

ACCREDITED Test Lab Cert 2764.01		st report No: 62ERM.004					
Те	st report						
FCC Rules and Regulations CFR 47, Part 15, Subpart B (10-1-18 Edition)							
ICES-003 ISSU	& E 6 – Update April (2017)						
	_ · · · · · · · · · · · · · · · · · · ·						
Identification of item tested	Wireless Module						
Trademark	Telit						
Model and /or type reference	WL865E4-P						
Other identification of the product	FCC: RI7WL865E4 IC ID: 5131A-WL865E4						
Features	WiFi 802.11 a/b/g/n @2.4 GHz and @ Low Energy	5 GHz + Bluetooth					
Manufacturer	Telit Communications S.p.A. Via Stazione di Prosecco 5/B 34010 Sgonico Trieste-Italy						
Test method requested, standard	FCC Rules and Regulations CFR 47, (10-1-18 Edition) ICES-003 ISSUE 6 – Update April (20						
Summary	IN COMPLIANCE						
Approved by (name / position & signature)	Domingo Galvez EMC&RF Lab Manager						
Date of issue	2019-06-20						
Report template No	FDT08_21						

Index

Competences and guarantees	3
General conditions	3
Uncertainty	3
Data provided by the client	4
Usage of samples	4
Test sample description	5
Identification of the client	6
Testing period and place	6
Document history	6
Environmental conditions	7
Remarks and comments	7
Testing verdicts	8
List of equipment used during the test	8
Appendix A: Test results	9

Competences and guarantees

DEKRA Certification Inc. is a testing laboratory accredited by A2LA (The American Association for Laboratory Accreditation), to perform the tests indicated in the Certificate 2764.01

DEKRA Certification Inc. is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA Certification Inc. has a calibration and maintenance program for its measurement equipment.

DEKRA Certification Inc. guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Certification at the time of performance of the test.

DEKRA Certification Inc. is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Certification Inc.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Certification Inc.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Certification Inc. and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the DEKRA Certification internal document PODT000.

	Frequency (MHz)	U(k=2)	Units
Conducted emission	0,009 - 30	2.69	dB
Radiated emission	30-180	3.82	dB
	180-1000	2.61	dB
	1000-18000	2.92	dB
	18000-40000	2.15	dB

Data provided by the client

WiFi / BLE Module

DEKRA declines any responsibility with respect to the information provided by the client and that may affect the validity of results.

Usage of samples

Samples undergoing test have been selected by: The client.

Sample S/01 is composed of the following elements:

Control Nº	Description	Model	Serial Nº	Date of reception
2262.003	WL865E-P on debug board	WL865E-P	00217E249E74	05/07/2019

Following accessories were for enable EUT to stay operation during testing

Control Nº	Description	Model	Serial N ^o	Date of reception
2262.005	USB cable (A to micro) 6fT	-	-	05/07/2019
2323.03	Antenna	T-AT9552	1RR0100174TLB	05/07/2019
2323.04	Antenna	T-AT9552	1RR0100174TLB	05/07/2019

Sample S/01 was used in following testing: Radiated Emission

Test sample description

Ports:						Cable		
	Port r	name and descrij	otion	· · ·		Attached dur test	ring	Shielded
		USB		0.5	5	\boxtimes		
Supplementary information to the ports	No D	ata Provided						
Rated power supply	Valta					Reference po	oles	
	voita	ge and Frequenc	;y	L1	L2	L3	N	PE
		AC: 230Vac / 5	0H7					
	H	AC: 250 vac / 5	0112.				$+ \exists$	
	\boxtimes	DC:3.3 V						
		DC:						
Rated Power		ata Provided						
Clock frequencies	40 MHz							
Other parameters:	No Data Provided							
Software version:	M0G.	M0G.000002						
Hardware version:	HW C	HW 0.0						
Dimensions in cm (L x W x D):	2.44	2.44 x 0.29 x 2.44						
Mounting position:		Table top equip	oment					
		Wall/Ceiling mo	ounted equip	oment				
		Floor standing	equipment					
		Hand-held equi	pment					
		Other: all the al	pove depend	ding on	the h	ost application	ı system	
Modules/parts	Modu	le/parts of test it	əm			Туре	Ma	nufacturer
	WL86	65E4-P			Inter	face board	Teli	t
Accessories (not part of the test item)	Desc	ription	Туре				Mar	nufacturer
	WL865E4-P EVB IF Interface		Interface b	board			Telit	
	Micro USB cable Cable		Cable					
	T-AT9552 external Anteni antenna		Antenna /			ATE	L-	
							AN	FENNAS
Documents as provided by the applicant	Desc	ription	File name				Issue date	
- F	Equip	oment	FDT30_14_FCC_TELIT_WL865E4-			201	9-02-04	
			P_rev0					
			1				1	

Copy of marking plate:

Identification of the client

Telit Communication S.p.A. Via Stazione di Prosecco 5/b 34010 SGONICO TRIESTE - ITALY

Testing period and place

Test Location	DEKRA Certification, Inc
Date (start)	2019-05-08
Date (finish)	2019-05-08

Document history

Report number	Date	Description
2262ERM.004	2019-05-13	First release

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the semi anechoic chamber, the following limits were not exceeded during the test.

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the chamber for conducted measurements, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 60 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

Remarks and comments

The tests have been performed by the technical personnel: Koji Nishimoto & Poojita Bhattu

Testing verdicts

Not applicable :	N/A
Pass :	Ρ
Fail :	F
Not measured :	N/M

Summary

lower.

	Emission Test		
Report Section	Requirement – Test case	Verdict	Remark
A.1.	Radiated emission electromagnetic field test (30 MHz – 1000 MHz)	Р	N/A
A.1.	Radiated emission electromagnetic field test (1 GHz – 18 GHz)	Р	Refer 1
A1.	Radiated emission electromagnetic field test (18 GHz – 40 GHz)		Refer 1
	Conducted emission test (150 kHz to 30 MHz)	N/A	Refer 2
Supplemen	tary information and remarks:		
,	s per standard 47 CFR §15.33 due to the highest frequency generated or used ir e upper frequency of measurement range is up to 5th harmonic of the highest fre		

2) DUT is a module and not the final product.

List of equipment used during the test

CONTROL NUMBER	DESCRIPTION	MANUFACTURER	MODEL	LAST CALIBRATION	NEXT CALIBRATION
0980	Preamplifier	BONN ELEKTRONIK	BLNA 0360- 01N	2017/05	2019/05
0981	Preamplifier	BONN ELEKTRONIK	BLMA 0118-2A	2018/10	2020/10
0982	Preamplifier	BONN ELEKTRONIK	BLMA1840-1M	2018/10	2020/10
1017	EMC measurement software	ROHDE & SCHWARZ	EMC32 V9.01		
1039	Signal Analyser	ROHDE & SCHWARZ	FSV40	2018/10	2020/10
1055	Horn Antenna	ETS LINDGREN	3116C	2016/12	2019/12
1058	Horn Antenna	ETS LINDGREN	3115	2017/03	2020/03
1065	Biconilog Antenna	ETS LINDGREN	3142E	2017/03	2020/03

Appendix A: Test results

Appendix A Content

DESCRIPTION OF THE OPERATION MODES	.11
A.1.RADIATED EMISSION. ELECTROMAGNETIC FIELD TEST	.12

DESCRIPTION OF THE OPERATION MODES

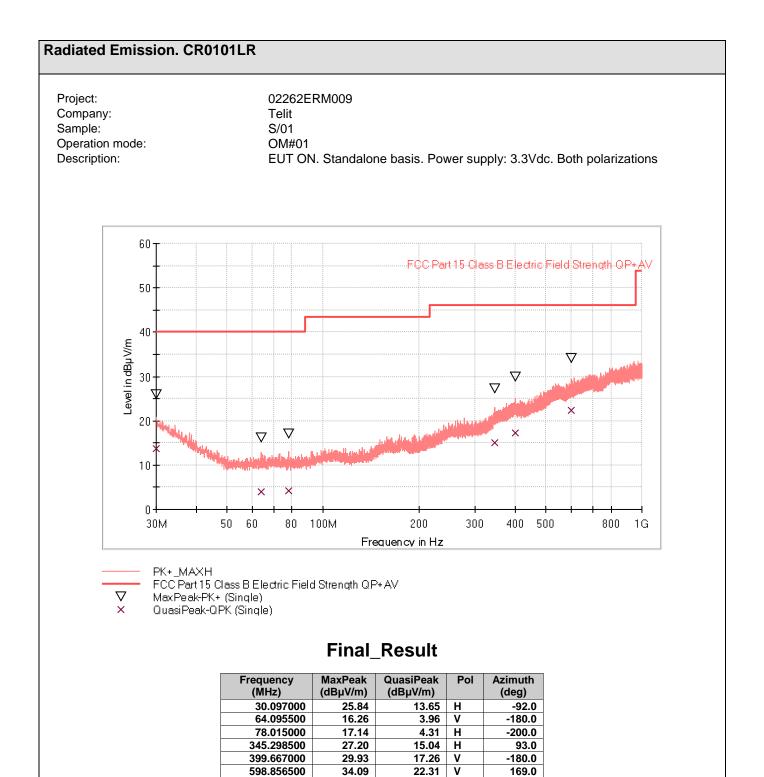
The operation modes described in this paragraph constitute a functionality of the sample under test for itself. Every operation mode takes failure criteria for the immunity test that they were applying to it and a monitoring to guarantee performance of the same ones.

The operation modes used by the samples to which the present report refers, are shown in the following table:

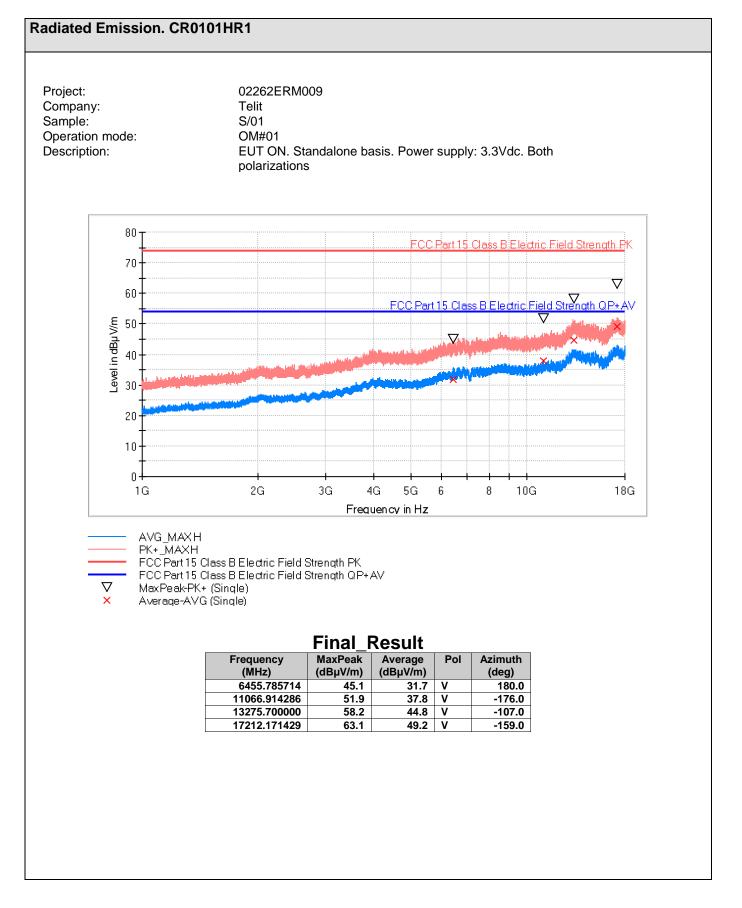
OPERATION MODE	DESCRIPTION
	EUT ON. Power supply 3.3 Vdc
	Idle mode
OM#01*	No TX/RX Blue tooth
	No TX/RX Wifi 2.4GHz
	No TX/RX Wifi 5GHz

*Worst configurations detected

Г



LIMITS:	Product st				part B (10-1-18 E ate April (2017)	Edition), Secs. 15.109
LIMITS.	Test sta					Edition), Secs. 15.109 ANSI C63.4 (2014)
	it for radiated CFR Part 15,	emissions, 3 Subpart B (1	0-01-18 Edit	tion), Secs. 15	.109 & ICĖS-00	nents of FCC Rules and 3 Issue 6 – Update April
		Eroquon	ov rongo	OPLin	nit for 3 m	
		Frequen (Mł		(μV/m)	(dBµV/m)	
		30 to	1	100	(dBμV/III) 40	
		88 to		150	43.5	
		216 to		200	46	
		Above	e 960	500	54	
	Free	quency range	AVG Li	mit for 3 m	PK Limit for 3 n	n (1)
	1.00	(MHz)	(µV/m)	(dBµV/m)	(dBµV/m)	
	Δ					
	Frequencies at			54 equency emissions under test, as per §1	74 is 20 dB above the max 5.35(b	imum permitted
TES	Frequencies at	pove 1 GHz, the lim	it on peak radio fr	equency emissions	is 20 dB above the max	timum permitted
All radiated test distance of 3 m range 1-40 GH For radiated en an inverse pro	Frequencies at average emissi ST SETUP sts were perforted for the frequencies (1 GHz-18 Consistent of the nissions in the	ormed in a s ency range 36 GHz and 18 G erange 1-40 (it on peak radio fr to the equipment of semi-anecho 0-1000 MHz Hz-40 GHz I GHz that is p	ic chamber. T (Bilog antenn Double ridge h	The measureme a) and at a dista orn antennas).	nt antenna is situated at a ince of 1m for the frequenc than the specified distance asured data for determining
All radiated test distance of 3 m range 1-40 GH For radiated en an inverse proj compliance. The equipment	Frequencies at average emissi ST SETUP sts were perforted for the frequencies of the frequencies of the frequencies of the frequencies of the frequencies of the frequencies of the frequencies of the freq	ormed in a s ency range 3(GHz and 18 G e range 1-40 (ctor of 20 dB vas set up on co find the ma	it on peak radio fr to the equipment of the equipment of the equipment of the equipment of the equipment of the equipment of	ic chamber. T (Bilog antenn Double ridge h berformed at a is used to no luctive platforr ated emission	The measureme a) and at a dista orn antennas). distance closer ormalize the mean n above the gro . It was also rot	nt antenna is situated at ince of 1m for the frequenc than the specified distance
All radiated test distance of 3 m range 1-40 GH For radiated en an inverse proj compliance. The equipment and orientation	Frequencies at average emissi ST SETUP sts were perforted for the frequencies (1 GHz-18 Consistence) nissions in the portionality factor t under test we was varied t ed from 1 to 4	ormed in a s ency range 30 GHz and 18 G e range 1-40 (ctor of 20 dB vas set up on to find the ma	it on peak radio fr to the equipment of contraction of the equipment of contraction of the equipment of contraction of the equipment of contraction of the equipment of the equi	equency emissions under test, as per §1 (Bilog antenn Double ridge h performed at a is used to no luctive platforr ated emission um radiated e	The measureme a) and at a dista orn antennas). distance closer ormalize the mean n above the gro . It was also rot mission.	nt antenna is situated at ince of 1m for the frequenc than the specified distance asured data for determining und plane and the situation
All radiated test distance of 3 m range 1-40 GH For radiated en an inverse pro- compliance. The equipment and orientation height was vari Measurements	Frequencies at average emissi ST SETUP Sts were perforted for the frequent z (1 GHz-18 Consistence) nissions in the portionality factor t under test were was varied to ed from 1 to 4 were made in gth is calculat	ormed in a s ency range 30 GHz and 18 G e range 1-40 C ctor of 20 dB vas set up on to find the ma meters to find h both horizon ted by adding	it on peak radio fr to the equipment of contraction of the equipment of contraction of the equipment of contraction of the equipment of contraction of the contraction of the maxim tal and vertice correction of	equency emissions under test, as per §1 (Bilog antenn Double ridge h performed at a is used to no luctive platforr ated emission um radiated e cal planes of p factor to the r	The measureme a) and at a dista orn antennas). distance closer ormalize the mean n above the gro . It was also rot mission. olarization. neasured level f	nt antenna is situated at ince of 1m for the frequen than the specified distanc asured data for determini und plane and the situation



ILSI SLIUF	(Cont.)		
	TERMINATO	PERPHERAL FOWER	
	.∕_	NOCONENCTIVE VARIE 15.11 MIETR	
		A CONDUCTIVE GROUND PLANE EXTENDED 6.5 m BEYOND EUT BYSTEM	
TESTED SAM	PLES:		
TESTED SAM		CONDUCTING GROUND PLANE ENTENDED 6.5 m BEVOND EUT BYSTEM	
	ON MODES:	CONDUCTIVE GROUND CONDUCTIVE GROUND DEVOND EUT BYBTEM S/01	ample number; nn:
STED OPERATIO	DN MODES:	S/01 S/01 CRmmnnxx: CR, Radiation Condition; mm: Sa Operation mode.,xx:Range, Description	Result
TEST RESU	DN MODES: LTS: Range: 30 Mł	S/01 S/01 OM#01 CRmmnnxx: CR, Radiation Condition; mm: Sa Operation mode.,xx:Range, Description 1z - 1000 MHz Horizontal Polarization	Result P
STED OPERATIO TEST RESU CR0101LR CR0101LR	DN MODES: LTS: Range: 30 Mł	S/01 S/01 CRmmnnxx: CR, Radiation Condition; mm: Sa Operation mode.,xx:Range, Description	Result
TEST RESU	DN MODES: LTS: Range: 30 Mł Range: 30 Mł	S/01 S/01 OM#01 CRmmnnxx: CR, Radiation Condition; mm: Sa Operation mode.,xx:Range, Description 1z - 1000 MHz Horizontal Polarization	Result P
STED OPERATIO TEST RESU CR0101LR CR0101LR	DN MODES: LTS: Range: 30 MH Range: 30 MH Range: 1-18 (S/01 S/01 OM#01 CRmmnnxx: CR, Radiation Condition; mm: Sa Operation mode.,xx:Range, Iz - 1000 MHz Horizontal Polarization Hz - 1000 MHz Vertical Polarization	Result P P
STED OPERATIO TEST RESU CR0101LR CR0101LR CR0101LR CR0101HR1	DN MODES: LTS: Range: 30 MH Range: 30 MH Range: 1-18 (Range: 1-18 (S/01 S/01 OM#01 CRmmnnxx: CR, Radiation Condition; mm: Sa Operation mode.,xx:Range, Description Hz - 1000 MHz Horizontal Polarization Hz - 1000 MHz Vertical Polarization GHz Horizontal Polarization	Result P P P

