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Abstract

Since simulation of broadband applications have gained in importance in the last years, the dis-

persive characteristics of various materials must not be neglected anymore. As a result many

frequency dependent FDTD methods have been set up which in most cases model special disper-

sions of low order. On foundation of discrete system analysis we present an algorithm applicable

to arbitrary material dispersions up to 2nd order derived from a general approach [1]. The appli-

cability of the presented method is demonstrated with an example using a rectangular waveguide

�lled with dielectric layers with di�erent dispersion characteristics.

Introduction

The formulation of the Finite Integration Technique (FIT) according to Weiland [2] provides a

general spatial discretization scheme usable for di�erent electromagnetic applications of arbitrary

geometry, e.g. static problems or calculations in frequency and time domain. In our paper we

refer to the Maxwell`s Grid Equations (MGE) (1)-(4) and material relations (5)-(7) given by

C Ds e = �DA
_b (1)

~C ~Ds h = ~DA
_d (2)

~S ~DA d = q (3)

S DA b = 0 (4)

d = D� e (5)

b = D� h (6)

j = D� e: (7)

The geometry is discretized on a dual orthogonal grid system with e, b located on the normal grid

G and d, h on the dual grid ~
G. Correspondent to that the analytical curl operator results in the

curl matrices (C;
~C) and the divergence operator in the source matrices (S; ~S). In the same way

the grid resolution is contained in (Ds;
~Ds) representing the grid lines and (DA;

~DA) the belonging

areas. If the material is assumed to be frequency independent and isotropic, we have diagonal

matricesD� and D� describing the material relations. It can be shown, that the mentioned spatial

discretization does not produce any instability since the discrete Maxwell equations ful�l energy

and charge conservation [2].

Applying the well-known leap-frog scheme to the FIT formulas we can write (1,2) in form of two

recursive update equations with e and b as the calculated �eld variables:

bn+1 = bn
��t D�1

A
C Ds e

n+1=2 (8)

en+3=2 = en+1=2 +�t D�1
�

~D�1
A

~C ~Ds D
�1

�
bn+1

: (9)



Using a homogeneous equidistant grid these equations reduce to the standard �nite-di�erence

time-domain (FDTD) algorithm according to Yee [3]. Now stability due to time discretization is

restricted to a certain interval, namely given by the Courant condition in free-space
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Since the sofar described time domain algorithm is restricted to non-dispersive materials many

e�orts have been made in the last years to expand it in a useful way. An important aspect in

connection with these extensions is the guarantee of stability, because it is not possible to transfer

the criterion (10) to frequency dependent materials in a straight forward manner. Apart from a

quite practicable solution for this problem we have proposed in a recent paper [1] a very general

time domain algorithm for dispersive materials. There we provide a stability analysis that is ap-

plicable to any frequency dependent time-domain method and therefore o�ers good possibilities

for comparisons of the most important (FD)2TD algorithms [4, 5, 6, 7, 8, 9].

Algorithm for 2nd Order Dispersion Models

Our approach is within the framework of system analysis by �rst considering a linear time-invariant

system of nth order, that can be described in general by a linear ordinary di�erential equation

(ODE) of the same order. Rather then to discretize the n
th order ODE directly by replacing

time derivatives by the corresponding central di�erence operator [8], we �rst apply the state

space formulation to our system to derive an explicit algorithm for the time-domain simulation[1].

This formulation is chosen, since it employs matrices in its fundamental equations similar to the

FIT-method and therefore both methods can easily be combined.

Since this procedure is presented in [1], we skip the derivation of the general approach and we

present in the following the derived explicit update equation for a 2nd order dispersion model.

We choose a maximum order of two for the dispersion, since it covers the most signi�cant dis-

persion models like Debye, Drude and Lorentz. Thus in the frequency domain the correspondent

permittivity function reads as

�(!) = �2|{z}
�0 �1

+
�0 + j! � �1

�0 + j! � �1 � !
2
� �2

: (11)

The discretization in time is done by using exact integration of the �rst order ODE's. In general

we derive from dy(t)=dt = Ay(t) + b(t) for the homogeneous case yh(t) = C exp(A t) and a

special solution ys(t) = C(t) exp(A t) with C(t) = �b=A exp(A t) by variation of parameters. The

combination gives us the general solution and �nally the expression for a discrete time step �t

y
n+1 = y

n
e
A�t + (eA�t

� 1)=A b
n+1=2

: (12)

Here we like to mention that we assumed the function b as constant over the time step and

separated by half a time step, where we choose the allocation of y at full time steps (alternatively

one has to add �t=2 to all signals in equation (12) in case that y is allocated at t = (n+1=2)�t).



Unfortunately this is not the case in the ODE for the �rst state variable z1 (the polarization),

since it includes the electric �eld on the right hand side, which is allocated at the same positions

in time. In order to ensure a higher accuracy the electric �eld en+1 is averaged by its existing

neighbour values en+1 = (en+3=2+en+1=2)=2 (see equation (16)). This �nally leads to the following

set of four coupled equations

bn+1 = bn
��t D�1

A
CDs e

n+1=2 (13)

z2
n+1 = Dexp2

z2
n + (I �Dexp2

) D�1
�1

(�D�0
z1

n+1=2 +Db2
en+1=2) (14)

en+3=2 = Dexp1
en+1=2 + (I�Dexp1

) (�D�1
b1

z2
n+1 +D�1

b1

~D�1
A

~C ~Ds D
�1

�
bn+1) (15)

z1
n+3=2 = z1

n+1=2 +�t z2
n+1 +�t Db1

1

2
(en+3=2 + en+1=2)| {z }

e
n+1

(16)

with the matrices Db1
= D�1

+D� ; Db2
= D�0

�D�1
D�1

; Dexp1
= exp(�D�1

�2
Db1

�t) and

Dexp2
= exp(�D�1

�t). In this algorithm we have also taken a static conductivity into account,

that can easily be added by the extension of the matrix Db1
= D�1

+ D�, where the diagonal

matrix D� represents the distribution of the conductivity inside the grid.

For simulating multiple media with di�erent dispersion models up to second order in a single time

domain calculation simultaneously, one has to set the dispersion model coe�cients accordingly.

In Table 1 they are summarized for the most relevant dispersion models, where the not listed

coe�cients are set to �2 = 1 and �2 = �0 �1 by de�nition.

Table 1: Permittivity model coe�cients of Debye, Drude, Debye 2nd order and Lorentz dispersion

for the 2nd order algorithm (13)-(16).

Debye Drude Debye 2nd Lorentz

�0 0 0 1=(�1 �2) !
2

0

�1 1=� �c (�1 + �2)=(�1 �2) �

�0 0 �0�� !
2

p
�0 (��1 +��2)=(�1 �2) �0�� !

2

0

�1 �0��=� 0 �0 (��1 �2 +��2 �1)=(�1 �2) 0

Example

To verify the presented method, the 2nd order algorithm is applied to an S-parameter calculation.

In Figure 1 the test structure, a dielectric �lled waveguide with di�erent layers in propagation

direction, is shown. Two frequency dependent materials with a 2nd order dispersion are present

(Debye 2nd order, Lorentz medium; see Figure 2). The rest of the waveguide is �lled with vacuum

and throughout the waveguide the permeability equals � = �0.
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Figure 1: Rectangular waveguide (� = �0, port separation is 20 mm, cross-section 20 mm x

5 mm) with layers of di�erent permittivities including �0 and dispersive permittivities Debye 2nd

order: �
1

= 1; �s1
= �s2

= 2; �1 = 1=2=�=10e9 s; �2 = 1=2=�=20e9 s; Lorentz medium:

�
1
= 1; �s1 = 2; � = 20e9 Hz; !0 = 2 � 20e9 Hz.
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Figure 2: a) Real and imaginary part of 2nd order Debye material (frequency range 10GHz-

30GHz) b) Real and imaginary part of Lorentz material (frequency range 10GHz-30GHz).

We want to determine the amplitude and phase of the S11; S21 parameters at the given ports

separated by 20 mm for the frequency range 10 GHz - 30 GHz. Thus a broadband stimulation

with the fundamental mode at port 1 in form of a Gaussian pulse modulated with a carrier

frequency of 20 GHz results in the frequency domain in a Gaussian shaped excitation spectrum

centred at 20 GHz with a 60dB bandwidth of 10 GHz. At the two ports a special waveguide

boundary condition is used [11] that enables the simulation of an in�nitely long waveguide ensuring

a parasitic re
ection of less than -120dB. To minimize grid dispersion the grid resolution is chosen

such that it allows for thirty steps per wavelength for the highest frequency.

Thus the S-parameter calculation covers the following steps:

1. 2D-eigenvalue solver: calculation of the propagation modes inside the waveguide by dis-

cretizing the cross section of the waveguide (� = �0; � = �0).

2. 3D time domain simulation: broadband excitation with the fundamental mode at port 1



and monitoring the mode amplitude of the re
ected wave at port 1 and the transmitted

mode amplitude at port 2.

3. Post-processing: S-parameter calculation from the excitation and the monitored signals in

the frequency domain by using the Fast Fourier Transform (FFT).
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Figure 3: Comparison of numerical results with analytical solution in the frequency range 10GHz-

30GHz. a) Absolute value of S-parameter S11; S21; b) amplitude error of S-parameter jS11j; jS21j.

Figure 3 presents the absolute value of S-parameter S11; S21 compared with the analytical solution

and the resulting amplitude error for the frequency range 10GHz-30GHz. As it can be seen there

is an excellent agreement of the numerical results with the exact solution. The absolute amplitude

error is well below 10�3.
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Figure 4: Comparison of numerical results with analytical solution in the frequency range 10GHz-

30GHz. a) Phase of S-parameter S11; S21; b) Phase error of S-parameter jS11j; jS21j.

A similar good agreement in case of both S-parameter phase results shows Figure 4. Here the

maximum absolute phase error is below 0.6o.



Conclusion

In this paper we presented a very general possibility to extend the FIT algorithm for modelling

dispersive media with a dispersion of 2nd order. This algorithm was derived from a general

approach based on system analysis with a state-space formulation. The additional state-variables

correspond to physical properties, the polarisation und the polarisation current density. We

demonstrated the good accuracy of our algorithm with an example of a rectangular waveguide

�lled with two layers of frequency dependent material of second order (Lorentz-Media and a 2nd

order Debye-Model).
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