

Report No.: RZA2009-1183

TEST REPORT

OET 65

Product Name	U9-T USB Modem	
Model	Telit U9	
FCC ID	RI7TELITU9	
Client	Dai Telecom	

GENERAL SUMMARY

Product Name	U9-T USB Modem	Model	Telit U9			
FCC ID	RI7TELITU9	Report No.	RZA2009-1183			
Client	Dai Telecom	Dai Telecom				
Manufacturer	Shanghai Suncom Logistics Ltd.	Shanghai Suncom Logistics Ltd.				
Standard(s)	 ANSI/IEEE Std C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65. IEC 62209-2:2008(106/162/CDV): Human exposure to radio frequency fields from handheld and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 2: Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body. (frequency rang of 30MHz to 6GHz) 					
Conclusion	(Stamp) Date of issue: October 15 th , 2009					
Approved by	の估计 Revised by 菱皱	<u>3</u> . Performe	d by			

Ling Minbao

Li Jinchang

Yang Weizhong

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 3of 133

TABLE OF CONTENT

1. Ger	neral Information	5
1.1.	Notes of the test report	5
1.2.	Testing laboratory	5
1.1.	Applicant Information	6
1.2.	Manufacturer Information	6
1.3.	Information of EUT	7
1.4.	Test Date	8
2. Ope	erational Conditions during Test	9
2.1.	General description of test procedures	9
2.2.	GSM Test Configuration	9
2.3.	WCDMA Test Configuration	9
2.4.	HSDPA Test Configuration	
2.5.	HSUPA Test Configuration	
2.6.	Position of module in Portable devices	
2.7.	Picture of host product	.15
3. SAF	R Measurements System Configuration	
3.1.	SAR Measurement Set-up	
3.2.	DASY4 E-field Probe System	18
3.2.		
3.2.	2. E-field Probe Calibration	19
3.3.	Other Test Equipment	.19
3.3.		
3.3.		
3.4.	Scanning procedure	
3.5.	Data Storage and Evaluation	
3.5.	5	
3.5.	5	
3.6.	System check	
3.7.	Equivalent Tissues	26
4. Lab	oratory Environment	26
5. Cha	racteristics of the Test	27
5.1.	Applicable Limit Regulations	27
5.2.	Applicable Measurement Standards	27
6. Cor	ducted Output Power Measurement	28
6.1.	Summary	28
6.2.	Conducted Power Results	28
7. Tes	t Results	30
7.1.	Dielectric Performance	.30
7.2.	System Check	30
7.3.	Summary of Measurement Results	31
7.3.	1. GSM850(GPRS/EGPRS)	31

TA Technology (Shanghai) Co., Ltd. Test Report No. RZA2009-1183

Page 4of 133

	7.3.2.	GSM1900 (GPRS/EGPRS)	33
	7.3.3.	WCDMA Band V (WCDMA/HSDPA/HSUPA)	35
7	.4. Cor	nclusion	36
8.	Measure	ement Uncertainty	37
9.	Main Te	st Instruments	38
ANI	NEX A: T	est Layout	39
ANI	NEX B: S	ystem Check Results	41
ANI	NEX C: O	Graph Results	45
ANI	NEX D: F	robe Calibration Certificate	
ANI	NEX E: D	835V2 Dipole Calibration Certificate	108
ANI	NEX F: D	1900V2 Dipole Calibration Certificate	117
ANI	NEX G: D	DAE4 Calibration Certificate	126
ANI	NEX H: T	he EUT Appearances and Test Configuration	131

1. General Information

1.1. Notes of the test report

TA Technology (Shanghai) Co., Ltd. guarantees the reliability of the data presented in this test report, which is the results of measurements and tests performed for the items under test on the date and under the conditions stated in this test report and is based on the knowledge and technical facilities available at TA Technology (Shanghai) Co., Ltd. at the time of execution of the test.

TA Technology (Shanghai) Co., Ltd. is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the items under test and the results of the test. This report only refers to the item that has undergone the test.

This report standalone dose not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities. This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of **TA Technology (Shanghai) Co., Ltd.** and the Accreditation Bodies, if it applies.

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China
City:	Shanghai
Post code:	201210
Country:	P. R. China
Contact:	Yang Weizhong
Contact: Telephone:	Yang Weizhong +86-021-50791141/2/3
Telephone:	+86-021-50791141/2/3

1.2. Testing laboratory

1.1. Applicant Information

Company:	Dai Telecom
Address:	3 Nirim St., Tel Aviv 67060, Israel
City:	Tel Aviv
Country:	srael
Contact:	Itamar Ben-Nun
Telephone:	+972 3 7914000
Fax:	+ 972 3 7914035

1.2. Manufacturer Information

Company:	Shanghai Suncom Logistics Ltd.
Address:	Building A, SIM Technology Building, No.633, Jinzhong Road, Changning Disdrict, Shanghai P.R. China 200335
City:	Shanghai
Postal Code:	200335
Country:	P.R.China
Telephone:	00 86 21 3252 3464
Fax:	00 86 21 3252 3018

1.3. Information of EUT

General information

	1			
Device type :	portable device			
Exposure category:	uncontrolled environme	ent / general population	on	
Name of EUT:	U9-T USB Modem			
S/N or IMEI	351602000330570			
Device operating configurations :				
	GSM850; (tested)			
Operating mode(s):	GSM1900; (tested)			
	WCDMA Band V; (tes	sted)		
Test Modulation:	(GSM) GMSK, (WCDM	A)QPSK		
GPRS multislot class :	10			
EGPRS multislot class :	10			
Maximum no. of timeslots in uplink:	2			
	Band	Tx (MHz)	Rx (MHz)	
Operating frequency range(a)	GSM 850	824.2 ~ 848.8	869.2 ~ 893.8	
Operating frequency range(s)	GSM 1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8	
	WCDMA Band V	826.4 ~ 846.6	871.4 ~ 891.6	
	GSM 850: 4, tested wit	h power level 5		
Power class	GSM 1900: 1, tested with power level 0			
	WCDMA Band V: 3, tes	sted with maximum o	utput power	
Test sharral	128 -190 -251	(GSM850) (tes	ited)	
Test channel	512 - 661-810 (GSM1900) (tes	sted)	
(Low –Middle –High)	4132 - 4183-4233	(WCDMA Band V)	(tested)	
Antenna type:	Internal antenna			
Lload boot producto:	IBM T61			
Used host products:	BenQ Joybook R55V			

Equipment Under Test (EUT) is a model of USB Modem. During SAR test of the EUT, it was connected to a portable computer. The tests in the band of GSM 850, GSM 1900 and WCDMA Band V are performed in the mode of GPRS, EGPRS, WCDMA HSDPA and HSUPA. The measurements were performed in one host product (IBM T61, BenQ Joybook R55V). IBM T61 laptop has vertical USB slot and BenQ Joybook R55V has horizontal USB slot.

The sample under test was selected by the Client.

Components list please refer to documents of the manufacturer..

No. RZA2009-1183

Page 8of 133

1.4. Test Date

The test is performed from September 27, 2009 to September 28, 2009.

2. Operational Conditions during Test

2.1. General description of test procedures

Connection to the EUT is established via air interface with E5515C, and the EUT is set to maximum output power by E5515C. The antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the EUT. The signal transmitted by the simulator to the antenna feeding point shall be lower than the output power level of the EUT by at least 30 dB.

2.2. GSM Test Configuration

For the body SAR tests for GSM 850 and GSM 1900, a communication link is set up with a System Simulator (SS) by air link. The EUT is commanded to operate at maximum transmitting power. Since the EUT only has the data transfer function, but does not have the speech transfer function. The tests in the band of GSM 850 and GSM 1900 are performed in the mode of GPRS and EGPRS. The GPRS class is 10 for this EUT; it has at most 2 timeslots in uplink. The EGPRS class is 10 for this EUT; it has at most 2 timeslots in uplink.

2.3. WCDMA Test Configuration

As the SAR body tests for WCDMA Band V, we established the radio link through call processing. The maximum output power were verified on high, middle and low channels for each test band according to 3GPP TS 34.121 with the following configuration:

1) 12.2kbps RMC, 64,144,384 kbps RMC with TPC set to all 'all '1's"

2) Test loop Mode 1

For the output power, the configurations for the DPCCH and DPDCH₁ are as followed (EUT do not support the DPDCH_{2-n})

	Channel Bit Rate(kbps)	Channel Symbol Rate(ksps)	Spreading Factor	Spreading Code Number	Bits/Slot
DPCCH	15	15	256	0	10
	15	15	256	64	10
	30	30	128	32	20
	60	60	64	16	40
DPDCH ₁	120	120	32	8	80
	240	240	16	4	160
	480	480	8	2	320
	960	960	4	1	640

Table 1: The configurations for the DPCCH and DPDCH₁

SAR is tested with 12.2kps RMC and not required for other spreading codes (64,144, and 384 kbps RMC) and multiple DPDCH_n , because the maximum output power for each of these other

configurations<0.25dB higher than 12.2kbps RMC and the multiple DPDCH_n is not applicable for the EUT.

2.4. HSDPA Test Configuration

SAR for body exposure configurations is measured according to the" Body SAR Measurements" procedures of 3G device. In addition, body SAR is also measured for HSDPA when the maximum average output of each RF channel with HSDPA active is at least 1/4 dB higher than that measured without HSDPA using 12.2kbps RMC or the maximum SAR 12.2kbps RMC is above 75% of the SAR limit. Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission condition, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms with a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors($\beta c, \beta d$), and HS-DPCCH power offset parameters($\triangle ACK$, $\triangle NACK$, $\triangle CQI$)should be set according to values indicated in the Table below. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Sub-set	ß	ß	β_d	R /R	β_{hs}	CM(dB)	MPR(dB)
Sub-Set	β _c	β_d	(SF)	β_{c}/β_{d}	(note 1, note 2)	(note 3)	
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
2	(note 4)	(note 4)	04	(note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Table 2: Subtests for UMTS Release 5 HSDPA

Note1: \triangle_{ACK} , \triangle_{NACK} and \triangle_{CQI} = 8 \Leftrightarrow $A_{hs} = \beta_{hs}/\beta_c = 30/15$ \Leftrightarrow $\beta_{hs} = 30/15*\beta_c$

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A,and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle_{ACK} and \triangle_{NACK} = 8 (A_{hs=}30/15) with β_{hs} =30/15* β_{c} ,and \triangle_{CQI} = 7 (A_{hs=}24/15) with β_{hs} =24/15* β_{c} .

Note3: CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

Note 4:For subtest 2 the $\beta_c\beta_d$ ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC (TFC1,TF1) to β_c =11/15 and β_d =15/15.

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 11of 133

Table 3: Settings of required H-Set 1 QPSK in HSDPA mode

Parameter	Unit	Value
Nominal Avg. Inf. Bit Rate	kbps	534
Inter-TTI Distance	TTI's	3
Number of HARQ Processes	Processes	2
Information Bit Payload (N _{INF})	Bits	3202
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	4800
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Proc.	SML's	9600
Coding Rate	/	0.67
Number of Physical Channel Codes	Codes	5
Modulation	1	QPSK

Table 4: HSDPA UE category

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter-TTI Interval	Maximum Transport Bits/HS-DSCH	Total Channel
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

2.5. HSUPA Test Configuration

Body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least ¼ dB higher than that measured without HSPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.⁴⁰

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests.⁴¹ The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSPA should be configured according to the β values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of 3 G device.

Sub- set	β _c	β_d	β _d (SF)	β_c/β_d	${\beta_{hs}}^{(1)}$	β_{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15		β _{ed1} 47/15 β _{ed2} 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Table 5: Sub-Test 5 Setup for Release 6 HSUPA

Note 1: Δ_{ACK} , $\Delta NACK$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \underline{\beta}_{hs}/\underline{\beta}_{c} = 30/15 \Leftrightarrow \underline{\beta}_{hs} = 30/15 *\beta_{c}$.

Note 2: CM = 1 for $\beta c/\beta d$ =12/15, $\underline{\beta}_{hs}/\underline{\beta}_{c}$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-

DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the $\beta c/\beta d$ ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 10/15$ and $\beta d = 15/15$.

Note 4: For subtest 5 the $\beta c/\beta d$ ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the

signaled gain factors for the reference TFC (TF1, TF1) to $\beta c = 14/15$ and $\beta d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Figure 5.1g.

Note 6: β ed can not be set directly; it is set by Absolute Grant Value.

No. RZA2009-1183

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E- DCH TTI (ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)	
1	1	4	10	4	7110	0.7296	
0	2	8	2	4	2798	4.4500	
2	2	4	10	4	14484	1.4592	
3	2	4	10	4	14484	1.4592	
	2	8	2	2	5772	2.9185	
4	2	4	10	2	20000	2.00	
5	2	4	10	2	20000	2.00	
6	4	8	2		11484	5.76	
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	2.00	
7	4	8	2		22996	?	
(No DPDCH)	4	4	10	2 SF2 & 2 SF4	20000	?	
with S UE Cat	F4.			Codes shall be tra			

Table 6: HSUPA UE category

2.6. Position of module in Portable devices

The measurements were performed in combination with two host products (IBMT61, BenQ Joybook R55V). IBM T61 laptop has vertical USB slot USB slot, BenQ Joybook R55V laptop has horizontal USB slot.

A test distance of 5mm or less, according to KDB 447498, should be considered for the orientation that can satisfy such requirements.

For each channel, the EUT is tested at the following 5 test positions:

- Test Position 1: The EUT is connected to the portable computer with horizontal USB slot. The back side of the EUT towards the bottom of the flat phantom. (ANNEX H Picture 6-a)
- Test Position 2: The EUT is connected to the portable computer with horizontal USB slot. The front side of the EUT towards the bottom of the flat phantom. (ANNEX H Picture 6-b)
- Test Position 3: The EUT is connected to the portable computer with horizontal USB slot. The top side of the EUT towards the bottom of the flat phantom. (ANNEX H Picture 6-c)
- Test Position 4: The EUT is connected to the portable computer with vertical USB slot. The left side of the EUT towards the bottom of the flat phantom. (ANNEX H Picture 6-d)
- Test Position 5: The EUT is connected to the portable computer with vertical USB slot. The right side of the EUT towards the bottom of the flat phantom. (ANNEX H Picture 6-e)

2.7. Picture of host product

During the test, IBM T61 and BenQ Joybook R55V laptop were used as an assistant to help to setup communication. (See Picture 1)

Picture 1-a: IBM T61 Close

Picture 1-b: IBM T61 Open

Picture 1-c: BenQ Joybook R55V Close

Picture 1-d: BenQ Joybook R55V Open

Picture 1-e: BenQ Joybook R55V with horizontal USB slot

Picture 1-f: IBM T61 with vertical USB slot

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Picture 1-g: a 19cm USB cable Picture 1: Computer as a test assistant

3. SAR Measurements System Configuration

3.1. SAR Measurement Set-up

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- A unit to operate the optical surface detector which is connected to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY4 measurement server.
- The DASY4 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003
- DASY4 software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- System validation dipoles allowing to validate the proper functioning of the system.

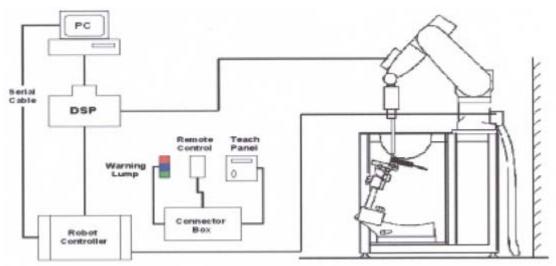


Figure 1 SAR Lab Test Measurement Set-up

3.2. DASY4 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

3.2.1. ET3DV6 Probe Specification

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection System (ET3DV6 only) Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.q., glycol)			
Calibration In air from 10 MHz to 3 GHz In brain and muscle simulating tiss frequencies of 450MHz, 900MHz, MHz, 1950MHz and 2450 MHz. (accuracy±8%)				
Frequency	Calibration for other liquids and frequencies upon request 10 MHz to 2.5 GHz; Linearity: ±0.2 dB (30 MHz to 2.5 GHz)			
Directivity	±0.2 dB in brain tissue (rotation around probe axis) ±0.4 dB in brain tissue (rotation around probe axis)			
Dynamic Range Surface Detection	5u W/g to > 100mW/g; Linearity: ±0.2dB ±0.2 mm repeatability in air and clear liquids over diffuse reflecting surface (ET3DV6 only)			
Dimensions	Overall length: 330mm Tip length: 16mm Body diameter: 12mm Tip diarneter: 6.8mm Distance from probe tip to dipole			
Application	centers: 2.7mm General dosimetry up to 2.5GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary Phantoms			

Figure 2 ET3DV6 E-field Probe

Figure 3 ET3DV6 E-field probe

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 19of 133

3.2.2. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy was evaluated and found to be better than \pm 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta \mathbf{T}}{\Delta \mathbf{t}}$$

Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. Or

$$\mathbf{SAR} = \frac{|\mathbf{E}|^2 \sigma}{\rho}$$

Where:

 σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

3.3. Other Test Equipment

3.3.1. Device Holder for Transmitters

The DASY device holder is designed to cope with the die rent positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the

Figure 4 Device Holder

inference of the clamp on the test results could thus be lowered.

3.3.2. Phantom

The Generic Twin Phantom is constructed of a fiberglass shell integrated in a wooden Figure. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

TA Technology (Shanghai) Co., Ltd. Test Report

Shell Thickness Filling Volume Dimensions Aailable 2±0.1 mm Approx. 20 liters 810 x l000 x 500 mm (H x L x W) Special

Figure 5 Generic Twin Phantom

3.4. Scanning procedure

The DASY4 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

- The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.
- The "surface check" measurement tests the optical surface detection system of the DASY4 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

• Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 10 mm x 10 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

• Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY4 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

• A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

3.5. Data Storage and Evaluation

3.5.1. Data Storage

The DASY4 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

TA Technology (Shanghai) Co., Ltd.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity - Conversion factor - Diode compression point	Normi, ai ₀ , a _{i1} , a _{i2} ConvF _i Dcp _i
Device parameters:	- Frequency - Crest factor	f cf
Media parameters:	- Conductivity	

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With	V_i = compensated signal of channel i	(i = x, y, z)
	U _i = input signal of channel i	(i = x, y, z)
	<i>cf</i> = crest factor of exciting field	(DASY parameter)
	<i>dcp</i> _i = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:		$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$	
H-field probes:		$H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2}) / f$	
With	Vi	= compensated signal of channel i	(i = x, y, z)
	Norm _i	 sensor sensitivity of channel i [mV/(V/m)²] for E-field Probes 	(i = x, y, z)
ConvF		= sensitivity enhancement in solution	
	a _{ij}	= sensor sensitivity factors for H-field probes	
f = carrier frequency [GHz]		= carrier frequency [GHz]	
	E _i	= electric field strength of channel i in V/m	
I	H _i	= magnetic field strength of channel i in A/m	

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

SAR =
$$(E_{tot}^2 \cdot ...) / (.... 1000)$$

Page 24of 133

- with **SAR** = local specific absorption rate in mW/g
 - **E**_{tot} = total field strength in V/m
 - = conductivity in [mho/m] or [Siemens/m]
 - = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

*E*_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

No. RZA2009-1183

3.6. System check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the Table 11.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (± 10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY4 system.

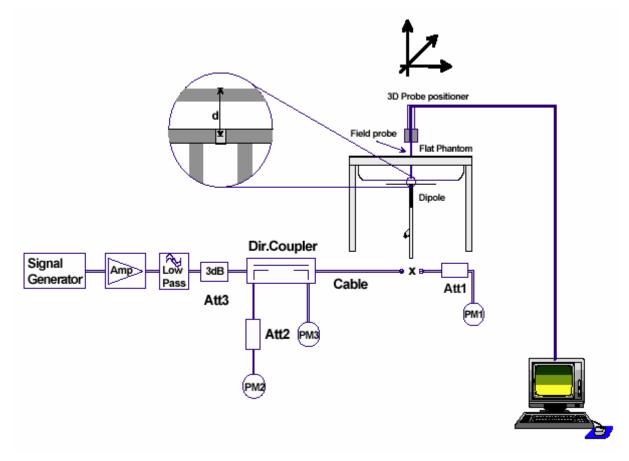


Figure 6 System Check Set-up

3.7. Equivalent Tissues

The liquid is consisted of water, salt, Glycol, Sugar, Preventol and Cellulose. The liquid has previously been proven to be suited for worst-case. The Table 7 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the OET 65.

MIXTURE%	FREQUENCY(Body)835MHz
Water	52.5
Sugar	45
Salt	1.4
Preventol	0.1
Cellulose	1.0
Dielectric Parameters Target Value	f=835MHz ε=55.2 σ=0.97

MIXTURE%	FREQUENCY (Body) 1900MHz		
Water	69.91		
Glycol monobutyl	29.96		
Salt	0.13		
Dielectric Parameters Target Value	f=1900MHz ε=53.3 σ=1.52		

4. Laboratory Environment

Table 8: The Ambient Conditions during Test

Temperature	Min. = 20°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standards.				
Reflection of surrounding objects is minimize	ed and in compliance with requirement of standards.			

5. Characteristics of the Test

5.1. Applicable Limit Regulations

ANSI/IEEE Std C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

5.2. Applicable Measurement Standards

OET Bulletin 65 supplement C, published June 2001 including DA 02-1438, published June 2002: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits. Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65.

IEC 62209-2:2008(106/162/CDV):: Human exposure to radio frequency fields from handheld and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 2: Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body. (frequency rang of 30MHz to 6GHz)

6. Conducted Output Power Measurement

6.1. Summary

The DUT is tested using an E5515C communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power. Conducted output power was measured using an integrated RF connector and attached RF cable. This result contains conducted output power for the EUT.

6.2. Conducted Power Results

Table 9: Conducted Power Measurement Results

GSM 850+GPRS		Conducted Power			
		Channel 128	Channel 190	Channel 251	
		(824.2MHz)	(836.6MHz)	(848.8MHz)	
1 timeslot	Before Test (dBm)	32.33	32.34	32.36	
T timesiot	After Test (dBm)	32.34	32.33	32.35	
2 timeslots	Before Test (dBm)	32.24	32.23	32.25	
2 timesiots	After Test (dBm)	32.23	32.24	32.24	
			Conducted Power		
GSM 8	350+EGPRS	Channel 128	Channel 190	Channel 251	
		(824.2MHz)	(836.6MHz)	(848.8MHz)	
1 timeslot	Before Test (dBm)	32.33	32.34	32.36	
T timesiot	After Test (dBm)	32.32	32.33	32.35	
2 timeslots	Before Test (dBm)	32.24	32.25	32.24	
2 timesiots	After Test (dBm)	32.23	32.24	32.24	
		Conducted Power			
GSM 1	1900+GPRS	Channel 512	Channel 661	Channel 810	
		(1850.2MHz)	(1880MHz)	(1909.8MHz)	
1 timeslot	Before Test (dBm)	28.69	28.72	28.58	
T timesiot	After Test (dBm)	28.68	28.71	28.57	
2 timeslots	Before Test (dBm)	28.67	28.71	28.56	
2 (11103)013	After Test (dBm)	28.66	28.70	28.55	
		Conducted Power			
GSM 1	900+EGPRS	Channel 512	Channel 661	Channel 810	
		(1850.2MHz)	(1880MHz)	(1909.8MHz)	
1 timeslot	Before Test (dBm)	28.69	28.72	28.58	
	After Test (dBm)	28.67	28.70	28.56	
2 timeslots	Before Test (dBm)	28.65	28.71	28.58	
	After Test (dBm)	28.66	28.72	28.55	
WCD	MA Band V	Conducted Power			

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 29of 133

		Channel 4132	Channel 4183	Channel 4233
		(826.4MHz)	(836.6MHz)	(846.6MHz)
	Before Test (dBm)	21.41	21.72	21.54
12.2kbps RMC	After Test (dBm)	21.40	21.71	21.53
	Before Test (dBm)	21.34	21.62	21.67
64kbps RMC	After Test (dBm)	21.40	21.71	21.63
	Before Test (dBm)	21.51	21.79	21. 56
144kbps RMC	After Test (dBm)	21.50	21.75	21.57
	Before Test (dBm)	21.51	21.81	21.47
384kbps RMC	After Test (dBm)	21.52	21.81	21.49
			Conducted Power	
WCDMA E	and V+HSDPA	Channel 4132	Channel 4183	Channel 4233
		(826.4MHz)	(836.6MHz)	(846.6MHz)
Sub Test - 1	Before Test (dBm)	21.38	21.70	21.45
Sub lest - I	After Test (dBm)	21.37	21.71	21.45
Sub Test 2	Before Test (dBm)	21.29	21.63	21.36
Sub Test - 2	After Test (dBm)	21.30	21.64	21.35
Sub Test - 3	Before Test (dBm)	21.08	21.33	21.21
Sub lest - 5	After Test (dBm)	21.07	21.32	21.20
Sub Test - 4	Before Test (dBm)	21.03	21.32	21.12
Sub lest - 4	After Test (dBm)	21.02	21.31	21.11
Conducted Power				
	and V+HSUPA	Channel 4132	Channel 4183	Channel 4233
WODW/(E		(826.4MHz)	(836.6MHz)	(846.6MHz)
Sub Test - 1	Before Test (dBm)	20.53	20.62	20.84
Sub lest - I	After Test (dBm)	20.52	20.61	20.83
Sub Test - 2	Before Test (dBm)	18.20	18.42	18.52
Sub lest - 2	After Test (dBm)	18.21	18.41	18.51
Sub Test - 3	Before Test (dBm)	19.28	19.46	19.54
	After Test (dBm)	19.27	19.45	19.53
Sub Test - 4	Before Test (dBm)	18.53	18.67	18.75
	After Test (dBm)	18.54	18.68	18.74
Sub Test - 5	Before Test (dBm)	20.64	20.75	20.98
	After Test (dBm)	20.63	20.74	20.97

7. Test Results

7.1. Dielectric Performance

Table 10: Dielectric Performance of Body Tissue Simulating Liquid

Frequency	Description	Dielectric Par	Temp		
	Description	٤ _r	σ(s/m)	°C	
	Target value	55.20	0.97	,	
835MHz	±5% window	52.44 — 57.96	0.92 — 1.02	1	
(body)	Measurement value	55.07	1.02	21.5	
	2009-9-27	55.07	1.02	21.0	
	Target value	53.30	1.52	1	
1900MHz (body)	±5% window	50.64 — 55.97	1.44 — 1.60	/	
	Measurement value	54.02 4.54		01.7	
	2009-9-28	51.93	1.54	21.7	

7.2. System Check

Table 11: System Check for Body tissue simulating liquid

Frequency	Description	SAR	Dielectric Parameters		Temp	
		10g	1g	٤ _r	σ(s/m)	°C
835MHz	Recommended value ±10% window	1.58 1.42 — 1.74	2.41 2.17 — 2.65	54.60	0.99	/
03314112	Measurement value 2009-9-27	1.59	2.42	55.07	1.02	21.9
1900 MHz	Recommended value ±10% window	5.18 4.66 — 5.70	10.20 9.18 — 11.22	52.90	1.55	/
1900 MHZ	Measurement value 2009-9-28	5.15	10.01	51.93	1.54	21.7

Note: 1. The graph results see ANNEX B.

2. Recommended Values used derive from the calibration certificate and 250 mW is used as feeding power to the calibrated dipole.

Page 31of 133

7.3. Summary of Measurement Results

7.3.1. GSM850(GPRS/EGPRS)

Table 12: SAR Values [GSM850(GPRS/EGPRS)]

Limit of SAR (W/kg)		10 g Average	1g Average	Power Drift(dB)		
		2.0	1.6	± 0.21	Graph Results	
Test Case Of Body			Measurement	Result (W/kg)		Power
Different Test Position	Different Timeslots	Channel	10 g Average	1 g Average	Drift(dB)	
		Be	enQ Joybook R55V			
	2 timeslots	High	0.445	0.685	-0.199	Figure 11
Test Position 1		Middle	0.447	0.684	-0.015	Figure 13
Test Position T		Low	0.375	0.576	-0.070	Figure 15
	1 timeslot	Middle	0.243	0.372	0.071	Figure 17
Test Position 2	2 timeslots	Middle	0.374	0.652	-0.070	Figure 19
Test Position 3	2 timeslots	Middle	0.099	0.209	-0.059	Figure 21
			IBM T61			
Test Position 4	2 timeslots	Middle	0.214	0.375	-0.134	Figure 23
Test Position 5	2 timeslots	Middle	0.330	0.521	-0.048	Figure 25
Worst case position of GPRS with EGPRS						
Test Position 1	2 timeslots	High	0.459	0.709	0.179	Figure 27

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB (< 0.8W/kg) lower than the SAR limit, testing at the high and low channels is optional.</p>

3. Upper and lower frequencies were measured at the worst case.

TA Technology (Shanghai) Co., Ltd. Test Report

Table 13: SAR Values [GSM850, enhanced energy coupling at increased separation distances]

Different Test Position	Distance of EUT to Phantom	Channel	Measurement Result (W/kg)	50% of initial position SAR (W/kg)	125% of initial position SAR (W/kg)
	initial position		0.776		
Test Position 1	5mm	High	0.453	0.388	0.970
	10mm		0.291		

Note: 1. The probe tip location is fixed at the distance of one half the probe tip diameter from the phantom surface.

2. when the device position with the highest point SAR is > 25% of that measured at the initial position, a complete 1-g SAR evaluation is required for this configuration.

3. A single point SAR is measured for each of these device positions until the SAR is less than 50% of that measured at the initial position.

No. RZA2009-1183

Page 33of 133

7.3.2. GSM1900 (GPRS/EGPRS)

Table 14: [GSM1900 (GPRS/EGPRS)]

Limit of SAR (W/kg)		10 g Average	1g Average	Power Drift(dB)		
		2.0	1.6	± 0.21	Graph Results	
Test Case Of Body			Measurement	Result (W/kg)		Power
Different Test Position	Different Timeslots	Channel	10 g Average	1 g Average	Drift(dB)	
		Be	enQ Joybook R55V			
Test Position 1	2 timeslots	Middle	0.408	0.716	0.142	Figure 29
	1 timeslot	Middle	0.157	0.287	-0.036	Figure 31
		High	0.540	1.060	0.014	Figure 33
Test Position 2	2 timeslots	Middle	0.561	1.070	0.070	Figure 35
		Low	0.553	1.070	-0.068	Figure 37
Test Position 3	2 timeslots	Middle	0.095(max)	0.175(max)	0.092	Figure 39
			IBM T61			
Test Position 4	2 timeslots	Middle	0.179	0.370	-0.089	Figure 41
Test Position 5	2 timeslots	Middle	0.181	0.333	-0.090	Figure 43
Worst case position of GPRS with EGPRS						
Test Position 2	2 timeslots	Middle	0.465	0.903	0.040	Figure 45

Note: 1.The value with blue color is the maximum SAR Value of each test band.

2. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB (< 0.8W/kg) lower than the SAR limit, testing at the high and low channels is optional.</p>

- 3. Upper and lower frequencies were measured at the worst case.
- 4. The (max) labeling indicates that during the grid scanning an additional peak was found which was within 2.0dB of the highest peak. The value of the highest cube is given in the table above; the value from the second assessed cube is given in the SAR distribution plots (See ANNEX C).

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 34of 133

Table 15: SAR Values [GSM1900, enhanced energy coupling at increased separation distances]

Different Test Position	Distance of EUT to Phantom	Channel	Measurement Result (W/kg)	50% of initial position SAR (W/kg)	125% of initial position SAR (W/kg)
Test Position 2	initial position	Middle	1.342	0.671	1.678
	5mm	Midule	0.368	0.071	1.070

Note: 1. The probe tip location is fixed at the distance of one half the probe tip diameter from the phantom surface.

2. when the device position with the highest point SAR is > 25% of that measured at the initial position, a complete 1-g SAR evaluation is required for this configuration.

3. A single point SAR is measured for each of these device positions until the SAR is less than 50% of that measured at the initial position.

No. RZA2009-1183

Page 35of 133

7.3.3. WCDMA Band V (WCDMA/HSDPA/HSUPA) Table 16: SAR Values [WCDMA Band V (WCDMA/HSDPA/HSUPA)]

Limit of SAR (W/kg)		10 g Average 2.0	1g Average 1.6	Power Drift (dB) ± 0.21	Graph		
Test Case Of Body		Measurement Result (W/kg)		Power	Results		
		10 g	1 g	Drift (dB)			
Different Test Position	Channel	Average	Average	(UB)			
	E	enQ Joybook R5	5V				
	High	0.246	0.379	0.077	Figure 47		
Test Position 1	Middle	0.227	0.349	0.015	Figure 49		
	Low	0.206	0.316	0.057	Figure 51		
Test Position 2	Middle	0.194	0.338	0.042	Figure 53		
Test Position 3	Middle	0.060	0.130	0.044	Figure 55		
		IBM T61					
Test Position 4	Middle	0.119	0.211	0.111	Figure 57		
Test Position 5	Middle	0.168	0.265	0.002	Figure 59		
	Worst case position of RMC with HSDPA						
Test Position 1	High	0.245	0.374	0.021	Figure 61		
Worst case position of RMC with HSUPA							
Test Position 1	High	0.141	0.216	-0.038	Figure 63		

Note: 1. The value with blue color is the maximum SAR Value of each test band.

2. The SAR test shall be performed at the high, middle and low frequency channels of each operating mode. If the SAR measured at mid-band channel for each test configuration is at least 3.0 dB (< 0.8W/kg) lower than the SAR limit, testing at the high and low channels is optional.</p>

3. Upper and lower frequencies were measured at the worst case.

No. RZA2009-1183

Table 17: SAR Values [WCDMA Band V, enhanced energy coupling at increased separation distances]

Different Test Position	Distance of EUT to Phantom	Channel	Measurement Result (W/kg)	50% of initial position SAR (W/kg)	125% of initial position SAR (W/kg)
	initial position		0.407		
Test Position 1	5mm	High	0.234	0.204	0.508
	10mm		0.155		

Note: 1. The probe tip location is fixed at the distance of one half the probe tip diameter from the phantom surface.

2. when the device position with the highest point SAR is > 25% of that measured at the initial position, a complete 1-g SAR evaluation is required for this configuration.

3. A single point SAR is measured for each of these device positions until the SAR is less than 50% of that measured at the initial position.

7.4. Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 5.2 of this report. Maximum localized SAR_{1g} is 1.07 W/kg (body) that is below exposure limits specified in the relevant standards cited in Clause 5.1 of this test report.

Page 37of 133

8. Measurement Uncertainty

No.	source	Туре	Uncertaint y Value (%)	Probability Distributio n	k	Ci	Standard ncertainty $u_i'(\%)$	Degree of freedom V _{eff} or v _i
1	System repetivity	А	0.5	Ν	1	1	0.5	9
Measurement system								
2	probe calibration	В	5.9	Ν	1	1	5.9	8
3	axial isotropy of the probe	В	4.7	R	$\sqrt{3}$	$\sqrt{0.5}$	1.9	∞
4	Hemispherical isotropy of the probe	В	9.4	R	$\sqrt{3}$	$\sqrt{0.5}$	3.9	8
6	boundary effect	В	1.9	R	$\sqrt{3}$	1	1.1	8
7	probe linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞
8	System detection limits	В	1.0	R	$\sqrt{3}$	1	0.6	8
9	readout Electronics	В	1.0	Ν	1	1	1.0	∞
10	response time	В	0	R	$\sqrt{3}$	1	0	8
11	integration time	В	4.32	R	$\sqrt{3}$	1	2.5	8
12	noise	В	0	R	$\sqrt{3}$	1	0	∞
13	RF Ambient Conditions	В	3	R	$\sqrt{3}$	1	1.73	∞
14	Probe Positioner Mechanical Tolerance	В	0.4	R	$\sqrt{3}$	1	0.2	8
15	Probe Positioning with respect to Phantom Shell	В	2.9	R	$\sqrt{3}$	1	1.7	8
16	Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	В	3.9	R	$\sqrt{3}$	1	2.3	œ
Test sample Related								
17	-Test Sample Positioning	А	2.9	Ν	1	1	2.9	5
18	-Device Holder Uncertainty	А	4.1	Ν	1	1	4.1	5
19	-Output Power Variation - SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.9	8
	Physical parameter							

No. RZA2009-1183

Page 38of 133

20	-phantom	В	4.0	R	$\sqrt{3}$	1	2.3	∞
21	-liquid conductivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6 4	1.8	∞
22	-liquid conductivity (measurement uncertainty)	В	5.0	Ν	1	0.6 4	3.2	∞
23	-liquid permittivity (deviation from target)	В	5.0	R	$\sqrt{3}$	0.6	1.7	∞
24	-liquid permittivity (measurement uncertainty)	В	5.0	Ν	1	0.6	3.0	∞
Combined standard uncertainty		$u_{c}^{'} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$					12.0	
Expanded uncertainty (confidence interval of 95 %)		$u_e = 2u_c$		Ν	k=2		24.0	

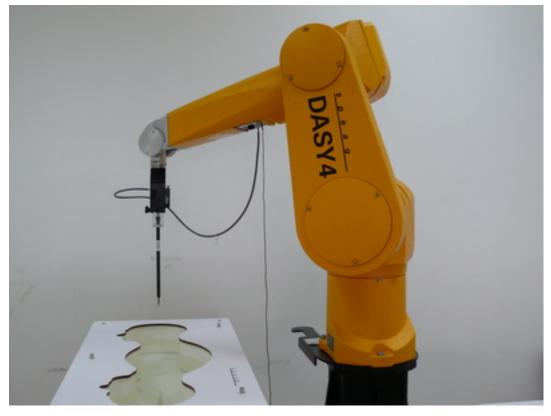
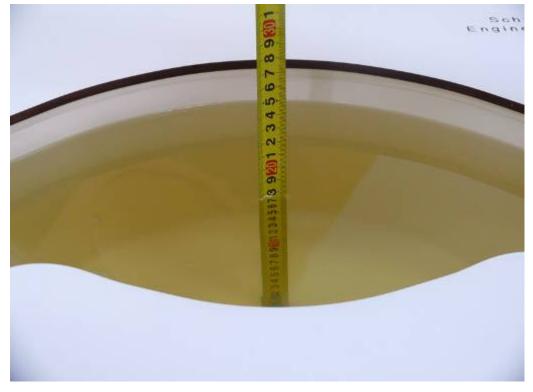
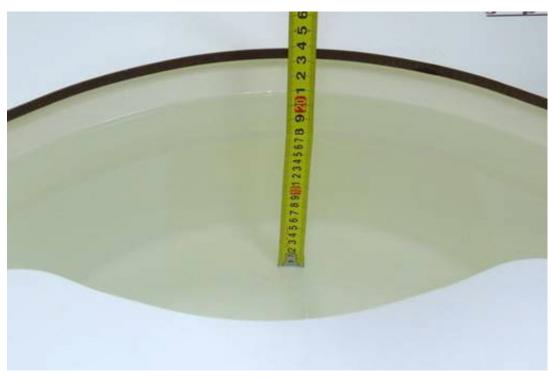

9. Main Test Instruments

Table 18: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent 8753E	US37390326	September 13, 2009	One year
02	Dielectric Probe Kit	Agilent 85070E	US44020115	No Calibration Requested	
03	Power meter	Agilent E4417A	GB41291714	March 14, 2009	One year
04	Power sensor	Agilent 8481H	MY41091316	March 14, 2009	One year
05	Signal Generator	HP 8341B	2730A00804	September 13, 2009	One year
06	Amplifier	IXA-020	0401	No Calibration Requested	
07	BTS	E5515C	MY48360988	December 16, 2008	One year
08	E-field Probe	ET3DV6	1737	November 25, 2008	One year
09	DAE	DAE4	452	November 18, 2008	One year
10	Validation Kit 835MHz	D835V2	4d020	July 15, 2009	One year
11	Validation Kit 1900MHz	D1900V2	5d060	July 15, 2009	One year

*****END OF REPORT BODY*****


ANNEX A: Test Layout


Picture 2: Specific Absorption Rate Test Layout

No. RZA2009-1183

Page 40of 133

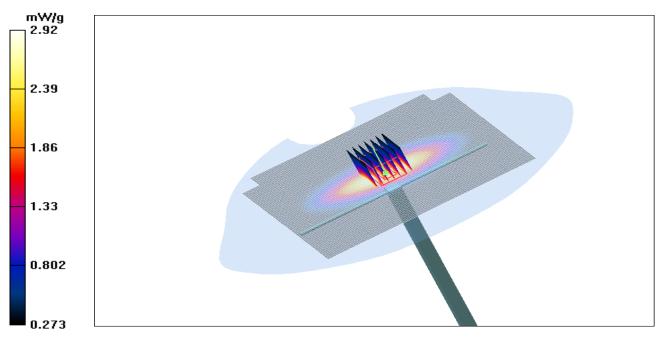
Picture 3: Liquid depth in the flat Phantom (835MHz)

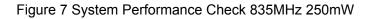
Picture 4: Liquid depth in the flat Phantom (1900 MHz)

ANNEX B: System Check Results

System Performance Check at 835 MHz

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d020 Date/Time: 9/27/2009 6:45:49 AM Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 1.02 mho/m; ϵ_r = 55.07; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 – SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


d=15mm, Pin=250mW/Area Scan (101x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.94 mW/g


d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.7 V/m; Power Drift = -0.024 dB Peak SAR (extrapolated) = 3.59 W/kg

SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.59 mW/g

Maximum value of SAR (measured) = 2.92 mW/g

No. RZA2009-1183

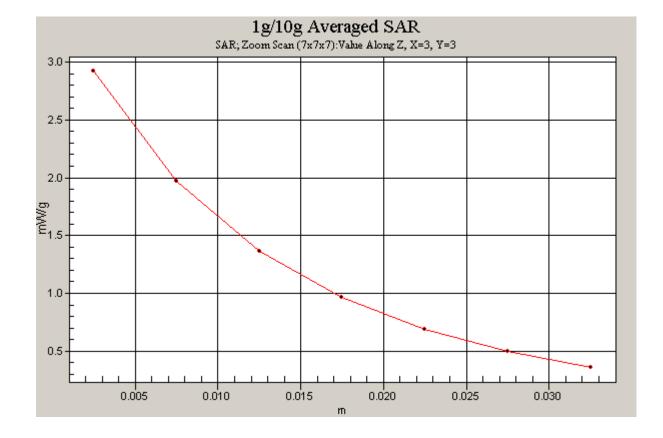


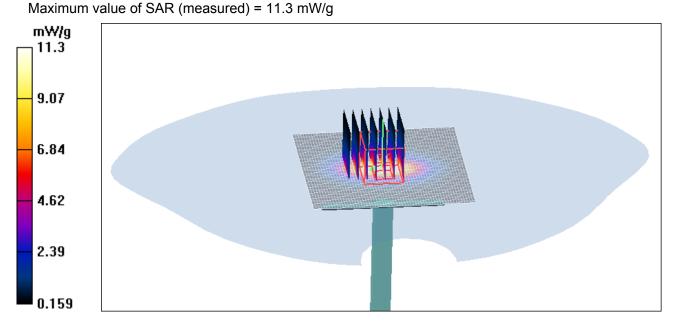
Figure 8 Z-Scan at power reference point (system Check at 835 MHz dipole)

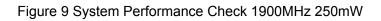
No. RZA2009-1183

TA Technology (Shanghai) Co., Ltd. Test Report

Page 43of 133

System Performance Check at 1900 MHz DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d060 Date/Time: 9/28/2009 10:30:49 AM Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.54 mho/m; ϵ_r = 51.93; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 – SN1737; ConvF(4.60, 4.60, 4.60); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


d=10mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.9 mW/g


d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.0 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 10.01 mW/g; SAR(10 g) = 5.15 mW/g

No. RZA2009-1183

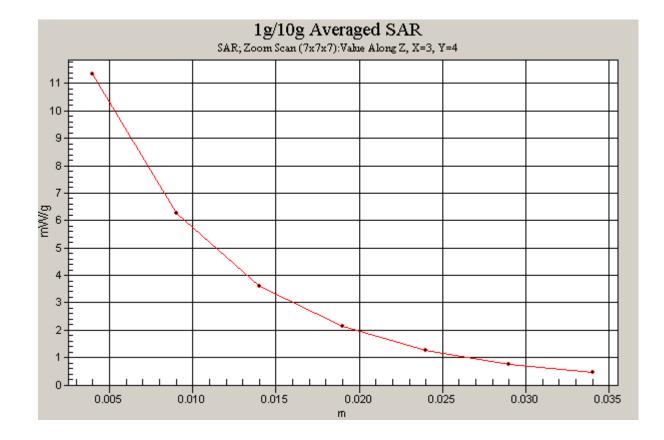


Figure 10 Z-Scan at power reference point (system Check at 1900 MHz dipole)

ANNEX C: Graph Results

GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 High

Date/Time: 9/27/2009 4:14:03 PM Communication System: GSM850 + GPRS(2Up); Frequency: 848.8 MHz;Duty Cycle: 1:4 Medium parameters used: f = 849 MHz; σ = 1.03 mho/m; ε_r = 54.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 High/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.775 mW/g

Test Position 1 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 28.2 V/m; Power Drift = -0.199 dB Peak SAR (extrapolated) = 0.990 W/kg

SAR(1 g) = 0.685 mW/g; SAR(10 g) = 0.445 mW/g

Maximum value of SAR (measured) = 0.763 mW/g

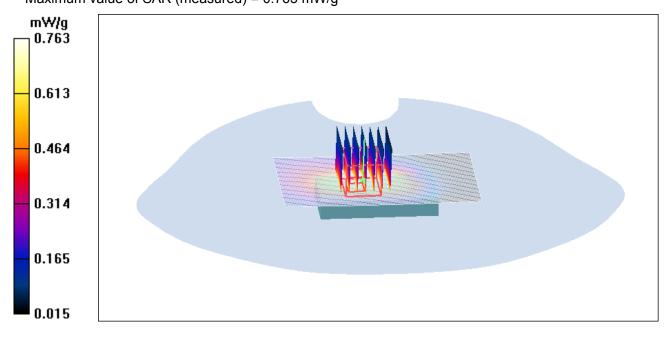


Figure 11 GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Channel 251

No. RZA2009-1183

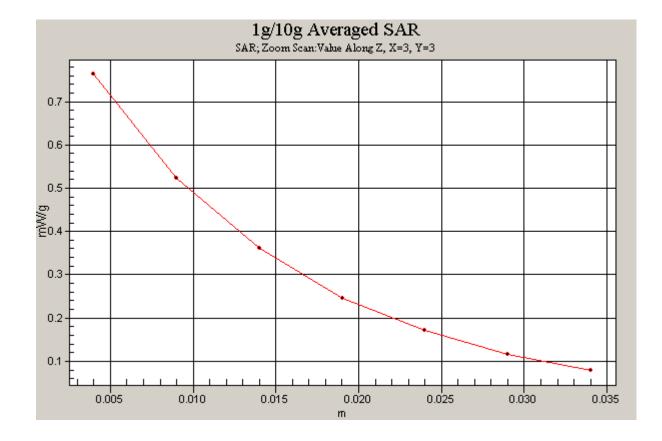


Figure 12 Z-Scan at power reference point [GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Channel 251]

GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Middle

Date/Time: 9/27/2009 3:36:44 PM Communication System: GSM850 + GPRS(2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 837 MHz; σ = 1.02 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.738 mW/g

Test Position 1 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 27.5 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 0.991 W/kg

SAR(1 g) = 0.684 mW/g; SAR(10 g) = 0.447 mW/g

Maximum value of SAR (measured) = 0.732 mW/g

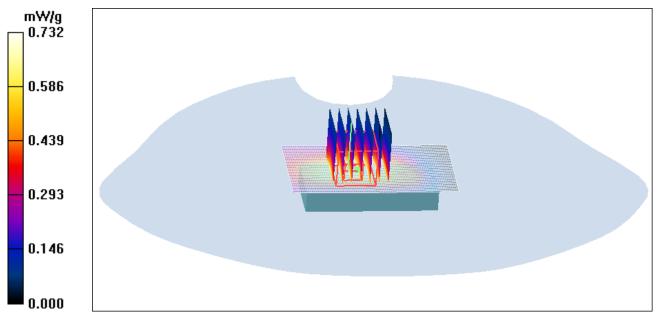


Figure 13 GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Channel 190

No. RZA2009-1183

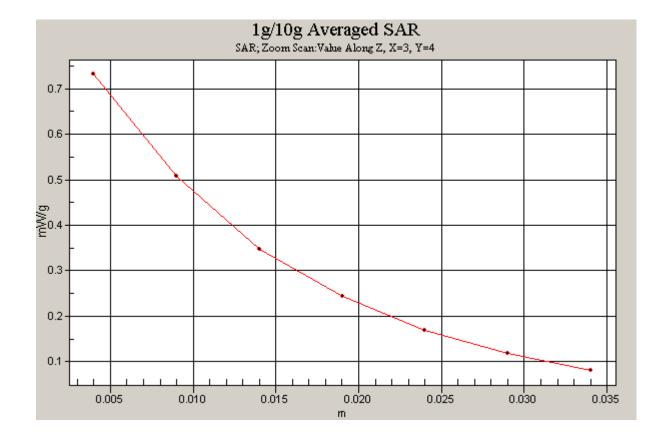


Figure 14 Z-Scan at power reference point [GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Channel 190]

GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Low

Date/Time: 9/27/2009 9:15:34 AM Communication System: GSM850 + GPRS(2Up); Frequency: 824.2 MHz;Duty Cycle: 1:4 Medium parameters used (interpolated): f = 824.2 MHz; σ = 1.01 mho/m; ϵ_r = 55.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5°C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.703 mW/g

Test Position 1 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 28.8 V/m; Power Drift = -0.070 dB Peak SAR (extrapolated) = 0.835 W/kg SAR(1 g) = 0.576 mW/g; SAR(10 g) = 0.375 mW/g

Maximum value of SAR (measured) = 0.624 mW/g

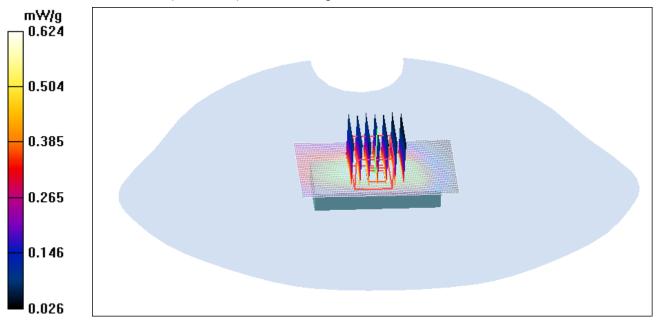


Figure 15 GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Channel 128

No. RZA2009-1183

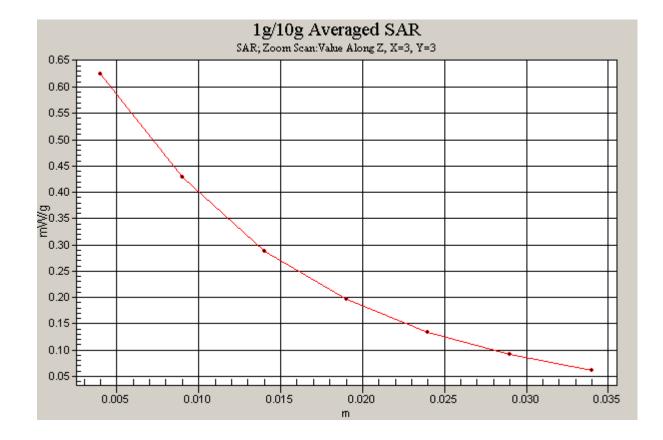


Figure 16 Z-Scan at power reference point [GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Channel 128]

GSM 850 GPRS (1 timeslot in uplink) with BenQ Joybook R55V Test Position 1 Middle

Date/Time: 9/27/2009 3:53:58 PM Communication System: GSM850 + GPRS(1Up); Frequency: 836.6 MHz;Duty Cycle: 1:8 Medium parameters used: f = 837 MHz; σ = 1.02 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.413 mW/g

Test Position 1 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.6 V/m; Power Drift = 0.071 dB Peak SAR (extrapolated) = 0.526 W/kg

SAR(1 g) = 0.372 mW/g; SAR(10 g) = 0.243 mW/g

Maximum value of SAR (measured) = 0.400 mW/g

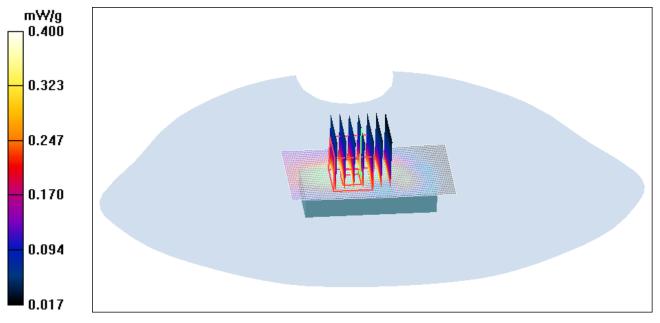


Figure 17 GSM 850 GPRS (1 timeslot in uplink) with BenQ Joybook R55V Test Position 1 Channel 190

No. RZA2009-1183

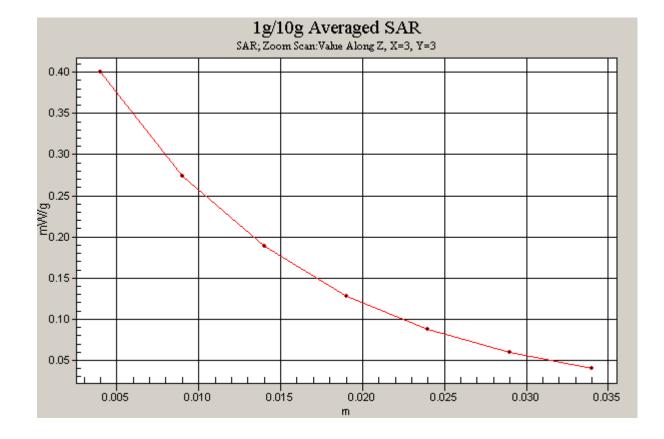


Figure 18 Z-Scan at power reference point [GSM 850 GPRS (1 timeslot in uplink) with BenQ Joybook R55V Test Position 1 Channel 190]

GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Middle

Date/Time: 9/27/2009 1:41:05 PM Communication System: GSM850 + GPRS(2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 837 MHz; σ = 1.02 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 2 Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.742 mW/g

Test Position 2 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 25.1 V/m; Power Drift = -0.070 dB Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.652 mW/g; SAR(10 g) = 0.374 mW/g

Maximum value of SAR (measured) = 0.684 mW/g

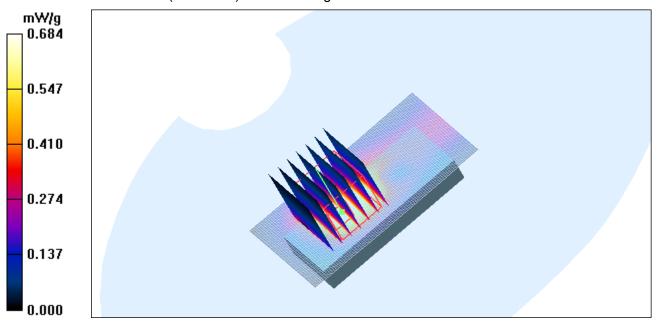


Figure 19 GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Channel 190

No. RZA2009-1183

Page 54of 133

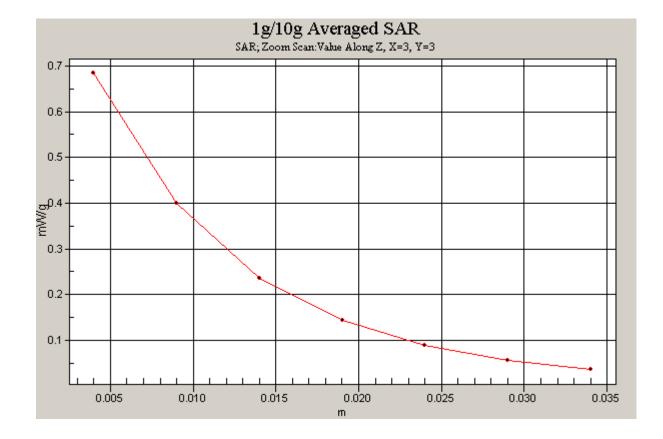


Figure 20 Z-Scan at power reference point [GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Channel 190]

GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 3 Middle

Date/Time: 9/27/2009 10:39:59 PM Communication System: GSM850 + GPRS(2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 837 MHz; σ = 1.02 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 3 Middle 2/Area Scan (61x61x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.229 mW/g

Test Position 3 Middle 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.9 V/m; Power Drift = -0.059 dB Peak SAR (extrapolated) = 0.592 W/kg SAR(1 g) = 0.209 mW/g; SAR(10 g) = 0.099 mW/g

Maximum value of SAR (measured) = 0.223 mW/g

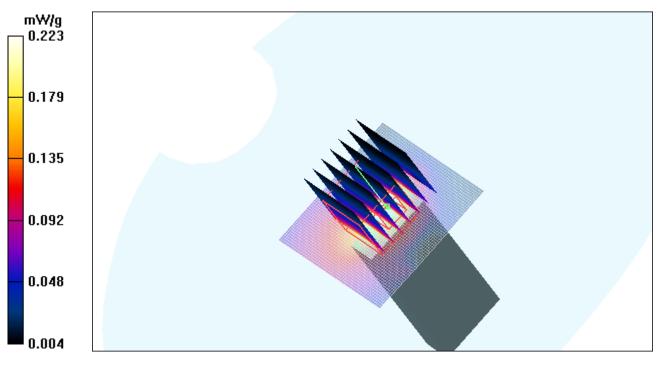


Figure 21 GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 3 Channel

No. RZA2009-1183

Page 56of 133

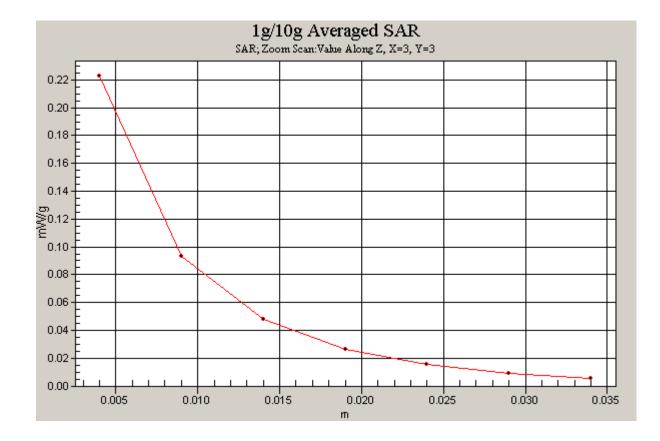


Figure 22 Z-Scan at power reference point [GSM 850 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 3 Channel 190] No. RZA2009-1183

GSM 850 GPRS (2 timeslots in uplink) with IBM T61 Test Position 4 Middle

Date/Time: 9/27/2009 11:19:54 AM Communication System: GSM850 + GPRS(2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 837 MHz; σ = 1.02 mho/m; ε_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 4 Middle/Area Scan (51x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.426 mW/g

Test Position 4 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.8 V/m; Power Drift = -0.134 dB Peak SAR (extrapolated) = 0.682 W/kg SAR(1 g) = 0.375 mW/g; SAR(10 g) = 0.214 mW/g Maximum value of SAR (measured) = 0.424 mW/g

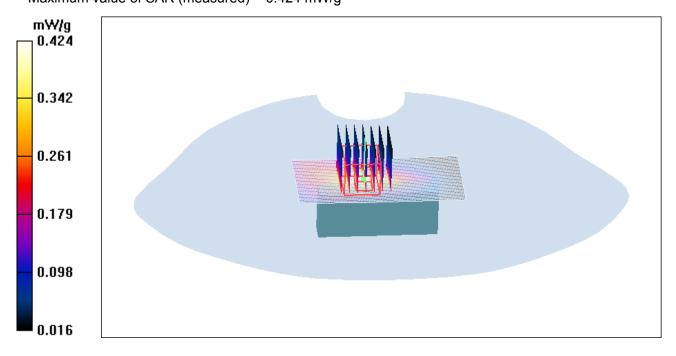


Figure 23 GSM 850 GPRS (2 timeslots in uplink) with IBM T61 Test Position 4 Channel 190

No. RZA2009-1183

Page 58of 133

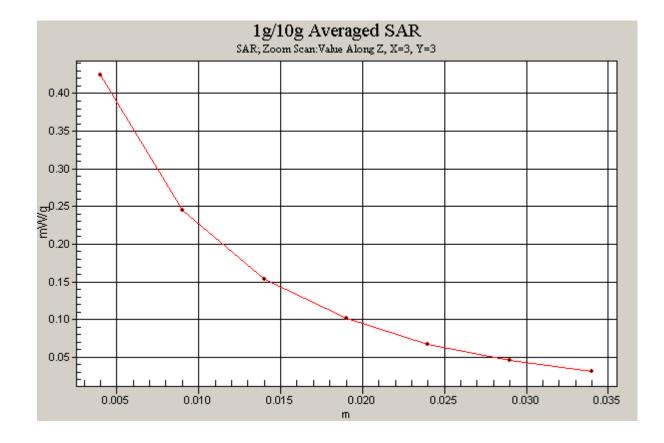


Figure 24 Z-Scan at power reference point [GSM 850 GPRS (2 timeslots in uplink) with IBM T61 Test Position 4 Channel 190] No. RZA2009-1183

GSM 850 GPRS (2 timeslots in uplink) with IBM T61 Test Position 5 Middle

Date/Time: 9/27/2009 11:40:17 AM Communication System: GSM850 + GPRS(2Up); Frequency: 836.6 MHz;Duty Cycle: 1:4 Medium parameters used: f = 837 MHz; σ = 1.02 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 5 Middle/Area Scan (51x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.563 mW/g

Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.9 V/m; Power Drift = -0.048 dB Peak SAR (extrapolated) = 0.835 W/kg SAR(1 g) = 0.521 mW/g; SAR(10 g) = 0.330 mW/g Maximum value of SAR (measured) = 0.572 mW/g

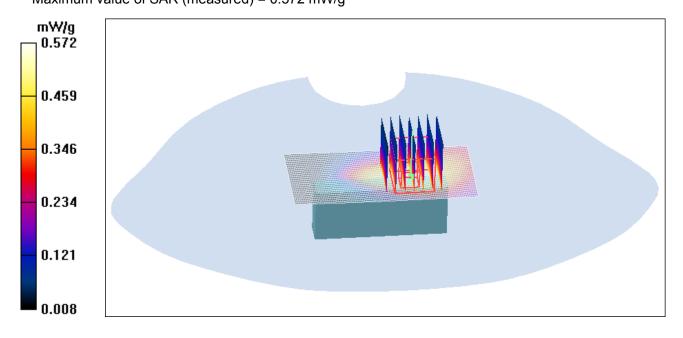


Figure 25 GSM 850 GPRS (2 timeslots in uplink) with IBM T61 Test Position 5 Channel 190

No. RZA2009-1183

Page 60of 133

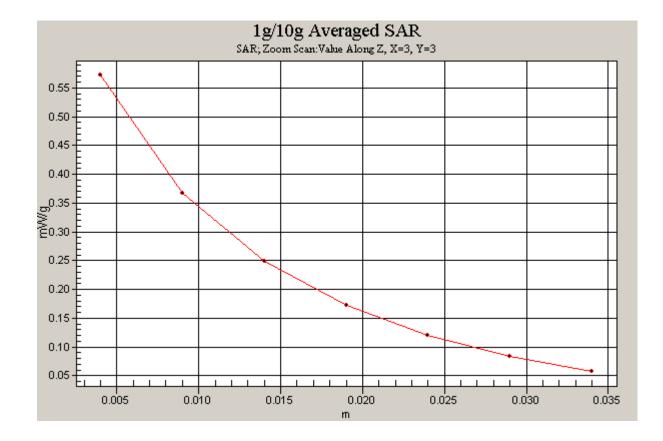
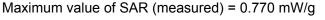


Figure 26 Z-Scan at power reference point [GSM 850 GPRS (2 timeslots in uplink) with IBM T61 Test Position 5 Channel 190]


GSM 850 EGPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 High

Date/Time: 9/27/2009 11:01:10 PM Communication System: GSM850 +EGPRS(2Up); Frequency: 848.8 MHz;Duty Cycle: 1:4 Medium parameters used: f = 849 MHz; σ = 1.03 mho/m; ε_r = 54.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5°C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.749 mW/g

Test Position 1 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.4 V/m; Power Drift = 0.179 dB Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.709 mW/g; SAR(10 g) = 0.459 mW/g

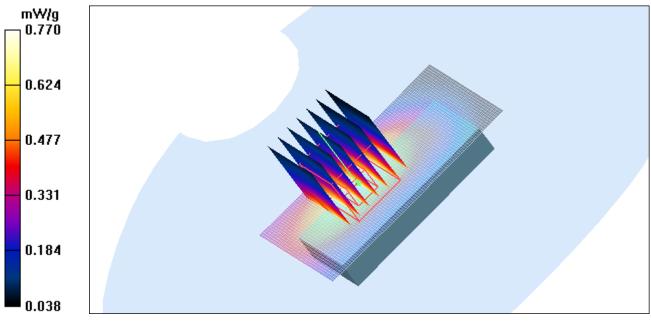


Figure 27 GSM 850 EGPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Channel 251

No. RZA2009-1183

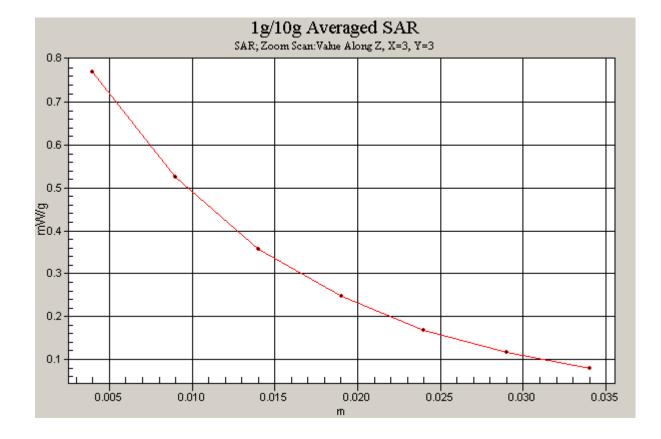
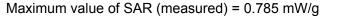


Figure 28 Z-Scan at power reference point [GSM 850 EGPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Channel 251]


GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Middle

Date/Time: 9/28/2009 2:36:01 PM Communication System: PCS 1900+GPRS(2Up); Frequency: 1880 MHz;Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 52; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(4.6, 4.6, 4.6); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.798 mW/g

Test Position 1 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.9 V/m; Power Drift = 0.142 dB Peak SAR (extrapolated) = 1.23 W/kg SAR(1 g) = 0.716 mW/g; SAR(10 g) = 0.408 mW/g

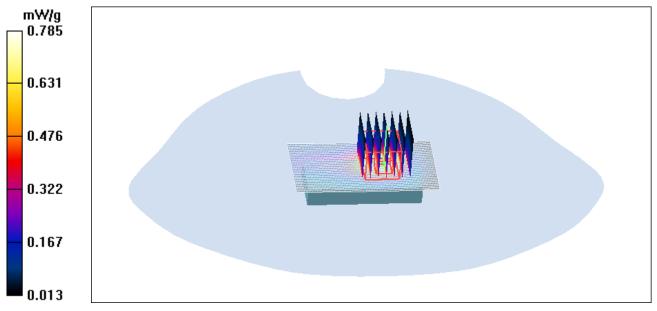


Figure 29 GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Channel 661

No. RZA2009-1183

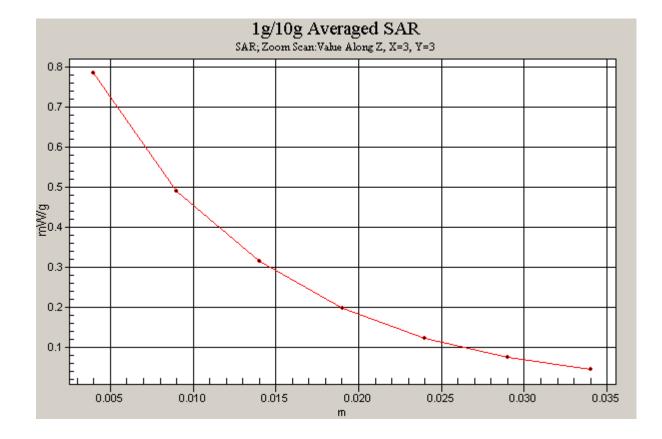


Figure 30 Z-Scan at power reference point [GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 1 Channel 661]

GSM 1900 GPRS (1 timeslot in uplink) with BenQ Joybook R55V Test Position 1 Middle

TA Technology (Shanghai) Co., Ltd. Test Report

Date/Time: 9/28/2009 7:20:14 PM Communication System: PCS 1900+GPRS(1Up); Frequency: 1880 MHz;Duty Cycle: 1:8 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ε_r = 52; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(4.6, 4.6, 4.6); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.320 mW/g

Test Position 1 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 0.506 W/kg

SAR(1 g) = 0.287 mW/g; SAR(10 g) = 0.157 mW/g

Maximum value of SAR (measured) = 0.311 mW/g

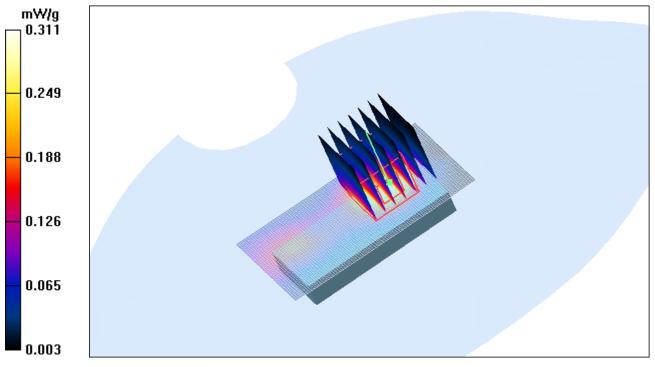
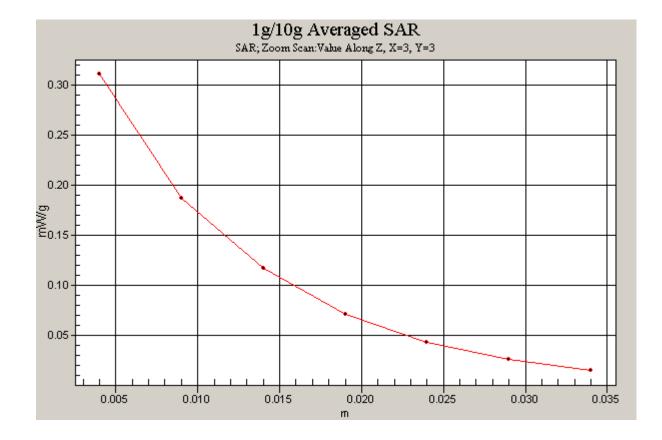
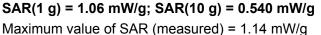


Figure 31 GSM 1900 GPRS (1 timeslot in uplink) with BenQ Joybook R55V Test Position 1 Channel

No. RZA2009-1183




Figure 32 Z-Scan at power reference point [GSM 1900 GPRS (1 timeslot in uplink) with BenQ Joybook R55V Test Position 1 Channel 661]

GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 High

Date/Time: 9/28/2009 4:47:00 PM Communication System: PCS 1900+GPRS(2up); Frequency: 1909.8 MHz;Duty Cycle: 1:4 Medium parameters used: f = 1910 MHz; σ = 1.54 mho/m; ε_r = 51.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(4.6, 4.6, 4.6); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 2 High/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.42 mW/g

Test Position 2 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.6 V/m; Power Drift = 0.014 dB Peak SAR (extrapolated) = 2.47 W/kg

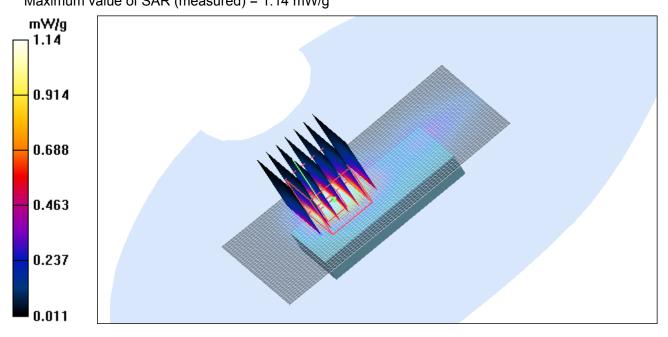


Figure 33 GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Channel 810

No. RZA2009-1183

Page 68of 133

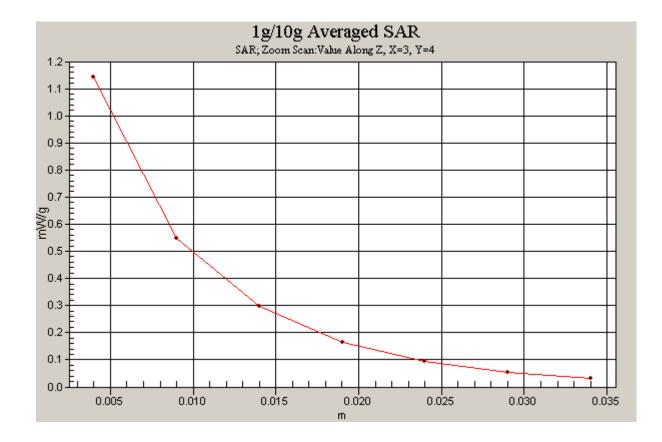


Figure 34 Z-Scan at power reference point [GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Channel 810]

GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Middle

Date/Time: 9/28/2009 3:33:51 PM Communication System: PCS 1900+GPRS(2up); Frequency: 1880 MHz; Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ε_r = 52; ρ = 1000 kg/m³ Ambient Temperature: 22.3 °C Liqiud Temperature: 21.5℃ Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(4.6, 4.6, 4.6); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM000 T01 ; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 2 Middle/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.36 mW/g

Test Position 2 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.5 V/m; Power Drift = 0.070 dB

Peak SAR (extrapolated) = 2.56 W/kg

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.561 mW/g

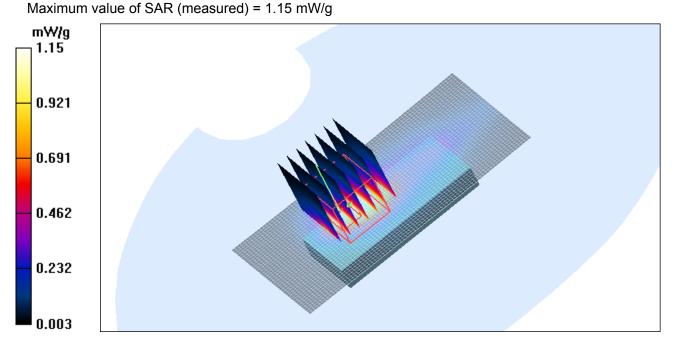


Figure 35 GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Channel 661

No. RZA2009-1183

Page 70of 133

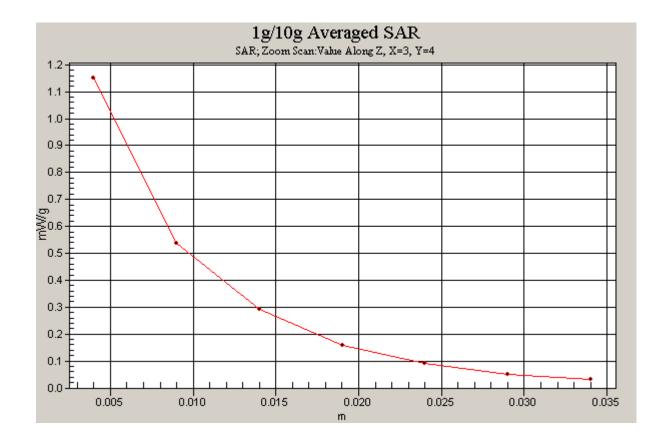


Figure 36 Z-Scan at power reference point [GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Channel 661]

GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Low

TA Technology (Shanghai) Co., Ltd.

Date/Time: 9/28/2009 3:55:28 PM Communication System: PCS 1900+GPRS(2up); Frequency: 1850.2 MHz;Duty Cycle: 1:4 Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.5 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(4.6, 4.6, 4.6); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 2 Low/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.29 mW/g

Test Position 2 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 24.3 V/m; Power Drift = -0.068 dB Peak SAR (extrapolated) = 2.54 W/kg

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.553 mW/g

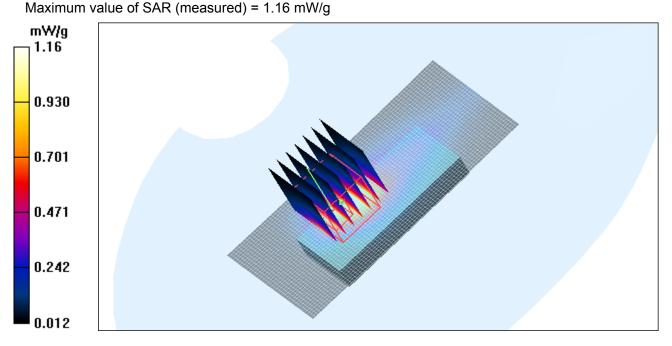


Figure 37 GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Channel 512

No. RZA2009-1183

Page 72of 133

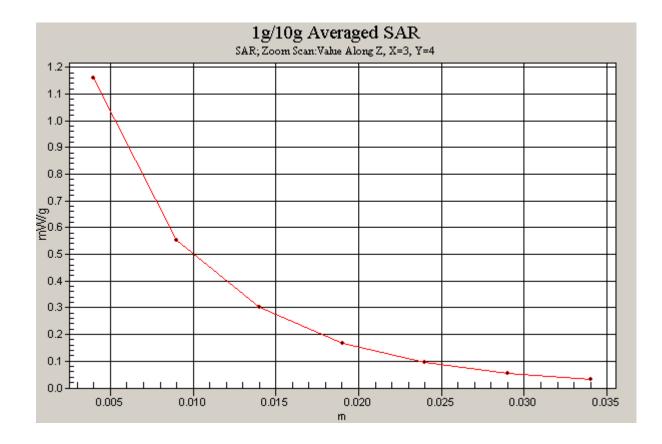


Figure 38 Z-Scan at power reference point [GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Channel 512]

GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 3 Middle

Date/Time: 9/28/2009 3:00:25 PM Communication System: PCS 1900+GPRS(2up); Frequency: 1880 MHz; Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ε_r = 52; ρ = 1000 kg/m³ Ambient Temperature: 22.3 °C Liqiud Temperature: 21.5℃ Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(4.6, 4.6, 4.6); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM000 T01 ; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 Test Position 3 Middle/Area Scan (61x61x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.193 mW/g Test Position 3 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.63 V/m; Power Drift = 0.092 dB Peak SAR (extrapolated) = 0.509 W/kg SAR(1 g) = 0.175 mW/g; SAR(10 g) = 0.095 mW/g Maximum value of SAR (measured) = 0.189 mW/g Test Position 3 Middle/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.63 V/m; Power Drift = 0.092 dB Peak SAR (extrapolated) = 0.333 W/kg

Peak SAR (extrapolated) = 0.333 W/kg

SAR(1 g) = 0.169 mW/g; SAR(10 g) = 0.095 mW/g

Maximum value of SAR (measured) = 0.185 mW/g

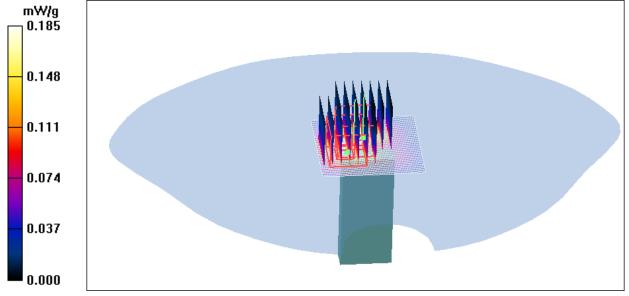
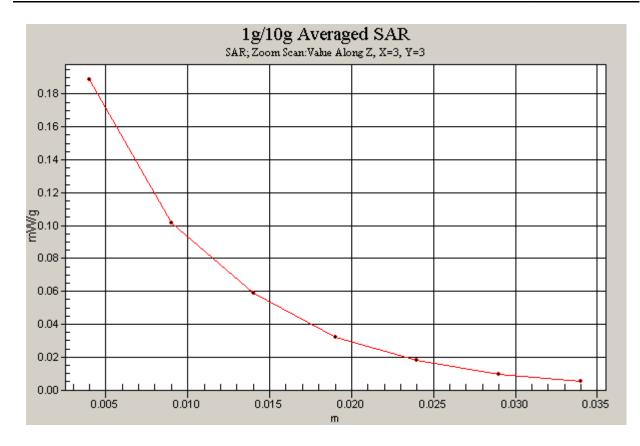



Figure 39 GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 3 Channel

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 74of 133

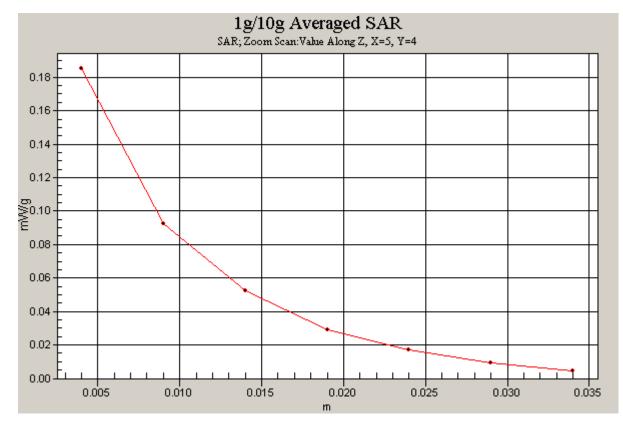


Figure 40 Z-Scan at power reference point [GSM 1900 GPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 3 Channel 661]

GSM 1900 GPRS (2 timeslots in uplink) with IBM T61 Test Position 4 Middle Date/Time: 9/28/2009 1:43:20 PM

Communication System: PCS 1900+GPRS(2Up); Frequency: 1880 MHz;Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ε_r = 52; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(4.6, 4.6, 4.6); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 4 Middle/Area Scan (51x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.439 mW/g

Test Position 4 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.2 V/m; Power Drift = -0.089 dB Peak SAR (extrapolated) = 0.774 W/kg SAR(1 g) = 0.370 mW/g; SAR(10 g) = 0.179 mW/g Maximum value of SAR (measured) = 0.419 mW/g

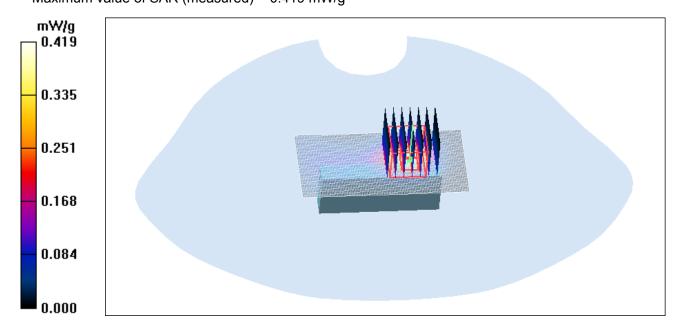


Figure 41 GSM 1900 GPRS (2 timeslots in uplink) with IBM T61 Test Position 4 Channel 661

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 76of 133

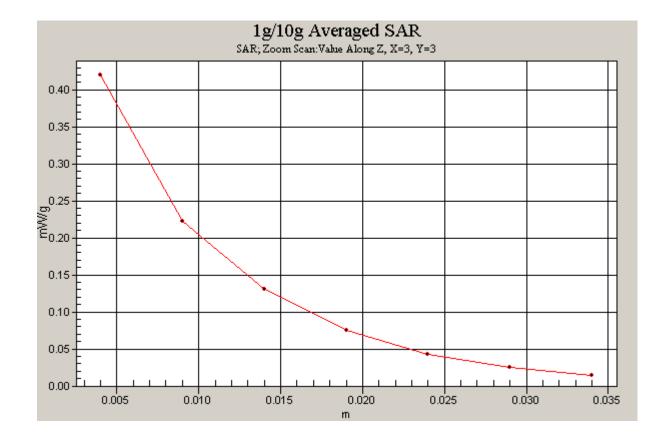


Figure 42 Z-Scan at power reference point [GSM 1900 GPRS (2 timeslots in uplink) with IBM T61 Test Position 4 Channel 661]

GSM 1900 GPRS (2 timeslots in uplink) with IBM T61 Test Position 5 Middle Date/Time: 9/28/2009 1:22:27 PM

Communication System: PCS 1900+GPRS(2Up); Frequency: 1880 MHz;Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ε_r = 52; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(4.6, 4.6, 4.6); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 5 Middle/Area Scan (51x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.374 mW/g

Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.0 V/m; Power Drift = -0.090 dB Peak SAR (extrapolated) = 0.638 W/kg SAR(1 g) = 0.333 mW/g; SAR(10 g) = 0.181 mW/g Maximum value of SAR (measured) = 0.366 mW/g

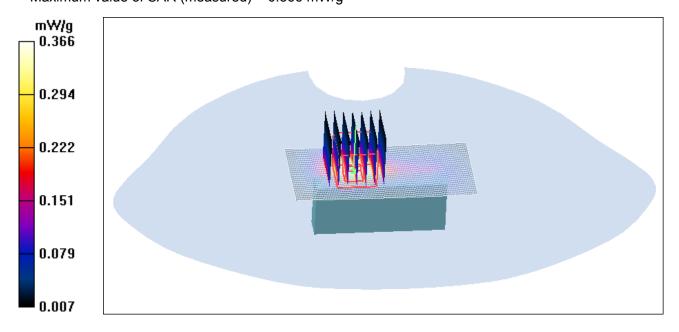


Figure 43 GSM 1900 GPRS (2 timeslots in uplink) with IBM T61 Test Position 5 Channel 661

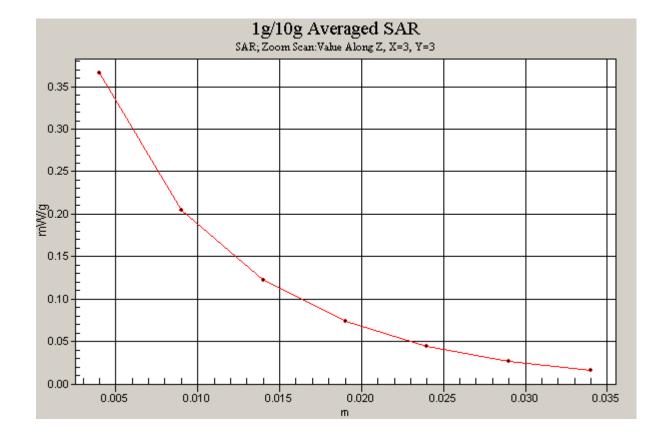


Figure 44 Z-Scan at power reference point [GSM 1900 GPRS (2 timeslots in uplink) with IBM T61 Test Position 5 Channel 661]

GSM 1900 EGPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Middle

Date/Time: 9/28/2009 5:11:47 PM Communication System: PCS 1900+EGPRS(2Up); Frequency: 1880 MHz;Duty Cycle: 1:4 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ε_r = 52; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(4.6, 4.6, 4.6); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM000 T01; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 2 Middle/Area Scan (51x111x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.19 mW/g

Test Position 2 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.5 V/m; Power Drift = 0.040 dB Peak SAR (extrapolated) = 2.10 W/kg

SAR(1 g) = 0.903 mW/g; SAR(10 g) = 0.465 mW/g

Maximum value of SAR (measured) = 0.971 mW/g

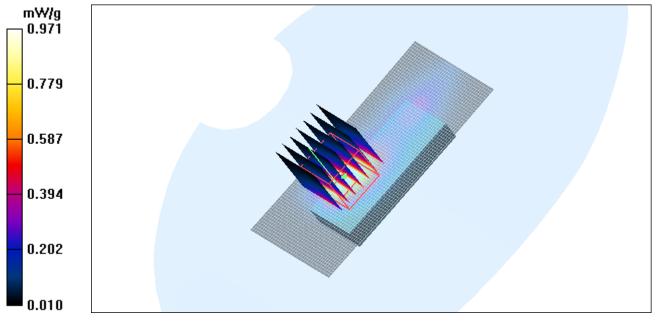


Figure 45 GSM 1900 EGPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Channel 661

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 80of 133

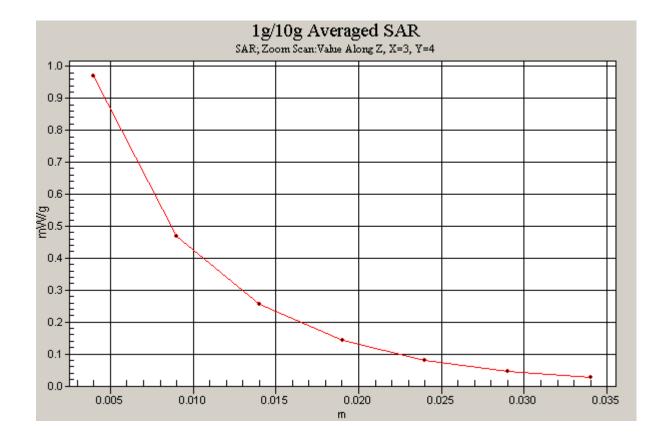
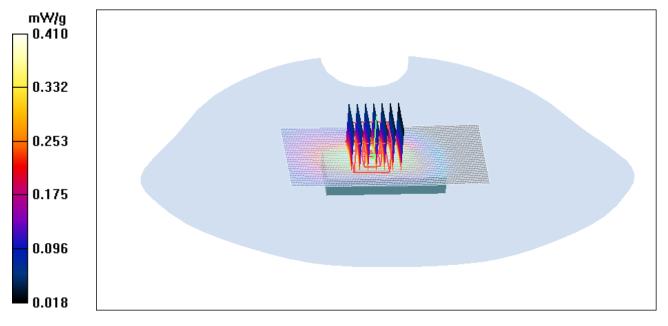


Figure 46 Z-Scan at power reference point [GSM 1900 EGPRS (2 timeslots in uplink) with BenQ Joybook R55V Test Position 2 Channel 661]

TA Technology (Shanghai) Co., Ltd. Test Report

Page 81of 133


WCDMA Band V with BenQ Joybook R55V Test Position 1 High

Date/Time: 9/27/2009 2:48:16 PM Communication System: WCDMA Band V; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 847 MHz; σ = 1.03 mho/m; ε_r = 54.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 High/Area Scan (61x121x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.408 mW/g

Test Position 1 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.1 V/m; Power Drift = 0.077 dB Peak SAR (extrapolated) = 0.545 W/kg SAR(1 g) = 0.379 mW/g; SAR(10 g) = 0.246 mW/g

Maximum value of SAR (measured) = 0.410 mW/g

Figure 47 WCDMA Band V with BenQ Joybook R55V Test Position 1 Channel 4233

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 82of 133

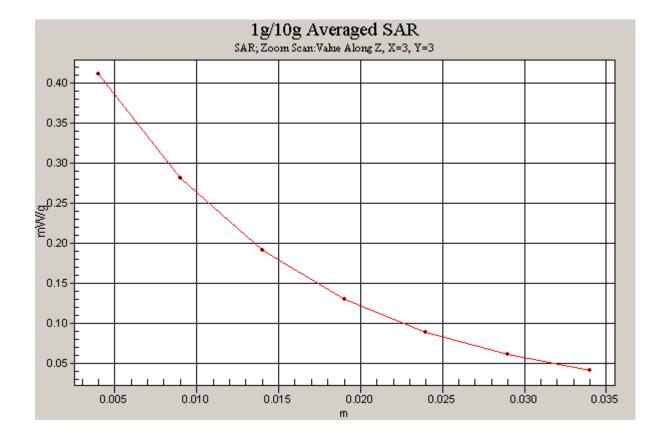


Figure 48 Z-Scan at power reference point [WCDMA Band V with BenQ Joybook R55V Test Position 1 Channel 4233]

Page 83of 133

WCDMA Band V with BenQ Joybook R55V Test Position 1 Middle

Date/Time: 9/27/2009 2:30:18 PM

Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 1.02 mho/m; ε_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.370 mW/g

Test Position 1 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.3 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 0.503 W/kg

SAR(1 g) = 0.349 mW/g; SAR(10 g) = 0.227 mW/g

Maximum value of SAR (measured) = 0.378 mW/g

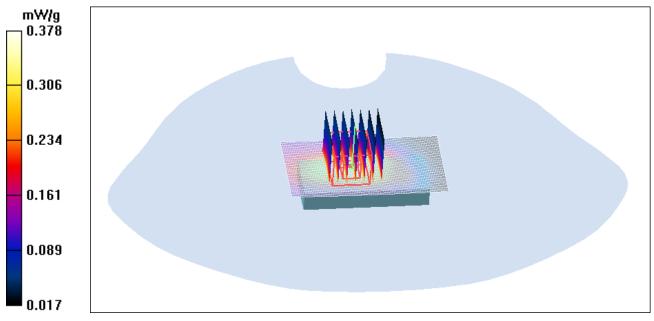


Figure 49 WCDMA Band V with BenQ Joybook R55V Test Position 1 Channel 4183

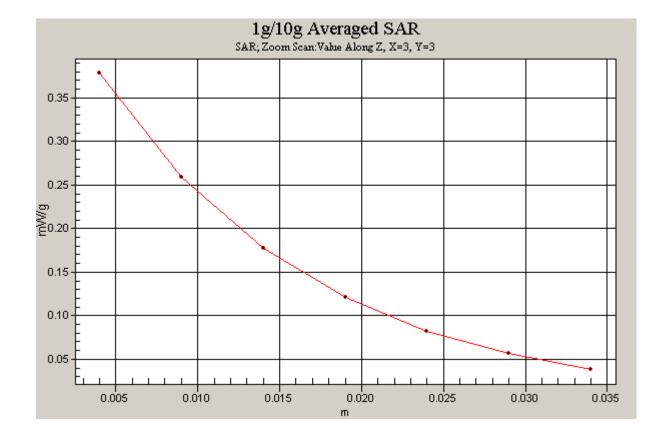


Figure 50 Z-Scan at power reference point [WCDMA Band V with BenQ Joybook R55V Test Position 1 Channel 4183]

TA Technology (Shanghai) Co., Ltd. Test Report

Page 85of 133

WCDMA Band V with BenQ Joybook R55V Test Position 1 Low

Date/Time: 9/27/2009 3:15:31 PM Communication System: WCDMA Band V; Frequency: 826.4 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 826.4 MHz; σ = 1.01 mho/m; ϵ_r = 55.2; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 Low/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.346 mW/g

Test Position 1 Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.8 V/m; Power Drift = 0.057 dB Peak SAR (extrapolated) = 0.454 W/kg

SAR(1 g) = 0.316 mW/g; SAR(10 g) = 0.206 mW/g

Maximum value of SAR (measured) = 0.343 mW/g

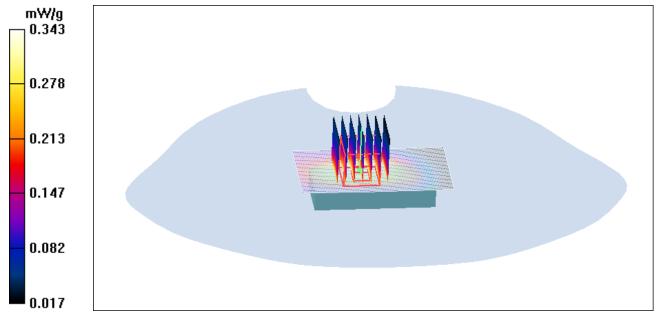


Figure 51 WCDMA Band V with BenQ Joybook R55V Test Position 1 Channel 4132

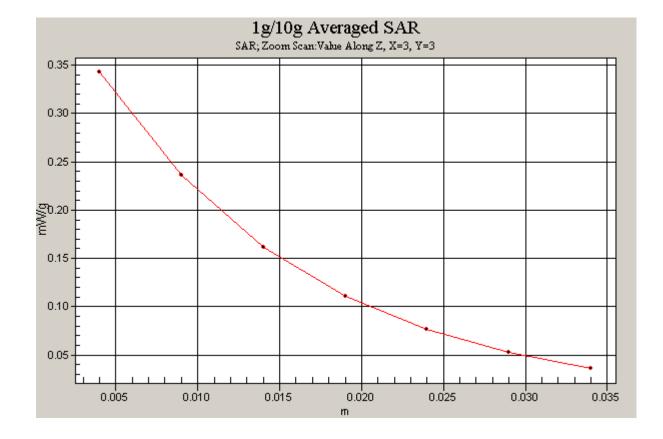


Figure 52 Z-Scan at power reference point [WCDMA Band V with BenQ Joybook R55V Test Position 1 Channel 4132]

Page 87of 133

WCDMA Band V with BenQ Joybook R55V Test Position 2 Middle

Date/Time: 9/27/2009 2:02:23 PM

Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 1.02 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 2 Middle/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.375 mW/g

Test Position 2 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 17.4 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 0.683 W/kg

SAR(1 g) = 0.338 mW/g; SAR(10 g) = 0.194 mW/g

Maximum value of SAR (measured) = 0.361 mW/g

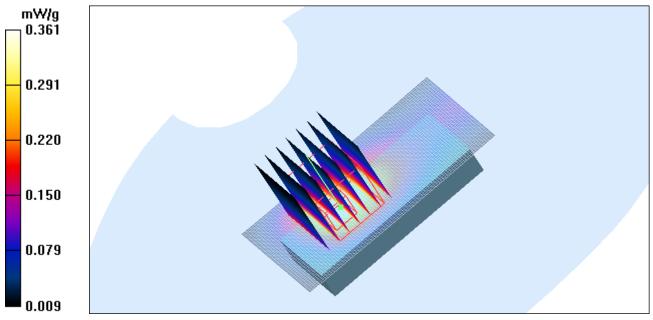


Figure 53 WCDMA Band V with BenQ Joybook R55V Test Position 2 Channel 4183

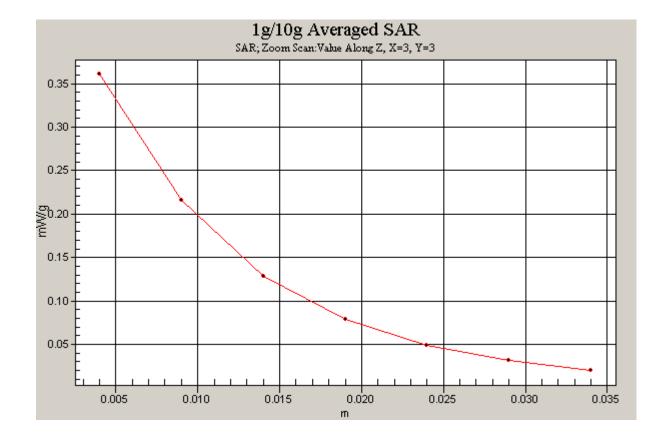


Figure 54 Z-Scan at power reference point [WCDMA Band V with BenQ Joybook R55V Test Position 2 Channel 4183]

Page 89of 133

WCDMA Band V with BenQ Joybook R55V Test Position 3 Middle

Date/Time: 9/27/2009 7:57:47 PM

Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 1.02 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 3 Middle /Area Scan (61x61x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.139 mW/g

Test Position 3 Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 12.0 V/m; Power Drift = 0.044 dB

Peak SAR (extrapolated) = 0.381 W/kg

SAR(1 g) = 0.130 mW/g; SAR(10 g) = 0.060 mW/g

Maximum value of SAR (measured) = 0.144 mW/g

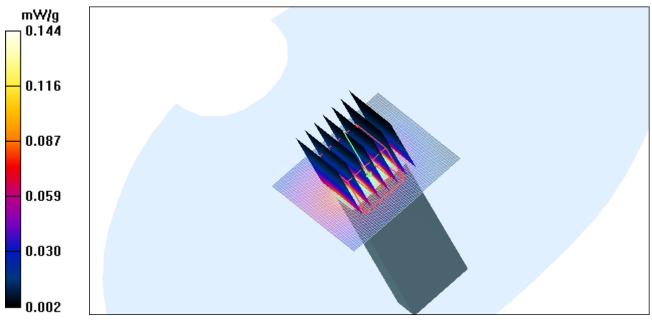


Figure 55 WCDMA Band V with BenQ Joybook R55V Test Position 3 Channel 4183

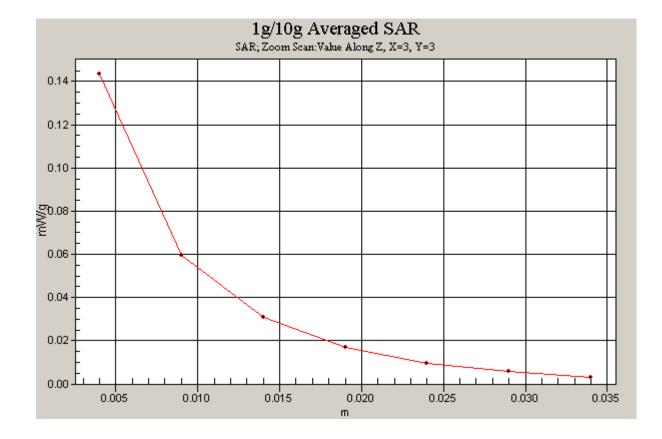


Figure 56 Z-Scan at power reference point [WCDMA Band V with BenQ Joybook R55V Test Position 3 Channel 4183]

TA Technology (Shanghai) Co., Ltd. Test Report

Page 91of 133

WCDMA Band V with IBM T61 Test Position 4 Middle

Date/Time: 9/27/2009 10:58:47 AM Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 1.02 mho/m; ϵ_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 4 Middle/Area Scan (51x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.229 mW/g

Test Position 4 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.7 V/m; Power Drift = 0.111 dB

Peak SAR (extrapolated) = 0.404 W/kg

```
SAR(1 g) = 0.211 mW/g; SAR(10 g) = 0.119 mW/g
```

Maximum value of SAR (measured) = 0.235 mW/g

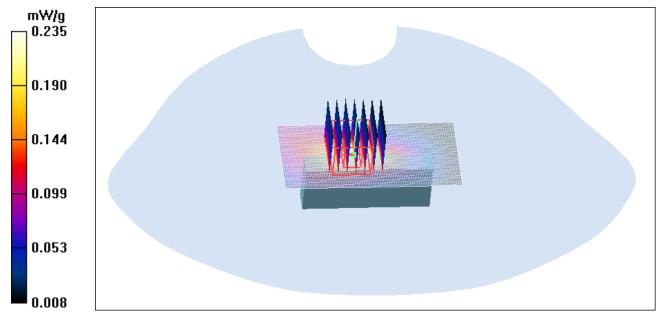


Figure 57 WCDMA Band V with IBM T61 Test Position 4 Channel 4183

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 92of 133

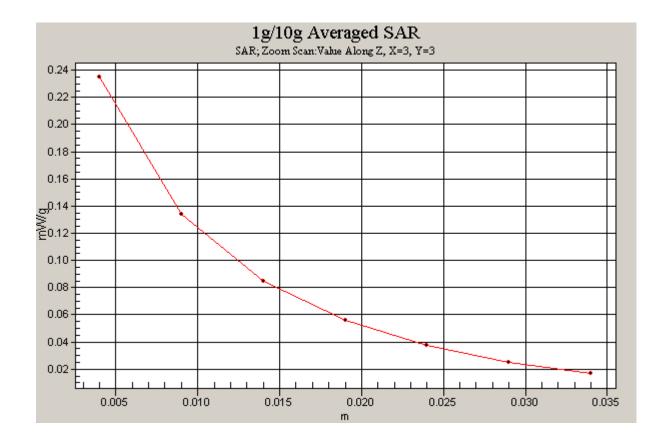


Figure 58 Z-Scan at power reference point [WCDMA Band V with IBM T61 Test Position 4 Channel 4183]

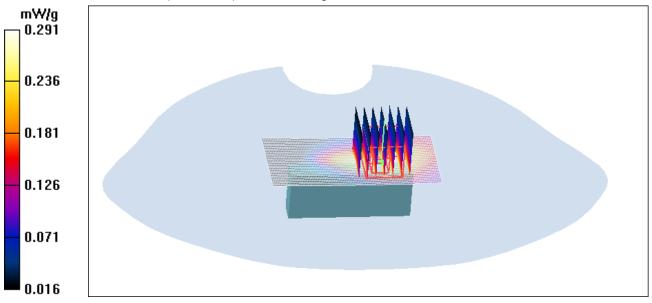
TA Technology (Shanghai) Co., Ltd. Test Report

Page 93of 133

WCDMA Band V with IBM T61 Test Position 5 Middle

Date/Time: 9/27/2009 10:00:04 PM Communication System: WCDMA Band V; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 837 MHz; σ = 1.02 mho/m; ε_r = 55; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 5 Middle/Area Scan (51x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.284 mW/g


Test Position 5 Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 16.4 V/m; Power Drift = 0.002 dB

Peak SAR (extrapolated) = 0.427 W/kg

SAR(1 g) = 0.265 mW/g; SAR(10 g) = 0.168 mW/g

Maximum value of SAR (measured) = 0.291 mW/g

Figure 59 WCDMA Band V with IBM T61 Test Position 5 Channel 4183

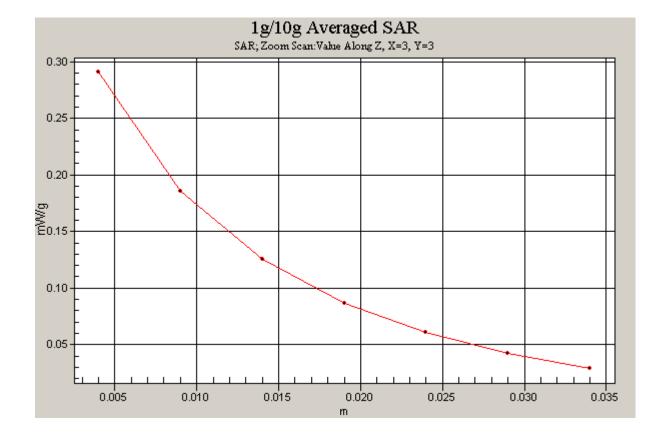


Figure 60 Z-Scan at power reference point [WCDMA Band V with IBM T61 Test Position 5 Channel 4183]

WCDMA Band V + HSDPA with BenQ Joybook R55V Test Position 1 High

Date/Time: 9/27/2009 8:58:27 PM Communication System: WCDMA Band V+HSDPA; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 847 MHz; σ = 1.03 mho/m; ε_r = 54.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.400 mW/g

Test Position 1 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.1 V/m; Power Drift = 0.021 dB Peak SAR (extrapolated) = 0.541 W/kg

SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.245 mW/g

Maximum value of SAR (measured) = 0.401 mW/g

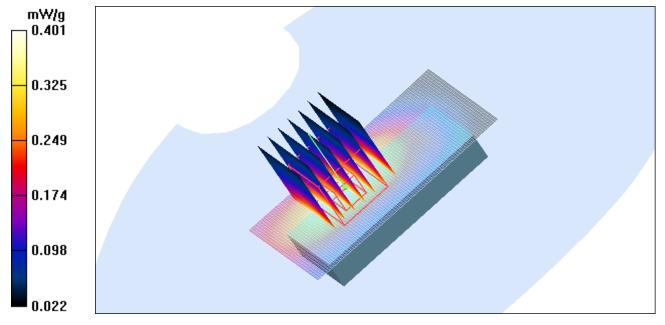


Figure 61 WCDMA Band V+ HSDPA with BenQ Joybook R55V Test Position 1 Channel 4233

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 96of 133

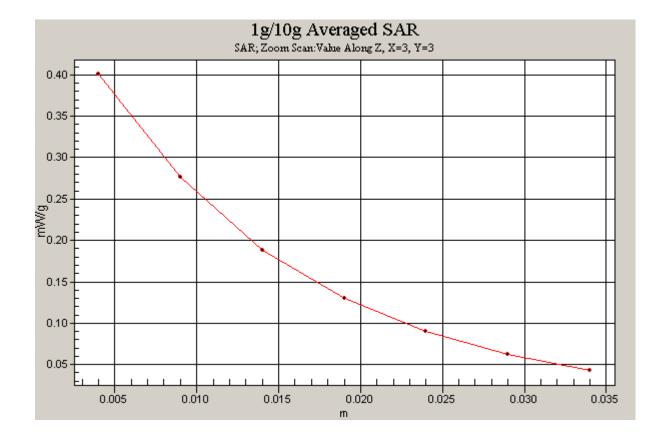


Figure 62 Z-Scan at power reference point [WCDMA Band V+ HSDPA with BenQ Joybook R55V Test Position 1 Channel 4233]

WCDMA Band V + HSUPA with BenQ Joybook R55V Test Position 1 High

Date/Time: 9/27/2009 9:23:48 PM Communication System: WCDMA Band V+HSUPA; Frequency: 846.6 MHz;Duty Cycle: 1:1 Medium parameters used: f = 847 MHz; σ = 1.03 mho/m; ε_r = 54.9; ρ = 1000 kg/m³ Ambient Temperature:22.3 °C Liqiud Temperature: 21.5 °C Phantom section: Flat Section DASY4 Configuration: Probe: ET3DV6 - SN1737; ConvF(6.14, 6.14, 6.14); Calibrated: 11/25/2008 Electronics: DAE4 Sn452; Calibrated: 11/18/2008 Phantom: SAM 12; Type: SAM V4.0; Serial: TP-1246 Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Test Position 1 High/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.236 mW/g

Test Position 1 High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.8 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 0.313 W/kg

SAR(1 g) = 0.216 mW/g; SAR(10 g) = 0.141 mW/g

Maximum value of SAR (measured) = 0.233 mW/g

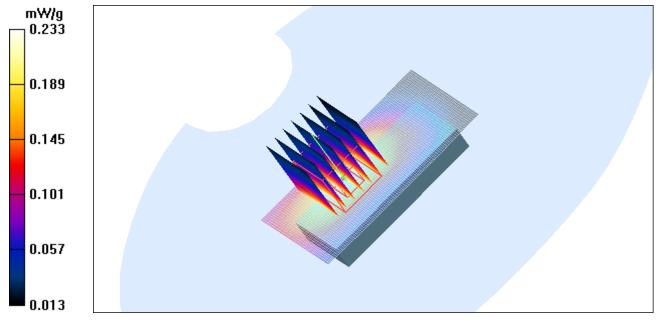


Figure 63 WCDMA Band V+ HSUPA with BenQ Joybook R55V Test Position 1 Channel 4233

TA Technology (Shanghai) Co., Ltd. Test Report

No. RZA2009-1183

Page 98of 133

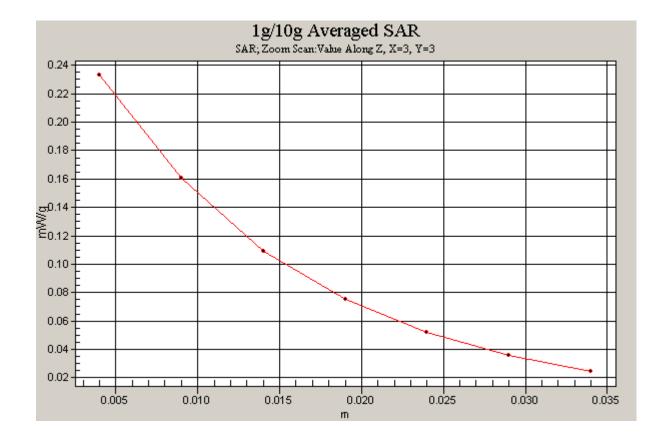


Figure 64 Z-Scan at power reference point [WCDMA Band V+ HSUPA with BenQ Joybook R55V Test Position 1 Channel 4233]

ANNEX D: Probe Calibration Certificate

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zur	ory of ich, Switzerland	HAC MEA (C C Z	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredi The Swiss Accreditation Servi Multilateral Agreement for the	ce is one of the signator	ries to the EA	on No.: SCS 108
Client TA Shanghai	(Auden)	Certificate N	No: ET3-1737_Nov08
CALIBRATION	CERTIFICAT	TE	
Object	ET3DV6 - SN:1	737	
Calibration procedure(s)	and the second se	QA CAL-12.v5 and QA CAL-23.v cedure for dosimetric E-field probe	the second s
Calibration date:	November 25, 2	2008	
Condition of the calibrated item	In Tolerance		
This calibration certificate docur	ments the traceability to na	ational standards, which realize the physical ur probability are given on the following pages ar	
This calibration certificate docur The measurements and the unc All calibrations have been conde	nents the traceability to na ertainties with confidence ucted in the closed laborat	probability are given on the following pages are tory facility: environment temperature $(22 \pm 3)^{\circ}$	nd are part of the certificate.
This calibration certificate docur The measurements and the unc All calibrations have been conde Calibration Equipment used (Må	ments the traceability to na vertainties with confidence ucted in the closed laborat RTE critical for calibration)	probability are given on the following pages ar lory facility: environment temperature $(22 \pm 3)^{9}$	nd are part of the certificate. C and humidity < 70%.
This calibration certificate docur The measurements and the unc All calibrations have been conde	nents the traceability to na ertainties with confidence ucted in the closed laborat	probability are given on the following pages ar lory facility: environment temperature (22 ± 3)* Cel Date (Certificate No.)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards	nents the traceability to na vertainties with confidence ucted in the closed laborat kTE critical for calibration) ID #	probability are given on the following pages ar lory facility: environment temperature $(22 \pm 3)^{9}$	nd are part of the certificate. C and humidity < 70%.
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874 MY41498087	probability are given on the following pages ar lory facility: environment temperature (22 ± 3)* Cel Date (Certificate No.) 1-Apr-08 (No. 217-00788)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09
This calibration certificate docur The measurements and the unc All calibrations have been condi Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY4149507 SN: S5054 (3c)	probability are given on the following pages ar tory facility: environment temperature (22 ± 3)* Cel Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00865)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Apr-09 Jul-09
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator	ID # GB41293874 MY41499087 SN: S5086 (20b)	probability are given on the following pages ar tory facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00787)	Apr-09 Jul-09 Apr-09 Apr-09
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (30) SN: S5054 (30) SN: S5129 (30b)	probability are given on the following pages ar tory facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00787) 1-Jul-08 (No. 217-00787) 1-Jul-08 (No. 217-00866)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Jul-09 Jul-09 Jul-09 Jul-09
This calibration certificate docur The measurements and the unc All calibrations have been condi Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41499087 SN: S5086 (20b)	probability are given on the following pages ar tory facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00787)	Apr-09 Jul-09 Apr-09 Apr-09
This calibration certificate docur The measurements and the unc All calibrations have been condi Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013	probability are given on the following pages ar tory facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00786) 31-Mar-08 (No. 217-00787) 1-Jul-08 (No. 217-00786) 2-Jan-08 (No. ES3-3013_Jan08)	Apr-09 Apr-09 Apr-09 Apr-09 Jul-09 Jul-09 Jan-09 Jan-09
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5056 (20b) SN: S5129 (30b) SN: S129 (30b) SN: S013 SN: 660	probability are given on the following pages ar tory facility: environment temperature (22 ± 3)*1 Cal Date (Certificate No.) 1.Apr-08 (No. 217-00788) 1.Apr-08 (No. 217-00788) 1.Jul-08 (No. 217-00788) 1.Jul-08 (No. 217-00865) 31.Mar-08 (No. 217-00865) 31.Mar-08 (No. 217-00866) 2.Jan-08 (No. 217-00866) 2.Jan-08 (No. DAE4-660_Sep08)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Jul-09 Jul-09 Jul-09 Jul-09 Jan-09 Sep-09
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID # GB41293874 MY41495277 MY41495277 MY41496087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S129 (30b) SN: 3013 SN: 660 ID #	probability are given on the following pages ar tory facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00788) 1-Jul-08 (No. 217-00787) 1-Jul-08 (No. 217-00786) 2-Jan-08 (No. DAE4-660_Sep08) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Jul-09 Jul-09 Jul-09 Jul-09 Jul-09 Sep-09 Scheduled Check
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	probability are given on the following pages ar tory facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00788) 1-Jul-08 (No. 217-00787) 1-Jul-08 (No. 217-00787) 1-Jul-08 (No. 217-00786) 2-Jan-08 (No. 253-3013_Jan08) 9-Sep-08 (No. DAE4-860_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08) Function	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Jul-09 Jul-09 Jul-09 Jul-09 Jul-09 Sep-09 Scheduled Check In house check: Oct-09
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M8 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: S5129	probability are given on the following pages ar tory facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00786) 31-Mar-08 (No. 217-00787) 1-Jul-08 (No. 217-00786) 2-Jan-08 (No. 217-00786) 2-Jan-08 (No. ES3-3013_Jan08) 9-Sep-08 (No. DAE4-660_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Jul-09 Jul-09 Jul-09 Jan-09 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09
This calibration certificate docur The measurements and the unc All calibrations have been condu Calibration Equipment used (M& Primary Standards Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 3 dB Attenuator Reference 9 robe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41495277 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name	probability are given on the following pages ar tory facility: environment temperature (22 ± 3)* Cal Date (Certificate No.) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Apr-08 (No. 217-00788) 1-Jul-08 (No. 217-00788) 1-Jul-08 (No. 217-00787) 1-Jul-08 (No. 217-00787) 1-Jul-08 (No. 217-00786) 2-Jan-08 (No. 253-3013_Jan08) 9-Sep-08 (No. DAE4-860_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08) Function	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Apr-09 Apr-09 Jul-09 Jul-09 Jul-09 Jan-09 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09

TA Technology (Shanghai) Co., Ltd. Test Report

Page 100of 133

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
 - Swiss Calibration Service

s

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at
	measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a
 flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1737_Nov08

Page 2 of 9

Page 101of 133

ET3DV6 SN:1737

November 25, 2008

Probe ET3DV6

SN:1737

Manufactured: Last calibrated: Repaired: Recalibrated: September 27, 2002 February 19, 2007 November 18, 2008 November 25, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1737_Nov08

Page 3 of 9

ET3DV6 SN:1737

November 25, 2008

DASY - Parameters of Probe: ET3DV6 SN:1737

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.42 ± 10.1%	μV/(V/m) ²	DCP X	93 mV
NormY	1.68 ± 10.1%	μV/(V/m) ²	DCP Y	94 mV
NormZ	1.63 ± 10.1%	μV/(V/m) ²	DCP Z	85 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

```
TSL
```

900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	10.7	6.9
SAR _{be} [%]	With Correction Algorithm	0.3	0.4

TSL

1750 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.5	8.4
SAR _{be} [%]	With Correction Algorithm	0.8	0.5

Sensor Offset

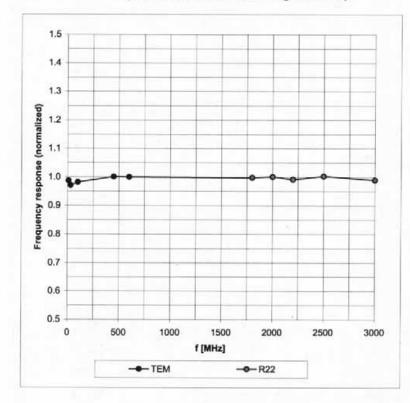
Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

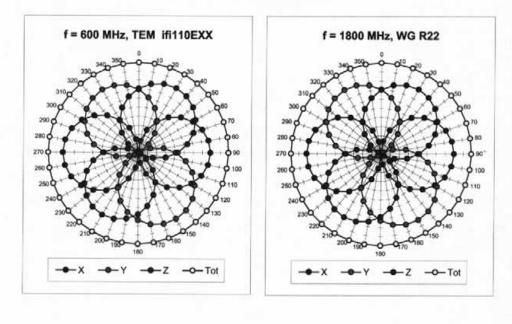

Page 4 of 9

ET3DV6 SN:1737

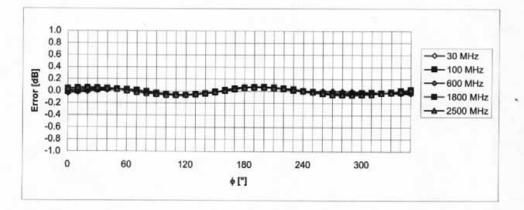
November 25, 2008

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

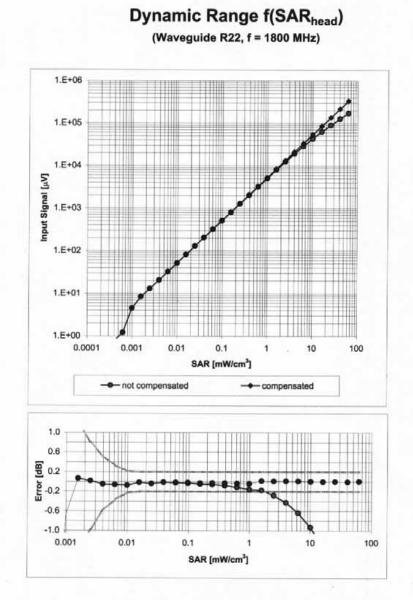
Page 5 of 9


Page 104of 133

ET3DV6 SN:1737

November 25, 2008

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

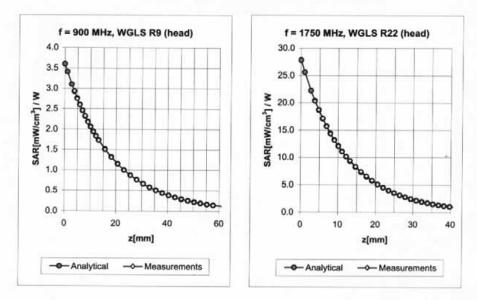

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1737_Nov08

Page 6 of 9

ET3DV6 SN:1737

November 25, 2008


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1737_Nov08

Page 7 of 9

ET3DV6 SN:1737

November 25, 2008

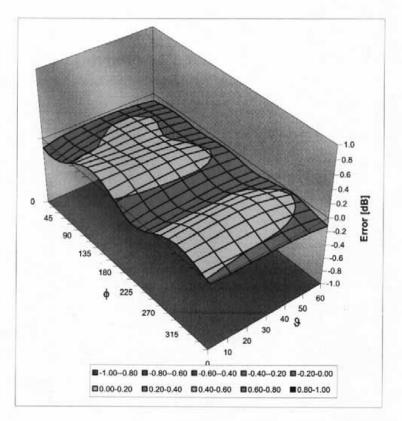
Conversion Factor Assessment

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.36	1.84	7.20 ± 13.3% (k=2)
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.25	3.53	6.33 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.27	3.53	6.14 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.1 ± 5%	1.37 ± 5%	0.56	2.77	5.35 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.57	2.72	4.89 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.51	1.60	4.39 ± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	0.94 ± 5%	0.27	1.80	7.52 ± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.36	2.75	6.14 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.43	2.51	5.98 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.4 ± 5%	1.49 ± 5%	0.99	1.74	4.84 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.99	1.50	4.60 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.98	1.42	3.91 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1737_Nov08

Page 8 of 9


Page 107of 133

ET3DV6 SN:1737

November 25, 2008

Deviation from Isotropy in HSL

Error (\, \,), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1737_Nov08

Page 9 of 9

ANNEX E: D835V2 Dipole Calibration Certificate

			Certificate No: D	835V2-40	d020_Jul09
CALIBRATION	CERT	IFICATE			
Object		D835V2 - SN	: 4d020		
Calibration Procedure(s)		TMC-XZ-01- Calibration pr	027 ocedure for dipole validation	on kits	
Calibration date:		July 15, 2009			
Condition of the calibrated	l item	In Tolerance			
following pages and are pages	art of the cer	tificate.	rtainties with confidence aboratory facility: environ		
following pages and are pa All calibrations have bee	art of the cer	ificate. in the closed la ritical for calibra Cal Date(C	aboratory facility: environ tion) Calibrated by, Certificate No	ment temp	
following pages and are particular following pages and are particular for the following for the follow	art of the cer n conducted ed (M&TE c ID #	ificate. in the closed la ritical for calibra Cal Date(C 19-Jun-0	aboratory facility: environ tion)	ment temp	erature(22±3)°C and
following pages and are particular following pages and are particular for the following for the follow	art of the cer n conducted ed (M&TE c 101253 100332 73 SN 314	ifficate. in the closed la ritical for calibra <u>Cal Date(C</u> 19-Jun-0 3 19-Jun-6 49 08-Dec-	aboratory facility: environ tion) 9 (TMC, No.JZ09-248) 09 (TMC, No. JZ09-248) 08(SPEAG, No.ES3-3149_	ment tempo o.) Sc _Dec08)	erature(22±3)°C and theduled Calibration Jun-10 Jun-10 Dec-09
following pages and are particular following pages and are particular for the following pages and are particular for the following for the	art of the cer n conducted ed (M&TE c 101253 100332 73 SN 314 SN 771	ifficate. in the closed la ritical for calibra <u>Cal Date(C</u> 19-Jun-0 9 08-Dec- 21-Nov-	aboratory facility: environ tion) 9 (TMC, No.JZ09-248) 99 (TMC, No. JZ09-248) 08(SPEAG, No.ES3-3149_ 08(SPEAG, No.DAE4-771	ment tempo o.) Sc _Dec08)	erature(22±3)°C and theduled Calibration Jun-10 Jun-10 Dec-09 Nov-09
following pages and are particular following pages and are particular for the following pages and are particular for the following for the	art of the cer n conducted ed (M&TE c 101253 100332 '3 SN 314 SN 771 MY450	ifficate. in the closed la ritical for calibra <u>Cal Date(C</u> 19-Jun-0 9 08-Dec- 21-Nov- 92879 18-Jun-	aboratory facility: environ tion) 9 (TMC, No.JZ09-248) 09 (TMC, No. JZ09-248) 08(SPEAG, No.ES3-3149_	ment tempo o.) Sc _Dec08)	erature(22±3)°C and theduled Calibration Jun-10 Jun-10 Dec-09
following pages and are particular following pages and are particular for the following pages and are particular for the following for the	art of the cer n conducted ed (M&TE c 101253 100332 '3 SN 314 SN 771 MY450	ifficate. in the closed la ritical for calibra <u>Cal Date(C</u> 19-Jun-0 9 08-Dec- 21-Nov- 92879 18-Jun-	aboratory facility: environ tion) 2.alibrated by, Certificate N- 9 (TMC, No.JZ09-248) 99 (TMC, No.JZ09-248) 08(SPEAG, No.ES3-3149_ 08(SPEAG, No.DAE4-771 09(TMC, No.JZ09-302)	ment tempo o.) Sc _Dec08)	erature(22±3)°C and theduled Calibration Jun-10 Jun-10 Dec-09 Nov-09 Jun-10
following pages and are particular following pages and are particular for the following pages and are particular for the following for the	art of the cer n conducted ed (M&TE c 101253 100332 73 SN 314 SN 771 MY450 E US3842	ifficate. in the closed la ritical for calibra <u>Cal Date(C</u> 19-Jun-0 3 19-Jun-0 49 08-Dec- 21-Nov- 92879 18-Jun- 3212 03-Aug-	aboratory facility: environ tion) 2alibrated by, Certificate No 9 (TMC, No.JZ09-248) 09 (TMC, No.JZ09-248) 08(SPEAG, No.ES3-3149_ 08(SPEAG, No.DAE4-771 09(TMC, No.JZ09-302) 08(TMC, No.JZ08-056)	ment tempo o.) Sc _Dec08)	erature(22±3)°C and beduled Calibration Jun-10 Jun-10 Dec-09 Nov-09 Jun-10 Aug-09
following pages and are particular following pages and are particular for the following pages and are particular for the following for the	art of the cer n conducted ed (M&TE c 101253 100332 73 SN 314 SN 771 MY450 E US3843 Name	tificate. in the closed la ritical for calibra (Cal Date(C 19-Jun-0 9 08-Dec- 21-Nov- 92879 18-Jun- 3212 03-Aug- 3212 SAF	aboratory facility: environ tion) 9 (TMC, No.JZ09-248) 09 (TMC, No. JZ09-248) 08 (SPEAG, No.ES3-3149_ 08 (SPEAG, No.DAE4-771 09 (TMC, No.JZ09-302) 08 (TMC, No.JZ08-056) Function	ment tempo o.) Sc _Dec08)	erature(22±3)°C and beduled Calibration Jun-10 Jun-10 Dec-09 Nov-09 Jun-10 Aug-09

TA Technology (Shanghai) Co., Ltd. Test Report

Glossary:TSLtissue simulating liquidConvFsensitivity in TSL / NORMx,y,zN/Anot applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
 uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	2mm Oval Phantom ELI4	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.91mho/m ± 6 %
Head TSL temperature during test	(21.7 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.40 mW / g
SAR normalized	normalized to 1W	9.60 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.2 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.55 mW/g
SAR normalized	normalized to 1W	6.20 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.07 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6%	0.99mho/m ± 6 %
Body TSL temperature during test	(21.9 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.41 mW/g
SAR normalized	normalized to 1W	9.64 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	9.28 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.58 mW / g
SAR normalized	normalized to 1W	6.32 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	6.19 mW /g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.7Ω -3.7 jΩ	
Return Loss	- 25.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.4Ω - 5.1 jΩ
Return Loss	-25.6dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 22, 2004

DASY5 Validation Report for Head TSL

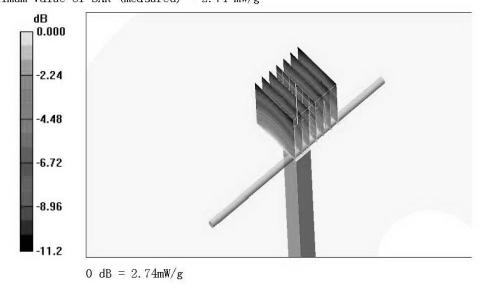
TA Technology (Shanghai) Co., Ltd. Test Report

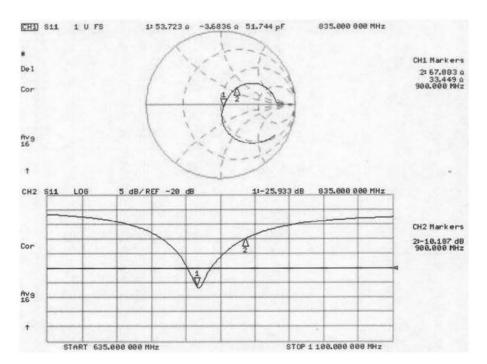
Date/Time: 2009-7-15 14:54:13

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 4d020

Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Medium: Head 835MHz Medium parameters used: f = 835 MHz: g = 0.91 mbo/m: $\epsilon = 41.2$: $\rho = 1$


Medium parameters used: f = 835 MHz; σ = 0.91 mho/m; $\epsilon_{\rm r}$ = 41.2; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(6.34, 6.34, 6.34); Calibrated: 08.12.08
- Electronics: DAE4 Sn771; Calibration: 21.11.08
- Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB
- Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.2 V/m; Power Drift = -0.019 dB Peak SAR (extrapolated) = 3.16 W/kg SAR(1 g) = 2.4 mW/g; SAR(10 g) = 1.55 mW/g Maximum value of SAR (measured) = 2.74 mW/g

Impedance Measurement Plot for Head TSL

 $Certificate \ \text{No: } D835V2\text{-}4d020_Jul09$

Page 7 of 9

TA Technology (Shanghai) Co., Ltd. **Test Report**

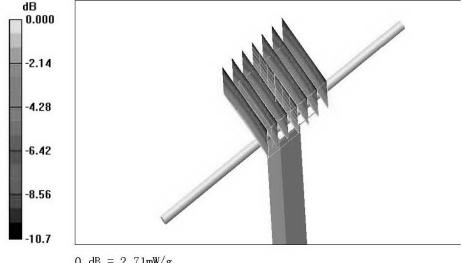
DASY5 Validation Report for Body TSL

Date/Time: 2009-7-15 11:27:23

Test Laboratory: TMC, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: SN: 4d020

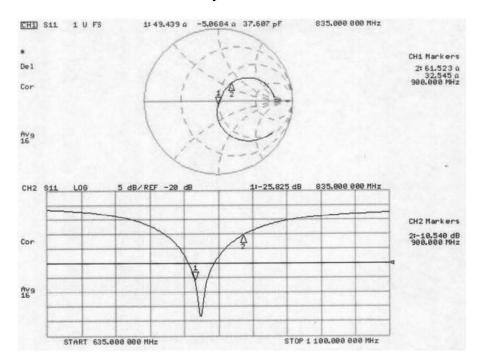
Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Medium: Body 835MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\varepsilon_r = 54.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section


DASY5 Configuration:

- Probe: ES3DV3 SN3149; ConvF(6.02, 6.02, 6.02); Calibrated: 08.12.08
- Electronics: DAE4 Sn771; Calibration: 21.11.08
- Phantom: 2mm Oval Phantom ELI4; Type: QDOVA001BB
- Measurement SW: DASY5, V5.0 Build 119.9; Postprocessing SW: SEMCAD, V13.2 Build 87 .

Pin=250mW; d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.1 V/m; Power Drift = -0.004 dB Peak SAR (extrapolated) = 3.81 W/kg SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.58 mW/g


Maximum value of SAR (measured) = 2.71 mW/g

 $0 \, dB = 2.71 \, mW/g$

Certificate No: D835V2-4d020 Jul09

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d020_Jul09

Page 9 of 9

ANNEX F: D1900V2 Dipole Calibration Certificate

Client TA			Certificate No: D	1900V2-5d060_Julo9
CALIBRATIO	ON CEI	TIFICATE		
Object		D1900V2 - SN	: 5d060	
Calibration Procedure	(s)	TMC-XZ-01-02 Calibration pro	27 cedure for dipole validation	on kits
Calibration date:		July 15, 2009		
Condition of the calibr	rated item	In Tolerance		
measurements(SI). The following pages and an	he measuren re part of the	ents and the uncer certificate.		probability are given on the ment temperature(22±3)°C and
measurements(SI). The following pages and an All calibrations have humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power sensor NRV-2 Reference Probe ES2 DAE4 RF generator E44380	he measuren re part of the been conduct t used (M&T 1 ID # 0 101 25 100 3DV3 SN SN C MY	ents and the uncer certificate. ted in the closed lal E critical for calibrati <u>Cal Date(Cal</u> 253 19-Jun-09 (T 333 19-Jun-09 (T 3149 08-Dec-08(1 771 21-Nov-08(1 45092879 18-Jun-0	tainties with confidence boratory facility: environn ion) ibrated by, Certificate No. TMC, No. JZ09-248) TMC, No. JZ09-248) SPEAG, No.ES3-3149_Dc SPEAG, No.DAE4-771_N)9(TMC, No.JZ09-302)	probability are given on the ment temperature(22±3) [°] C and Jun-10 Jun-10 ec08) Dec-09 fov08) Nov-09 Jun-10
measurements(SI). The following pages and an All calibrations have humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power sensor NRV-2 Reference Probe ES: DAE4	he measuren re part of the been conduct t used (M&T 1 ID # 0 101 25 100 3DV3 SN SN C MY	ents and the uncer certificate. ted in the closed lal E critical for calibrati <u>Cal Date(Cal</u> 253 19-Jun-09 (T 333 19-Jun-09 (T 3149 08-Dec-08(1 771 21-Nov-08(1 45092879 18-Jun-0	tainties with confidence boratory facility: environ ion) ibrated by, Certificate No. IMC, No. JZ09-248) SPEAG, No.ES3-3149_De SPEAG, No.DAE4-771_N	probability are given on the ment temperature(22±3) [°] C and <u>Jun-10</u> Jun-10 ec08) Dec-09 fov08) Nov-09
measurements(SI). Th following pages and an All calibrations have humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power Sensor NRV-Z Reference Probe ES: DAE4 RF generator E44380 Network Analyzer 87	he measuren re part of the been conduct t used (M&T 1 ID # 0 101 25 100 3DV3 SN SN C MY	ents and the uncer certificate. ted in the closed lat E critical for calibrat <u>Cal Date(Cal</u> 253 19-Jun-09 (1 333 19-Jun-09 (1 3149 08-Dec-08(1 771 21-Nov-08(1 45092879 18-Jun-0 8433212 03-Aug-0	tainties with confidence boratory facility: environn ion) ibrated by, Certificate No. TMC, No. JZ09-248) TMC, No. JZ09-248) SPEAG, No.ES3-3149_Dc SPEAG, No.DAE4-771_N)9(TMC, No.JZ09-302)	probability are given on the ment temperature(22±3) [°] C and Jun-10 Jun-10 ec08) Dec-09 fov08) Nov-09 Jun-10
measurements(SI). The following pages and an All calibrations have humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power sensor NRV-2 Reference Probe ES2 DAE4 RF generator E44380	he measuren re part of the been conduct t used (M&T 1 ID # 25 100 3DV3 SN C MY 753E US:	ents and the uncer certificate. ted in the closed lat E critical for calibrat <u>Cal Date(Cal</u> 253 19-Jun-09 (1 313 19-Jun-09 (1 3149 08-Dec-08(1 771 21-Nov-08(1 45092879 18-Jun-0 8433212 03-Aug-0 ne	tainties with confidence boratory facility: environn ion) ibrated by, Certificate No. IMC, No. JZ09-248) TMC, No. JZ09-248) SPEAG, No.ES3-3149_De SPEAG, No.DAE4-771_N 09(TMC, No.JZ09-302) 18(TMC, No.JZ08-056)	probability are given on the ment temperature(22±3)°C and Jun-10 Jun-10 ec08) Dec-09 lov08) Nov-09 Jun-10 Aug-09
measurements(SI). Th following pages and an All calibrations have humidity<70%. Calibration Equipment Primary Standards Power Meter NRVD Power Sensor NRV-Z Reference Probe ES: DAE4 RF generator E44380 Network Analyzer 87	he measuren re part of the been conduct t used (M&T 1 ID # 0 101 Z5 100 3DV3 SN C MY 753E US2 Nar	ted in the closed lal E critical for calibrati Cal Date(Cal 253 19-Jun-09 (1 313 19-Jun-09 (1 3149 08-Dec-08(1 771 21-Nov-08(1 45092879 18-Jun-0 8433212 03-Aug-0 ne SAR	tainties with confidence boratory facility: environn ion) ibrated by, Certificate No. TMC, No. JZ09-248) TMC, No. JZ09-248) SPEAG, No.ES3-3149_De SPEAG, No.DAE4-771_N 99(TMC, No.JZ09-302) 98(TMC, No.JZ08-056) Function	probability are given on the ment temperature(22±3)°C and Jun-10 Jun-10 ec08) Dec-09 lov08) Nov-09 Jun-10 Aug-09

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low reflected
 power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No
 uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	2mm Oval Phantom ELI4	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.40mho/m ± 6 %
Head TSL temperature during test	(21.9 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.88 mW / g
SAR normalized	normalized to 1W	39.5 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	37.8 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.0 mW / g
SAR normalized	normalized to 1W	20.0 mW/g
SAR for nominal Head TSL parameters ¹	normalized to 1W	19.8 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-5d060_Jul09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6%	1.55 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	39.4 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.18 mW / g
SAR normalized	normalized to 1W	20.72 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-5d060_Jul09

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"