

FCC LISTED, REGISTRATION NUMBER: 905266

IC LISTED REGISTRATION NUMBER IC 4621A-1

AT4 wireless, S.A.

Parque Tecnológico de Andalucía, c/ Severo Ochoa nº 2 29590 Campanillas/ Málaga/ España Tel. 952 61 91 00 - Fax 952 61 91 13 MÁLAGA, C.I.F. A29 507 456 Registro Mercantil de Málaga, Tomo 1169, Libro 82, Folio 133, Hoja MA3729

TEST REPORT

REFERENCE STANDARD:

USA FCC Part 15.247, 15.109

CANADA RSS-210, RSS-Gen

Radio Frequency Devices. Operation within the bands 902 - 928 MHz, 2400 -2483.5 MHz, and 5725 - 5850 MHz.

Licence-Exempt Radio Apparatus (All Frequency Bands): Category I Equipment.

General Requirements and Information for the Certification of Radio Apparatus

Approved by

Elaboration date : 2011-06-10

Trademark Telit

Model and/or type reference ZE61-2.4

LE61-2.4

Serial number: FXBJ4000004

Other identification of the product: Commercial name: ZE61-2.4 WA

LE61-2.4 WA

FCC ID: RI7xE61 IC ID: 5131A-xE61

Features 2.4 GHz module with 5 dBi gain attachable antenna

Applicant Telit Communications S.p.A.

Address: Via Stazione di Prosecco, 5/B 34010 -SGONICO (TRIESTE) – ITALY

CIF/NIF/Passport...: ----

Contact person: Brian Tucker (Quality Manager)

Telephone / Fax +1 919 439 7977 / +1 919 840 0337

e-mail: brian.tucker@telit.com

Test samples supplier Same as applicant

Manufacturer : TELIT RF TECHNOLOGIES SAS

FRANCE

Contact person: Xavier TATOPOULOS (xavier.tatopoulos@telit.com)

Telephone / Fax +33.(0) 4.97.21.33.18 / +33.(0) 4.97.21.33.11

Test method requested	: See Standard	: See Standard			
Standard	•	: USA FCC Part 15.247 10-01-09 Edition: Operation within the bands 902 - 928 MHz, 2400 -2483.5 MHz, and 5725 - 5850 MHz.			
	USA FCC Part 15.109: Receiver radiated emission.				
	CANADA RSS-210 Issue 8 (December 2010).			
	CANADA RSS-Gen Issue 3 (December 2010	<i>'</i>			
	Guidelines for measurement of Digital Transi	*	onerating		
	under section 15.247 dated March 23, 2005.	mission bysteins	operating		
	ANSI C63.10-2009: American National Stand Wireless Devices.	dard for Testing	Unlicensed		
Test procedure	: PEET034: Medidas radioeléctricas a equipos ensanchado en la banda de 2,4 GHz.	de radio de esp	ectro		
Non-standardized test method	: N/A				
Used instrumentation					
	Conducted Measurements				
		Last Cal. date	Cal. due date		
	1. Spectrum analyser Agilent PSA F.4440A	2010/02	2012/02		
	2. DC power supply R&S NGPE 40/40	2008/11	2011/11		
	Radiated Measurements				
		Last Cal. date	Cal. due date		
	Semianechoic Absorber Lined Chamber	N.A.	N.A.		
	IR 11. BS Control Chamber IR 12.BC	N.A.	N.A.		
	Hybrid Bilog antenna Sunol Sciences	2008/10	2011/10		
	Corporation JB6				
	4. Antenna mast EM 1072 NMT	N.A. N.A.	N.A. N.A.		
	5. Rotating table EM 1084-4. ON Double-ridge Guide Horn antenna 1-18				
	6. GHz HP 11966E	2008/03	2011/03		
	7. Double-ridge Guide Horn antenna 18-40 GHz Agilent 119665J	2008/09	2011/09		
	8. EMI Test Receiver R&S ESIB26	2009/09	2011/09		
	9. RF pre-amplifier Miteq JS4-12002600-30-5A.	2010/07	2012/07		
	10. Multi Device Controller EMCO 2090	N.A.	N.A.		
	11. Spectrum Analyzer Agilent E4440A	2010/02	2012/02		
	12. RF pre-amplifier Miteq AFS5-04001300-15-10P-6.	2010/07	2012/07		
	13. RF pre-amplifier Schaffner CPA 9231.	2009/03	2011/03		

Report template No. FDT08_12

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of AT4 wireless, S.A.

INDEX

Competences and guarantees	4
General conditions	
Uncertainty	4
Usage of samples	4
Testing period	5
Environmental conditions	5
Summary	6
Remarks and comments	6
Testing verdicts	6
APPENDIX A: Test result	7

Competences and guarantees

AT4 wireless is a laboratory with a measurement facility in compliance with the requirements of Section 2.948 of the FCC rules and has been added to the list of facilities whose measurements data will be accepted in conjuction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Registration Number: 905266.

AT4 wireless is a laboratory with a measurement site in compliance with the requirements of RSS 212, Issue 1 (Provisional) and has been added to the list of filed sites of the Canadian Certification and Engineering Bureau. Reference File Number: IC 4621A-1.

In order to assure the traceability to other national and international laboratories, AT4 wireless has a calibration and maintenance programme for its measurement equipment.

AT4 wireless guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at AT4 wireless at the time of performance of the test.

AT4 wireless is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of AT4 wireless.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of AT4 wireless and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the AT4 wireless internal document PODT000.

Usage of samples

Samples undergoing test have been selected by: the client.

Sample M/01 is formed by the following elements:

Control No.	Description	Model	Serial No.	Date of reception
32032/05	RF module with antenna connector on DIP support	ZE61-2.4	FXBJ4000004	08/12/2010
32032/06	Test board	B DIGITAL CEB		08/12/2010
32032/09	5 dBi Dipole antenna	GW.71.5153		08/12/2010
32032/13	AC/DC adaptor	FBC12050		08/12/2010

1. Sample M/01 has undergone following test(s).

All tests indicated in appendix A.

Testing period

The performed test started on 2010-12-13 and finished on 2010-12-17

The tests have been performed at AT4 wireless.

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 18.4 °C
	$Max. = 20.3 ^{\circ}C$
Relative humidity	Min. = 40.6 %
	Max. = 41.9 %
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω

In the semianechoic chamber (21 meters x 11 meters x 8 meters), the following limits were not exceeded during the test.

Temperature	Min. = 19.2 °C
	Max. = 20.5 °C
Relative humidity	Min. = 42 %
	Max. = 43 %
Air pressure	Min. = 1010 mbar
	Max. = 1012 mbar
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω
Normal site attenuation (NSA)	< ±4 dB at 10 m distance between item
	under test and receiver antenna, (30
	MHz to 1000 MHz)
Field homogeneity	More than 75% of illuminated surface
	is between 0 and 6 dB (26 MHz to 1000
	MHz).

In the chamber for conducted measurements the following limits were not exceeded during the test:

Temperature	Min. = 24.5 °C
	Max. = 25.2 °C
Relative humidity	Min. = 48.9 %
	Max. = 52.1 %
Air pressure	Min. = 1012 mbar
	Max. = 1012 mbar
Shielding effectiveness	> 100 dB
Electric insulation	$> 10 \text{ k}\Omega$
Reference resistance to earth	< 0,5 Ω

Summary

Considering the results of the performed test according to standard USA FCC Parts 15.247 and 15.109 / RSS-210, the item under test is **IN COMPLIANCE** with the requested specifications specified in the standard.

NOTE: The results presented in this Test Report apply only to the particular item under test established in page 1 of this document, as presented for test on the date(s) shown in section, "USAGE OF SAMPLES, TESTING PERIOD AND ENVIRONMENTAL CONDITIONS".

Remarks and comments

None.

Testing verdicts	
Not applicable:	NA
Pass:	P
Fail:	F
Not measured.	NM

FCC PART 15 PARAGRAPH / RSS-210		VERDICT			
		NA	P	F	NM
Section 15.247 Subclause (a) (2) / RSS-210 A8.2. (a)	6 dB Bandwidth		P		
Section 15.247 Subclause (b) / RSS-210 A8.4. (4)	Maximum output power and antenna gain		P		
Section 15.247 Subclause (d) / RSS-210 A8.5.	Emission limitations conducted (Transmitter)		P		
Section 15.247 Subclause (d) / RSS-210 A8.5.	Band-edge emissions compliance (Transmitter)		P		
Section 15.247 Subclause (e) / RSS-210 A8.2. (b)	Power spectral density		P		
Section 15.247 Subclause (d) / RSS-210 A8.5.	Emission limitations radiated (Transmitter)		P		
Section 15.109 / RSS-210 2.5	Radiated emission limits for receiver		P		

APPENDIX A: Test result

INDEX

TEST CONDITIONS	g
Computation of duty-cycle correction factor	10
99 % Bandwidth	12
Section 15.247 Subclause (a) (2). 6 dB Bandwidth	15
Section 15.247 Subclause (b). Maximum output power and antenna gain	18
Section 15.247 Subclause (d). Emission limitations conducted (Transmitter)	23
Section 15.247 Subclause (d). Band-edge emissions compliance (Transmitter)	25
Section 15.247 Subclause (e). Power spectral density	29
Section 15.247 Subclause (d). Emission limitations radiated (Transmitter)	32
Section 15 109 Receiver spurious radiation	44

TEST CONDITIONS

Power supply (V):

 $V_{nominal} = 12 \text{ Vdc}$

Type of power supply = DC voltage from AC/DC adaptor.

Type of antenna = Attachable antenna with inverse sma connector.

Declared Gain for antenna = 5 dBi

TEST FREQUENCIES:

Lowest channel: 2405 MHz Middle channel: 2440 MHz Highest channel: 2480 MHz

The test set-up was made in accordance to the general provisions of ANSI C63.4: 2009.

CONDUCTED MEASUREMENTS

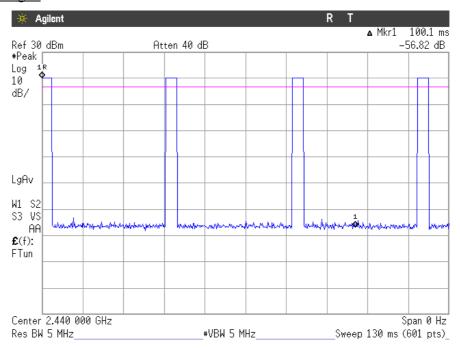
The equipment under test was set up in a shielded room and it is directly connected to the spectrum analyzer.

RADIATED MEASUREMENTS

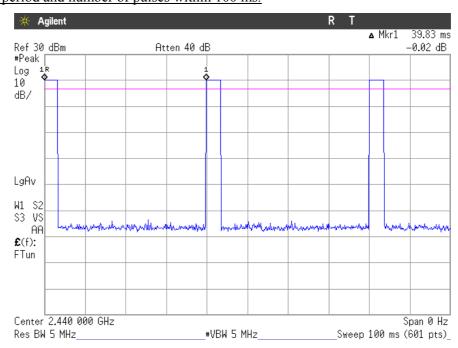
All radiated tests were performed in a semi-anechoic chamber. The measurement antenna is situated at a distance of 3 m for the frequency range 30 MHz-1000 MHz (30 MHz-1000 MHz Bilog antenna) and at a distance of 1m for the frequency range 1 GHz-25 GHz (1 GHz-18 GHz Double ridge horn antenna and 18 GHz-40 GHz horn antenna).

For radiated emissions in the range 1 GHz-25 GHz that is performed at a distance closer than the specified distance, an inverse proportionality factor of 20 dB per decade is used to normalize the measured data for determining compliance.

The equipment under test was set up on a non-conductive (wooden) platform one meter above the ground plane and the situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.


Measurements were made in both horizontal and vertical planes of polarization.

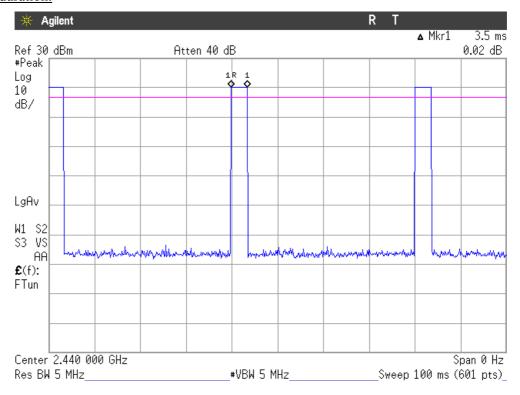
The transmission is pulsed so the average values of transmitter fundamental and spurious emissions are calculated from the measured peak values using the duty cycle correction factor δ as indicated in standard ANSI C63.10-2009.


Computation of duty-cycle correction factor

1. Pulse train length.

The pulse train length is > 100 ms

2. Pulse train period and number of pulses within 100 ms.



Pulse train period: 39.83 ms

Number of pulses within 100 ms: 3

3. Pulse duration.

Pulse duration: 3.5 ms

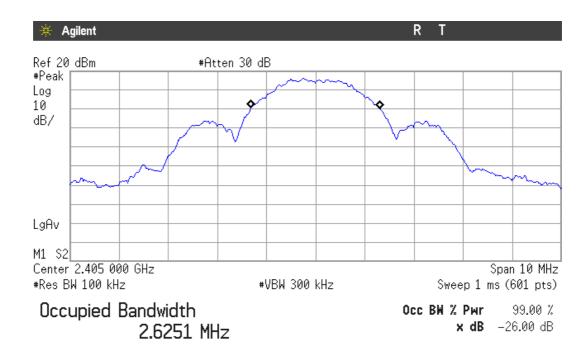
4. Duty-cycle correction factor calculation.

Sub-pulse	Duration (ms)	Number of pulses	Sub-pulse "On Time" (ms)
1	3.5	3	10.5
		TOTAL ON TIME:	10.5

Duty cycle correction factor $\delta = 10.5 / 100 = 0.105$

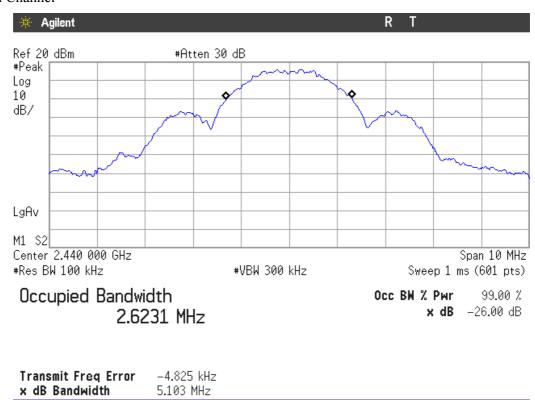
 $\delta = 20 \log (0.105) = -19.58 \text{ dB}$

99 % Bandwidth

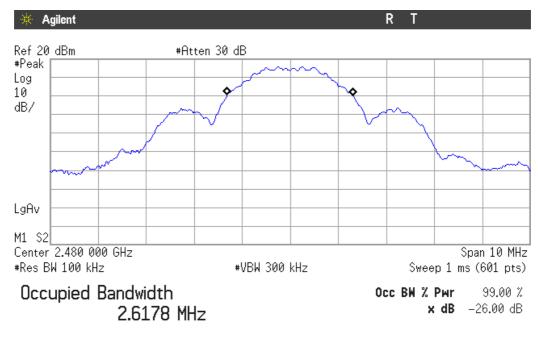

RESULTS

99% Bandwidth (see next plots).

	Lowest frequency	Middle frequency	Highest frequency
	2405 MHz	2440 MHz	2480 MHz
99% bandwidth (MHz)	2.6251	2.6231	2.6178
Measurement uncertainty (kHz)		±21.7	



Lowest Channel


Transmit Freq Error -7.122 kHz x dB Bandwidth 5.106 MHz

Middel Channel

Highest channel

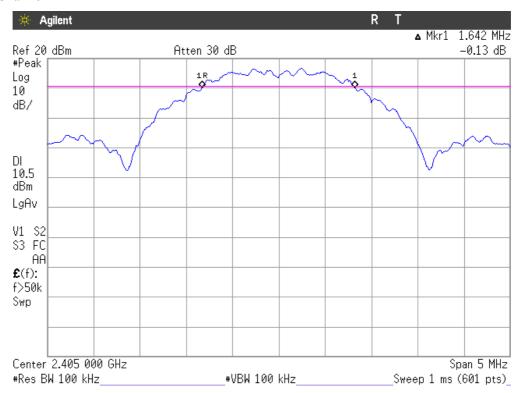
Transmit Freq Error -1.774 kHz x dB Bandwidth 5.090 MHz

Section 15.247 Subclause (a) (2). 6 dB Bandwidth

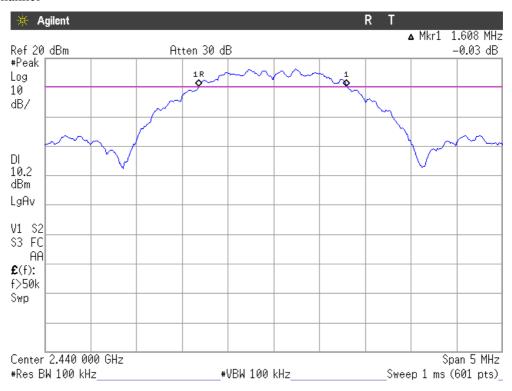
SPECIFICATION

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

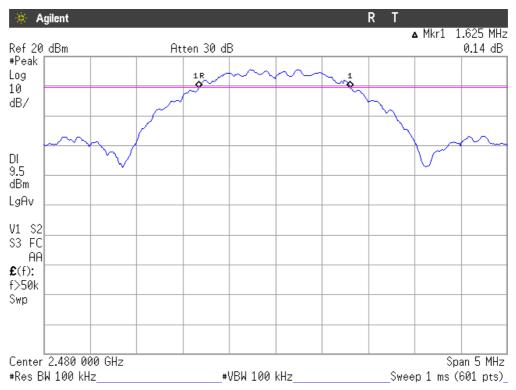

6 dB Bandwidth (see next plots).

	Lowest frequency	Middle frequency	Highest frequency
	2405 MHz	2440 MHz	2480 MHz
6 dB Spectrum bandwidth (MHz)	1.642	1.608	1.625
Measurement uncertainty (kHz)	z) ±21.7		


6 dB BANDWIDTH.

Lowest Channel

6 dB BANDWIDTH.


Middle Channel

6 dB BANDWIDTH.

Highest Channel

Section 15.247 Subclause (b). Maximum output power and antenna gain

SPECIFICATION

For systems using digital modulation in the 2400-2483.5 MHz band: 1 watt (30 dBm).

RESULTS

MAXIMUM OUTPUT POWER (CONDUCTED). See next plots.

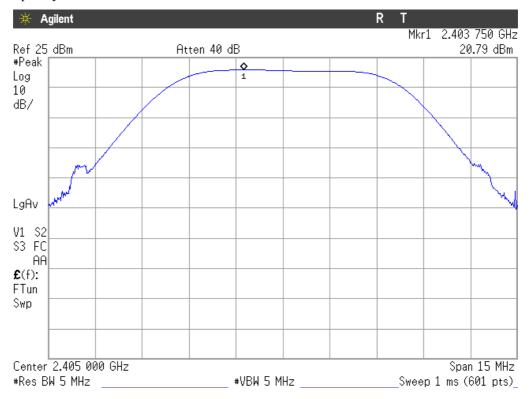
	Lowest frequency	Middle frequency	Highest frequency
	2405 MHz	2440 MHz	2480 MHz
Maximum power (dBm)	20.79	20.31	19.63
Measurement uncertainty (dB)	±1.5		

The maximum declared antenna gain for this device is 5 dBi, therefore the maximum theoretical radiated power (EIRP) in the three measurement channels for this device is 25.79 dBm or 379.31 mW.

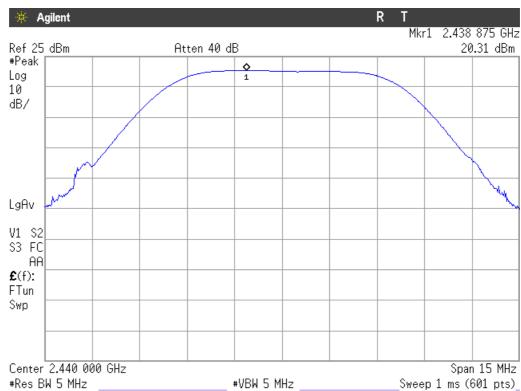
The actual maximum radiated power (EIRP) was measured for the lowest, middle and highest frequency.

MAXIMUM OUTPUT POWER (RADIATED). See next plots.

	Lowest frequency	Middle frequency	Highest frequency
	2405 MHz	2440 MHz	2480 MHz
Maximum EIRP power (dBm)	23.32	22.73	23.15
Measurement uncertainty (dB)	±4.0		

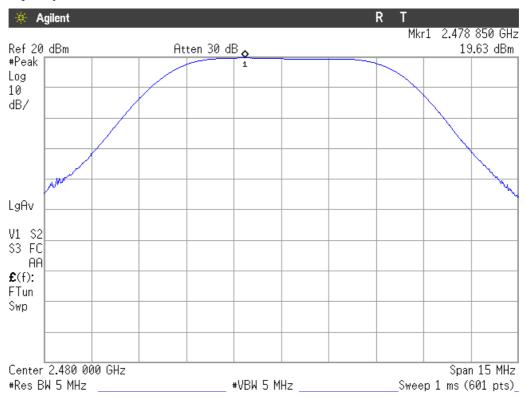

Maximum declared antenna gain: 5 dBi

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

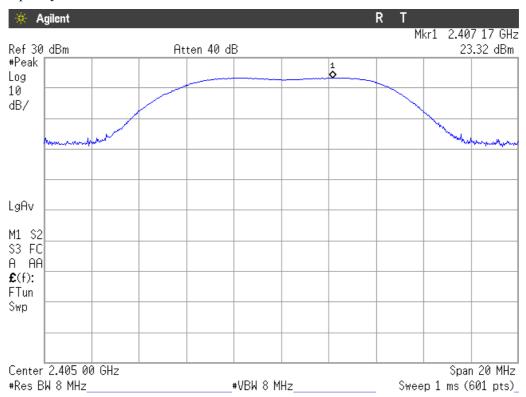


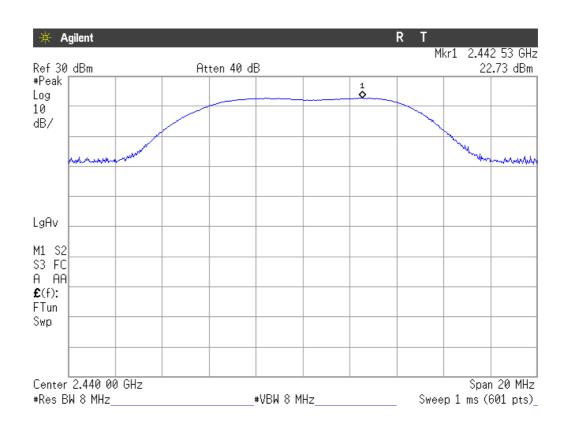
1. CONDUCTED PEAK POWER.

Lowest frequency



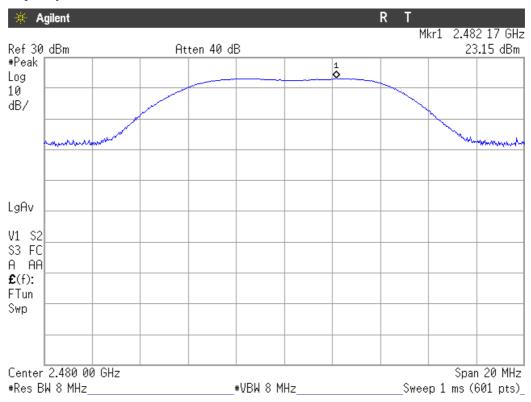
Middle frequency


Highest frequency



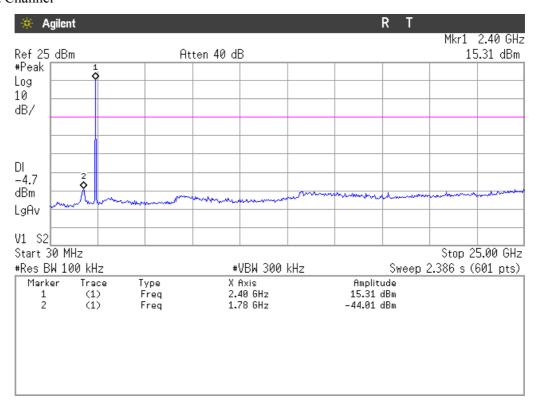
2. RADIATED PEAK POWER.

Lowest frequency



Middle frequency

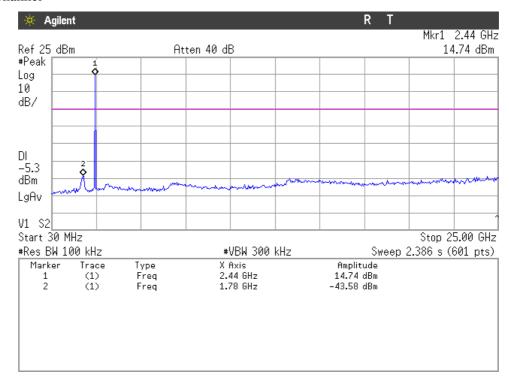
Highest frequency


Section 15.247 Subclause (d). Emission limitations conducted (Transmitter)

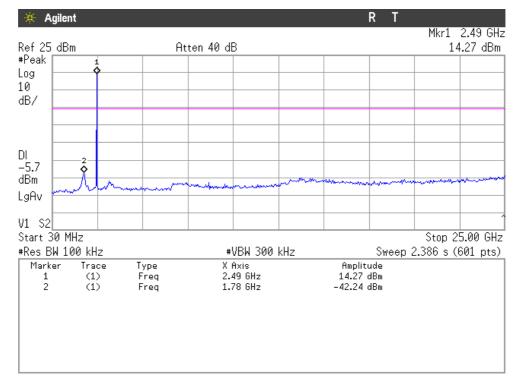
SPECIFICATION

In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

RESULTS:


Lowest Channel

Note: The peak above the limit is the carrier frequency.



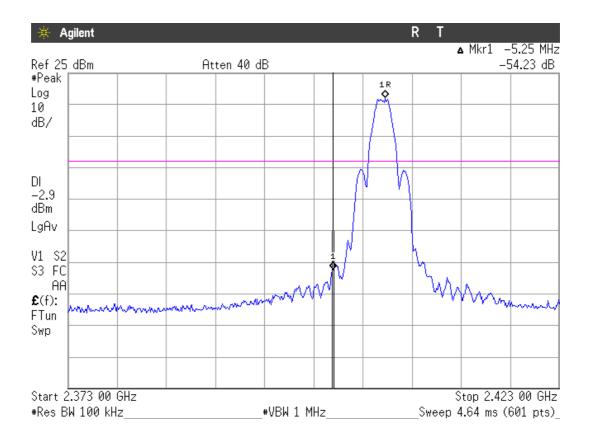
Middle Channel

Note: The peak above the limit is the carrier frequency.

Highest Channel

Note: The peak above the limit is the carrier frequency.

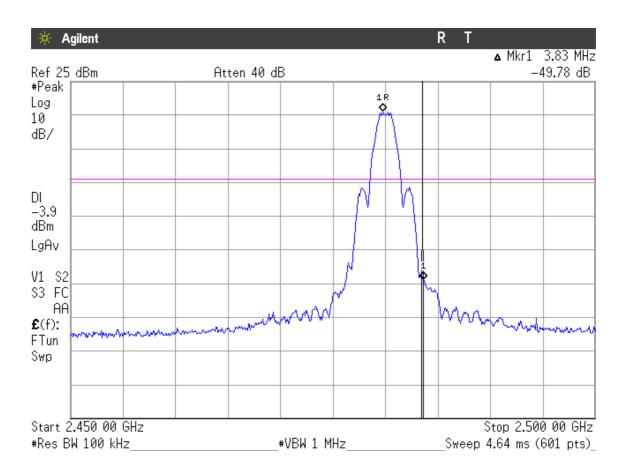
Section 15.247 Subclause (d). Band-edge emissions compliance (Transmitter)


SPECIFICATION

Emissions outside the frequency band in which the intentional radiator is operating shall be at least 20dB below the highest level of the desired power.

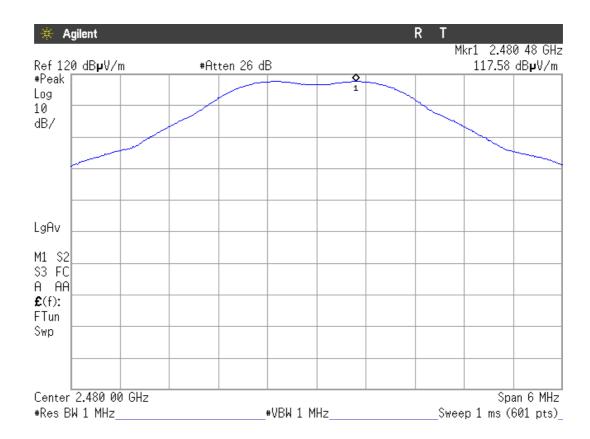
RESULTS:

1. LOW FREQUENCY SECTION. CONDUCTED.


See next plot.

2. HIGH FREQUENCY SECTION. CONDUCTED.

See next plot.

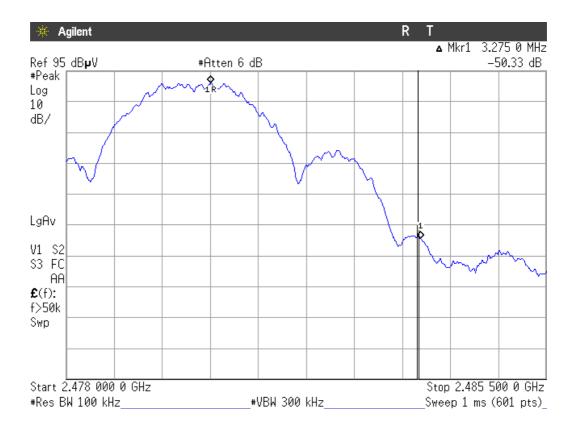


Band-edge compliance of radiated emissions

Maximum peak and average field strength of fundamental emission at 3 m distance.

HIGHEST CHANNEL

Maximum field strength at 3 m. Peak value.


Note: The correction factor is already included in the spectrum analyzer as a transducer factor so that the marker shows directly the field strength level.

Maximum field strength at 3 m. Average value.

E-Field at 3m Peak (dBμV/m)	Duty-cycle correction factor δ (dB)	Corrected E-Field at 3m Average (dBµV/m)
117.58	-19.58	98.0

BAND-EDGE COMPLIANCE. RADIATED. Marker-Delta Method.

Note: No correction is applied for this relative measurement.

Band edge compliance of radiated emissions

Fundamental max. average value 3 m	Delta value	Calculated value 3 m	Limit
$98.0~\text{dB}\mu\text{V/m}$	50.33 dB	47.67	54 dBμV/m

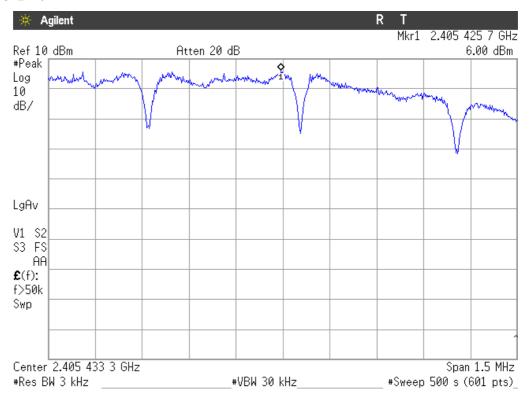
Fundamental max. Peak value 3 m	Delta value	Calculated value 3 m	Limit
117.58 dBμV/m	50.33 dB	67.25	74 dBμV/m

Section 15.247 Subclause (e). Power spectral density

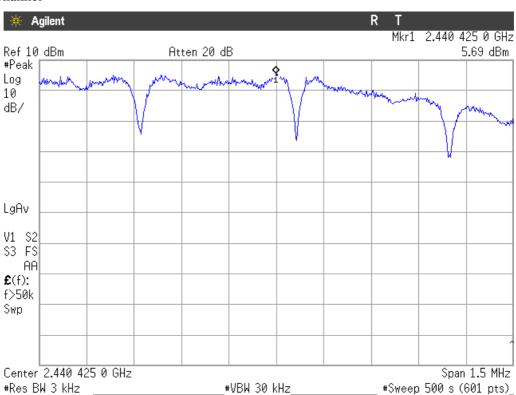
SPECIFICATION

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

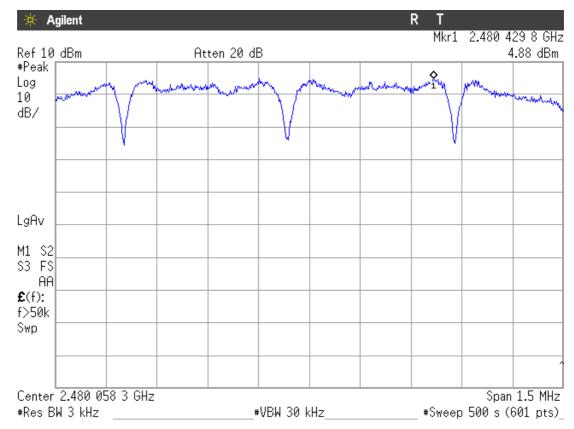

Power spectral density (see next plots).

	Lowest frequency	Middle frequency	Highest frequency
	2405 MHz	2440 MHz	2480 MHz
Power spectral density (dBm) in 3 kHz bandwidth	6.00	5.69	4.88
Measurement uncertainty (dB)		±1.5	



Power spectral density.

Lowest Channel



Middle Channel

Highest Channel

Section 15.247 Subclause (d). Emission limitations radiated (Transmitter)

SPECIFICATION

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)):

Frequency Range (MHz)	Field strength (μV/m)	Field strength (dBµV/m)	Measurement distance (m)
0.009-0.490	2400/F(kHz)	-	300
0.490-1.705	24000/F(kHz)	-	300
1.705 - 30.0	30	-	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
960 - 25000	500	54	3

The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

RESULTS:

The situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.

Measurements were made in both horizontal and vertical planes of polarization.

All tests were performed in a semi-anechoic chamber at a distance of 3 m for the frequency range 30 MHz-1000 MHz and at distance of 1m for the frequency range 1 GHz-25 GHz.

The field strength is calculated by adding correction factor to the measured level from the spectrum analyzer. This correction factor includes antenna factor, cable loss and pre-amplifiers gain.

The transmission is pulsed so the average values of transmitter fundamental and spurious emissions are calculated from the measured peak values using the duty cycle correction factor δ as indicated in standard ANSI C63.10-2009.

Frequency range 30 MHz-1000 MHz.

Note: The spurious emissions below 1 GHz do not depend on the operating channel selected in the EUT.

Spurious levels operating (radiated) closest to limit.

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
45.5511	V	Quasi-peak	22.97	±3.8
121.3627	V	Quasi-peak	35.52	±3.8
140.8016	V	Quasi-peak	30.68	±3.8
179.67936	V	Quasi-peak	36.61	±3.8
214.6693	V	Quasi-peak	28.90	±3.8
239.9398	V	Quasi-peak	31.14	±3.8
282.7054	V	Quasi-peak	28.76	±3.8
387.6753	V	Quasi-peak	27.19	±3.8

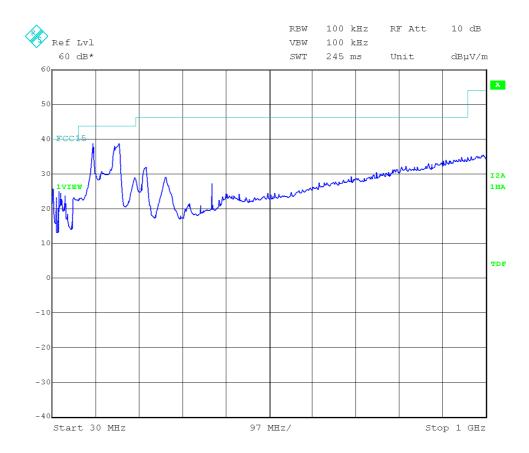
Frequency range 1 GHz-25 GHz

1. CHANNEL: LOWEST.

Spurious frequency (MHz)	Polarization	Emission Level (dBµV/m) Peak	Duty-cycle correction factor δ (dB)	Corrected Emission Level (dBµV/m) Average
3095.873	V	42.15	-19.58	22.57
4176.220	V	40.21	-19.58	20.63
4810.967	V	48.12	-19.58	28.54
7213.617	V	63.36	-19.58	43.78
7216.450	V	63.01	-19.58	43.43
9617.933	V	72.84	-19.58	53.26
9621.853	V	72.44	-19.58	52.86
12022.457	V	56.28	-19.58	36.70
12027.425	V	56.37	-19.58	36.79
14427.000	V	49.82	-19.58	30.24
14432.950	V	49.94	-19.58	30.36
16831.400	V	58.40	-19.58	38.82
16838.100	V	58.18	-19.58	38.60

2. CHANNEL: MIDDLE

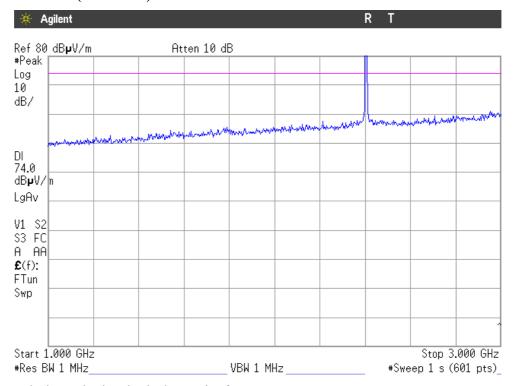
Spurious frequency (MHz)	Polarization	Emission Level (dBµV/m) Peak	Duty-cycle correction factor δ (dB)	Corrected Emission Level (dBµV/m) Average
3096.140	V	46.08	-19.58	26.50
4212.255	V	41.52	-19.58	21.94
4880.830	V	48.12	-19.58	28.54
7318.467	V	66.04	-19.58	46.46
7321.417	V	66.18	-19.58	46.60
9758.067	V	68.96	-19.58	49.38
9761.917	V	68.67	-19.58	49.09
12197.517	V	58.22	-19.58	38.64
12202.617	V	58.55	-19.58	38.97
14637.233	V	50.07	-19.58	30.49
14643.100	V	49.88	-19.58	30.30
17076.467	V	56.33	-19.58	36.75
17083.400	V	56.48	-19.58	36.90


3. CHANNEL: HIGHEST

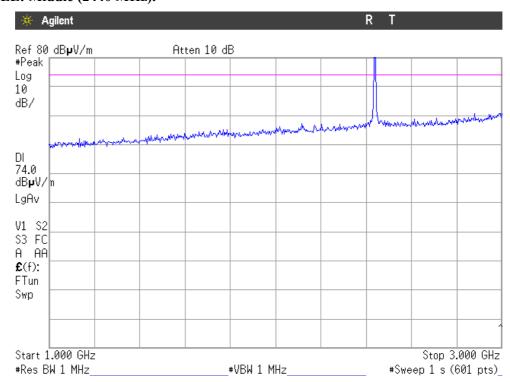
Spurious frequency (MHz)	Polarization	Emission Level (dBµV/m) Peak	Duty-cycle correction factor δ (dB)	Corrected Emission Level (dBµV/m) Average
3188.330	V	48.72	-19.58	29.14
4239.185	V	42.14	-19.58	22.56
4962.277	V	46.38	-19.58	26.80
7438.570	V	69.68	-19.58	50.10
7441.530	V	69.94	-19.58	50.36
9918.057	V	63.94	-19.58	44.36
9922.010	V	64.06	-19.58	44.48
12397.285	V	56.33	-19.58	36.75
12402.381	V	56.52	-19.58	36.94
14876.735	V	47.28	-19.58	27.70
14882.835	V	47.35	-19.58	27.77
17356.133	V	54.14	-19.58	34.56
17363.267	V	54.38	-19.58	34.80

Measurement Uncertainty (dB): ± 4.0 dB.

FREQUENCY RANGE 30 MHz-1000 MHz.



(This plot is valid for all three channels).

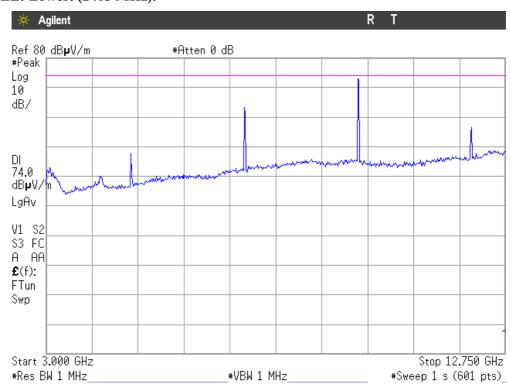

FREQUENCY RANGE 1 GHz to 3 GHz.

CHANNEL: Lowest (2405 MHz).

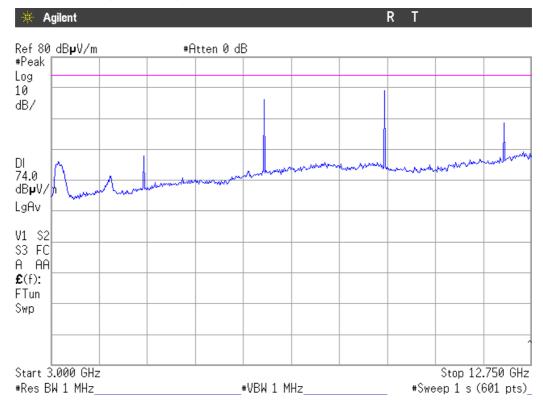

Note: The peak shown in the plot is the carrier frequency.

CHANNEL: Middle (2440 MHz).

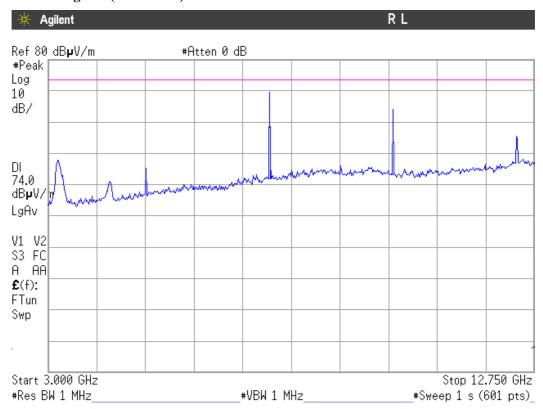
Note: The peak shown in the plot is the carrier frequency.



Note: The peak shown in the plot is the carrier frequency.

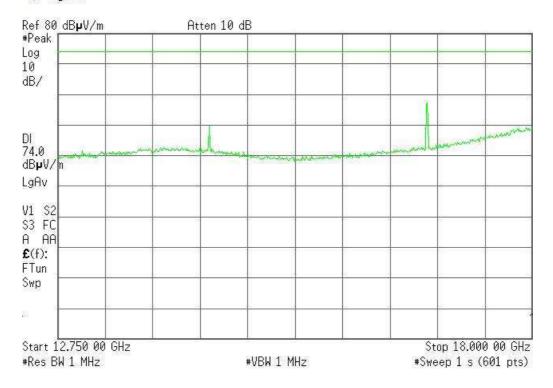

FREQUENCY RANGE 3 GHz to 12.75 GHz.

CHANNEL: Lowest (2405 MHz).

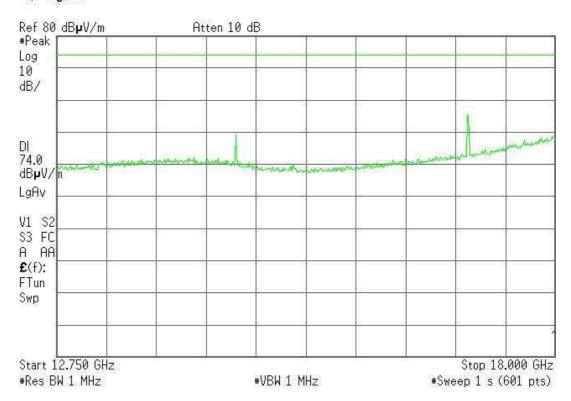


CHANNEL: Middle (2440 MHz).

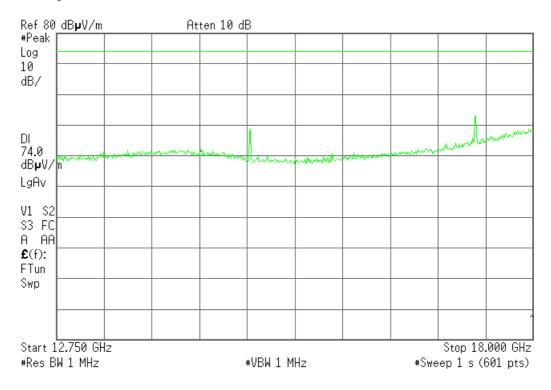
CHANNEL: Highest (2480 MHz).



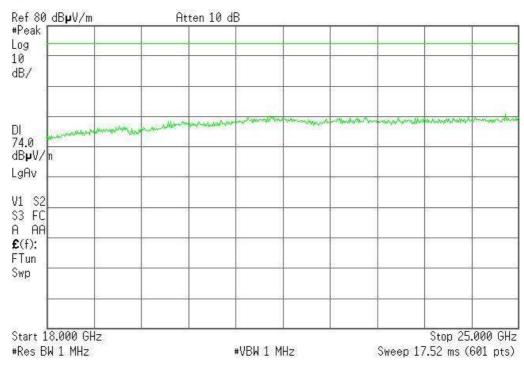
FREQUENCY RANGE 12.75 GHz to 18 GHz.


CHANNEL: Lowest (2405 MHz).

* Agilent

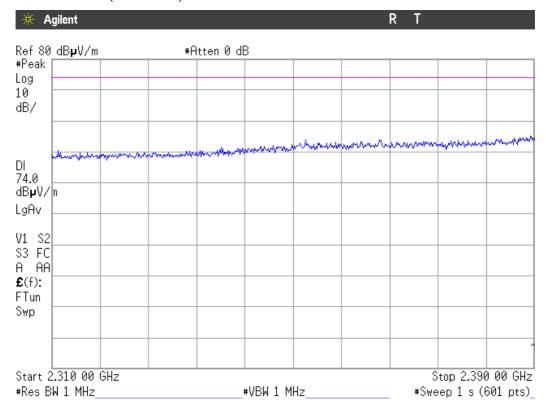

CHANNEL: Middle (2440 MHz).

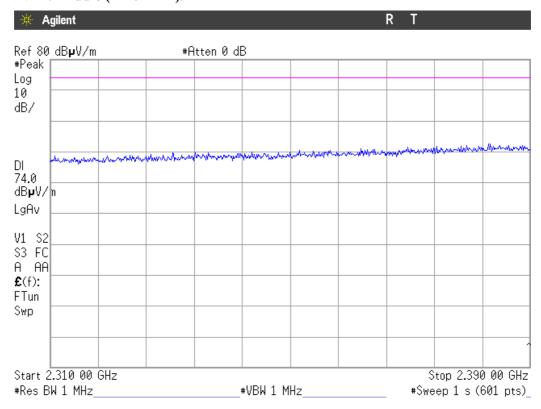
Agilent



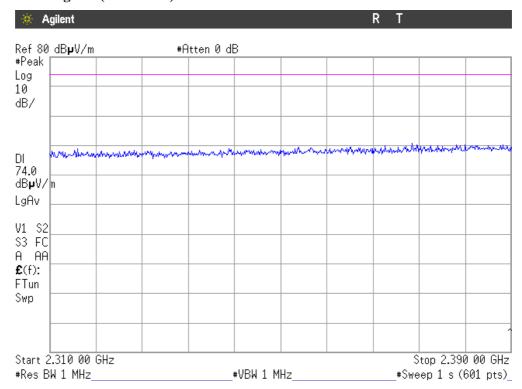
🗯 Agilent

FREQUENCY RANGE 18 GHz to 25 GHz.

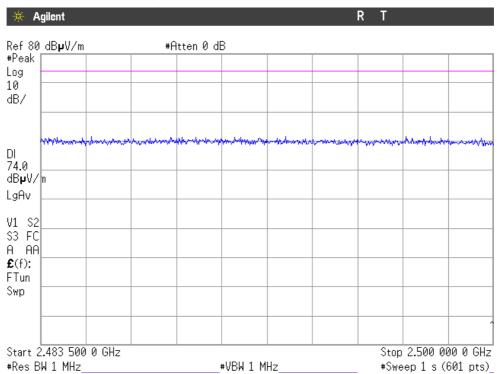

Agilent

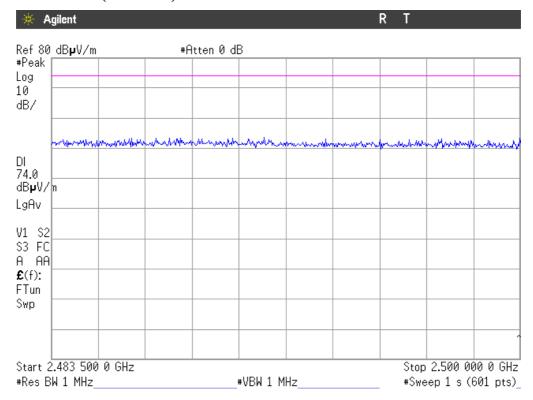


FREQUENCY RANGE 2.31 GHz to 2.39 GHz. (RESTRICTED BAND)

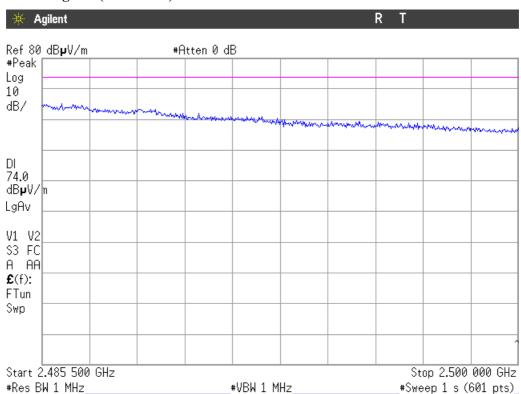

CHANNEL: Lowest (2405 MHz).

CHANNEL: Middle (2440 MHz).




FREQUENCY RANGE 2.4835 GHz to 2.5 GHz. (RESTRICTED BAND)

CHANNEL: Lowest (2405 MHz).



CHANNEL: Middle (2440 MHz).

CHANNEL: Highest (2480 MHz).

Section 15.109. Receiver spurious radiation

SPECIFICATION

The field strength shall not exceed the following values:

Frequency Range (MHz)	Field strength (μV/m)	Field strength (dBµV/m)	Measurement distance (m)
0.009-0.490	2400/F(kHz)	-	300
0.490-1.705	490-1.705 24000/F(kHz) -		300
1.705 - 30.0	30	-	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
960 - 25000	500	54	3

The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

RESULTS:

The situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.

Measurements were made in both horizontal and vertical planes of polarization.

All tests were performed in a semi-anechoic chamber at a distance of 3 m for the frequency range 30 MHz-1000 MHz and at distance of 1m for the frequency range 1 GHz-25 GHz.

The field strength is calculated by adding correction factor to the measured level from the spectrum analyser. This correction factor includes antenna factor, cable loss and pre-amplifiers gain.

Frequency range 30 MHz-1000 MHz.

Note: The spurious emissions below 1 GHz do not depend on either the receiving channel.

Spurious levels operating (radiated) closest to limit.

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
39.7194	V	Quasi-peak	22.87	±3.8
49.4389	V	Quasi-peak	23.29	±3.8
121.3627	V	Quasi-peak	33.62	±3.8
166.0721	V	Quasi-peak	35.63	±3.8
179.6794	V	Quasi-peak	35.24	±3.8
212.7254	V	Quasi-peak	23.99	±3.8
236.0521	V	Quasi-peak	25.06	±3.8
284.6493	V	Quasi-peak	20.26	±3.8

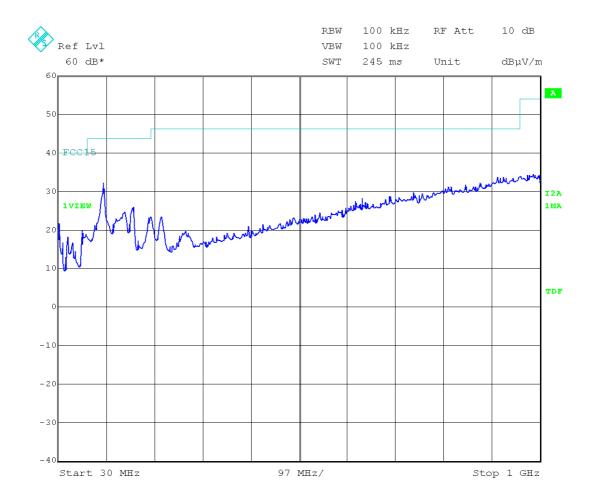
Frequency range 1 GHz-25 GHz.

1. CHANNEL: LOWEST (2402 MHz).

Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
4809.750	V	Peak	41.48	± 4.0
4809.750	V	Average	36.62	± 4.0

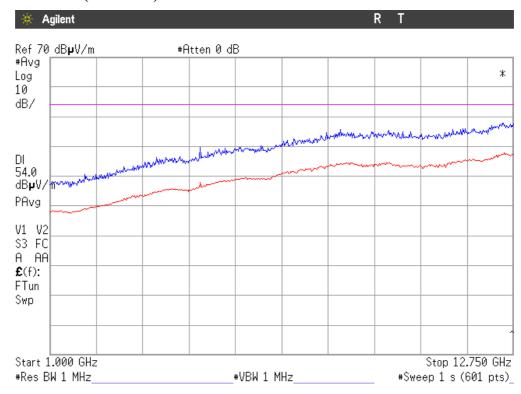
2. CHANNEL: MIDDLE (2441 MHz).

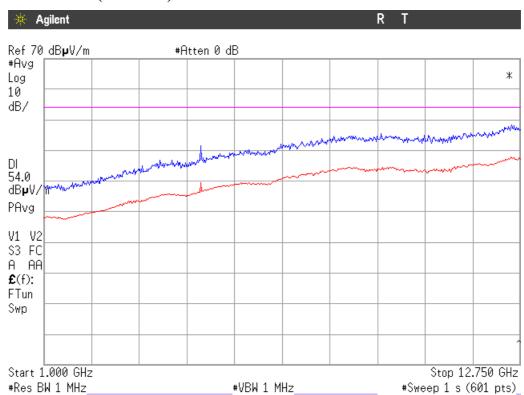
Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
4879.967	V	Peak	43.28	± 4.0
4879.967	V	Average	39.30	± 4.0


3. CHANNEL: HIGHEST (2480 MHz).

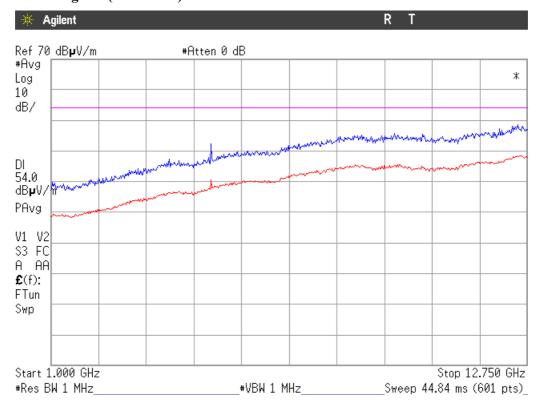
Spurious frequency (MHz)	Polarization	Detector	Emission Level (dBµV/m)	Measurement Uncertainty (dB)
4960.033	V	Peak	43.61	± 4.0
4960.033	V	Average	40.01	± 4.0

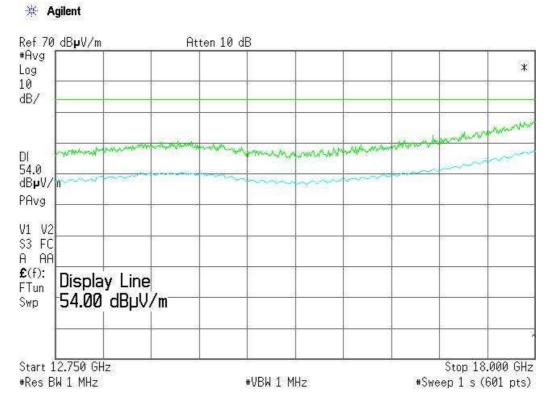
Verdict: PASS.

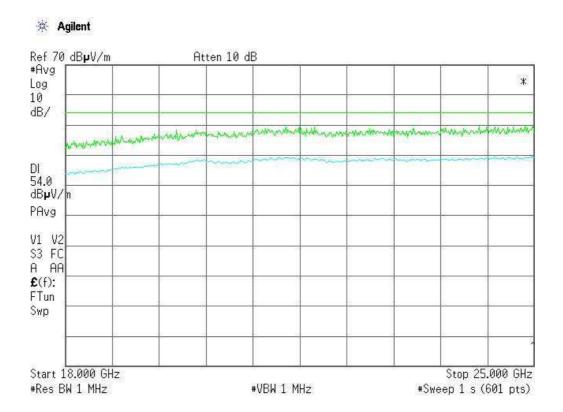

FREQUENCY RANGE 30 MHz-1000 MHz.



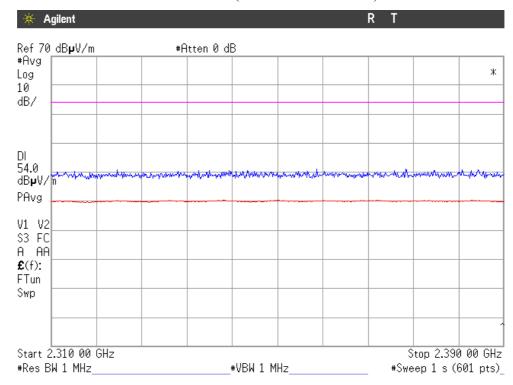
FREQUENCY RANGE 1 GHz-12.75 GHz.


CHANNEL: Lowest (2405 MHz).

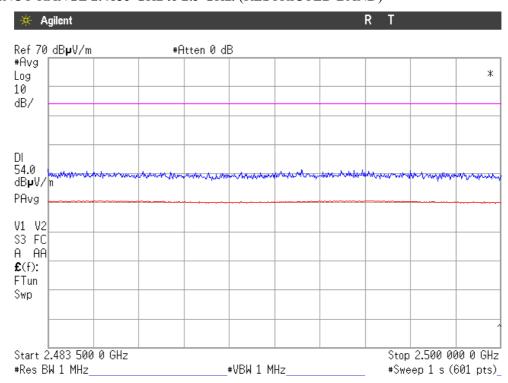

CHANNEL: Middle (2440 MHz).



FREQUENCY RANGE 12.75 GHz-18 GHz.



FREQUENCY RANGE 18 GHz-25 GHz.



FREQUENCY RANGE 2.31 GHz to 2.39 GHz. (RESTRICTED BAND)

(This plot is valid for all three channels).

FREQUENCY RANGE 2.4835 GHz to 2.5 GHz. (RESTRICTED BAND)

