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ABSTRACT

Since simulation of broadband applications have gained in importance in the last years, the dis-
persive characteristics of various materials must not be neglected anymore. As a result many
frequency dependent FDTD methods have been set up which in most cases model special disper-
sions of low order. On foundation of discrete system analysis we present an algorithm applicable
to arbitrary material dispersions up to 2" order derived from a general approach [1]. The appli-
cability of the presented method is demonstrated with an example using a rectangular waveguide
filled with dielectric layers with different dispersion characteristics.

INTRODUCTION

The formulation of the Finite Integration Technique (FIT) according to Weiland [2] provides a
general spatial discretization scheme usable for different electromagnetic applications of arbitrary
geometry, e.g. static problems or calculations in frequency and time domain. In our paper we
refer to the Maxwell‘'s Grid Equations (MGE) (1)-(4) and material relations (5)-(7) given by

CD;e = -Duyb (1)

CD,h = D,d (2) d = D.e (5)
SD,d = q (3) b = D,h (6)
SD,b = 0 (4) j = D,e. (7)

The geometry is discretized on a dual orthogonal grid system with e, b located on the normal grid
G and d, h on the dual grid G. Correspondent to that the analytical curl operator results in the
curl matrices (C, C) and the divergence operator in the source matrices (S, S). In the same way
the grid resolution is contained in (D, D,) representing the grid lines and (D4, D 4) the belonging
areas. If the material is assumed to be frequency independent and isotropic, we have diagonal
matrices D, and D, describing the material relations. It can be shown, that the mentioned spatial
discretization does not produce any instability since the discrete Maxwell equations fulfil energy
and charge conservation [2].

Applying the well-known leap-frog scheme to the FIT formulas we can write (1,2) in form of two
recursive update equations with e and b as the calculated field variables:

b"tt = b" -~ AtD,' C D, e"t!/? (8)
"3 — en1/2 4 A D' DT G D, D;l Bt 9)



Using a homogeneous equidistant grid these equations reduce to the standard finite-difference
time-domain (F'DT D) algorithm according to Yee [3]. Now stability due to time discretization is
restricted to a certain interval, namely given by the Courant condition in free-space

1
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At = (CO\/[AQTQ + Ay2 + AZQ]) . (10)

Since the sofar described time domain algorithm is restricted to non-dispersive materials many
efforts have been made in the last years to expand it in a useful way. An important aspect in
connection with these extensions is the guarantee of stability, because it is not possible to transfer
the criterion (10) to frequency dependent materials in a straight forward manner. Apart from a
quite practicable solution for this problem we have proposed in a recent paper [1] a very general
time domain algorithm for dispersive materials. There we provide a stability analysis that is ap-
plicable to any frequency dependent time-domain method and therefore offers good possibilities
for comparisons of the most important (F D)?T D algorithms [4, 5, 6, 7, 8, 9].

ALGORITHM FOR 2" ORDER DISPERSION MODELS

Our approach is within the framework of system analysis by first considering a linear time-invariant
system of n'* order, that can be described in general by a linear ordinary differential equation
(ODE) of the same order. Rather then to discretize the n'* order ODE directly by replacing
time derivatives by the corresponding central difference operator [8], we first apply the state
space formulation to our system to derive an explicit algorithm for the time-domain simulation[1].
This formulation is chosen, since it employs matrices in its fundamental equations similar to the
FIT-method and therefore both methods can easily be combined.

Since this procedure is presented in [1], we skip the derivation of the general approach and we
present in the following the derived explicit update equation for a 2"¢ order dispersion model.
We choose a maximum order of two for the dispersion, since it covers the most significant dis-
persion models like Debye, Drude and Lorentz. Thus in the frequency domain the correspondent
permittivity function reads as

Bo + jw - B
— , 11
(W)= By +a0+jw-a1—w2-a2 (11)
€0 €oo

The discretization in time is done by using exact integration of the first order ODE’s. In general
we derive from dy(t)/dt = Ay(t) + b(t) for the homogeneous case y,(t) = C exp(At) and a
special solution ys(t) = C(t) exp(At) with C'(t) = —b/Aexp(At) by variation of parameters. The
combination gives us the general solution and finally the expression for a discrete time step At

yn—I—l — yn eAAt + (eAAt . 1)/A bn+1/2. (12)

Here we like to mention that we assumed the function b as constant over the time step and
separated by half a time step, where we choose the allocation of y at full time steps (alternatively
one has to add At/2 to all signals in equation (12) in case that y is allocated at ¢t = (n+1/2) At).



Unfortunately this is not the case in the ODE for the first state variable z; (the polarization),
since it includes the electric field on the right hand side, which is allocated at the same positions
in time. In order to ensure a higher accuracy the electric field e"*! is averaged by its existing
neighbour values e" ! = (e"*%/2 +e"+1/2) /2 (see equation (16)). This finally leads to the following
set, of four coupled equations

bn+1 — b — At Dzl CDS en+1/2
22" = Deyp, 22" + (I — Degy,) D! (=D, 21"/% 4 Dy, e"11/2)
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with the matrices Dy, = Dg, + D,;; Dy, = Dg, — Do, D, ; Deyp, = exp(—D@1 D,, At) and
D¢yp, = exp(—D,, At). In this algorithm we have also taken a static conductivity into account,
that can easily be added by the extension of the matrix D, = Dg, + D,, where the diagonal
matrix D, represents the distribution of the conductivity inside the grid.

For simulating multiple media with different dispersion models up to second order in a single time
domain calculation simultaneously, one has to set the dispersion model coefficients accordingly.
In Table 1 they are summarized for the most relevant dispersion models, where the not listed
coefficients are set to ay = 1 and (B = €y €5 by definition.

Table 1: Permittivity model coefficients of Debye, Drude, Debye 2"¢ order and Lorentz dispersion
for the 2"¢ order algorithm (13)-(16).

Debye | Drude Debye 2m¢ Lorentz
a || 0 0 1/ (71 72) wp
o /7 Ve (11 + 72) /(11 72) 4
Bo 0 €0 Ae wg €0 (Aey + Ae) /(11 72) €0 Aew?
B || €0 Ae/T 0 €0 (Aey 7o+ Aey1y) /(11 72) 0

EXAMPLE

To verify the presented method, the 2" order algorithm is applied to an S-parameter calculation.
In Figure 1 the test structure, a dielectric filled waveguide with different layers in propagation
direction, is shown. Two frequency dependent materials with a 2"¢ order dispersion are present
(Debye 2" order, Lorentz medium; see Figure 2). The rest of the waveguide is filled with vacuum
and throughout the waveguide the permeability equals p = pyp.
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Figure 1:  Rectangular waveguide (1 = po, port separation is 20 mm, cross-section 20 mm x
5 mm) with layers of different permittivities including ey and dispersive permittivities Debye 2™
order: €x = 1; €5, = €5, = 2, 71 = 1/2/7/10€9 s, 7o = 1/2/7/20e9 s;  Lorentz medium:
€o = 1; €5, =2, 6 =20e9 Hz; wy =2 m 20e9 Hz.
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Figure 2: a) Real and imaginary part of 2" order Debye material (frequency range 10 GHz-

30GHz) b) Real and imaginary part of Lorentz material (frequency range 10 GH2-30 GH z).

We want to determine the amplitude and phase of the Sii,.S5; parameters at the given ports
separated by 20 mm for the frequency range 10 GHz - 30 GHz. Thus a broadband stimulation
with the fundamental mode at port 1 in form of a Gaussian pulse modulated with a carrier
frequency of 20 GHz results in the frequency domain in a Gaussian shaped excitation spectrum
centred at 20 GHz with a 60dB bandwidth of 10 GHz. At the two ports a special waveguide
boundary condition is used [11] that enables the simulation of an infinitely long waveguide ensuring
a parasitic reflection of less than -120dB. To minimize grid dispersion the grid resolution is chosen
such that it allows for thirty steps per wavelength for the highest frequency.

Thus the S-parameter calculation covers the following steps:

1. 2D-eigenvalue solver: calculation of the propagation modes inside the waveguide by dis-
cretizing the cross section of the waveguide (e = €g, 1 = pg).

2. 3D time domain simulation: broadband excitation with the fundamental mode at port 1



and monitoring the mode amplitude of the reflected wave at port 1 and the transmitted
mode amplitude at port 2.

3. Post-processing: S-parameter calculation from the excitation and the monitored signals in
the frequency domain by using the Fast Fourier Transform (FFT).
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Figure 3: Comparison of numerical results with analytical solution in the frequency range 10 GH z-
30GHz. a) Absolute value of S-parameter S11, Sa1; b) amplitude error of S-parameter | Sy, |Sa1].

Figure 3 presents the absolute value of S-parameter S7;, S9; compared with the analytical solution
and the resulting amplitude error for the frequency range 10 GH 2-30 GH z. As it can be seen there
is an excellent agreement of the numerical results with the exact solution. The absolute amplitude

error is well below 1073,
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Figure 4: Comparison of numerical results with analytical solution in the frequency range 10 GH z-
30GHz. a) Phase of S-parameter Siy, Sa1; b) Phase error of S-parameter |Si1], |So1].

A similar good agreement in case of both S-parameter phase results shows Figure 4. Here the
maximum absolute phase error is below 0.6°.



CONCLUSION

In this paper we presented a very general possibility to extend the FIT algorithm for modelling
dispersive media with a dispersion of 2" order. This algorithm was derived from a general
approach based on system analysis with a state-space formulation. The additional state-variables
correspond to physical properties, the polarisation und the polarisation current density. We
demonstrated the good accuracy of our algorithm with an example of a rectangular waveguide
filled with two layers of frequency dependent material of second order (Lorentz-Media and a 2"?
order Debye-Model).
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