

FCA NU ISE NU Cert 2764.01 FCA ISE NU SE SE NU SE SE NU SE SE NU SE SE SE SE SE SE SE SE SE SE SE SE SE	C LISTED, REGISTRATION MBER: 2764.01 Test report No: 2840ERM.007 MBER: 23595-1 CST REPORT .247, 15.209, 15.207 S-247, RSS-Gen tion within the bands 902 - 928 MHz,
, 2400 -2483.5 MHz Digital Transmission Systems (D (FHSs) and License-Exempt Loc	and 5725 - 5850 MHz.)TSs), Frequency Hopping Systems al Area Network (LE-LAN) Devices.
Identification of item tested	Dual band WiFi and BLE 5 radio module
Trademark	Telit
Model and /or type reference	WE866C6-P
Other identification of the product	-
Features	BT BR/EDR/LE 5.0 + Wifi a/b/g/n/ac (wave 1=> Max BW= 80 MHz)
Manufacturer	TELIT COMMUNICATIONS S.P.A. Viale Stazione di Prosecco 5/B, 34010 Sgonico, Trieste (Italy)
Test method requested, standard	 USA FCC Part 15.247, 10-1-19 Edition: Operation within the bands 902 - 928 MHz, 2400 -2483.5 MHz, and 5725 - 5850 MHz. USA FCC Part 15.209, 10-1-19 Edition: Radiated emission limits; general requirements CANADA RSS-247 Issue 2 (February 2017). CANADA RSS-Gen Issue 5 (April 2018). 558074 D01 15.247 Meas Guidance v05r02. Guidance for Compliance Measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under section §15.247 of the FCC Rules ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.
Summary	IN COMPLIANCE
Approved by (name / position & signature)	Domingo Galvez EMC&RF Lab Manager
Date of issue	07-13-2020
Report template No	FDT08_21

Index

Competences and guarantees	3
General conditions	3
Uncertainty	3
Data provided by the client	4
Usage of samples	4
Test sample description	5
Identification of the client	6
Testing period and place	6
Document history	6
Environmental conditions	7
Remarks and comments	7
Testing verdicts	8
Summary	8
List of equipment used during the test	9
Appendix A: Test results (Bluetooth Low Energy)	10
Appendix B: Test results (WIFI 2.4GHz)	17

Competences and guarantees

DEKRA Certification Inc. is a testing laboratory accredited by A2LA (The American Association for Laboratory Accreditation), to perform the tests indicated in the Certificate 2764.01

DEKRA Certification Inc. is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA Certification Inc. has a calibration and maintenance program for its measurement equipment.

DEKRA Certification Inc. guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated on the report and, it is based on the knowledge and technical facilities available at DEKRA Certification at the time of performance of the test.

DEKRA Certification Inc. is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA Certification Inc.

General conditions

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA Certification Inc.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA Certification Inc. and the Accreditation Bodies.

Uncertainty

Uncertainty (factor k=2) was calculated according to the DEKRA Certification internal document PODT000.

Frequency (MHz)	U(k=2)	Units
30-180	3.82	dB
180-1000	2.61	dB
1000-18000	2.92	dB
18000-40000	2.15	dB

Data provided by the client

Companion module, supporting Wi-Fi 802.11 a/b/g/n/ac (wave 1) and BT (BR/EDR/LE(5.0)). Single RF antenna port for both technologies Wifi and BT. SDIO and HCI I/F, respectively for Wi-Fi and BT control. Module is controlled via a host Telit module, LE920A4 or LE910C1.

DEKRA declines any responsibility with respect to the information provided by the client and that may affect the validity of results.

Usage of samples

Samples undergoing test have been selected by: The client.

Sample S/01 is composed of the following elements:

Control №	Description	Model	Serial Nº	Date of reception
2840/01	Telit module WE866C6-P in Cradle	LE910C4- AP	IMEI:357575100004589	04/27/2020

1. Sample S/01 has undergone following test(s):

All conducted tests indicated in appendix A & B.

Sample S/02 is composed of the following elements:

Control Nº	Description	Model	Serial №	Date of reception
2840/02	Telit module WE866C6-P in Cradle	LE910C4-AP	IMEI:357575100005412	04/27/2020

1. Sample S/02 has undergone following test(s):

All radiated tests indicated in appendix B.

Sample S/01 & S/02 is composed of the following accessories:

Control №	Description	Model	Serial Nº	Date of reception
2840/08	power cable			04/27/2020
2840/11	USB Cable			04/27/2020
2840/05	WLAN Antenna	ATEL-ANTENNAS T-AT9552		04/27/2020

Test sample description

Ports:					Cable		
	Port name and description		Specified length [m]		d Attached) during test		Shielded
	WI-FI	I/BT RF Port	0.1				
Supplementary information to the ports:	Not p	rovided					
Rated power supply:	Volta	ge and Frequency		Ref	ference p	oles	
		go and i roquency	L1	L2	L3	N	PE
		AC:					
		AC:					
		DC				1	
		DC: 3.8V (Internal DCDC co module with regulated volta	onverter ge = 3.3	supply V)	ing the W	/E866	C3-P
Rated Power:	18 dBm max						
Clock frequencies:	48 MHz						
Other parameters:	Not provided						
Software version:	25.20.308						
Hard ware version:	1.0 / CS2049b-a						
Dimensions in cm (L x W x D):	15x13	3mm					
Mounting position:		Table top equipment					
		Wall/Ceiling mounted equip	ment				
		Floor standing equipment					
		Hand-held equipment					
		Other:		_			
Modules/parts:	Module/parts of test item Type Manufac		nufacturer				
Accessories (not part of the test	Description Type Manufactor		ufacturer				

Documents as provided by the applicant:	Description	File name	Issue date
	Copy of marking plate:		
	WESSECS-P Telin Engineering sample Mac:00217E330108 M/N: WESSECS-P Assembled in China		

Identification of the client

TELIT COMMUNICATIONS S.P.A.

Viale Stazione di Prosecco 5/B, 34010 Sgonico, Trieste (Italy)

Testing period and place

Test Location	DEKRA Certification Inc.
Date (start)	07-06-2020
Date (finish)	07-10-2020

Document history

Report number	Date	Description
2840ERM.007	07-13-2020	First release

Environmental conditions

In the control chamber, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the semianechoic chamber, the following limits were not exceeded during the test.

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 75 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

In the chamber for conducted measurements, the following limits were not exceeded during the test:

Temperature	Min. = 15 °C Max. = 35 °C
Relative humidity	Min. = 30 % Max. = 60 %
Air pressure	Min. = 860 mbar Max. = 1060 mbar

Remarks and comments

The tests have been performed by the technical personnel: Divya Adusumilli, Lakshmi Gollamudi, Bhagyashree Chaudhary, Koji Nishimoto and Lourdes Maria Valverde.

Testing verdicts

Not applicable :	N/A
Pass :	Ρ
Fail :	F
Not measured :	N/M

Summary

FCC PART 15 PARAGRAPH / RSS-247 (Bluetooth Low Energy)							
Section	15.247 Spec Clause	RSS Spec Clause	Test Description	Verdict	Remark		
-	§ 2.1049	RSS-Gen 6.7	99% Occupied Bandwidth	N/M	Refer 1		
-	§ 15.247 (a) (2)	RSS-247 5.2. (a)	6dB Emission Bandwidth	N/M	Refer 1		
A.1	§ 15.247 (b) (3)	RSS-247 5.4. (d)	Maximum peak conducted output power and antenna gain	Р	N/A		
-	§ 15.247 (d)	RSS-247 5.5.	Band-edge emissions compliance (Transmitter)	N/M	Refer 1		
-	§ 15.247 (e)	RSS-247 5.2. (b)	Power spectral density	N/M	Refer 1		
-	§15.207 (a)	RSS Gen 8.8	Conducted Emission Limits	N/M	Refer 1		
-	§ 15.247 (d)	RSS-Gen 8.9 & 8.10.	Emission limitations radiated (Transmitter)	N/M	Refer 1		
Supplen 1. C	nentary informatio	on and remarks: uested.					

FCC PART 15 PARAGRAPH (WIFI 2.4GHz)						
Section	15.247 Spec Clause	RSS Spec Clause	Test Description	Verdict	Remark	
-	§ 2.1049 & §15.247 (a) (2)	RSS-247 5.2 (a)	99% Occupied Bandwidth & 6dB Bandwidth	N/M	Refer 1	
B.1	§ 15.247 (b)	RSS-247 5.4 (d)	Maximum Output Power and antenna gain	Р	N/A	
-	§ 15.247 (d)	RSS-247 5.5	Band-edge conducted emissions compliance (Transmitter)	N/M	Refer 1	
-	§ 15.247 (e)	RSS-247 5.2 (b)	Power Spectral Density	N/M	Refer 1	
-	§15.247(d)	RSS-247 5.5	Emission limitations Conducted (Transmitter)	N/M	Refer 1	
B.2	§15.247 (d)	RSS-247 5.5	Emission limitations Radiated (Transmitter)	Р	N/A	
<u>Supp</u> 1. C	lementary informat Customer not reque	tion and remarks: ested.				

List of equipment used during the test

Conducted Measurements

Test system Rohde & Schwarz TS 8997:

CONTROL NUMBER	DESCRIPTION	MANUFACTURER	MODEL	LAST CALIBRATION	NEXT CALIBRATION
1039	FSV40 Signal analyzer 40 GHz	Rohde & Schwarz	FSV40	2018/10	2020/10
1309	Switch unit	Rohde & Schwarz	OSP120 / OSP- B157	2020/03	2022/03
1009	RF generator	ROHDE & SCHWARZ	SMB100A	2019/08	2021/08
1042	RF Vector Signal generator	Rohde & Schwarz	SMBV100A	2020/03	2022/03

Radiated Measurements

CONTROL NUMBER	DESCRIPTION	MANUFACTURER	MODEL	LAST CALIBRATION	NEXT CALIBRATION
1179	Semi anechoic Absorber Lined Chamber	Frankonia	SAC 3 plus "L"	N/A	N/A
1064	Biconical Log antenna	ETS LINDGREN	3142E	2018/01	2021/01
1058	Double-ridge Waveguide Horn antenna 1-18 GHz	ETS LINDGREN	3115	2020/05	2023/05
1056	Double-ridge Waveguide Horn antenna	ETS LINDGREN	3116C	2020/01	2023/01
1014	Spectrum analyzer	Rohde & Schwarz	FSV40	2019/04	2021/04
1012	EMI TEST RECEIVER	Rohde & Schwarz	ESR 26	2019/12	2021/12
0981	RF pre-amplifier 1-18 GHz	Bonn Elektronik	BLMA 0118-2A	2018/10	2021/10

Appendix A: Test results (Bluetooth Low Energy)

Appendix A Content

PRODUCT INFORMATION	12
DESCRIPTION OF TEST CONDITIONS	13
TEST A.1: MAXIMUM PEAK CONDUCTED OUTPUT POWER AND ANTENNA GAIN	14

PRODUCT INFORMATION

The following information is provided by the client

Information	Description
Modulation	Other than FHSS
Adaptive	Adaptive Equipment which can operate in Non- Adaptive mode
Operation mode	
- Operating Frequency Range	2402 – 2480 MHz
- Nominal Channel Bandwidth	1 MHz
- RF Output Power	9 dBm
Extreme operating conditions	
- Temperature range	-40 °C to +85 °C
Antenna type	Dedicated Antenna
Antenna gain	+ 2.5 dBi
Nominal Voltage	
- Supply Voltage	3.8 Vdc
- Type of power source	DC voltage
Equipment type	Bluetooth Low Energy
Geo-location capability	No

DESCRIPTION OF TEST CONDITIONS

TEST CONDITIONS	DESCRIPTION
	<u>Power supply (V):</u> V _{nominal} = 3.8 Vdc
TC#01	Test Frequencies for Conducted/Radiated tests: Lowest channel: 2402 MHz Middle channel: 2440 MHz Highest channel: 2480 MHz

RESULTS (Co	ont.):			CO		PEAK PO	WER
el							
Spectrum)						Ē
Ref Level 6.60	dBm Offset 0.6	0 dB 👄 RBW	1 MHz				(A
Att 2	5 dB SWT 1.	9 µs 👄 VBW	V 3 MHz	Mode Auto	FFT		
●1Pk Max				M1	[1]		-4.17 dBm
0 dBm				M1		2.	4022380 GHz
						_	
-10 dBm							
-20_d8m							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
-80 dBm							
-90 dBm			101	nts			han 3.0 MHz
-90 dBm			101	pts	Measuring	S	oan 3.0 MHz
-90 dBm CF 2.402 GHz			101	pts	Measuring	S	pan 3.0 MHz
-90 dBm CF 2.402 GHz			101	pts	Measuring	S	pan 3.0 MHz
-90 dBm CF 2.402 GHz			101	pts	Measuring		pan 3.0 MHz
-90 dBm GF 2.402 GHz Spectrum Ref Level 6.60 d	IBm Offset 0.60	0 dB @ RBW	101	pts	Measuring	S	pan 3.0 MHz
-90 dBm CF 2.402 GHz Spectrum Ref Level 6.60 d Att 25	dBm Offset 0.60 dB SWT 1.5	0 dB • RBW 9 μs • VBW	101 1 MHz 3 MHz M	pts	Measuring	S Carrier and a	pan 3.0 MHz
-90 dBm CF 2.402 GHz Spectrum Ref Level 6.60 Att 25 • 1Pk Max	JBm Offset 0.60 dB SWT 1.9	0 dB • RBW 9 µs • VBW	101 1 MHz 3 MHz M	pts	Measuring	SI INTERNE	-3.23 dBm
-90 dBm CF 2.402 GHz Spectrum Ref Level 6.60 o Att 25 9 1Pk Max 0 dBm	JBm Offset 0.60 5 dB SWT 1.9	0 dB ● RBW 9 μs ● VBW	101 1 MHz 3 MHz M	pts Mode Auto F M1[Measuring	S	-3.23 dBm 402380 GHz
-90 dBm CF 2.402 GHz Spectrum Ref Level 6.60 d Att 25 • 1Pk Max 0 dBm	IBm Offset 0.60 GB SWT 1.9	0 dB ● RBW 9 µs ● VBW	101 1 MHz 3 MHz N	pts Mode Auto F M1	Measuring	2.4	-3.23 dBm
-90 dBm CF 2.402 GHz Spectrum Ref Level 6.60 Att 25 • 1Pk Max 0 dBm -10 dBm	JBm Offset 0.60 dB SWT 1.9	0 dB • RBW	101 1 MHz 3 MHz M	pts Mode Auto F M1	FT	2.4	-3.23 dBm
-90 dBm CF 2.402 GHz CF 2.402 GHz Spectrum Ref Level 6.60 d Att 25 • 1Pk Max 0 dBm -10 dBm -20 dBm	JBm Offset 0.60 5 dB SWT 1.9	0 dB • RBW 9 μs • VBW	101 1 MHz 2 3 MHz M	pts Mode Auto F M1[M1]	FT	2.4	-3.23 dBm 402380 GHz
-90 dBm CF 2.402 GHz CF 2.402 GHz Spectrum Ref Level 6.60 Att 25 1Pk Max 0 dBm -10 dBm -20 dBm	JBm Offset 0.60 5 dB SWT 1.9	0 dB • RBW 9 μs • VBW	101 1 MHz 3 MHz M	pts Mode Auto F M1[M1]	Measuring	2.4	-3.23 dBm
-90 dBm CF 2.402 GHz CF 2.402 GHz CF 2.402 GHz Spectrum Ref Level 6.60 G Att 25 ● 1Pk Ma× 0 dBm -10 dBm -20 dBm -30 dBm	IBm Offset 0.60 GB SWT 1.9	0 dB ● RBW 9 μs ● VBW	101 1 MHz 3 MHz M	nts	Measuring	2.4	-3.23 dBm
-90 dBm CF 2.402 GHz CF 2.402 GHz Spectrum Ref Level 6.60 Att 25 • 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	JBm Offset 0.60 dB SWT 1.9	0 dB • RBW 9 μs • VBW	101 1 MHz 3 MHz M	Pts Mode Auto F M1[M1]	FT	2.4	-3.23 dBm
-90 dBm CF 2.402 GHz CF 2.402 GHz Spectrum Ref Level 6.60 0 Att 25 10 dBm -10 dBm -10 dBm -30 dBm -40 dBm	JBm Offset 0.60 5 dB SWT 1.9	D dB • RBW P μs • VBW	101 1 MHz 2 3 MHz M	nts	FT	2.4	-3.23 dBm 402380 GHz
-90 dBm CF 2.402 GHz CF 2.402 GHz Spectrum Ref Level 6.60 Att 25 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	JBm Offset 0.60 G dB SWT 1.9	0 dB • RBW 9 μs • VBW	101	MI	FT 1]	2.4	-3.23 dBm -402380 GHz
-90 dBm CF 2.402 GHz CF 2.402 GHz Spectrum Ref Level 6.60 G Att 25 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	IBM Offset 0.60	0 dB • RBW 9 μs • VBW	101	Aode Auto F	Measuring	2.4	-3.23 dBm
-90 dBm CF 2.402 GHz CF 2.402 GHz CF 2.402 GHz (JBm Offset 0.60 dB SWT 1.9	0 dB • RBW 9 μs • VBW	101	Made Auto F	FT	2.4	-3.23 dBm
-90 dBm CF 2.402 GHz CF 2.402 GHz CF 2.402 GHz () Spectrum Ref Level 6.60 0 Att 25 • 1Pk Max 0 dBm -10 dBm -10 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	JBm Offset 0.60 5 dB SWT 1.9	D dB • RBW P μs • VBW	101	nts	FT	2.4	-3.23 dBm 402380 GHz
-90 dBm CF 2.402 GHz Spectrum Ref Level 6.60 Att 25 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm	JBm Offset 0.60 G dB SWT 1.9	0 dB • RBW 9 μs • VBW	101	Aode Auto F	Measuring FT 1]	2.4	-3.23 dBm 402380 GHz
-90 dBm CF 2.402 GHz CF 2.402 GHz Spectrum Ref Level 6.60 Att 25 1Pk Max 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	JBM Offset 0.60 GB SWT 1.9	0 dB • RBW 9 μs • VBW	101	nts	PFT 1	2.4	-3.23 dBm -402380 GHz
-90 dBm CF 2.402 GHz CF 2.402 GHz Spectrum Ref Level 6.60 G Att 25 ● 1Pk Max 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -90 dBm	IBm Offset 0.60 G dB SWT 1.9	0 dB • RBW 9 μs • VBW	101	Made Auto F	FT 1]	2.4	-3.23 dBm -402380 GHz
-90 dBm CF 2.402 GHz CF 2.402 GHz CF 2.402 GHz CF 2.402 GHz 0 dBm -10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm -90	IBm Offset 0.60 dB SWT 1.9	D dB RBW	101	Mode Auto F	FT	2.4	-3.23 dBm 402380 GHz

TEST RESULTS (Cont.):

Appendix B: Test results (WIFI 2.4GHz)

Appendix B Content

PRODUCT INFORMATION	19
DESCRIPTION OF TEST CONDITIONS	20
TEST B.1: MAXIMUM CONDUCTED OUTPUT POWER AND ANTENNA GAIN	21
TEST B.2: EMISSION LIMITATIONS RADIATED (TRANSMITTER)	

PRODUCT INFORMATION

The following information is provided by the supplier, in accordance with clause 5.4.1:

Information	Description
Modulation	DSSS/OFDM
Maximum RF Output Power	18 dBm
Operation mode	Equipment with only one antenna
- Operating Frequency Range	2412 – 2462 MHz
- Nominal Channel Bandwidth	20 / 40 MHz
Extreme operating conditions	
- Temperature range	-40 °C to +85 °C
Antenna type	Dedicated Antenna
Antenna gain	+2.5 dBi
Nominal Voltage	
- Supply Voltage	3.8 Vdc
- Type of power source	DC voltage
Equipment type	WIFI 2.4GHz b/g/n20/n40
Geo-location capability	No

DESCRIPTION OF TEST CONDITIONS

During transmitter test the EUT was being controlled by the SW tool to operate in a continuous transmit mode on the test channel as required and in each of the different modulation modes.

TEST CONDITIONS	DESCRIPTION
TC#01 ⁽¹⁾ (b mode)	Power supply (V): V _{nominal} = 3.8 Vdc <u>Channel Bandwidth</u> : 20 MHz <u>Test Frequencies for Conducted/Radiated tests:</u> Lowest channel: 2412 MHz Middle channel: 2437 MHz Highest channel: 2462 MHz
TC#02 ⁽¹⁾ (g mode)	Power supply (V): V _{nominal} = 3.8 Vdc <u>Channel Bandwidth</u> : 20 MHz <u>Test Frequencies for Conducted/Radiated tests:</u> Lowest channel: 2412 MHz Middle channel: 2437 MHz Highest channel: 2462 MHz
TC#03 ⁽¹⁾ (n mode)	Power supply (V): V _{nominal} = 3.8 Vdc <u>Channel Bandwidth</u> : 20 MHz <u>Test Frequencies for Conducted:</u> Lowest channel: 2412 MHz Middle channel: 2437 MHz Highest channel: 2462 MHz
TC#04 ⁽¹⁾ (n mode)	Power supply (V): V _{nominal} = 3.8 Vdc <u>Channel Bandwidth</u> : 40 MHz <u>Test Frequencies for Conducted:</u> Lowest channel: 2422 MHz Middle channel: 2437 MHz Highest channel: 2452 MHz

Note (1): For spurious emissions for OFDM modes 802.11b, 802.11g and 802.11n a preliminary scan was performed to determine the worst case. The following tables and plots show the results for the worst case in DSSS modulation (802.11b) and OFDM modulation (802.11g).

The data rates of 1Mb/s for 802.11b, 6Mb/s for 802.11g, MCS0 for 802.11n20/n40 were selected based on preliminary testing that identified those rates corresponding to the worst cases.

TEST B.1: MAXIM		OOUTPUT POWER AND ANTENNA GAIN		
	Product standard:	Part 15 Subpart C §15.247 and RSS-247		
LIMITS:	Test standard:	Part 15 Subpart C §15.247(b) and RSS-247 5.4(d)		
LIMITS	ital mandulation in the O			
The e.i.r.p. shall not ex	cceed 4 W (RSS-247).	400 -2463.5 MHZ Dand. T wall (30 dBm).		
TEST S	SETUP			
The EIRP power (dBn power	n) is calculated by add	ding the declared maximum antenna gain to the measured conducted		
	Spec	ctrum Analyzer		

TESTED SAMPLES:		S/01			
TESTED CONDITIONS MODES:			TC#01 (b mod	e)	
TEST RESULTS:			PASS		
Maxim	um declared antenna gain: + 2.5 dBi				
		Lowest frequency 2412 MHz	Middle frequency 2437 MHz	Highest frequency 2462 MHz	
	Maximum conducted power (dBm)	13.05	14.04	12.88	
	Maximum EIRP power (dBm)	15.55	16.54	15.38	
	Measurement uncertainty (dB)	<±0.78			

TESTED SAMPLES: S/01				
TES	STED CONDITIONS MODES:	TC#02 (g mode)		
TEST RESULTS:			PASS	
Maximum	n declared antenna gain: 2.5 dBi			
		Lowest frequency 2412 MHz	Middle frequency 2437 MHz	Highest frequency 2462 MHz
ſ	Maximum conducted power (dBm)	10.99	11.18	10.68
	Maximum EIRP power (dBm)	13.49	13.68	13.18
Measurement uncertainty (dB) <±0.78				

TESTED SAMPLES:	S/01		
TESTED CONDITIONS MODES:	TC#03 (n20 mode)		
TEST RESULTS:	PASS		
Maximum declared antenna gain: 2.5 dBi			
	Lowest frequency 2412 MHz	Middle frequency 2437 MHz	Highest frequency 2462 MHz
	10.05	40.00	10.10

Maximum conducted power (dBm)	12.35	12.96	12.43
Maximum EIRP power (dBm)	14.85	15.46	14.93
Measurement uncertainty (dB)		<±0.78	

TESTED SAMPLES:	S/01
TESTED CONDITIONS MODES:	TC#04 (n40 mode)
TEST RESULTS:	PASS

Maximum declared antenna gain: 2.5 dBi

	Lowest frequency	Middle frequency	Highest frequency
	2412 MHz	2437 MHz	2462 MHz
Maximum conducted power (dBm)	9.00	9.00	8.95
Maximum EIRP power (dBm)	11.50	11.50	11.45
Measurement uncertainty (dB)		<±0.78	

The maximum directional gain of the antenna is less than 6 dBi and therefore the maximum output power is not required to be reduced from the stated values.

TEST B.2: EMISSION LIMITATIONS RADIATED (TRANSMITTER)

LIMITE.	Product standard:	Part 15 Subpart C §15.247 and RSS-247
LIMITS:	Test standard:	Part 15 Subpart C §15.247(d) and RSS-247 5.5

<u>LIMITS</u>

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c) / RSS-Gen):

Frequency Range (MHz)	/ Range Field strength (μV/m) Field strength z) (dBμV/m)		Measurement distance (m)
0.009-0.490	2400/F(kHz)	-	300
0.490-1.705	24000/F(kHz)	-	30
1.705 - 30.0	30	-	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
960 - 25000	500	54	3

The emission limits shown in the above table are based on measurements employing CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

RSS-247. Attenuation below the general field strength limits specified in RSS-Gen is not required

TEST SETUP	

All radiated tests were performed in a semi-anechoic chamber. The measurement antenna is situated at 3 m for the frequency range 30-1000 MHz (Bilog antenna) and at 1m for the frequency range 1-40 GHz (1 GHz-18 GHz and 18 GHz-26 GHz Double ridge horn antennas).

For radiated emissions in the range 1-26 GHz that is performed at a distance closer than the specified distance, an inverse proportionality factor of 20 dB per decade is used to normalize the measured data for determining compliance.

The equipment under test was set up on a non-conductive platform above the ground plane and the situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission.

Measurements were made in both horizontal and vertical planes of polarization.

The field strength is calculated by adding correction factor to the measured level from the spectrum analyzer. This correction factor includes antenna factor, cable loss and pre-amplifiers gain.

The spurious emissions below 1 GHz do not depend on the operating channel and mode selected in the EUT. See worst operation mode selected for this range. (b mode)

Frequency range 1 GHz – 26 GHz

The results in the next tables show the maximum measured levels in the 1-26 GHz range including the restricted bands 2.31-2.39 GHz and 2.4835-2.5 GHz (see next plots).

The radiated spurious signals detected at less than 10 dB respect to the limit for the lowest, middle and highest operating channels are showed in the tables below of each frequency range.

Frequency (MHz)	PK+_CLRWR (dBµV/m)	PK+_MAXH (dBµV/m)	Pol	Margin - PK+ (dB)	Limit - PK+ (dBµV/m)
37.614500	15.3	19.452	Н	20.5	40.0
67.587500	8.8	27.761	V		
136.797000	9.1	23.075	Н	20.4	43.5
239.956500	20.6	28.994	Н		
255.234000	16.5	24.025	V	22.0	46.0
975.071000	30.0	37.292	V	16.7	54.0

TX limits to Spurious Emission FCC15.247 (1GHz to 26 GHz) Restricted Bands AVG Limit

Frequency (MHz)	PK+_MAXH (dBµV/m)	AVG_MAXH (dBμV/m)	Pol	Margin - AVG (dB)	Limit - AVG (dBµV/m)	Comment
2413.500000	105.2	101.4	V			Fundamental
4824.000000	51.6	47.6	V	6.4	54.0	

AVG_MAXH PK+_MAXH

TX limits to Spurious Emission FCC15.247 (1GHz to 26 GHz) Restricted Bands PK Limit TX limits to Spurious Emission FCC15.247 (1GHz to 26 GHz) Restricted Bands AVG Limit

Frequency (MHz)	PK+_MAXH (dBµV/m)	AVG_MAXH (dBµV/m)	Pol	Margin - AVG (dB)	Limit - AVG (dBµV/m)	Comment
2438.500000	105.3	101.4	V			Fundamental
4874.000000	49.9	42.2	V	11.8	54.0	

Frequency (MHz)	PK+_MAXH (dBµV/m)	AVG_MAXH (dBµV/m)	Pol	Margin - AVG (dB)	Limit - AVG (dBµV/m)	Comment
2463.500000	105.7	101.9	V			Fundamental
4924.000000	50.0	41.6	V	12.4	54.0	

TESTED SAMPLES:				S/02							
TESTED CONDITIONS MODES:			TC#02 (g mode)								
-	TEST RESULTS:						PA	SS			
Frequency ra The results in bands 2.31-2. The radiated highest opera	ange 1 GHz – 2 the next tables 39 GHz and 2.4 spurious signa ting channels a	6 GHz show the maxir 835-2.5 GHz (s Is detected at re showed in the	num mea see next p less thar e tables b	asured plots). n 10 dl pelow c	levels in 3 respec f each fr	the 1-	-26 Gl he lim	Hz ranç nit for nge.	ge includi the lowes	ng the r st, midd	estricted lle and
FR	EQUENCY RAI	NGE					1-	18 GH	z		
CHANNEL:	Low (2412 MI	Hz).									
	110 100 90 80 70 90 90 90 90 90 90 90 90 90 9	CH Spurious Emission Spurious Emission	FCC1 5.2 47 FCC1 5.2 47	4G Freque	5G ncv in Hz	estricte Restricte	ed Band	10 G ds PK Lir ds AVG L	nit	18 G	
	Frequency (MHz) 2415.500000	PK+_MAXH AV (dBμV/m) (d 105.7 105.7	G_MAXH IBμV/m) 96.7	Pol V	Margiı (dB)	n -)	Lir (dBı	nit - JV/m) 	Comm Fundame	ental	

Frequency (MHz)	PK+_MAXH (dBµV/m)	AVG_MAXH (dBµV/m)	Pol	Margin - (dB)	Limit - (dBµV/m)	Comment
2439.500000	106.2	97.4	V			Fundamental

