

Product Specifications

Dual-mode LoRa[®] Wireless Module

LM-513H

VER: 1.0A

GlobalSat WorldCom Corporation

16F., No. 186, Jian 1st Rd, Zhonghe Dist., New Taipei City 23553, Taiwan Tel: 886.2.8226.3799/ Fax: 886.2.8226.3899 <u>lora@globalsat.com.tw</u> <u>www.globalsat.com.tw</u> USGlobalSat Incorporated 14740 Yorba Court Chino, CA 91710 Tel: 888.323.8720 / Fax: 909.597.8532 sales@usglobalsat.com www.usglobalsat.com

Product Description

The GlobalSat LM-513H is a pin type RF module that based on LoRa[®] technology which provides long-range, low data rate IoT connectivity to sensors, electronic meter reading, geolocation devices, industrial monitoring and control, home and building automation, long range irrigation systems, and all kinds of IoT/ M2M equipments. It can works as the end-node devices in the LoRaWAN[™] infrastructure or in GlobalSat proprietary ecosystem (MOST-Link).

Product Feature

- Built-in standard LoRaWAN[™] FW and proprietary MOST-Link FW in the same module
- Share same PCB/ device design for both LoRaWAN[™] and private RF data communication
- Ultra-high sensitive receiving ability by LoRa[®] spread spectrum modulation technology
- Long-distance transmission (1KM to 10KM)
- Instant wake up over the air
- LoRa[®]/ FSK/ GFSK/ OOK modulation, 2-way half –duplex communication, strong anti-interfere
- Maximal output power 100 mW (20 dBm), output power adjustable between 5-20 dBm
- Easily use, auto exchange on communication & transceiver
- Tuning free
- Accord FCC, ETSI, TELEC standard

Hardware Specifications

Item	Content	
LoRa [®] Module	GlobalSat Dual-mode LoRa® Module LM-533H	
Frequency	863 ~ 870 MHz (EU) 902 ~ 928 MHz (US) 920 ~ 928 MHz (ROA)	
Transmission Power	862 ~ 870 MHz (EU) @ 14 dBm 902 ~ 928 MHz (US) @ 20 dBm 920 ~ 928 MHz (ROA) @ 20 dBm	
Transmission Media	UART	
UART	Baud Rate : 57600 bps Parity: 8N1	
Operation Voltage	2.4 ~ 3.6V	
Current Consumption	Receiving: 18.2 mA (Typical) Transmitting: 125 mA (Typical) Sleeping: 2 uA (Typical)	
Transmission Distance	LoRaWAN [™] : 1 ~ 10 KM @ 980 bps MOST-Link: 1 ~ 10 KM @ 0.81 Kbps	
Receiving Sensitivity	LoRaWAN [™] : -132 dBm @ 980 bps MOST-Link: -132 dBm @ 0.81 Kbps	
Operation Temperature	-40 ~ 85°C	
Humidity	5 ~ 95% (Non-condensing)	
Dimension	30 x 18 ± 0.2 mm (PCBA)	
Connector	PIN type, pitch 2.54 ± 0.1 mm	

Product Size

UNITS mm

Pin Definition

No	Pin	Definition	Description
1	GND	GND	Ground
2	VCC	Input	3.0 ~ 6.0 V
3	RXD	Input	UART input
4	TXD	Output	UART output
5	BZ	NC	No connection
6	P2	NC	No connection
7	P1	NC	No connection

LoRaWAN[™] Configuration

Activation of an end-device can be achieved in two ways, either via Over-The-Air Activation (OTAA) when an end-device is deployed or reset, or via Activation By Personalization (ABP) in which the two steps of end-device personalization and activation are done as one step.

Over-the-Air Activation

For over-the-air activation, end-devices must follow a join procedure prior to participating in data exchanges with the network server. An end-device has to go through a new join procedure every time it has lost the session context information. The join procedure requires the end-device to be personalized with the following information before its starts the join procedure: a globally unique end-device identifier (DevEUI), the application identifier (AppEUI), and an AES-128 key (AppKey).

Activation by Personalization

Under certain circumstances, end-devices can be activated by personalization. Activation by personalization directly ties an end-device to a specific network by-passing the join request join accept procedure.

Activating an end-device by personalization means that the DevAddr and the two session keys NwkSKey and AppSKey are directly stored into the enddevice instead of the DevEUI, AppEUI and the AppKey. The end-device is equipped with the required information for participating in a specific LoRa network when started. Each device should have a unique set of NwkSKey and AppSKey. Compromising the keys of one device shouldn't compromise the security of the communications of other devices.

Operation Mode

 Bi-directional end-devices (Class A): End-devices of Class A allow for bidirectional communications whereby each end-device's uplink transmission is followed by two short downlink receive windows. The transmission slot scheduled by the end-device is based on its own communication needs with a small variation based on a random time basis (ALOHA-type of protocol). This Class A operation is the lowest power end-device system for applications that only require downlink communication from the server shortly after the enddevice has sent an uplink transmission. Downlink communications from the

server at any other time will have to wait until the next scheduled uplink.

Bi-directional end-devices with maximal receive slots (Class C): Enddevices of Class C have nearly continuously open receive windows, only closed when transmitting.

MOST-Link Configuration

There are three operating modes in MOST-Link configuration state as below;

- 1. Normal mode
- 2. Wake-up mode
- 3. Power-saving mode

The different operation modes are switched by AT-command.

Mode 1: Normal mode

UART is opened. Wireless channel is opened. Penetrating transmission.

Mode 2: Wake-up mode

UART is opened. Wireless channel is opened. The only difference from normal mode is that its preamble is longer than normal mode's, so that it can make sure the receiver could be waked in the power-saving mode.

■ Mode 3: Power-saving mode

UART is closed. The wireless channel is in power-saving mode. You can set up an interval from 0.5 to 5 seconds to wake up in power-saving mode to check if there is preamble. If the receiver receives preamble, it will open UART, and wake MCU to process the received data and return data. After that, it will return to the power-saving mode.

Note:

The receiver could be waked no matter it is in normal mode or wake-up mode or power-saving mode. The receiver would automatically add the RSSI

Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

FOR MOBILE DEVICE USAGE (>20cm/low power)

Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

This device is intended only for OEM integrators under the following conditions:

The antenna must be installed such that 20 cm is maintained between the antenna and users.
The transmitter module may not be co-located with any other transmitter or antenna.

As long as **2** conditions above are met, further <u>transmitter</u> test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed

IMPORTANT NOTE: In the event that these conditions <u>can not be met</u> (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID <u>can not</u> be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

End Product Labeling

FOR MOBILE DEVICE USAGE (>20cm/low power)

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains FCC ID:RID-LM513". The grantee's FCC ID can be used only when all FCC compliance requirements are met.

Manual Information To the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

The specifications are subject to change without notice. Copyright © 2018, GlobalSat WorldCom Group.