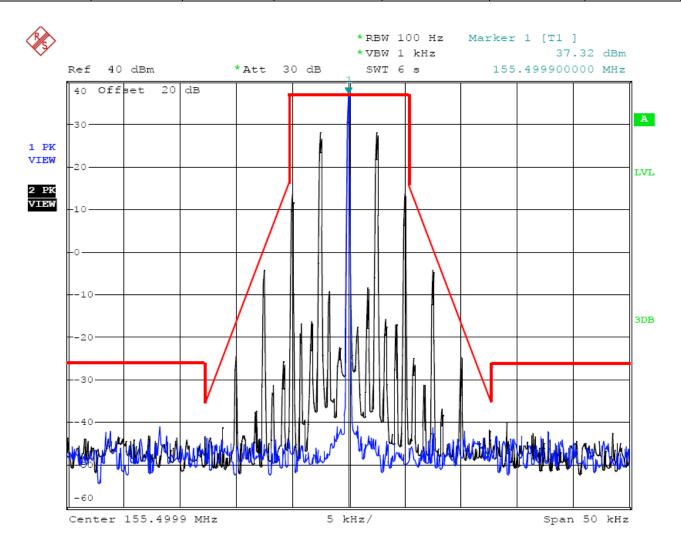

Note: The Blue curve represents unmodulated signal.

The Black curve represents modulated signal.

FCC ID: RIQAW68XDB

Report No.: TRE1212005901 Page 23 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	FCC Applicable Mask	RBW	Audio Freq. (KHz)	Results	
FM	12.5 KHz	136.5000	D	100	2.5	Complicance	

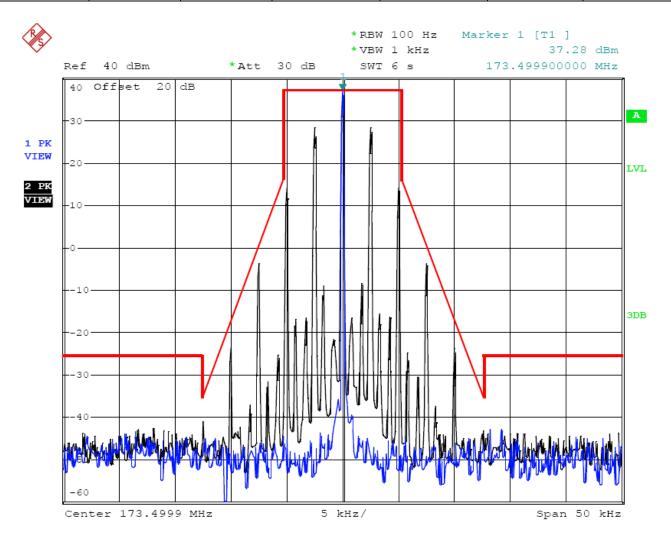


Date: 19.DEC.2012 16:17:19

12.5 kHz Channel Spacing, 136.5000 MHz, 2500 Hz Audio Modulation Only

Report No.: TRE1212005901 Page 24 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	FCC Applicable Mask	RBW	Audio Freq. (KHz)	Results	
FM	12.5 KHz	155.5000	D	100Hz	2.5	Complicance	

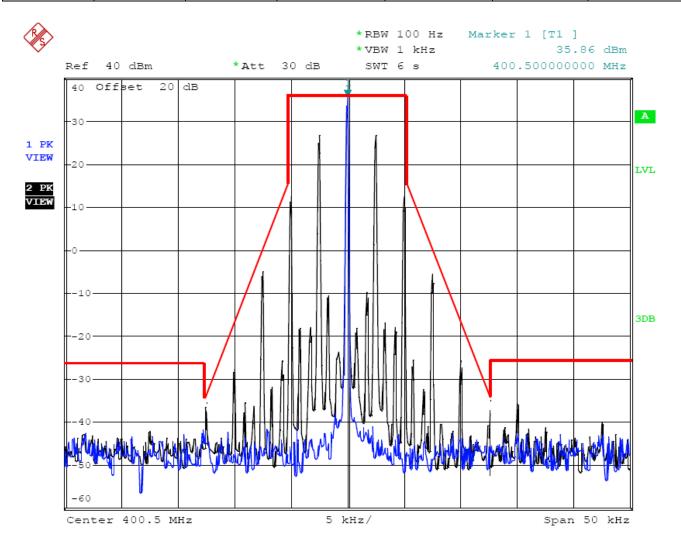


Date: 19.DEC.2012 16:31:14

12.5 kHz Channel Spacing, 155.5000 MHz, 2500 Hz Audio Modulation Only

Report No.: TRE1212005901 Page 25 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	FCC Applicable Mask	RBW	Audio Freq. (KHz)	Results	
FM	12.5 KHz	173.5000	D	100Hz	2.5	Complicance	

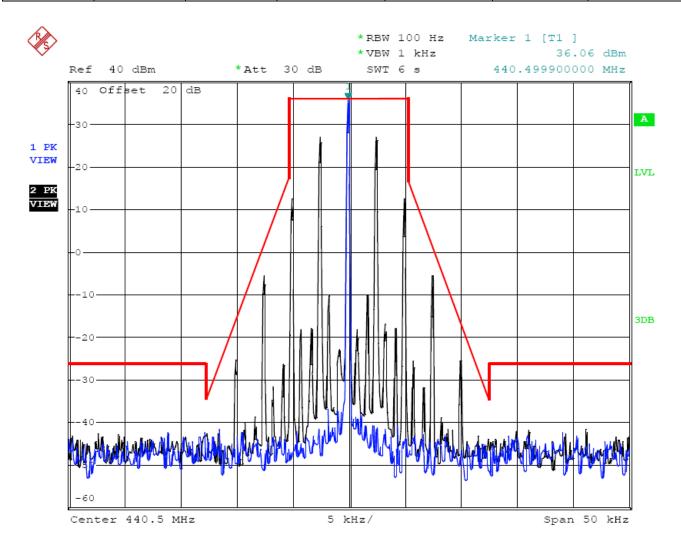


Date: 19.DEC.2012 16:23:41

12.5 kHz Channel Spacing, 173.5000 MHz, 2500 Hz Audio Modulation Only

Report No.: TRE1212005901 Page 26 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	FCC Applicable Mask	RBW	Audio Freq. (KHz)	Results	
FM	12.5 KHz	400.5000	D	100Hz	2.5	Complicance	

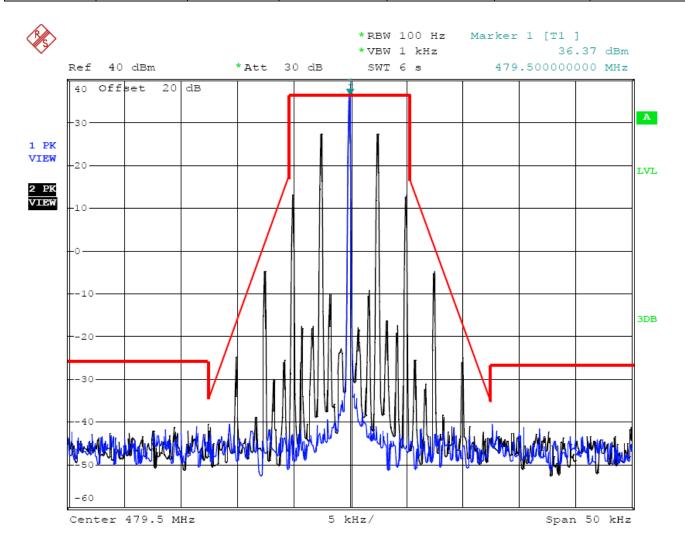


Date: 19.DEC.2012 16:18:44

12.5 kHz Channel Spacing, 400.5000 MHz, 2500 Hz Audio Modulation Only

Report No.: TRE1212005901 Page 27 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	FCC Applicable Mask	RBW	Audio Freq. (KHz)	Results	
FM	12.5 KHz	440.5000	D	100Hz	2.5	Complicance	



Date: 19.DEC.2012 16:41:11

12.5 kHz Channel Spacing, 440.5000 MHz, 2500 Hz Audio Modulation Only

Report No.: TRE1212005901 Page 28 of 87 Issued:2012-12-24

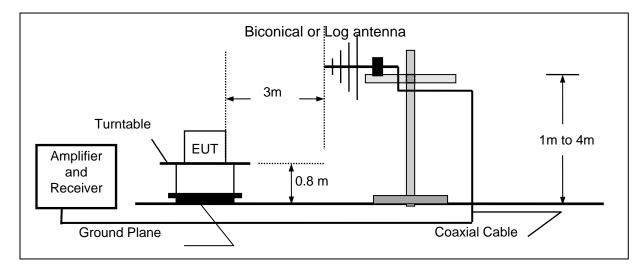
Modulation Type	Channel Separation	Freq.(MHz)	FCC Applicable Mask	RBW	Audio Freq. (KHz)	Results	
FM	12.5 KHz	479.5000	D	100Hz	2.5	Complicance	

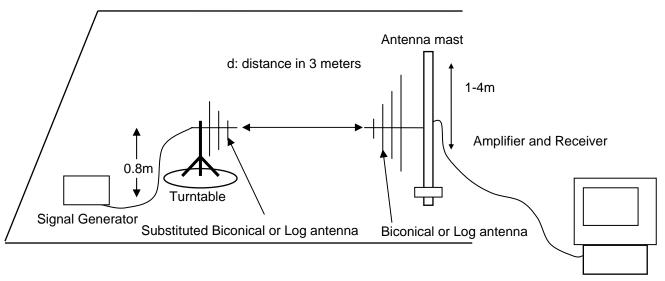
Date: 19.DEC.2012 16:27:27

12.5 kHz Channel Spacing, 479.5000 MHz, 2500 Hz Audio Modulation Only

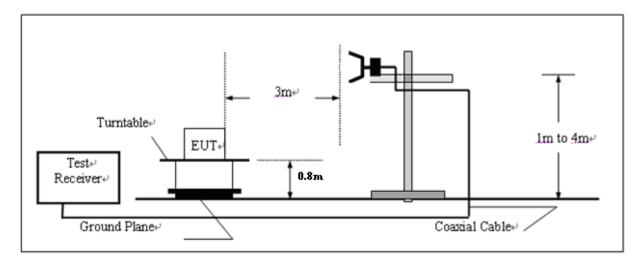
Report No.: TRE1212005901 Page 29 of 87 Issued:2012-12-24

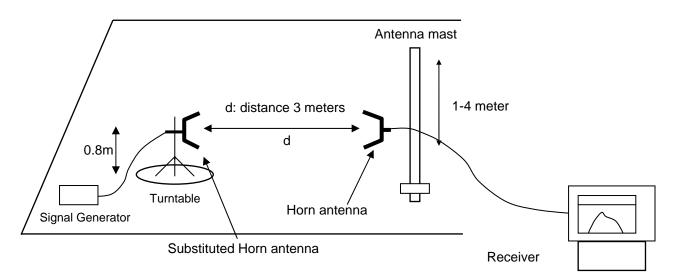
4.3. Transmitter Radiated Spurious Emssion


TEST APPLICABLE


According to the TIA/EIA 603 test method, and according to Section 90.210, the power of each unwanted emission shall be less than Transmitted Power as specified below for transmitters designed to operate with 12.5 KHz channel bandwidth:

- 1 On any frequency removed from the center of the authorized bandwidth fo to 5.625 KHz removed from fo: Zero dB
- On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) fo of more than 5.625 KHz but no more than 12.5 KHz: At least 7.27dB
- 3 On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in KHz) fo of more than 12.5 KHz: At least 50+10 log (P) dB or 70 dB, which ever is lesser attenuation. For transmitters designed to transmit with 25 KHz channel separation and equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier power (P) as following:
- 1 On any frequency removed from the assigned frequency by more than 50 percent, but no more than 100 percent of the authorized bandwidth: At least 25 dB.
- 2 On any frequency removed from the assigned frequency by more than 100 percent, but no more than 250 percent of the authorized bandwidth: At least 35 dB.
- 3 On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43+10Log (P) dB.


TEST CONFIGURATION


Below 1GHz

Above 1GHz

TEST PROCEDURE

1 Set the EMI Receiver (for measuring E-Field) and Receiver (for measuring EIRP) as follows:

Center Frequency: equal to the signal source

Resolution BW: 100 KHz Video BW: VBW > RBW Detector Mode: positive

Average: off

Span: 3 x the signal bandwidth

- 2 Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor+Amplifier Gain E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB)
- 3 The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- 4 Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):

DIPOLE antenna for frequency from 30-1000 MHz or

- HORN antenna for frequency above 1 GHz.
- 5 Mount the transmitting antenna at 1.0 meter high from the ground plane.
- 6 Use one of the following antenna as a receiving antenna: DIPOLE antenna for frequency from 30-1000 MHz or HORN antenna for frequency above 1 GHz}.
- 7 If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- 8 Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- 9 Tune the EMI Receivers to the test frequency.
- 10 Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.

Report No.: TRE1212005901 Page 31 of 87 Issued:2012-12-24

- 11 The transmitter was rotated through 360o about a vertical axis until a higher maximum signal was received.
- 12 Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- 13 Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- 14 Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

 $P = P_1 - L_1 = (P_2 + L_2) - L_1 = P_3 + A + L_2 - L_1$ $EIRP = P + G1 = P_3 + L_2 - L_1 + A + G_1$

ERP = EIRP – 2.15 dB Total Correction factor in EMI Receiver = $L_2 - L_1 + G_1$

Where:

P: Actual RF Power fed into the substitution antenna port after corrected.

P₁: Power output from the signal generator

P₂: Power measured at attenuator A input

P₃: Power reading on the Average Power Meter

EIRP: EIRP after correction ERP: ERP after correction

- 15 Adjust both transmitting and receiving antenna in a Horizontal polarization, then repeat step (11) to (14).
- 16 Repeat step (4) to (16) for different test frequency
- 17 Repeat steps (3) to (12) with the substitution antenna oriented in horizontal polarization.
- 18 Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

TEST RESULTS

The Transmitter Radiated Spurious Emssion was performed to the Rated high power (5Watt) and Rated low power (1Watt) the datum that reported below is the worst case (Rated high power) of the two rated power conditions.

Modulation Type: FM

FCC Part 22.359, 74.462, 80.211 and 90.210 and RSS Gen, RSS 119 Issue 11 (12.5 kHz bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f d in kHz) of more than 12.5 kHz at least:

Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (5.395) = 57.32 dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (3.999) = 56.02 dB$

Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-50-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 37.32 dBm.

Limit (dBm) =37.32-50-10log10 (57.32) = -20 dBm

- Note: 1. In general, the worse case attenuation requirement shown above was applied.
 - 2. The measurement frequency range from 30 MHz to 4 GHz.
 - 3. *** means that the emission level is too low to be measured or at least 20 dB down than the limit.

Report No.: TRE1212005901 Page 32 of 87 Issued:2012-12-24

Modula	Modulation		FM	Channel Separation			12.5KHz		
Test Ch	Test Channel		Channel	Test Frequency 136.5000 MHz					
Frequency (MHz)	E-Field Level (dBuv/m)	EMI Detector (Peak/QP)	Antenna Polarization	Antenna Height (cm)	Table Angle (Degree)	ERP measured by Substitution Method (dBm)	Limit (dBm)	Margin (dB)	
273.00	59.27	Peak	Н	200	254	-38.73	-20	18.73	
682.50	49.62	Peak	Н	102	187	-43.95	-20	23.95	
1228.50	46.62	Peak	Н	100	265	-46.41	-20	26.41	
•••	•••		Н						
273.00	58.92	Peak	V	150	189	-38.08	-20	18.08	
682.50	48.41	Peak	V	106	07	-43.85	-20	23.85	
1228.50	45.62	Peak	V	120	310	-46.63	-20	26.63	
•••	•••		V						

Modula	Modulation		FM	Channel Separation 12.5KHz						
Test Ch	Test Channel		Channel	Test Fro	equency	155.	155.5000 MHz			
Frequency (MHz)	E-Field Level (dBuv/m)	EMI Detector (Peak/QP)	Antenna Polarization	Antenna Height (cm)	Table Angle (Degree)	ERP measured by Substitution Method (dBm)	Limit (dBm)	Margin (dB)		
311.00	59.55	Peak	Н	100	312	-38.25	-20	18.25		
466.50	52.12	Peak	Н	125	85	-40.58	-20	20.58		
1710.50	44.48	Peak	Н	120	165	-48.96	-20	28.96		
•••	•••		Н							
311.00	59.19	Peak	V	100	45	-38.62	-20	18.62		
466.50	50.63	Peak	V	100	123	-41.85	-20	21.85		
1710.50	42.55	Peak	V	120	163	-49.63	-20	29.63		
•••	•••		V							

Modula	ation		FM	Channel S	Separation	12	2.5KHz	
Test Ch	annel	High (Channel	Test Fro	equency	173.5		
Frequency (MHz)	E-Field Level (dBuv/m)	EMI Detector (Peak/QP)	Antenna Polarization	Antenna Height (cm)	Table Angle (Degree)	ERP measured by Substitution Method (dBm)	Limit (dBm)	Margin (dB)
347.00	60.22	Peak	Н	220	256	-37.85	-20	17.85
694.00	48.56	Peak	Н	150	360	-43.62	-20	23.62
1561.50	43.45	Peak	Н	210	112	-49.41	-20	29.41
•••	•••		Н					
347.00	59.95	Peak	V	100	258	-38.25	-20	18.25
694.00	48.65	Peak	V	125	125	-44.52	-20	24.52
1561.50	43.48	Peak	V	150	352	-48.63	-20	28.63
•••	•••		V					

Report No.: TRE1212005901 Page 33 of 87 Issued:2012-12-24

Modula	Modulation		FM	Channel Separation 12.5KH			2.5KHz	
Test Ch	Test Channel		Channel	Test Frequency 400.5000 MHz				
Frequency (MHz)	E-Field Level (dBuv/m)	EMI Detector (Peak/QP)	Antenna Polarization	Antenna Height (cm)	Table Angle (Degree)	ERP measured by Substitution Method (dBm)	Limit (dBm)	Margin (dB)
801.00	52.62	Peak	Н	120	263	-43.51	-20	23.51
1201.50	48.14	Peak	Н	200	212	-45.21	-20	25.21
1602.00	46.64	Peak	Н	210	36	-46.48	-20	26.48
•••	•••		Н					
801.00	54.02	Peak	V	110	321	-43.98	-20	23.98
1201.50	53.22	Peak	V	130	21	-42.52	-20	22.52
1602.00	45.53	Peak	V	150	105	-47.52	-20	27.52
•••	•••		V					

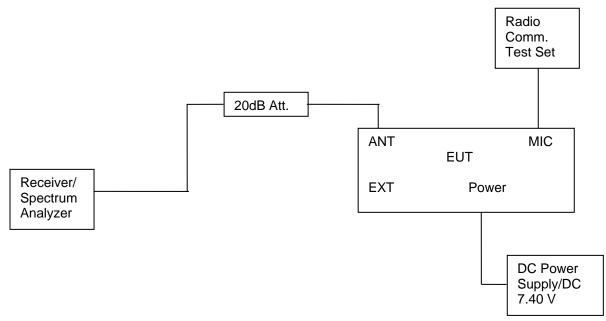
Modula	ation	ı	FM	Channel Separation 12.5KHz						
Test Ch	Test Channel		Channel	Test Fro	equency	440.	440.5000 MHz			
Frequency (MHz)	E-Field Level (dBuv/m)	EMI Detector (Peak/QP)	Antenna Polarization	Antenna Height (cm)	Table Angle (Degree)	ERP measured by Substitution Method (dBm)	Limit (dBm)	Margin (dB)		
881.00	52.80	Peak	Н	250	145	-45.20	-20	25.20		
1321.50	55.68	Peak	Н	230	135	-42.34	-20	22.34		
1762.00	45.24	Peak	Н	110	265	-47.88	-20	27.88		
•••	•••		Н							
881.00	54.28	Peak	V	140	325	-43.72	-20	23.72		
1321.50	50.38	Peak	V	145	254	-40.28	-20	20.28		
1762.00	45.87	Peak	V	120	125	-46.14	-20	26.14		
•••	•••		V							

Modula	ation	ı	FM	Channel Separation 12.5KHz				
Test Ch	Test Channel		Channel	Test Fro	equency	479.5		
Frequency (MHz)	E-Field Level (dBuv/m)	EMI Detector (Peak/QP)	Antenna Polarization	Antenna Height (cm)	Table Angle (Degree)	ERP measured by Substitution Method (dBm)	Limit (dBm)	Margin (dB)
959.00	55.30	Peak	Н	212	100	-42.52	-20	22.52
1438.50	53.10	Peak	Н	112	120	-40.62	-20	20.62
1918.00	47.20	Peak	Н	121	126	-45.45	-20	25.45
•••	•••		Н					
959.00	54.09	Peak	V	161	147	-43.63	-20	23.63
1438.50	52.96	Peak	V	111	200	-40.41	-20	20.41
1918.00	45.47	Peak	V	120	155	-47.55	-20	27.55
•••	•••		V					

Report No.: TRE1212005901 Page 34 of 87 Issued:2012-12-24

4.4. Spurious Emssion on Antenna Port

TEST APPLICABLE


The same as Section 4.3

TEST PROCEDURE

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set to 100 kHz. Sufficient scans were taken to show any out of band emission up to 10th. Harmonic for the lower and the highest frequency range. Set RBW 100 kHz, VBW 300 kHz in the frequency band 30MHz to 1GHz,while set RBW=1MHz.VBW=3MHz from the 1GHz to 10th Harmonic.

The audio input was set to 0 to get the unmodulated carrier, the resulting picture is print out for each channel separation.

TEST CONFIGURATION

TEST RESULTS

Modulation Type: FM

FCC Part 22.359, 74.462, 80.211 and 90.210 and RSS Gen, RSS 119 Issue 11 (12.5 kHz bandwidth only): On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f d in kHz) of more than 12.5 kHz at least:

Low: $50 + 10 \log (Pwatts) = 50 + 10 \log (5.395) = 57.32 dB$ High: $50 + 10 \log (Pwatts) = 50 + 10 \log (3.999) = 56.02 dB$

Note: In general, the worse case attenuation requirement shown above was applied.

Calculation: Limit (dBm) =EL-50-10log10 (TP)

Notes: EL is the emission level of the Output Power expressed in dBm,

In this application, the EL is 37.32 dBm.

Limit (dBm) =37.32-50-10log10 (57.32) = -20 dBm

Note: 1. In general, the worse case attenuation requirement shown above was applied.

2. The measurement frequency range from 30MHz to 6 GHz.

For Rated High Power (5Watt)

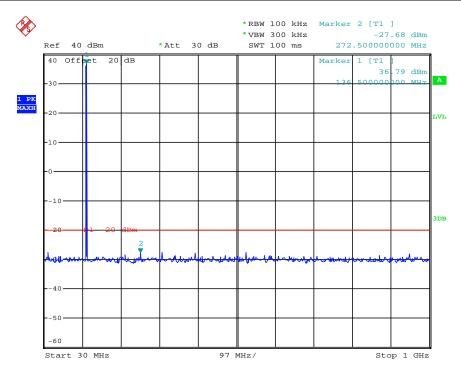
Modulation	Channel	Test Channel	Test Frequency	Maximum (Spurious E Below	Emissions	Spurious	Conducted Emissions 1GHz	
Туре	Sparation	Channel	(MHz)	Frequency (MHz)	Datum (dBm)	Frequency (MHz)	Datum (dBm)	
		Low	136.5000	272.50	-27.68	3200.00	-35.62	
FM	12.5KHz	Middle	155.5000	311.30	-24.62	3170.00	-35.77	
		High	173.5000	346.22	-22.77	3110.00	-35.34	
Lim	nit		-20	dBm for 12.5Kl	Iz Channel Se	partion		
Test Results		Compliance						

For Rated High Power (4Watt)

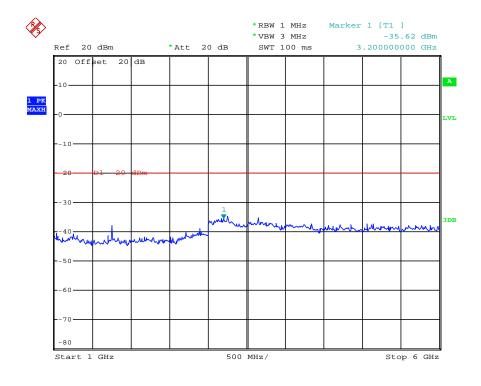
Modulation Type	Channel Sparation	Test Channel	Test Frequency	Maximum (Spurious E Below	Emissions	Spurious	Conducted Emissions 1GHz
туре	Sparation	Chamer	(MHz)	Frequency (MHz)	Datum (dBm)	Frequency (MHz)	Datum (dBm)
		Low	400.5000	802.12	-28.84	3190.00	-34.98
FM	12.5KHz	Middle	440.5000	881.66	-31.23	1320.00	-25.91
		High	479.5000	959.26	-25.09	1440.00	-25.84
Lim	nit		-20	dBm for 12.5Kl	dz Channel Se	partion	
Test R	esults			Com	pliance		

For Rated Low Power (1Watt)

Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious E Below	Emissions	Maximum Conducted Spurious Emissions Above 1GHz			
				Frequency (MHz)	Datum (dBm)	Frequency (MHz)	Datum (dBm)		
FM	12.5KHz	Low	136.5000	286.08	-28.82	3150.00	-35.16		
		Middle	155.5000	311.30	-30.79	3160.00	-35.34		
		High	173.5000	346.22	-31.21	3160.00	-35.79		
		Low	400.5000	802.12	-28.67	3230.00	-35.10		
		Middle	440.5000	881.66	-31.46	1320.00	-40.28		
		High	479.5000	959.26	-29.84	1440.00	-39.70		
Limit		-20dBm for 12.5KHz Channel Separtion							
Test Results		Compliance							

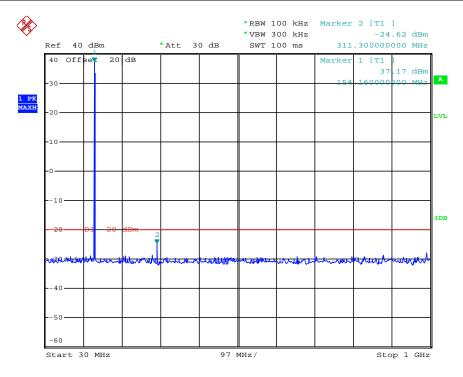

Plots of Spurious Emission on Antenna Port Measurement

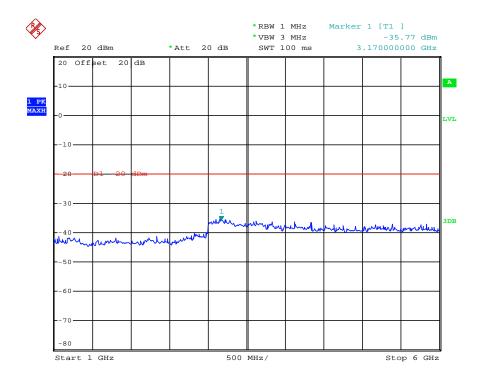
For Rated High Power


FCC ID: RIQAW68XDB

Report No.: TRE1212005901 Page 36 of 87 Issued:2012-12-24

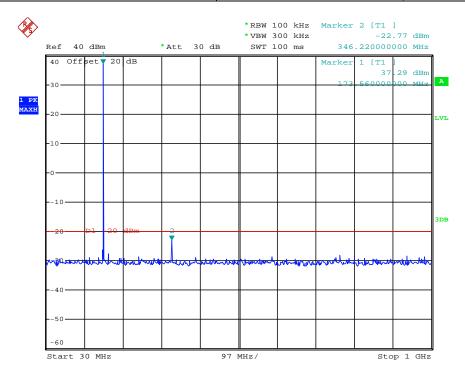
Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum Conducted Spurious Emissions Below 1GHz Frequency Datum (MHz) (dBm)		Maximum Conducted Spurious Emissions Above1GHz Frequency Datum (MHz) (dBm)		FCC Limit
FM	12.5KHz	Low	136.5000	272.50	-27.68	3200.00	-35.62	-20dBm
Test Results				Compliance				

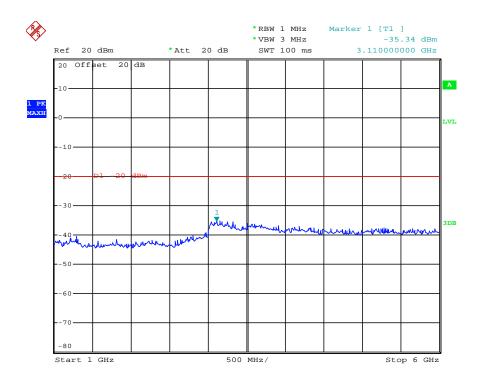

Date: 12.DEC.2012 09:58:48


Date: 12.DEC.2012 10:13:56

Report No.: TRE1212005901 Page 37 of 87 Issued:2012-12-24

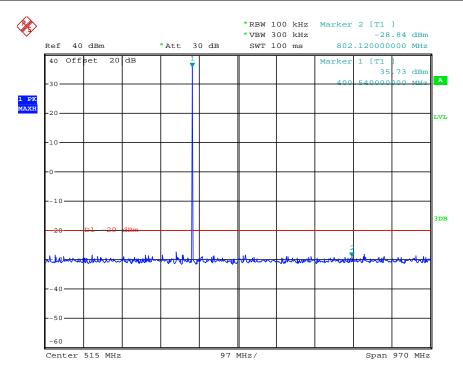
Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)	Emissions	Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	Middle	155.5000	311.30	-24.62	3170.00	-35.77	-20dBm
Test Results								

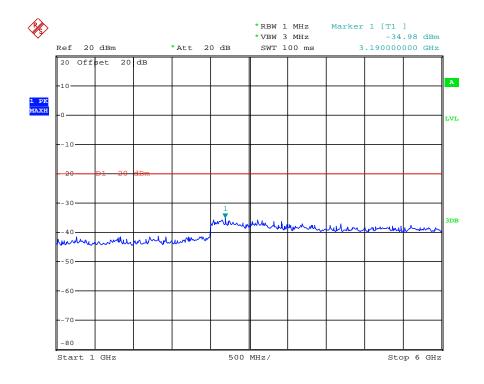

Date: 12.DEC.2012 10:32:07


Date: 12.DEC.2012 10:29:41

Report No.: TRE1212005901 Page 38 of 87 Issued:2012-12-24

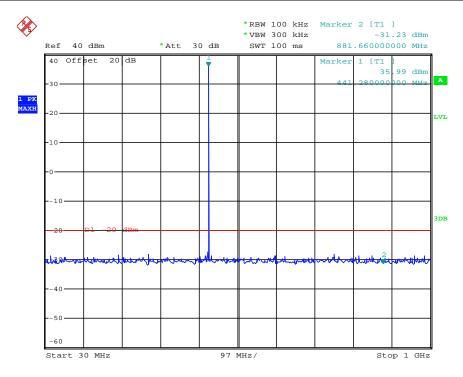
Modulation Type	Channel Sparation		Test Frequency	Maximum Conducted Spurious Emissions Below 1GHz		Maximum Conducted Spurious Emissions Above1GHz		FCC Limit
Туре	Oparation	Charmer	(MHz)	Frequency	Datum	Frequency	Datum	LIIIIII
				(MHz)	(dBm)	(MHz)	(dBm)	
FM	12.5KHz	High	173.5000	346.22	-22.77	3110.00	-35.34	-20dBm
Test Results			Compliance					

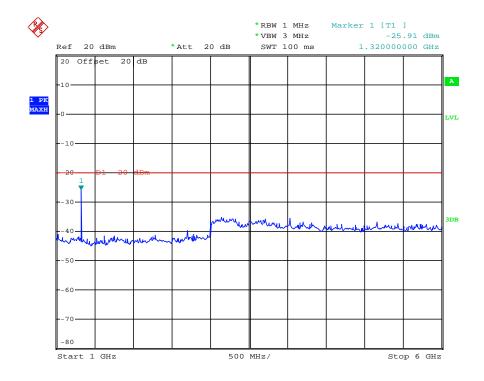

Date: 12.DEC.2012 10:22:42


Date: 12.DEC.2012 10:26:27

Report No.: TRE1212005901 Page 39 of 87 Issued:2012-12-24

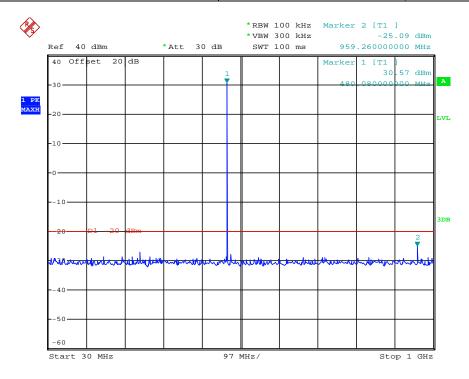
Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)	Emissions	Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	Low	400.5000	802.12	-28.84	3190.00	-34.98	-20dBm
Test Results								

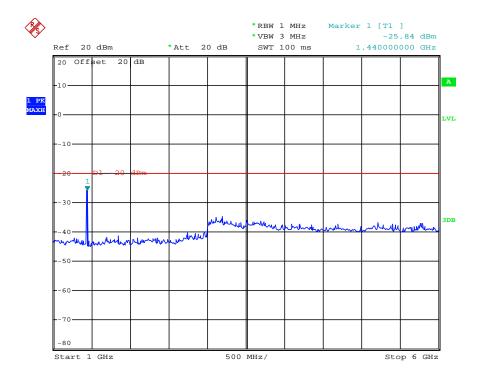

Date: 12.DEC.2012 10:09:11


Date: 12.DEC.2012 10:13:31

Report No.: TRE1212005901 Page 40 of 87 Issued:2012-12-24

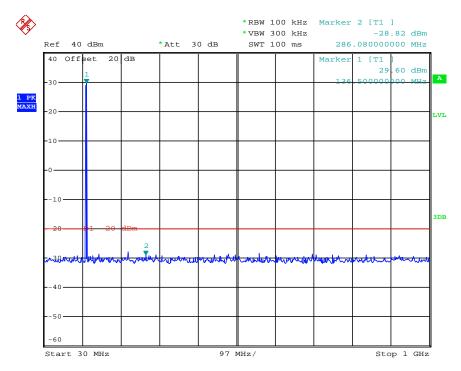
Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)	Emissions	Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	Middle	440.5000	881.66	-31.23	1320.00	-25.91	-20dBm
Test Results								

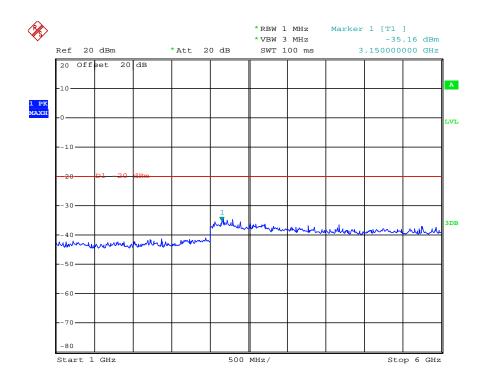

Date: 12.DEC.2012 10:33:37


Date: 12.DEC.2012 10:28:08

Report No.: TRE1212005901 Page 41 of 87 Issued:2012-12-24

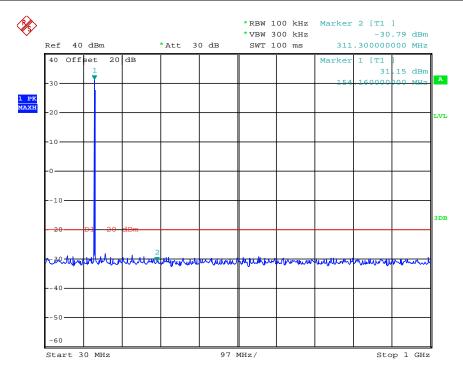
Modulation Type	Channel Sparation	Test Channel	Test Frequency	Maximum Conducted Spurious Emissions Below 1GHz		Maximum Conducted Spurious Emissions Above1GHz		FCC Limit
Турс	Oparation	Onamici	(MHz)	Frequency	Datum	Frequency	Datum	LIIIII
				(MHz)	(dBm)	(MHz)	(dBm)	
FM	12.5KHz	High	479.5000	959.26	-25.09	1440.00	-25.84	-20dBm
	Test Results			Compliance				

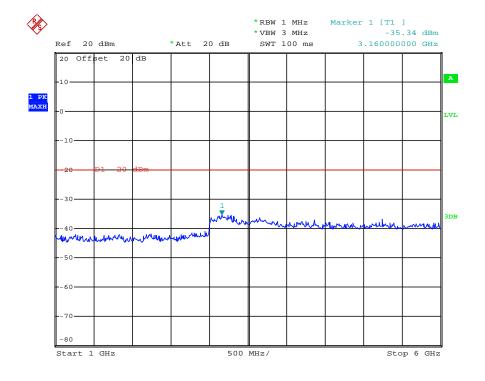

Date: 12.DEC.2012 10:23:50


Date: 12.DEC.2012 10:25:50

For Rated Low Power (1Watt)

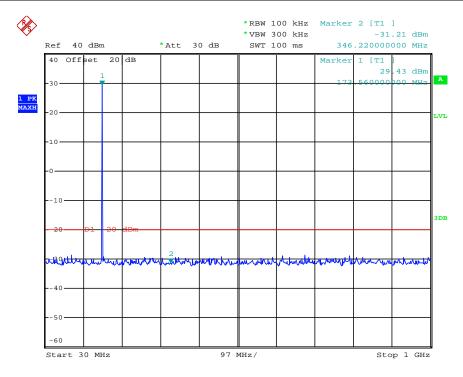
Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)	Emissions	Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	Low	136.5000	286.08	-28.82	3150.00	-35.16	-20dBm
	Test Results			Compliance				

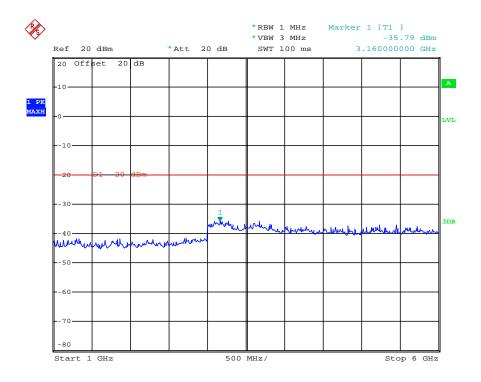

Date: 12.DEC.2012 09:59:24


Date: 12.DEC.2012 10:14:31

Report No.: TRE1212005901 Page 43 of 87 Issued:2012-12-24

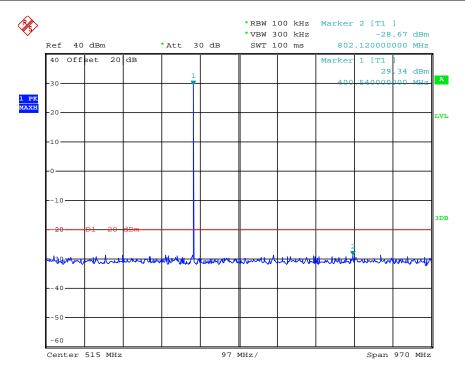
Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)	Emissions	Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	Middle	155.5000	311.30	-30.79	3160.00	-35.34	-20dBm
Test Results								

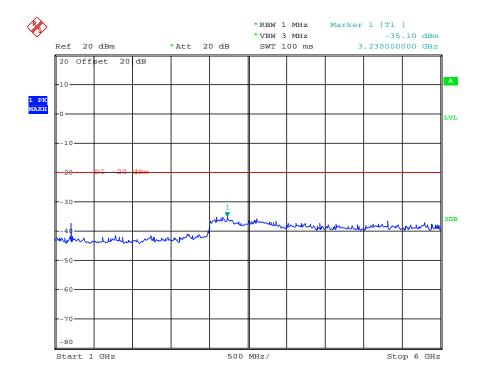

Date: 12.DEC.2012 10:32:24


Date: 12.DEC.2012 10:30:29

Report No.: TRE1212005901 Page 44 of 87 Issued:2012-12-24

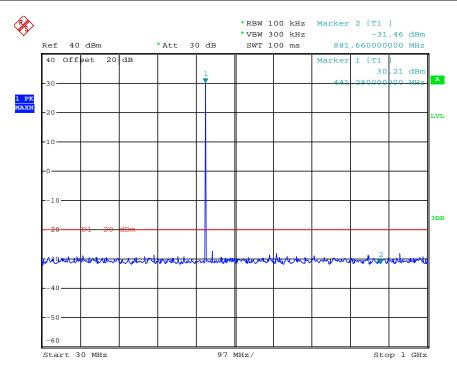
Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)		Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	High	173.5000	346.22	-31.21	3160.00	-35.79	-20dBm
Test Results								


Date: 12.DEC.2012 10:23:00


Date: 12.DEC.2012 10:26:43

Report No.: TRE1212005901 Page 45 of 87 Issued:2012-12-24

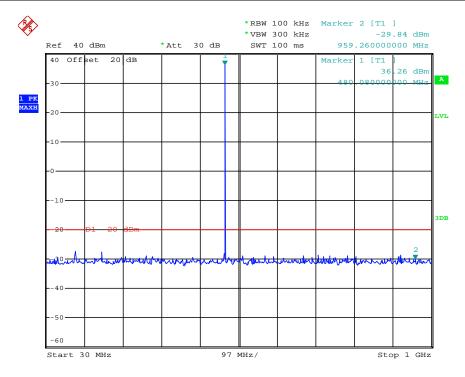
Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)	Emissions	Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	Low	400.5000	802.12	-28.67	3230.00	-35.10	-20dBm
Test Results								

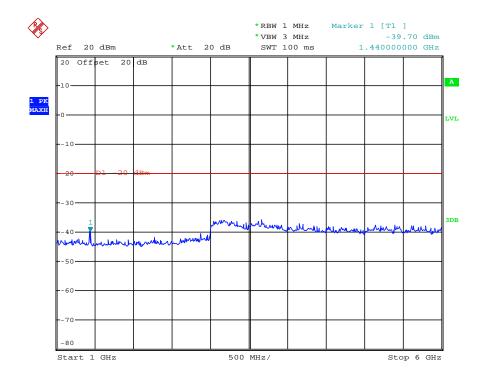

Date: 12.DEC.2012 10:09:46


Date: 12.DEC.2012 10:12:26

Report No.: TRE1212005901 Page 46 of 87 Issued:2012-12-24

Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)		Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	Middle	440.5000	881.66	-31.46	1320.00	-40.28	-20dBm
Test Results			Compliance					


Date: 12.DEC.2012 10:34:16


Date: 12.DEC.2012 10:28:26

Report No.: TRE1212005901 Page 47 of 87 Issued:2012-12-24

Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)	Emissions	Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	High	479.5000	959.26	-29.84	1440.00	-39.70	-20dBm
Test Results								

Date: 12.DEC.2012 10:24:15

Date: 12.DEC.2012 10:26:04

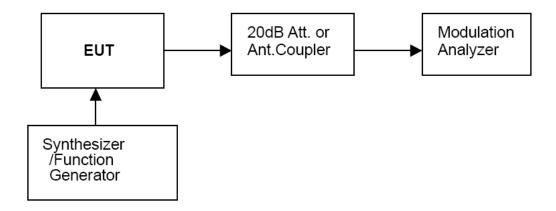
Report No.: TRE1212005901 Page 48 of 87 Issued:2012-12-24

4.5. Modulation Charcateristics

TEST APPLICABLE

According to CFR47 section 2.1047(a), for Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

TEST PROCEDURE

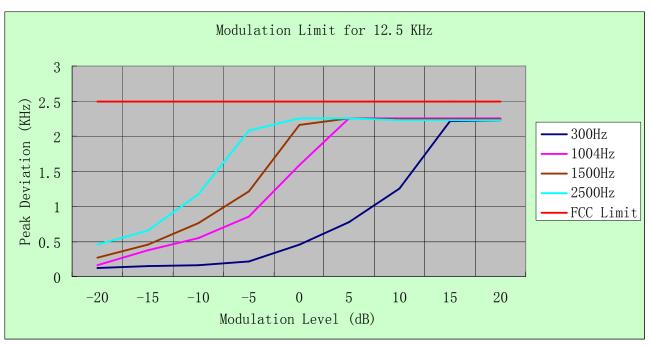

Modulation Limit

- 1 Configure the EUT as shown in figure 1, adjust the audio input for 60% of rated system deviation at 1 KHz using this level as a reference (0dB) and vary the input level from –20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- 2 Repeat step 1 with input frequency changing to 300, 1004, 1500 and 2500Hz in sequence.

Audio Frequency Response

- 1 Configure the EUT as shown in figure 1.
- 2 Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0dB).
- 3 Vary the Audio frequency from 100 Hz to 3 KHz and record the frequency deviation.
- 4 Audio Frequency Response =20log10 (Deviation of test frequency/Deviation of 1 KHz reference).

TEST CONFIGURATION



TEST RESULTS

Modulation Type: FM

12.5 KHz Channel Separ	ration
------------------------	--------

Modulation Level(dB)	Peak Freq. Deviation At 300 Hz(KHz)	Peak Freq. Deviation At 1004 H(KHz)	Peak Freq. Deviation At 1500 Hz(KHz)	Peak Freq. Deviation At 2500 Hz(KHz)
-20	0.12	0.16	0.27	0.45
-15	0.15	0.38	0.45	0.66
-10	0.16	0.55	0.76	1.17
-5	0.22	0.86	1.22	2.08
0	0.45	1.59	2.16	2.25
+5	0.78	2.26	2.25	2.25
+10	1.25	2.25	2.24	2.23
+15	2.21	2.25	2.24	2.23
+20	2.23	2.25	2.24	2.23

b). Audio Frequency Response:

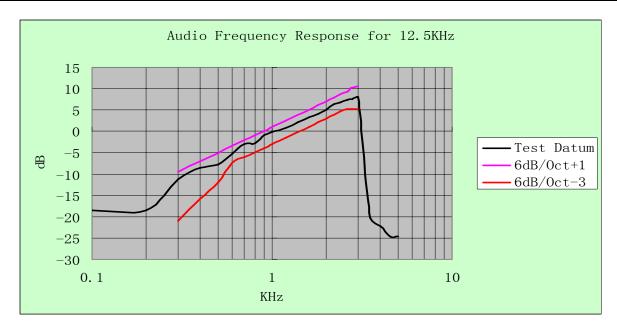
Rule Part No.: Part 2.1407(a) (b)

Method of Measurement:

The audio frequency response was measured in accordance with TIA/EIA Specification 603 with no exception. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 300-3000Hz shall be submitted and Audio Post Limiter Low Pass Filter Response from 3.0 KHz to 50KHz. However, the audio frequency response should test from 100Hz to 5.0 KHz according to FCC Part 90.

Modulation Type: FM

The audio frequency response curve is show below.and


Test Audio Level (1 KHz and 20% maximum deviation) is 2.70mv for 12.5 KHz channel separation.

Note:

- 1 Not applicable to new standard. However, tests are conducted under FCC's recommendation.
- 2 The Audio Frequency Response is identical for 12.5 KHz channel separation

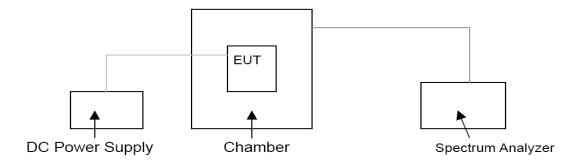
12.5 KHz Channel Separation

	2.3 KHZ Chaimer Separation	
Frequency Deviation	1KHz Refenerce Deviation	Audio Frequency Response
(KHz)	(KHz)	(dB)
0.06	0.51	-18.59
0.06	0.51	-18.59
0.14	0.51	-11.23
0.19	0.51	-8.58
0.21	0.51	-7.71
0.28	0.51	-5.21
0.36	0.51	-3.03
0.37	0.51	-2.79
0.46	0.51	-0.90
0.50	0.51	-0.17
0.56	0.51	0.81
0.65	0.51	2.11
0.74	0.51	3.23
0.82	0.51	4.12
0.92	0.51	5.12
1.06	0.51	6.35
1.11	0.51	6.76
1.20	0.51	7.43
1.22	0.51	7.58
1.21	0.51	7.50
1.27	0.51	7.92
0.05	0.51	-20.17
0.04	0.51	-22.11
0.03	0.51	-24.61
0.03	0.51	-24.61
	Frequency Deviation (KHz) 0.06 0.06 0.14 0.19 0.21 0.28 0.36 0.37 0.46 0.50 0.56 0.65 0.74 0.82 0.92 1.06 1.11 1.20 1.22 1.21 1.27 0.05 0.04 0.03	Frequency Deviation (KHz) 1KHz Refenerce Deviation (KHz) 0.06 0.51 0.06 0.51 0.14 0.51 0.19 0.51 0.21 0.51 0.28 0.51 0.36 0.51 0.37 0.51 0.46 0.51 0.50 0.51 0.56 0.51 0.65 0.51 0.82 0.51 0.92 0.51 1.06 0.51 1.11 0.51 1.20 0.51 1.21 0.51 1.27 0.51 0.05 0.51 0.05 0.51 0.05 0.51 0.05 0.51 0.05 0.51 0.05 0.51 0.05 0.51 0.05 0.51 0.05 0.51 0.05 0.51 0.04 0.51 0.03 0

Report No.: TRE1212005901 Page 51 of 87 Issued:2012-12-24

4.6. Frequency Stability Test

TEST APPLICABLE


1 According to FCC Part 2 Section 2.1055 (a)(1), the frequency stability shall be measured with variation of ambient temperature from -30°C to +50°C centigrade.

- According to FCC Part 2 Section 2.1055 (a) (2), for battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.
- 3 Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the end voltage point was 6.67V.
- 4 According to §90.213, the frequency stability limit is 2.5 ppm for 12.5KHz channel separation

TEST PROCEDURE

The EUT was set in the climate chamber and connected to an external DC power supply. The RF output was directly connected to Spectrum Analyzer ESI 26. The coupling loss of the additional cables was recorded and taken in account for all the measurements. After temperature stabilization (approx. 20 min for each stage), the frequency for the lower, the middle and the highest frequency range was recorded. For Frequency stability Vs. Voltage the EUT was connected to a DC power supply and the voltage was adjusted in the required ranges. The result was recorded.

TEST CONFIGURATION

TEST LIMITS

According to 90.213, Transmitters used must have minimum frequency stability as specified in the following table.

_		Freque	Frequency Tolerance (ppm)			
Frequency Range (MHz)	Channel Bandwidth (KHz)	Fixed and Base Stations	Mobil	e Stations		
(11112)	(1112)	rixeu aliu base statiolis	> 2 W	<u>≤</u> 2 W		
150-174 MHz	6.25 12.5 25	1.0 2.5 5.0	2.0 5.0 5.0	2.0 5.0 50.0*		
421-512 MHz	6.25 12.5 25	0.5 1.5 2.5	1.0 2.5 5.0	1.0 2.5 5.0		

- Stations operating in the 154.45 to 154.49 MHz or the 173.2 to 173.4 MHz bands must have a frequency stability of 5 ppm.
- Paging transmitters operating on paging-only frequencies must operate with frequency stability of 5 ppm in the 150-174 MHz band and 2.5 ppm in the 421-512 MHz band.

TEST RESULTS

Modulation	Channel	Test condition	ons	Fre	quency error (p	pm)
Type	Separation	Voltage(V)	Temp(°C)	136.5MHz	155.5 MHz	173.5 MHz
			-30	0.75	0.78	0.72
			-20	0.78	0.75	0.66
			-10	0.66	0.66	0.68
			0	0.65	0.62	0.55
		7.40	10	0.64	0.52	0.54
Analog/FM	12.5KHz	z	20	0.65	0.52	0.55
Allalog/Fivi	12.5KHZ		30	0.62	0.66	0.52
			40	0.74	0.62	0.66
			50	0.75	0.74	0.60
		6.67 (End point)	20	0.62	0.70	0.62
		6.29 (85% Rated)	20	0.52	0.62	0.52
		8.51 (115% Rated)	20	0.56	0.56	0.60
Limit			5.0) ppm		
Conclusion			Complies			

Modulation	Channel	Test condition	ons	Fre	quency error (p	pm)
Type	Separation	Voltage(V)	Temp(°C)	400.5 MHz	440.5 MHz	479.5 MHz
			-30	0.75	0.75	0.77
			-20	0.74	0.75	0.62
			-10	0.74	0.62	0.66
			0	0.65	0.62	0.65
		7.40	10	0.68	0.66	0.60
Analog/FM 12.5KHz		20	0.56	0.66	0.60	
Analog/Fivi	Analog/FM 12.5KHz		30	0.68	0.62	0.61
			40	0.64	0.62	0.73
			50	0.60	0.65	0.60
		6.67 (End point)	20	0.50	0.66	0.72
		6.29 (85% Rated)	20	0.66	0.60	0.73
		8.51 (115% Rated)	20	0.71	0.68	0.60
Limit			2.	5 ppm		
Conclusion			Complies			

Report No.: TRE1212005901 Page 53 of 87 Issued:2012-12-24

4.7. Maximum Transmitter Power

TEST APPLICABLE

Per FCC «2.1046 and «90.205: Maximum ERP is dependent upon the station's antenna HAAT and required service area.

TEST PROCEDURE

Measurements shall be made to establish the radio frequency power delivered by the transmitter the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted bellow:

If the power output is adjustable, measurements shall be made for the highest and lowest power levels.

The EUT connect to the Receiver through 20 dB attenuator.

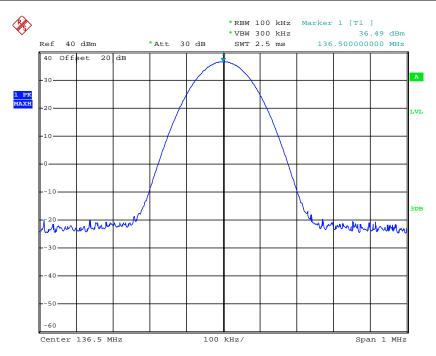
Measurement with Spectrum Analyzer FSP40 conducted, external power supply with 12.00 V stabilized supply voltage.

TEST CONFIGURATION

EUT	Attenuator	Spectrum Analyzer/Receiver

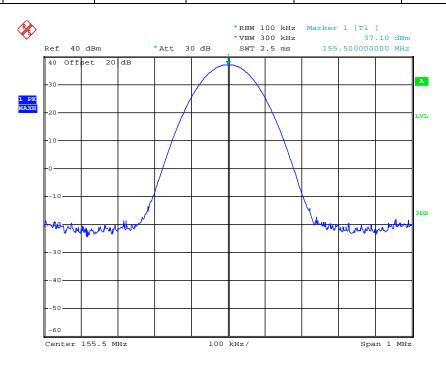
The EUT was directly connected to a RF Communication Test set by a 20 dB attenuator

TEST RESULTS


Modulation Type	Band	Test Channel	Test Frequency	Maximum Transmitter Power at Rated High Power Level(dBm)	Maximum Transmitter Power at Rated Low Power Level(dBm)	
	VHF	Low	136.5000 MHz	36.49	29.57	
		Middle	155.5000 MHz	37.10	31.29	
Analog/FM		High	173.5000 MHz	37.32	29.91	
		Low	400.5000 MHz	36.12	29.91	
	UHF	Middle	440.5000 MHz	36.02	30.37	
		High	479.5000 MHz	36.64	30.82	
Limit		The limit is depe	ndent upon the sta	tion's antenna HAAT ar area.	nd required service	
Test R	esults	Complicance				

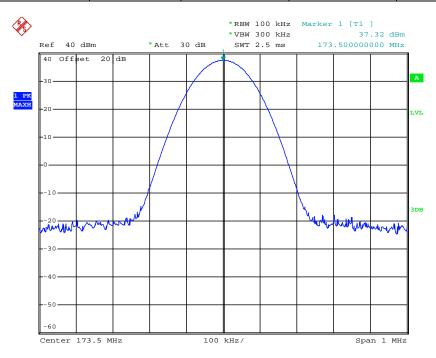
Plots of Maximum Transmitter Power Measurement

FCC ID: RIQAW68XDB

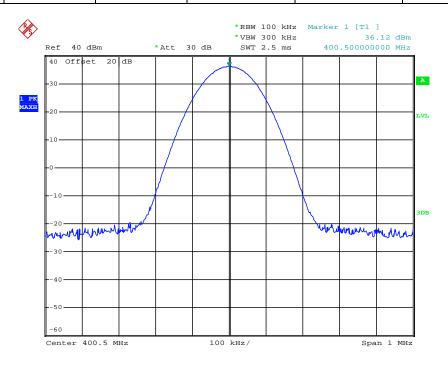

Report No.: TRE1212005901 Page 54 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	Rated Power (Watt)	Measurement (dBm)	FCC Limit	Results
FM	12.5 KHz	136.5000	5	36.49	Varies	Complicance

Date: 19.DEC.2012 16:12:06

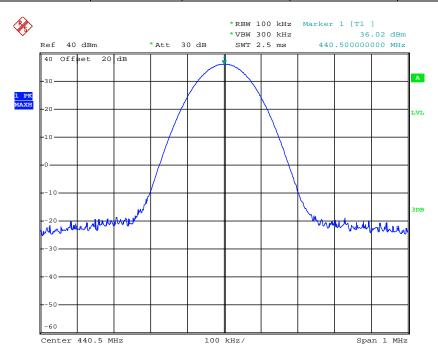

Modulation Type	Channel Separation	Freq.(MHz)	Rated Power (Watt)	Measurement (dBm)	FCC Limit	Results
FM	12.5 KHz	155.5000	5	37.10	Varies	Complicance

Date: 19.DEC.2012 16:10:52

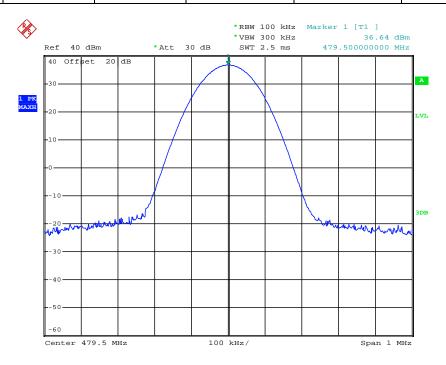

Report No.: TRE1212005901 Page 55 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	Rated Power (Watt)	Measurement (dBm)	FCC Limit	Results	
FM	12.5 KHz	173.5000	5	37.32	Varies	Complicance	

Date: 19.DEC.2012 16:08:02

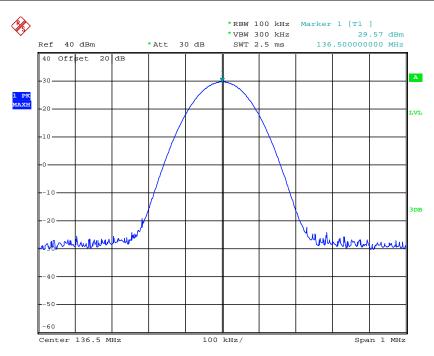

Modulation Type	Channel Separation	Freq.(MHz)	Rated Power (Watt)	Measurement (dBm)	FCC Limit	Results
FM	12.5 KHz	400.5000	4	36.12	Varies	Complicance

Date: 18.DEC.2012 09:16:09

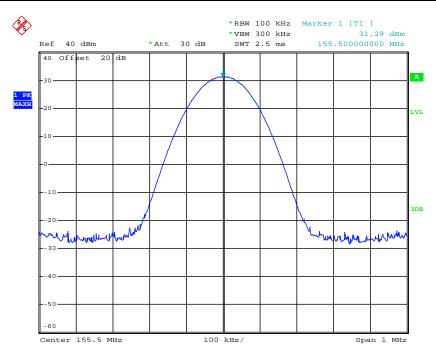

Report No.: TRE1212005901 Page 56 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	Rated Power (Watt)	Measurement (dBm)	FCC Limit	Results
FM	12.5 KHz	440.5000	4	36.02	Varies	Complicance

Date: 19.DEC.2012 16:09:46

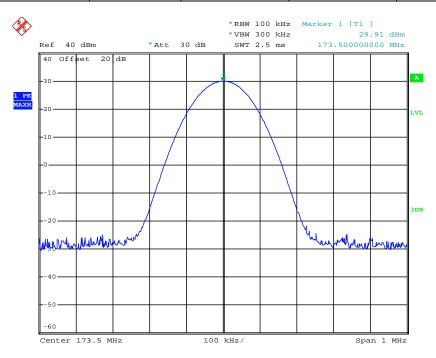

Modulation Type	Channel Separation	Freq.(MHz) Rated Power (Watt)		Measurement (dBm)	FCC Limit	Results
FM	12.5 KHz	479.5000	4	36.64	Varies	Complicance

Date: 19.DEC.2012 16:07:09

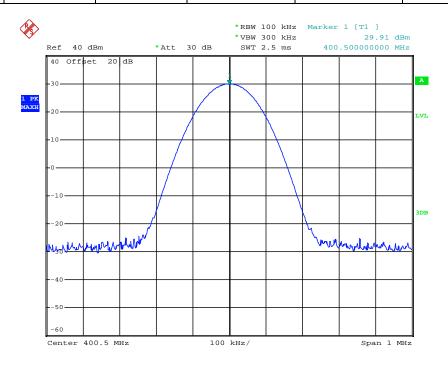

Report No.: TRE1212005901 Page 57 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	ration Freq.(MHz) (Wa		Measurement (dBm)	FCC Limit	Results
FM	FM 12.5 KHz 136.5000		1	29.57	Varies	Complicance

Date: 19.DEC.2012 16:12:19

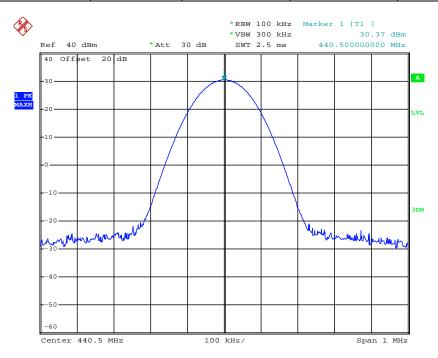

Modulation Type	Channel Separation	Freq.(MHz)	Rated Power (Watt)	Measurement (dBm)	FCC Limit	Results	
FM	12.5 KHz	155.5000	1	31.29	Varies	Complicance	

Date: 19.DEC.2012 16:11:15

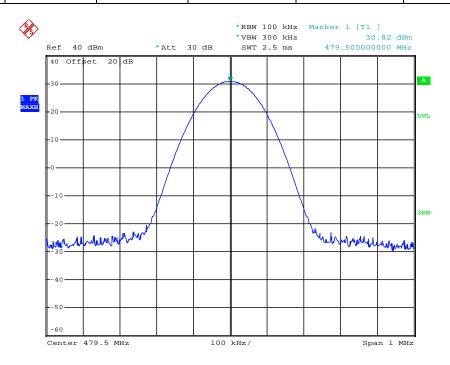

Report No.: TRE1212005901 Page 58 of 87 Issued:2012-12-24

Modulation Type	Fred (MHz)		Rated Power (Watt)	Measurement (dBm)	FCC Limit	Results	
FM			1	29.91	Varies	Complicance	

Date: 19.DEC.2012 16:08:15


Modulation Type	Channel Separation	Freq.(MHz)	Rated Power (Watt)	Measurement (dBm)	FCC Limit	Results
FM	12.5 KHz	400.5000	1	29.91	Varies	Complicance

Date: 18.DEC.2012 09:16:51


Report No.: TRE1212005901 Page 59 of 87 Issued:2012-12-24

Modulation Type	Channel Separation	Freq.(MHz)	Rated Power (Watt)	Measurement (dBm)	FCC Limit	Results	
FM	FM 12.5 KHz 440.5000		1	30.37	Varies	Complicance	

Date: 19.DEC.2012 16:10:25

Modulation Type	Channel Separation	Freq.(MHz)	Rated Power (Watt)	Measurement (dBm)	FCC Limit	Results
FM	12.5 KHz	479.5000	1	30.82	Varies	Complicance

Date: 19.DEC.2012 16:07:31

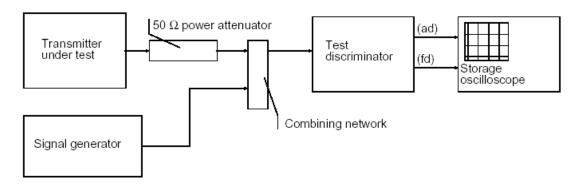
Report No.: TRE1212005901 Page 60 of 87 Issued:2012-12-24

4.8. Transmitter Frequency Behavior

TEST APPLICABLE

Section 90.214

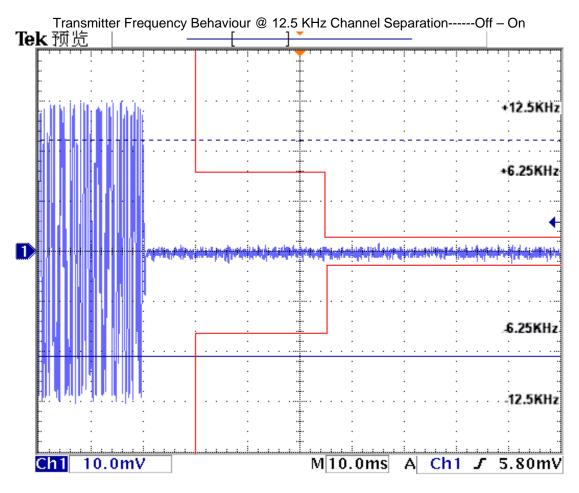
Transient frequencies must be within the maximum frequency difference limits during the time intervals indicated:

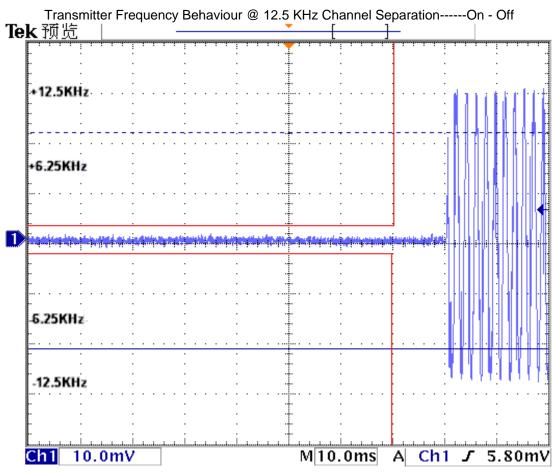

Time intervals ^{1, 2}	Maximum frequency	All equ	ıipment	
Tillie lillervals	difference ³	150 to 174 MHz	421 to 512MHz	
Transient Frequen	cy Behavior for Equipment D	esigned to Operate on 25	5 KHz Channels	
t ₁ ⁴	± 25.0 KHz	5.0 ms	10.0 ms	
t ₂	. 40 5 1/11-		25.0 ms	
t ₃ ⁴	± 25.0 KHz	5.0 ms	10.0 ms	
Transient Frequenc	cy Behavior for Equipment De	esigned to Operate on 12	.5 KHz Channels	
t ₁ ⁴	± 12.5 KHz	5.0 ms	10.0 ms	
t ₂	± 6.25 KHz	20.0 ms	25.0 ms	
t ₃ ⁴	± 12.5 KHz	5.0 ms	10.0 ms	
Transient Frequenc	cy Behavior for Equipment De	esigned to Operate on 6.2	25 KHz Channels	
t ₁ ⁴	±6.25 KHz	5.0 ms	10.0 ms	
t ₂	±3.125 KHz	20.0 ms	25.0 ms	
±3.125 KHz t ₃ ±6.25 KHz		5.0 ms	10.0 ms	

- 1. ton is the instant when a 1 KHz test signal is completely suppressed, including any capture time due to phasing.
 - t₁ is the time period immediately following t_{on}.
 - t2 is the time period immediately following t1.
 - t_3 is the time period from the instant when the transmitter is turned off until $t_{\text{off-}}$
 - toff is the instant when the 1 KHz test signal starts to rise.
- 2. During the time from the end of t₂ to the beginning of t₃, the frequency difference must not exceed the limits specified in § 90.213.
- 3. Difference between the actual transmitter frequency and the assigned transmitter frequency.
- 4. If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

TEST PROCEDURE

TIA/EIA-603 2.2.19


TEST CONFIGURATION



TEST RESULTS

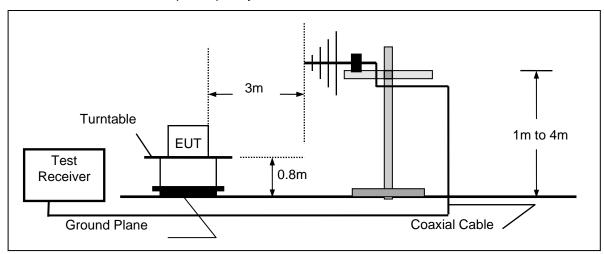
Please refer to the following plots.

Modulation Type: FM

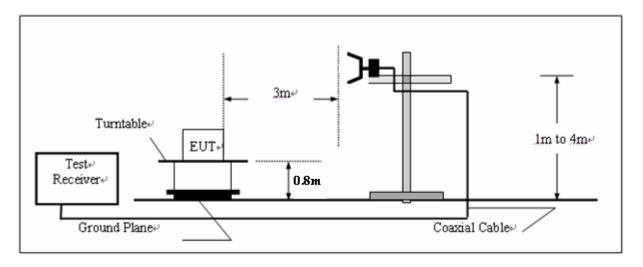
Report No.: TRE1212005901 Page 62 of 87 Issued:2012-12-24

4.9. Receiver Radiated Spurious Emssion (For Volunteer)

TEST APPLICABLE


The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG


Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)				
RA = Reading Amplitude	AG = Amplifier Gain				
AF = Antenna Factor					

TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency below 1000MHz

(B) Radiated Emission Test Set-Up, Frequency above 1000MHz

TEST PROCEDURE

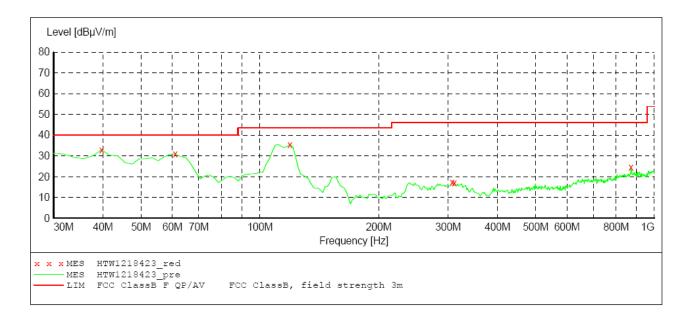
- 1 The EUT was placed on a turn table which is 0.8m above ground plane.
- 2 Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360°C to acquire the highest emissions from EUT
- 3 And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4 Repeat above procedures until all frequency measurements have been completed.

RECEIVER RADIATED SPOUIOUS LIMIT

For unintentional device, according to § 15.109(a) and RSS-Gen, except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Distance	Radiated Radiated		
(MHz)	(Meters)	(dBµV/m)	(μV/m)	
30-88	3	40.0	100	
88-216	3	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	

TEST RESULTS

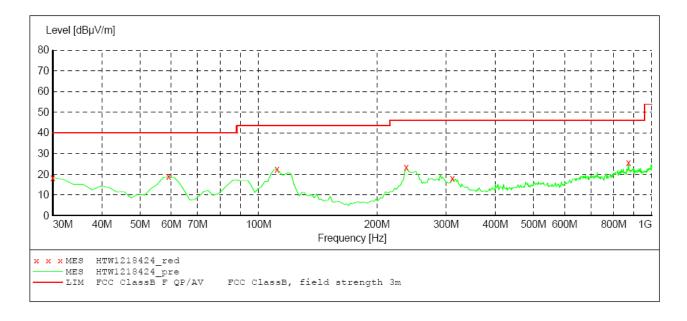

The Radiated Measurement are performed to the five channels (the top channel, the middle channel and the bottom channel), the datum recorded below is the worst case for each channel separation; and the EUT shall be scanned from 30 MHz to the 5th harmonic of the highest oscillator frequency in the digital devices or 1 GHz whichever is higher.

FCC ID: RIQAW68XDB

Report No.: TRE1212005901 Page 64 of 87 Issued:2012-12-24

Modulation	Modulation Channel			Maximum Radiated Emissions FO		FCC Limit
Type	Separation	Frequency (MHz)	Polar.	Frequency (MHz)	Datum (dBuV/m)	(dBuV/m)
FM	12.5 KHz	155.5000	Н	871.96	33.00	46.00
LIVI	12.5 KHZ	133.3000	V	39.70	25.50	40.00
Test Results			Compliance			

SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Time Bandw. Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz HL562 201106



MEASUREMENT RESULT: "HTW1218423 red"

12/18/2012	8:48PM							
Frequenc	y Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MH	z dBµV/m	dВ	dBµV/m	dВ		cm	deg	
							_	
39.70000	0 33.00	-16.4	40.0	7.0	PK	100.0	335.00	VERTICAL
61.04000	0 30.90	-24.9	40.0	9.1	PK	100.0	335.00	VERTICAL
119.24000	0 35.50	-19.3	43.5	8.0	PK	100.0	65.00	VERTICAL
307.42000	0 17.30	-16.7	46.0	28.7	PK	100.0	107.00	VERTICAL
311.30000	0 17.10	-16.5	46.0	28.9	PK	100.0	107.00	VERTICAL
871.96000	0 24.70	-6.9	46.0	21.3	PK	100.0	169.00	VERTICAL

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw. Frequency Frequency 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz HL562 201106

MEASUREMENT RESULT: "HTW1218424 red"

12/18/2012 8: Frequency MHz	50PM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	18.30	-11.1	40.0	21.7	PK	100.0	306.00	HORIZONTAL
59.100000	18.80	-25.0	40.0	21.2	PK	300.0	309.00	HORIZONTAL
111.480000	22.50	-19.5	43.5	21.0	PK	300.0	1.00	HORIZONTAL
237.580000	23.30	-19.1	46.0	22.7	PK	100.0	270.00	HORIZONTAL
311.300000	17.90	-16.5	46.0	28.1	PK	100.0	164.00	HORIZONTAL
871.960000	25.50	-6.9	46.0	20.5	PK	100.0	282.00	HORIZONTAL

Report No.: TRE1212005901 Page 66 of 87 Issued:2012-12-24

Modulation	Channel	Test		Maximum Emis	FCC Limit			
Type	Frequer		Polar.	Frequency (MHz)	Datum (dBuV/m)	(dBuV/m)		
FM	12.5 KHz	155.5000	Н	5909.81	41.50	54.00		
LIVI	FIVI 12.5 KHZ		V	5979.95	41.30	54.00		
Test Results			Compliance					

SWEEP TABLE: "test (1G-18G) P"

Short Description: EN 55022 Field Strength

Stop Detector Meas. IF
v Frequency Time Bandw. Transducer Start

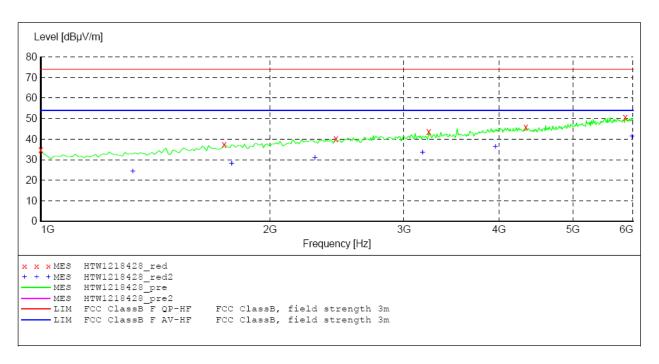
Frequency Frequency

1.0 GHz 18.0 GHz MaxPeak 500.0 ms 1 MHz HF906

MEASUREMENT RESULT: "HTW1218427 red"

12/18/2012 9:	04PM							
Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MHz	dBµV/m	dB	dBµV/m	dB		cm	deg	
1320.641283	34.00	-10.8	74.0	40.0	PK	100.0	272.00	HORIZONTAL
1771.543086	37.40	-8.1	74.0	36.6	PK	100.0	213.00	HORIZONTAL
2332.665331	41.20	-5.2	74.0	32.8	PK	100.0	153.00	HORIZONTAL
3174.348697	42.90	-3.0	74.0	31.1	PK	100.0	50.00	HORIZONTAL
4336.673347	46.10	-0.6	74.0	27.9	PK	100.0	344.00	HORIZONTAL
5839.679359	50.80	2.5	74.0	23.2	PK	100.0	219.00	HORIZONTAL

MEASUREMENT RESULT: "HTW1218427 red2"


12/18/2012 9 Frequency MHz	:04PM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
1340.681363	24.90	-10.7	54.0	29.1	AV	100.0	255.00	HORIZONTAL
1781.563126	28.60	-8.0	54.0	25.4	AV	100.0	177.00	HORIZONTAL
2382.765531	31.20	-5.0	54.0	22.8	AV	100.0	111.00	HORIZONTAL
3264.529058	33.70	-2.9	54.0	20.3	AV	100.0	219.00	HORIZONTAL
4276.553106	36.90	-0.6	54.0	17.1	AV	100.0	79.00	HORIZONTAL
5909.819639	41.50	2.6	54.0	12.5	AV	100.0	19.00	HORIZONTAL

SWEEP TABLE: "test (1G-18G) P"

Short Description:

Start Stop Detector Meas. IF Transducer
Time Bandw.

1.0 GHz 18.0 GHz MaxPeak 500.0 ms 1 MHz HF906

MEASUREMENT RESULT: "HTW1218428 red"

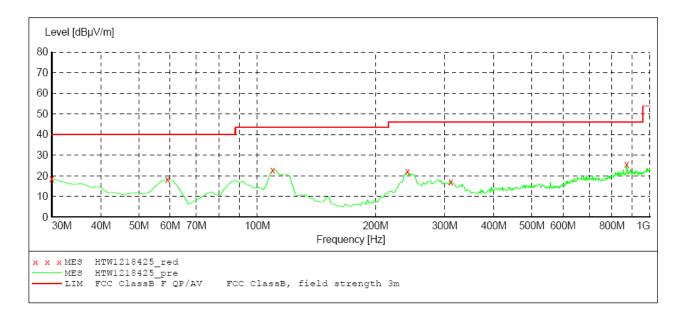
12/18/2012 9: Frequency MHz	06PM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
1000.000000 1741.482966 2442.885772 3234.468938 4336.673347 5859.719439	34.70 37.50 40.20 43.80 46.00 50.60	-12.3 -8.3 -4.8 -2.9 -0.6 2.5	74.0 74.0 74.0 74.0 74.0 74.0	36.5	PK PK PK PK PK PK	100.0 100.0 100.0 100.0 100.0	288.00 294.00 155.00 196.00 131.00 54.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

MEASUREMENT RESULT: "HTW1218428 red2"

12/18/2012 9:	06PM							
Frequency	Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
MHz	dBµV/m	dB	dBµV/m	dB		cm	deg	
			·				_	
1320.641283	24.50	-10.8	54.0	29.5	AV	100.0	24.00	HORIZONTAL
1781.563126	28.20	-8.0	54.0	25.8	AV	100.0	149.00	HORIZONTAL
2292.585170	31.00	-5.4	54.0	23.0	AV	100.0	196.00	HORIZONTAL
3174.348697	33.70	-3.0	54.0	20.3	AV	100.0	330.00	HORIZONTAL
3955.911824	36.50	-0.5	54.0	17.5	AV	100.0	7.00	HORIZONTAL
5979.959920	41.30	2.6	54.0	12.7	AV	100.0	0.00	HORIZONTAL

Report No.: TRE1212005901 Page 68 of 87 Issued:2012-12-24

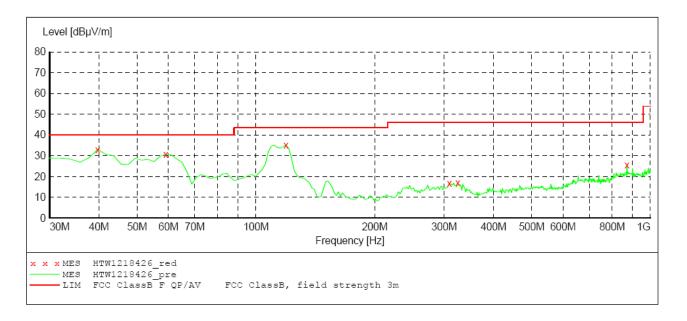
Modulation	Channel	Test	Polar.	Maximum Emis	FCC Limit		
Туре	Separation	Frequency (MHz)	Folal.	Frequency Datum (MHz) (dBuV/m)		(dBuV/m)	
	10 E KU-	440.5000	Н	871.96	25.60	46.00	
FIVI	FM 12.5 KHz		V	39.70	33.00	40.00	
Test Results			Compliance				


SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength Start

Detector Meas. IF Time Bar Stop Transducer

Bandw.

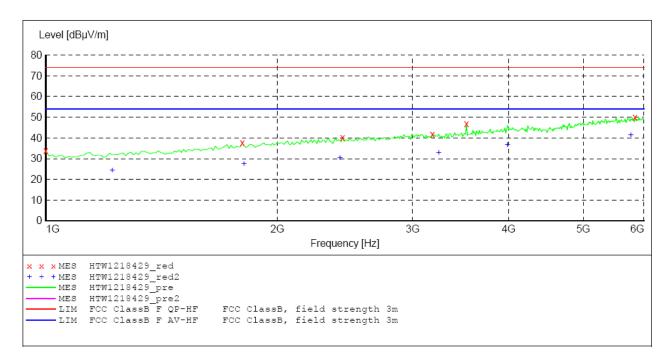

Frequency Frequency 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz HL562 201106

MEASUREMENT RESULT: "HTW1218425 red"

12/18/2012 8:	:53PM							
Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.000000	18.70	-11.1	40.0	21.3	PK	100.0	318.00	HORIZONTAL
59.100000	18.20	-25.0	40.0	21.8	PK	300.0	319.00	HORIZONTAL
109.540000	22.80	-19.5	43.5	20.7	PK	300.0	358.00	HORIZONTAL
241.460000	22.20	-18.9	46.0	23.8	PK	100.0	258.00	HORIZONTAL
311.300000	16.90	-16.5	46.0	29.1	PK	100.0	199.00	HORIZONTAL
871.960000	25.60	-6.9	46.0	20.4	PK	300.0	342.00	HORIZONTAL

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi
Start Stop Detector Field Strength Detector Meas. IF Time Bandw. Transducer Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz HL562 201106

MEASUREMENT RESULT: "HTW1218426 red"


12/18/2012 8: Frequency MHz	54PM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
39.700000	33.00	-16.4	40.0	7.0	PK	100.0	289.00	VERTICAL
59.100000	30.70	-25.0	40.0	9.3	PK	100.0	348.00	VERTICAL
119.240000	35.20	-19.3	43.5	8.3	PK	100.0	57.00	VERTICAL
309.360000	16.80	-16.5	46.0	29.2	PK	100.0	99.00	VERTICAL
324.880000	16.90	-16.4	46.0	29.1	PK	100.0	110.00	VERTICAL
871.960000	25.70	-6.9	46.0	20.3	PK	100.0	294.00	VERTICAL

Page 70 of 87 Report No.: TRE1212005901 Issued:2012-12-24

Modulation	Channel	Test	Polar.	Maximum Emis	FCC Limit		
Туре	Separation	Frequency (MHz)	FOIdI.	Frequency (MHz)			
FM	10 E KU-	440.5000	Н	6000.00	40.90	54.00	
LIVI	FM 12.5 KHz		V	5769.53	41.40	54.00	
Test Results			Compliance				

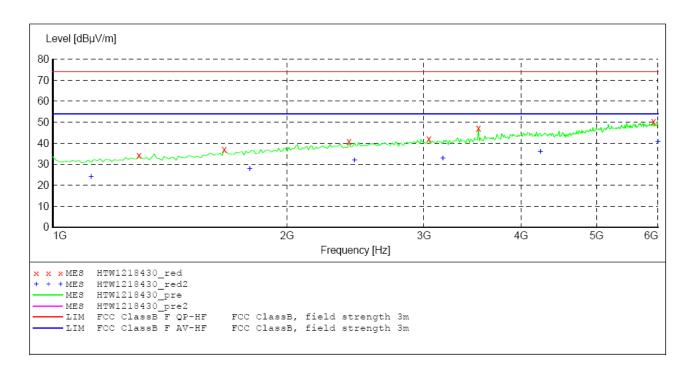
SWEEP TABLE: "test (1G-18G) P"

Short Description: EN 55022 Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
1.0 GHz 18.0 GHz MaxPeak 500.0 ms 1 MHz HF906

MEASUREMENT RESULT: "HTW1218429 red"

12/18/2012 9: Frequency MHz	08PM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
1000.000000	33.80	-12.3	74.0	40.2	PK	100.0	257.00	VERTICAL
1801.603206	37.60	-7.9	74.0	36.4	PK	100.0	308.00	VERTICAL
2432.865731	40.10	-4.9	74.0	33.9	PK	100.0	209.00	VERTICAL
3184.368737	41.90	-3.0	74.0	32.1	PK	100.0	332.00	VERTICAL
3525.050100	46.70	-2.4	74.0	27.3	PK	100.0	301.00	VERTICAL
5839.679359	49.90	2.5	74.0	24.1	PK	100.0	228.00	VERTICAL

MEASUREMENT RESULT: "HTW1218429 red2"


12/18/2012 9: Frequency MHz	109PM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
1220.440882 1811.623246	24.60 27.70	-11.2 -7.8	54.0 54.0	29.4 26.3	AV AV	100.0	61.00 167.00	VERTICAL VERTICAL
2412.825651	30.50	-4.9	54.0	23.5		100.0	119.00	VERTICAL
3244.488978	33.00	-2.9	54.0	21.0	AV	100.0	234.00	VERTICAL
3985.971944	36.70	-0.4	54.0	17.3	AV	100.0	31.00	VERTICAL
5769.539078	41.40	2.4	54.0	12.6	AV	100.0	203.00	VERTICAL

SWEEP TABLE: "test (1G-18G) P"

Short Description: EN 55022 Field Strength Start Stop Detector Meas. IF Transducer

Time Bandw. Frequency Frequency

1.0 GHz 18.0 GHz MaxPeak 500.0 ms 1 MHz HF906

MEASUREMENT RESULT: "HTW1218430 red"

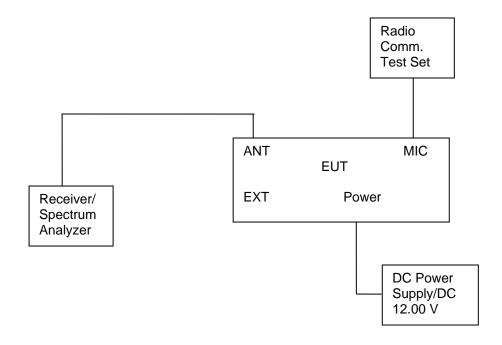
12/18/2012 9: Frequency MHz	10PM Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
1290.581162	34.20	-10.9	74.0	39.8	PK	100.0	350.00	VERTICAL
1661.322645	36.90	-8.8	74.0	37.1	PK	100.0	231.00	VERTICAL
2402.805611	40.70	-5.0	74.0	33.3	PK	100.0	63.00	VERTICAL
3044.088176	42.00	-3.2	74.0	32.0	PK	100.0	81.00	VERTICAL
3525.050100	47.00	-2.4	74.0	27.0	PK	100.0	33.00	VERTICAL
5919.839679	50.40	2.6	74.0	23.6	PK	100.0	344.00	VERTICAL

MEASUREMENT RESULT: "HTW1218430_red2"

10PM							
Level	Transd	Limit	Margin	Det.	Height	Azimuth	Polarization
dBuV/m	dB	dBµV/m	dB		cm	deg	
24.00	-11.7	54.0	30.0	AV	100.0	267.00	VERTICAL
27.90	-7.9	54.0	26.1	AV	100.0	225.00	VERTICAL
31.90	-4.8	54.0	22.1	AV	100.0	183.00	VERTICAL
32.80	-3.0	54.0	21.2	AV	100.0	207.00	VERTICAL
36.00	-0.5	54.0	18.0	AV	100.0	332.00	VERTICAL
40.90	2.6	54.0	13.1	AV	100.0	45.00	VERTICAL
	Level dBµV/m 24.00 27.90 31.90 32.80 36.00	Level Transd dB	Level Transd Limit dBμV/m dB dBμV/m 24.00 -11.7 54.0 27.90 -7.9 54.0 31.90 -4.8 54.0 32.80 -3.0 54.0 36.00 -0.5 54.0	Level Transd Limit Margin dBμV/m dB dBμV/m dB 30.0 24.00 -11.7 54.0 30.0 27.90 -7.9 54.0 26.1 31.90 -4.8 54.0 22.1 32.80 -3.0 54.0 21.2 36.00 -0.5 54.0 18.0	Level Transd Limit Margin Det. dBμV/m dB dBμV/m dB	Level dBμV/m Transd dB Limit dBμV/m Margin dB Det. Height cm 24.00 -11.7 54.0 30.0 AV 100.0 27.90 -7.9 54.0 26.1 AV 100.0 31.90 -4.8 54.0 22.1 AV 100.0 32.80 -3.0 54.0 21.2 AV 100.0 36.00 -0.5 54.0 18.0 AV 100.0	Level dBμV/m Transd dB dBμV/m Limit dBμV/m Margin dB Det. Height cm Azimuth deg 24.00 -11.7 54.0 30.0 AV 100.0 267.00 27.90 -7.9 54.0 26.1 AV 100.0 225.00 31.90 -4.8 54.0 22.1 AV 100.0 183.00 32.80 -3.0 54.0 21.2 AV 100.0 207.00 36.00 -0.5 54.0 18.0 AV 100.0 332.00

Report No.: TRE1212005901 Page 72 of 87 Issued:2012-12-24

4.10. Receiver Conducted Spurious Emssion (For Volunteer)


TEST APPLICABLE

The same as Section 4.3

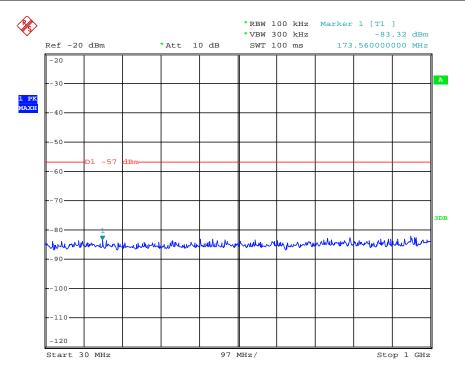
TEST PROCEDURE

The spectrum analyzer was connected to the RF output power of the EUT, the EUT was setup in receiving mode; The RBW of the spectrum analyzer was set to 100 kHz and the VBW set to 300 KHz below the test frequency 1GHz. While the RBW of the spectrum analyzer was set to the 1MHz and VBW set to the 3MHz from 1GHz to the 10th harmonic.

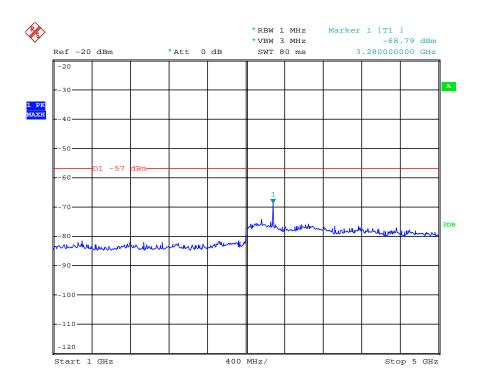
TEST CONFIGURATION

LIMIT

The power at the antenna terminal shall not exceed 2.0 nanowatts (-57dBm).

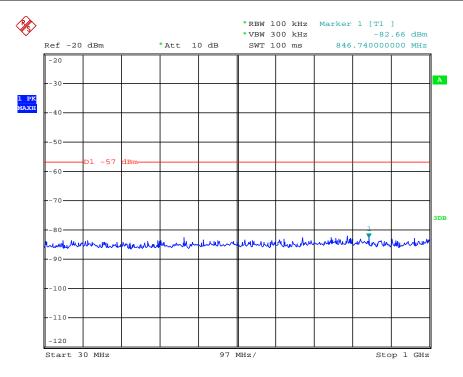

TEST RESULTS

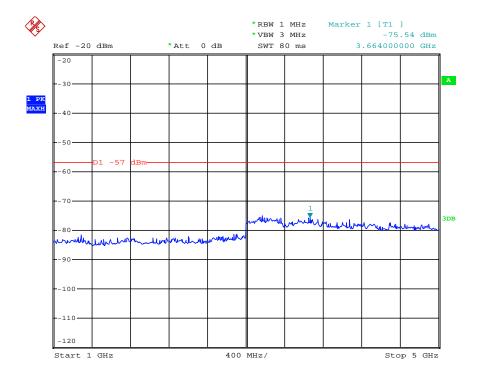
The Receiver Conducted Spurious Emssions Measurement is performed to the five channels (the top channel, the middle channel and the bottom channel), the datums recorded below were for the five channels; and the EUT shall be scanned from 30 MHz to the 5 GHz.


FCC ID: RIQAW68XDB

Report No.: TRE1212005901 Page 73 of 87 Issued:2012-12-24

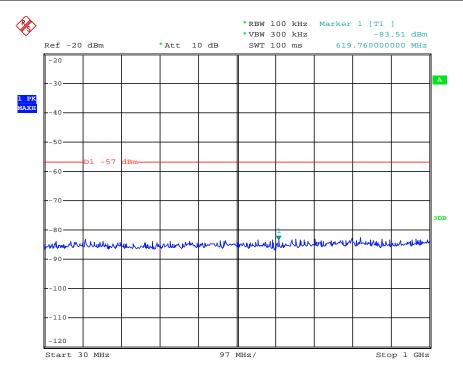
Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)	Emissions	Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	Low	136.5000	173.56	-83.32	3280.00	-68.79	-57dBm
Test Results			Compliance					

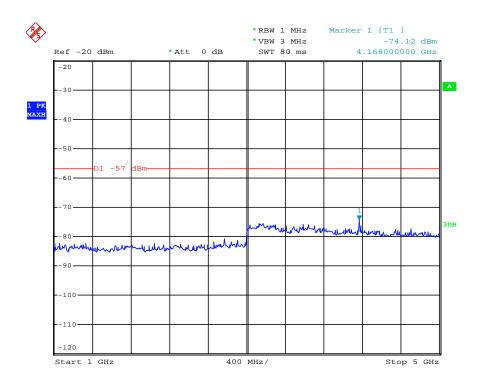

Date: 18.DEC.2012 10:05:09


Date: 18.DEC.2012 10:04:47

Report No.: TRE1212005901 Page 74 of 87 Issued:2012-12-24

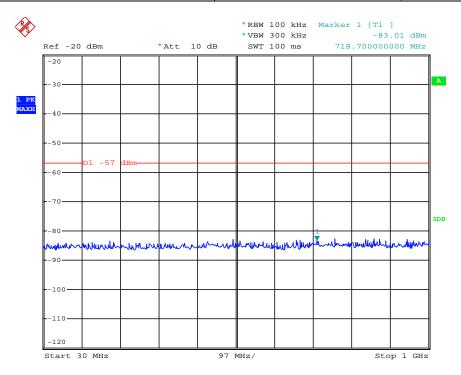
Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)	Emissions	Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	Middle	155.5000	846.74	-82.66	3664.00	-75.54	-57dBm
Test Results			Compliance					

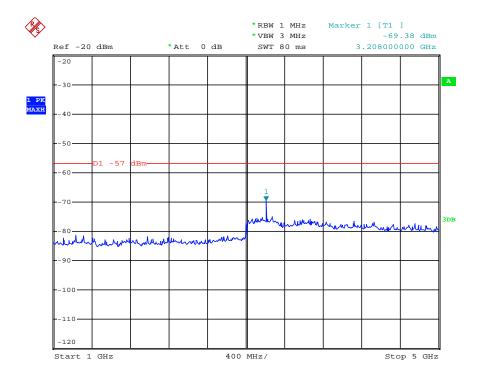

Date: 18.DEC.2012 10:02:42


Date: 18.DEC.2012 10:03:22

Report No.: TRE1212005901 Page 75 of 87 Issued:2012-12-24

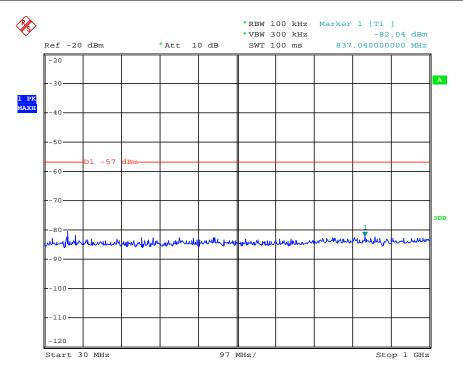
Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)	Emissions	Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	High	173.5000	619.76	-83.51	4168.00	-74.12	-57dBm
Test Results				Compliance				

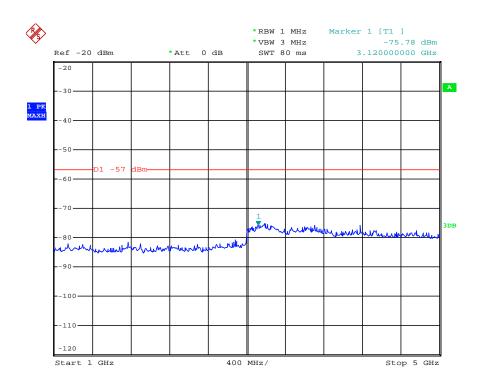

Date: 18.DEC.2012 10:06:09


Date: 18.DEC.2012 10:07:03

Report No.: TRE1212005901 Page 76 of 87 Issued:2012-12-24

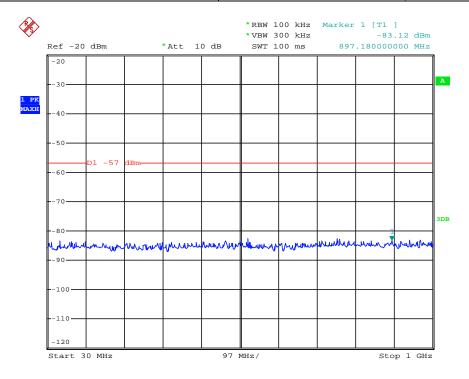
Modulation Type	Channel Sparation		Test Frequency	Maximum Conducted Spurious Emissions Below 1GHz		Maximum Conducted Spurious Emissions Above1GHz		FCC
Туре	Oparation	Charmer	(MHz)	Frequency	Datum	Frequency	Datum	Limit
				(MHz)	(dBm)	(MHz)	(dBm)	
FM	12.5KHz	Low	400.5000	718.70	-83.01	3208.00	-69.38	-57dBm
Test Results				Compliance				

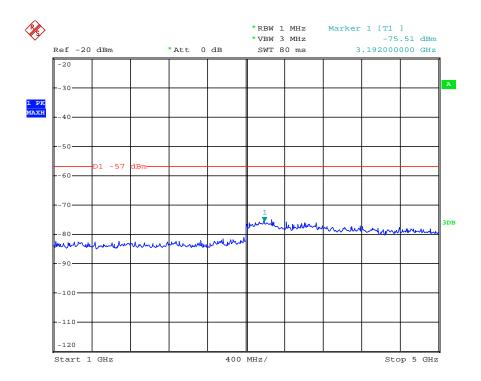

Date: 18.DEC.2012 10:05:25


Date: 18.DEC.2012 10:04:23

Report No.: TRE1212005901 Page 77 of 87 Issued:2012-12-24

Modulation Type	Channel Sparation	Test Channel	Test Frequency (MHz)	Maximum (Spurious I Below Frequency (MHz)	Emissions	Maximum (Spurious E Above Frequency (MHz)	Emissions	FCC Limit
FM	12.5KHz	Middle	440.5000	837.04	-82.04	3120.00	-75.78	-57dBm
Test Results			Compliance					

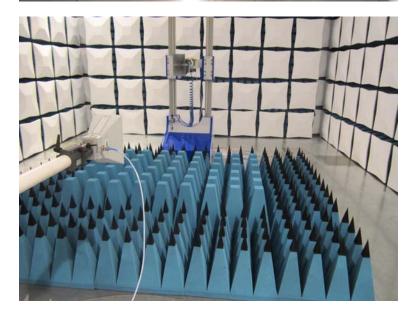

Date: 18.DEC.2012 10:02:13


Date: 18.DEC.2012 10:03:37

Report No.: TRE1212005901 Page 78 of 87 Issued:2012-12-24

Modulation Type	Channel Sparation		Test Frequency	Maximum Conducted Spurious Emissions Below 1GHz		Maximum Conducted Spurious Emissions Above1GHz		FCC
Туре	Oparation	Chamilei	(MHz)	Frequency	Datum	Frequency	Datum	Limit
				(MHz)	(dBm)	(MHz)	(dBm)	
FM	12.5KHz	High	479.5000	997.18	-83.12	3192.00	-75.51	-57dBm
Test Results				Compliance				

Date: 18.DEC.2012 10:06:26

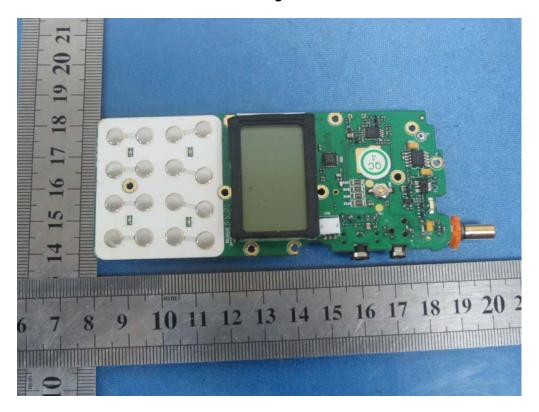


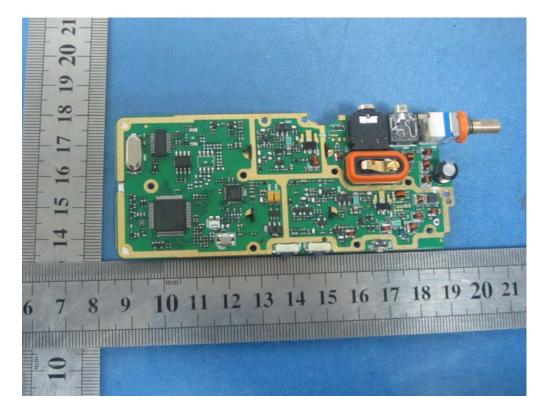
Date: 18.DEC.2012 10:07:22

5. Test Setup Photos of the EUT

6. External and Internal Photos of the EUT

External photos of the EUT




Report No.: TRE1212005901 Page 86 of 87 Issued:2012-12-24

Internal photos of the EUT

.....End of Report.....