FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E & INDUSTRY CANADA RSS-132 & RSS-133

Report No.: T130708W02-RP1

TEST REPORT

For

LE920-NAG

Trade Name: LE920

Model: LE920-NAG

Issued to

Telit Communications S.P.A. Via Stazione di Prosecco 5/B 34010 Sgonico, Trieste - Italy

Issued by

Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com
Issued Date: July 26, 2013

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Page 1 / 114 Rev.00

Revision History

Report No.: T130708W02-RP1

Rev.	Issue Date	Revisions	Effect Page	Revised By
Kev.	Date	Kevisiolis	1 age	Revised by
00	July 26, 2013	Initial Issue	ALL	Kelly Cheng

Page 2 Rev.00

TABLE OF CONTENTS

1.	JTE	ST RESULT CERTIFICATION	4
2.	EUT	DESCRIPTION	5
3.	TES	T METHODOLOGY	6
	3.1	EUT CONFIGURATION	6
	3.2	EUT EXERCISE	
	3.3	GENERAL TEST PROCEDURES	
	3.4	DESCRIPTION OF TEST MODES	7
4.	INS	TRUMENT CALIBRATION	8
	4.1	MEASURING INSTRUMENT CALIBRATION	
	4.2	MEASUREMENT EQUIPMENT USED	
	4.3	MEASUREMENT UNCERTAINTY	10
5.	FAC	CILITIES AND ACCREDITATIONS	11
	5.1	FACILITIES	11
	5.2	EQUIPMENT	11
	5.3	LABORATORY ACCREDITATIONS AND LISTING	11
	5.4	TABLE OF ACCREDITATIONS AND LISTINGS	12
6.	SET	UP OF EQUIPMENT UNDER TEST	13
	6.1	SETUP CONFIGURATION OF EUT	13
	6.2	SUPPORT EQUIPMENT	13
7.	FCC	C PART 22 & 24 REQUIREMENTS & INDUSTRY CANADA RSS-132 & R	SS-133 14
	7.1	99% BANDWIDTH	14
	7.2	PEAK POWER	
	7.3	ERP & EIRP MEASUREMENT	
	7.4	OUT OF BAND EMISSION AT ANTENNA TERMINALS	
	7.5	FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	
	7.6	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	
	7.7	FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT	111
ΑI	PPEN	DIX II PHOTOGRAPHS OF TEST SETUP	113
Al	PPEN	DIX 1 - PHOTOGRAPHS OF EUT	

1. JTEST RESULT CERTIFICATION

Applicant: Telit Communications S.P.A.

Via Stazione di Prosecco 5/B

Report No.: T130708W02-RP1

34010 Sgonico, Trieste - Italy

Manufacturer: Telit Communications S.P.A.

Via Stazione di Prosecco 5/B 34010 Sgonico, Trieste - Italy

Equipment Under Test: LE920-NAG

Trade Name: LE920

Model Number: LE920-NAG

Date of Test: July 18 ~ 23, 2013

APPLICABLE STANDARDS					
STANDARD	TEST RESULT				
FCC 47 CFR PART 22 SUBPART H AND					
PART 24 SUBPART E					
&	No non-compliance noted				
IC RSS-132 Issue 2: September 2005 and					
IC RSS-133 Issue 5: February 2009					

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA-603-C and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rule FCC PART 22 Subpart H, PART 24 Subpart E, IC RSS-132 Issue 2 and IC RSS-133 Issue 4.

The test results of this report relate only to the tested sample identified in this report.

Approved by: Reviewed by:

Miller Lee Section Manager

Killer Lee

Compliance Certification Services Inc.

Angel Cheng Section Manager

Compliance Certification Services Inc.

Angel Chent

Page 4 Rev.00

2. EUT DESCRIPTION

Product	LE920-NAG			
Trade Name	LE920			
Model Number	LE920-NAG			
Model Discrepancy	N/A			
Received Date	July 08, 2013			
Power Supply	DC 3.8V powered from Host de	evice.		
	LTE Band 2 Channel Bandwidth: 5MHz	1852.5MHz ~1907.5MHz		
Frequency Range	LTE Band 2 Channel Bandwidth: 10MHz	1855MHz ~1905MHz		
	LTE Band 2 Channel Bandwidth: 20MHz	1860MHz ~1900MHz		
	LTE Band 5 Channel Bandwidth: 5MHz	826.5MHz ~846.5MHz		
	LTE Band 5 Channel Bandwidth: 10MHz	829MHz ~844MHz		
Modulation Tachnique	LTE Band 2	QPSK, 16QAM		
Modulation Technique	LTE Band 5	QPSK, 16QAM		
	LTE Band 2	QPSK: 27.71dBm		
	Channel Bandwidth: 5MHz	16QAM : 27.94dBm		
Mariana EDD Dania	LTE Band 2	QPSK: 27.92dBm		
Maximum ERP Power	Channel Bandwidth: 10MHz	16QAM: 28.00dBm		
	LTE Band 2	QPSK: 27.00dBm		
	Channel Bandwidth: 20MHz	16QAM :26.89 dBm		
	LTE Band 5	QPSK : 23.76dBm		
M · EDDD	Channel Bandwidth: 5MHz	16QAM: 24.20dBm		
Maximum ERP Power	LTE Band 5	QPSK: 23.36dBm		
	Channel Bandwidth: 10MHz	16QAM : 22.31dBm		
Category	LTE: 3			
Antenna Specification	LTE Band 2: 3-cable Dipole Antenna / Gain: 1.71dBi LTE Band 5: 3-cable Dipole Antenna / Gain: 0.46dBi			
	1			

Remark: The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.

Page 5 Rev.00

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4: 2009, TIA/EIA-603-C: 2004 and FCC CFR 47, Part 2 and Part 22 Subpart H & Part 24 Subpart E.

Report No.: T130708W02-RP1

The tests documented in this report were performed in accordance with IC RSS-132, SPSR503, RSS-133, SPSR510 and ANSI C63.4 and TIA/EIA-603-C.

3.1EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

3.3GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4: 2009.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4: 2009.

Page 6 Rev.00

3.4DESCRIPTION OF TEST MODES

The EUT (model: LE920-NAG) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

Report No.: T130708W02-RP1

LTE Band 2: 1850MHz ~ 1910MHz

Three channels had been tested for each channel bandwidth.

Channel	5MHz		10MI	Hz	20MHz	
Bandwidth	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
Low channel (L)	18625	1852.5	18650	1855	18700	1860
Middle channel (M)	18900	1880	18900	1880	18900	1880
High channel (H)	19175	1907.5	19150	1905	19100	1900

LTE Band 5: 824MHz ~ 849MHz

Three channels had been tested for each channel bandwidth.

Channel	5M	Hz	10MHz		
Bandwidth	Channel	Frequency(MHz)	Channel	Frequency(MHz)	
Low channel (L)	20425	826.5	20450	829	
Middle channel (M)	20520	836	20520	836	
High channel (H)	20625	846.5	20600	844	

Page 7 Rev.00

4. INSTRUMENT CALIBRATION

4.1MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Report No.: T130708W02-RP1

Page 8 Rev.00

4.2MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

Report No.: T130708W02-RP1

Conducted Emissions Test Site									
Name of Equipment Manufacturer Model Serial Number Calibratio									
Spectrum Analyzer	Agilent	E4446A	MY43360131	03/20/2014					
Power Meter	Anritsu	ML2495A	1012009	06/04/2014					
Power Sensor	Anritsu	MA2411A	0917072	06/04/2014					

3M Semi Anechoic Chamber							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	Agilent	E4446A	US42510268	11/06/2013			
EMI Test Receiver	R&S	ESCI	100064	02/17/2014			
Pre-Amplifier	Mini-Circults	ZFL-1000LN	SF350700823	01/12/2014			
Bilog Antenna	Sunol Sciences	JB3	A030105	02/17/2014			
Bilog Antenna	Sunol Sciences	JB3	A030205	10/02/2013			
Horn Antenna	EMCO	3117	00055165	02/17/2014			
Horn Antenna	EMCO	3117	00055167	01/28/2014			
Horn Antenna	EMCO	3116	26370	01/07/2014			
Loop Antenna	EMCO	6502	8905/2356	06/12/2014			
Turn Table	CCS	CC-T-1F	N/A	N.C.R			
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R			
Controller	CCS	CC-C-1F	N/A	N.C.R			
Site NSA	CCS	N/A	N/A	12/22/2013			
Test S/W	EZ-EMC (CCS-3A1RE)						

Page 9 Rev.00

4.3MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 10 Rev.00

FACILITIES AND ACCREDITATIONS

5.1FACILITIES

All measurement facilities used to collect the measurement data are located at	
No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029	
No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045	
No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN R.O.C.	,
Tel: 886-3-324-0332 / Fax: 886-3-324-5235	

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4: 2009 and CISPR Publication 22.

5.2EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under Lab Code: 0824-01 to perform Electromagnetic Interference tests according to FCC Part 15 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324G-1 for 3M Semi Anechoic Chamber A, 2324G-2 for 3M Semi Anechoic Chamber B.

> Page 11 Rev.00

5.4TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

Report No.: T130708W02-RP1

Page 12 Rev.00

^{*} No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6.2SUPPORT EQUIPMENT

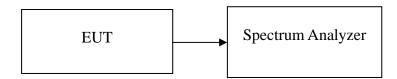
No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	Radio Communication Analyzer (Remote)	Anritsu	MT8820C	6200938900	N/A	N/A	N/A

Report No.: T130708W02-RP1

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 13 Rev.00


7. FCC PART 22 & 24 REQUIREMENTS & INDUSTRY CANADA RSS-132 & RSS-133

7.199% BANDWIDTH

LIMIT

None; for reporting purposes only.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

TEST RESULTS

No non-compliance noted.

Page 14 Rev.00

Test Data

LTE Band 5

CHANNEL BANDWIDTH: 5MHz/QPSK

Channel	FREQUENCY	Occupied bandwidth	
Channel	(MHz)	(MHz)	
Low	826.5	5.035	
Mid	836	5.075	
High	846.5	5.115	

Report No.: T130708W02-RP1

CHANNEL BANDWIDTH: 5MHz / 16QAM

Channel	FREQUENCY Occupied bandwidth	
Chaimei	(MHz)	(MHz)
Low	826.5	5.078
Mid	836	5.040
High	846.5	5.128

CHANNEL BANDWIDTH: 10MHz/QPSK

Channel	FREQUENCY Occupied bandwidth	
Chamei	(MHz)	(MHz)
Low	829	9.827
Mid	836	9.927
High	844	10.001

CHANNEL BANDWIDTH: 10MHz / 16QAM

Channel	FREQUENCY (MHz)	Occupied bandwidth (MHz)
Low	829	9.710
Mid	836	9.881
High	844	9.955

Page 15 Rev.00

LTE Band 2

CHANNEL BANDWIDTH: 5MHz / QPSK

Channel	FREQUENCY (MHz)	Occupied bandwidth (MHz)
Low	1852.5	5.053
Mid	1880	5.054
High	1907.5	5.146

Report No.: T130708W02-RP1

CHANNEL BANDWIDTH: 5MHz / 16QAM

Channel	FREQUENCY	Occupied bandwidth	
Channel	(MHz)	(MHz)	
Low	1852.5	4.996	
Mid	1880	4.996	
High	1907.5	5.096	

CHANNEL BANDWIDTH: 10MHz/QPSK

Channel	FREQUENCY (MHz)	Occupied bandwidth (MHz)
Low	1855	10.049
Mid	1880	9.901
High	1905	9.958

CHANNEL BANDWIDTH: 10MHz / 16QAM

Channel	FREQUENCY	Occupied bandwidth	
Channel	(MHz)	(MHz)	
Low	1855	10.008	
Mid	1880	9.852	
High	1905	9.844	

Page 16 Rev.00

CHANNEL BANDWIDTH: 20MHz / QPSK

Channal	FREQUENCY	Occupied bandwidth	
Channel	(MHz)	(MHz)	
Low	1860	19.619	
Mid	1880	19.685	
High	1900	19.385	

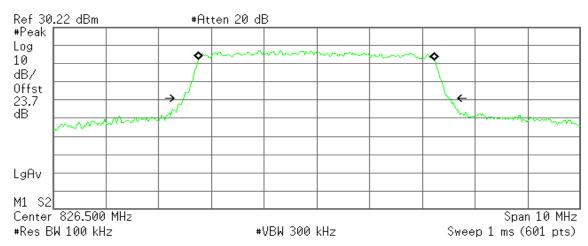
Report No.: T130708W02-RP1

CHANNEL BANDWIDTH: 20MHz / 16QAM

Channal	FREQUENCY Occupied bandwidth	
Channel	(MHz)	(MHz)
Low	1860	19.702
Mid	1880	19.504
High	1900	19.797

Page 17 Rev.00

LTE Band 5


CHANNEL BANDWIDTH: 5MHz/QPSK

CH Low

* Agilent 20:14:11 Jul 18, 2013

R T

Report No.: T130708W02-RP1

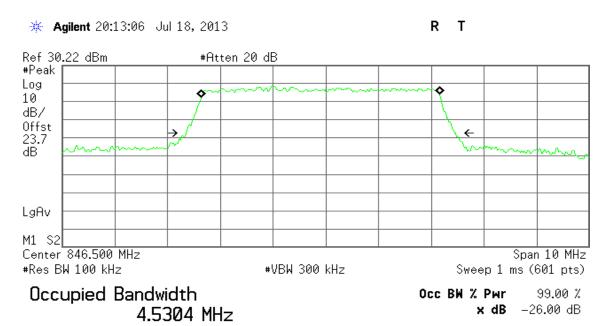
Occupied Bandwidth 4.4906 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

R T

Transmit Freq Error -4.327 kHz x dB Bandwidth 5.035 MHz

CH Mid

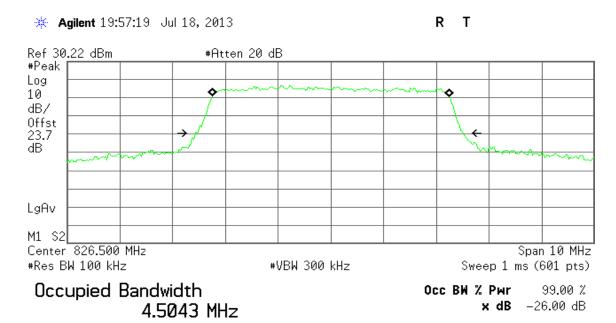
* Agilent 20:12:06 Jul 18, 2013 Ref 30.22 dBm #Atten 20 dB #Peak Log 10 dB/ Offst 23.7 dB LgAv M1 S2 Center 836.000 MHz Span 10 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 1 ms (601 pts)


Occupied Bandwidth 4.5096 MHz

Occ BW % Pwr 99.00 % **x dB** -26.00 dB

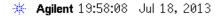
Transmit Freg Error 12.888 kHz x dB Bandwidth 5.075 MHz

> Page 18 Rev.00

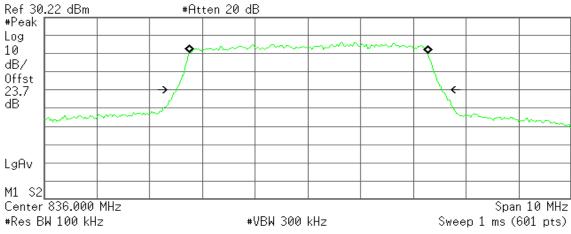

CH High

Transmit Freq Error -98.769 kHz x dB Bandwidth 5.115 MHz

CHANNEL BANDWIDTH: 5MHz / 16QAM


CH Low

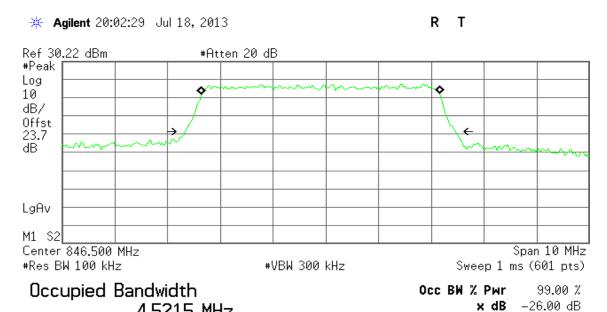
Transmit Freq Error -2.032 kHz x dB Bandwidth 5.078 MHz


Page 19 Rev.00

CH Mid

R T

Report No.: T130708W02-RP1

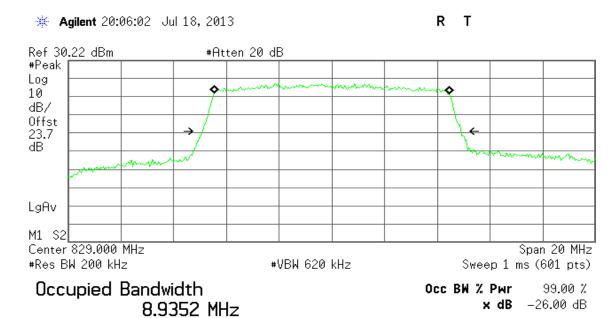


Occupied Bandwidth 4.5220 MHz

Occ BW % Pwr 99.00 % **x dB** -26.00 dB

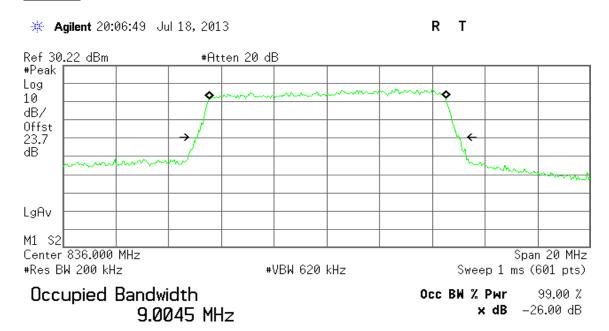
Transmit Freq Error 14.291 kHz x dB Bandwidth 5.040 MHz

CH High


Transmit Freq Error -99.474 kHz x dB Bandwidth 5.128 MHz

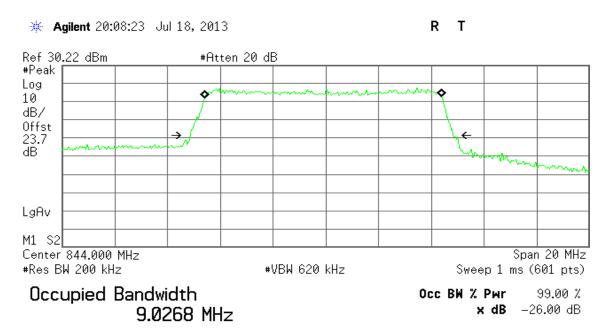
4.5215 MHz

Page 20 Rev.00


CHANNEL BANDWIDTH: 10MHz / QPSK

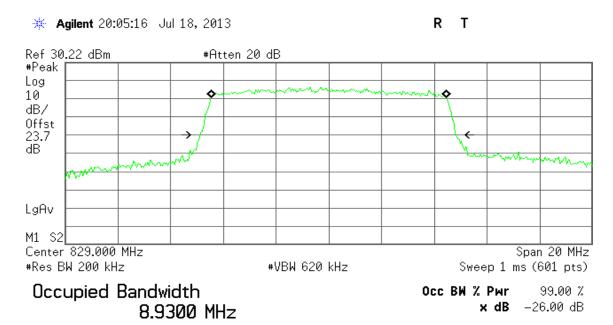
CH Low

Transmit Freq Error -6.887 kHz x dB Bandwidth 9.827 MHz


CH Mid

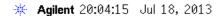
Transmit Freq Error 19.879 kHz x dB Bandwidth 9.927 MHz

Page 21 Rev.00

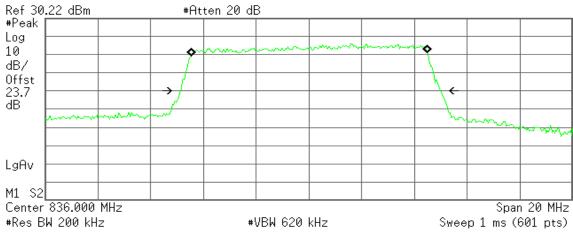

CH High

Transmit Freq Error -97.396 kHz x dB Bandwidth 10.001 MHz

CHANNEL BANDWIDTH: 10MHz / 16QAM

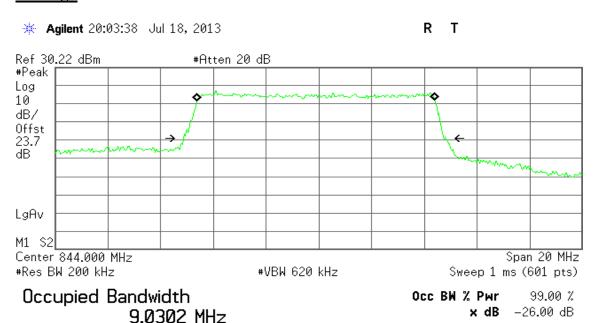

CH Low

Transmit Freq Error 4.532 kHz x dB Bandwidth 9.710 MHz


Page 22 Rev.00

CH Mid

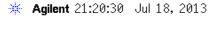
R T


Report No.: T130708W02-RP1

Occupied Bandwidth 8.9710 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 22.295 kHz x dB Bandwidth 9.881 MHz

CH High


Transmit Freq Error -108.642 kHz x dB Bandwidth 9.955 MHz

Page 23 Rev.00

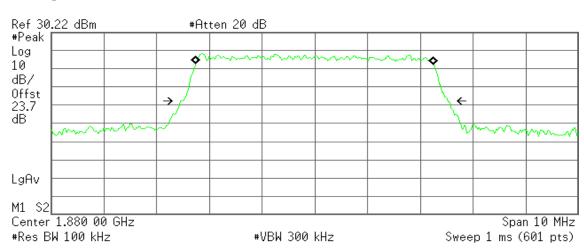
LTE Band 2


CHANNEL BANDWIDTH: 5MHz/QPSK

CH Low

R T

Report No.: T130708W02-RP1

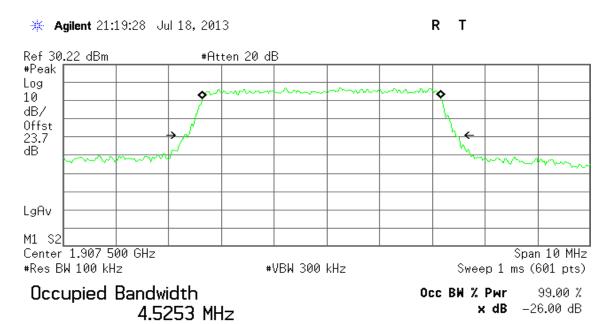

Occupied Bandwidth 4.5052 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -2.968 kHz x dB Bandwidth 5.053 MHz

CH Mid

* Agilent 21:20:06 Jul 18, 2013

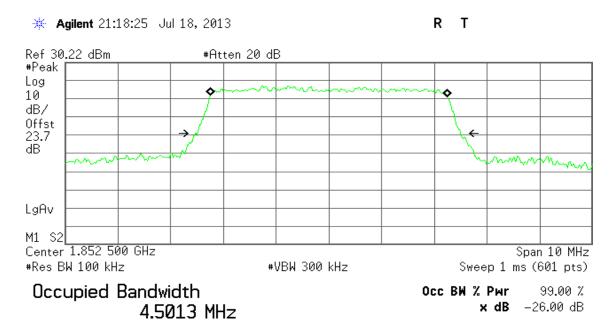
R T


Occupied Bandwidth 4.5184 MHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

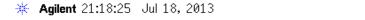
Transmit Freq Error -1.365 kHz x dB Bandwidth 5.054 MHz

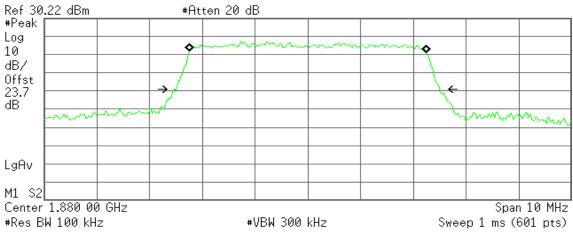
Page 24 Rev.00


CH High

Transmit Freq Error -96.464 kHz x dB Bandwidth 5.146 MHz

CHANNEL BANDWIDTH: 5MHz / 16QAM


CH Low

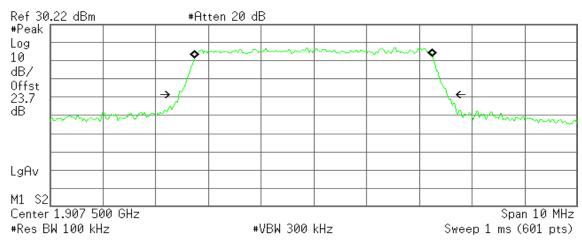


Transmit Freq Error 4.119 kHz x dB Bandwidth 4.996 MHz

Page 25 Rev.00

CH Mid

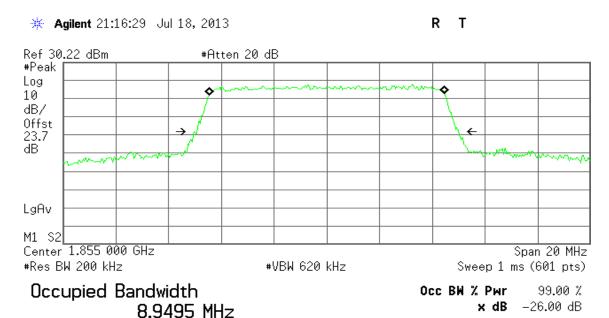
Occupied Bandwidth 4.5013 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB


R T

Report No.: T130708W02-RP1

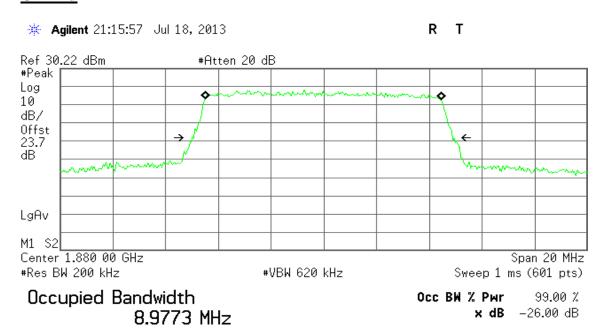
Transmit Freq Error 4.119 kHz x dB Bandwidth 4.996 MHz

CH High


Occupied Bandwidth 4.5219 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

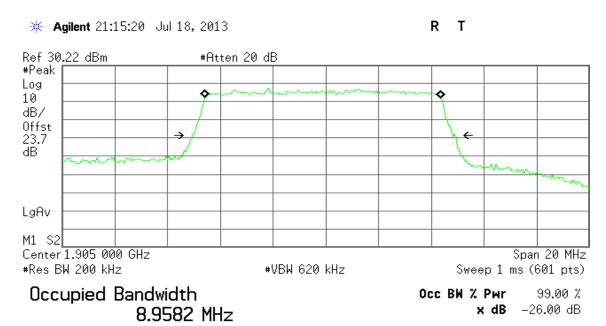
Transmit Freq Error -2.733 kHz x dB Bandwidth 5.096 MHz

Page 26 Rev.00


CHANNEL BANDWIDTH: 10MHz / QPSK

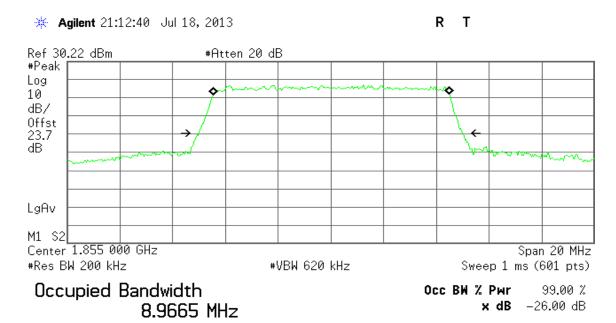
CH Low

Transmit Freq Error 5.946 kHz x dB Bandwidth 10.049 MHz


CH Mid

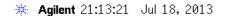
Transmit Freq Error -19.421 kHz x dB Bandwidth 9.901 MHz

Page 27 Rev.00

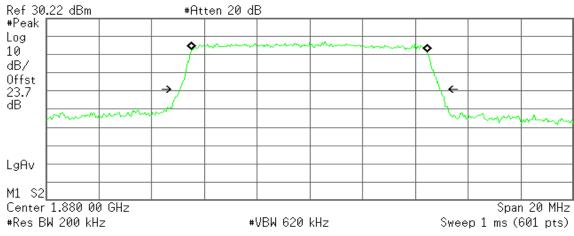

CH High

Transmit Freq Error -106.236 kHz x dB Bandwidth 9.958 MHz

CHANNEL BANDWIDTH: 10MHz / 16QAM

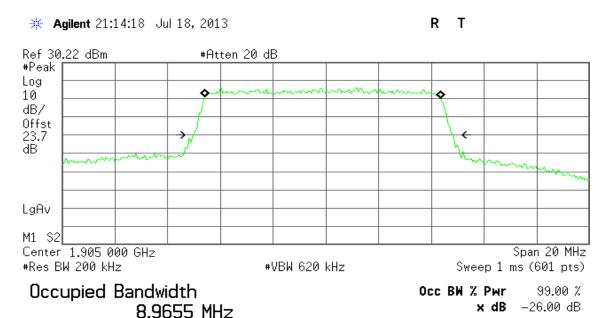

CH Low

Transmit Freq Error 10.088 kHz x dB Bandwidth 10.008 MHz


Page 28 Rev.00

CH Mid

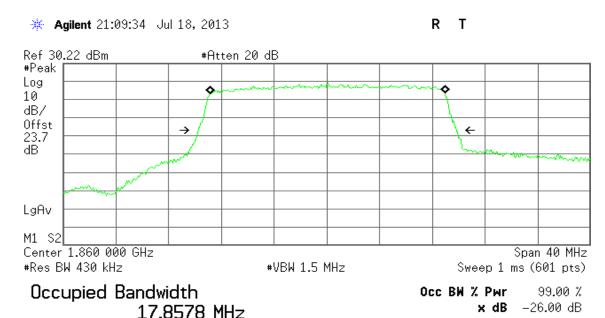
R T


Report No.: T130708W02-RP1

Occupied Bandwidth 8.9596 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

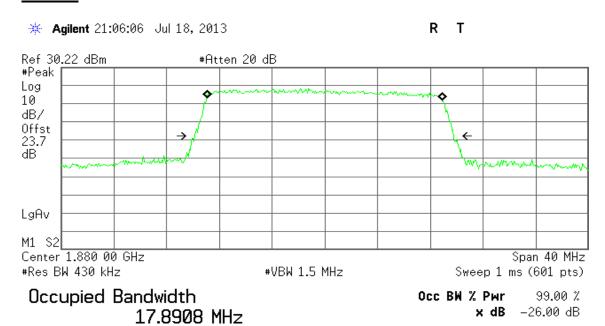
Transmit Freq Error -20.788 kHz x dB Bandwidth 9.852 MHz

CH High



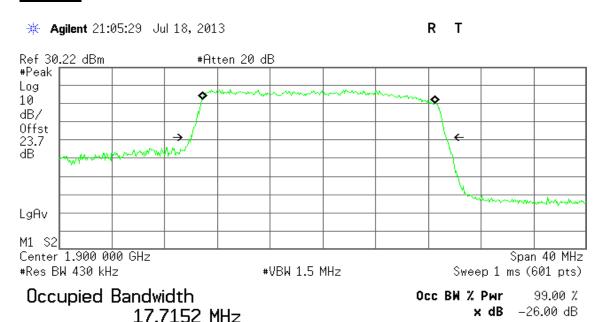
Transmit Freq Error -109.860 kHz x dB Bandwidth 9.844 MHz

Page 29 Rev.00


CHANNEL BANDWIDTH: 20MHz / QPSK

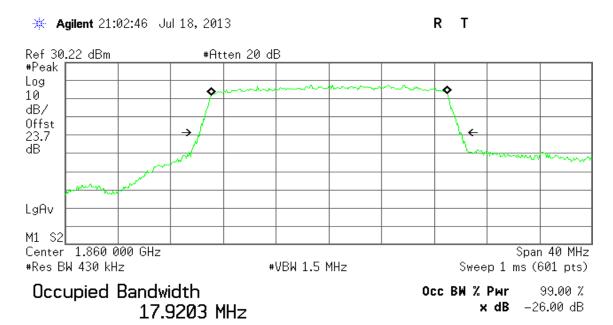
CH Low

Transmit Freq Error 41.411 kHz x dB Bandwidth 19.619 MHz


CH Mid

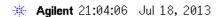
Transmit Freq Error -20.833 kHz x dB Bandwidth 19.685 MHz

Page 30 Rev.00

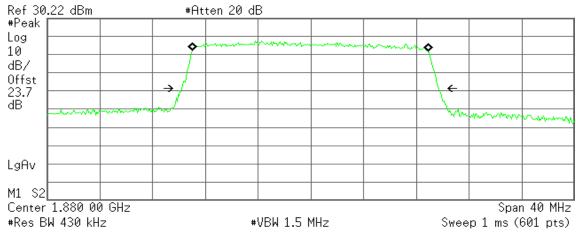

CH High

Transmit Freq Error -291.121 kHz x dB Bandwidth 19.385 MHz

CHANNEL BANDWIDTH: 20MHz / 16QAM

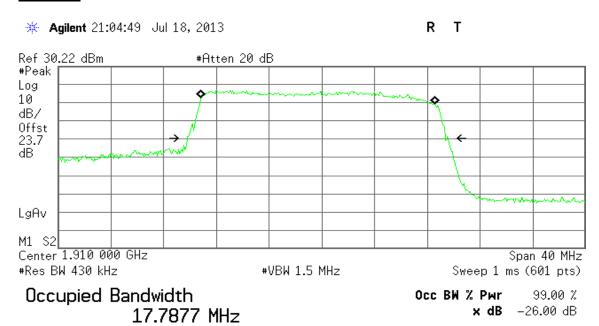

CH Low

Transmit Freq Error 54.189 kHz x dB Bandwidth 19.702 MHz


Page 31 Rev.00

CH Mid

R T

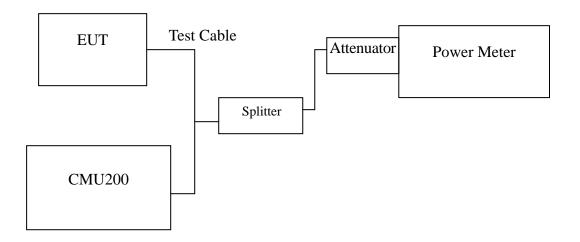

Report No.: T130708W02-RP1

Occupied Bandwidth 17.8868 MHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -29.047 kHz x dB Bandwidth 19.504 MHz

CH High

Transmit Freq Error -287.391 kHz x dB Bandwidth 19.797 MHz


Page 32 Rev.00

7.2PEAK POWER

LIMIT

According to FCC §2.1046.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

TEST RESULTS

No non-compliance noted.

Page 33 Rev.00

Test Data

LTE Band 5

Channel Bandwidth: 5MHz

Conducted Output Power (QPSK 1 RB ALLOCATED AT THE LOWER EDGE)					
Frequency	Output Power			CI I	Power
(MHz)	Channel	(dBm)	(W)		
826.5	20425	23.78	0.23878		
836	20520	23.89	0.24491		
846.5	20625	23.98	0.25003		

Conducted Output Power (QPSK 1 RB ALLOCATED AT THE UPPER EDGE)			
Frequency	Output Power		
(MHz)	Channel	(dBm)	(W)
826.5	20425	22.86	0.19320
836	20520	22.90	0.19498
846.5	20625	23.13	0.20559

Conducted Output Power (QPSK 50% RB ALLOCATION CENTERED)			
Frequency	Channel	Output Power	
(MHz)	Channel	(dBm)	(W)
826.5	20425	22.81	0.19099
836	20520	22.94	0.19679
846.5	20625	23.00	0.19953

Conducted Output Power (QPSK 100% RB ALLOCATION)			
Frequency	CI I	Output Power	
(MHz)	Channel	(dBm) (W)	(W)
826.5	20425	21.77	0.15031
836	20520	21.89	0.15453
846.5	20625	22.90	0.19498

Remarks:

- 1. $Output\ Power\ (dBm) = Raw\ Value\ (dBm) + Correction\ Factor\ (dB)$.
- 2. $Correction\ Factor\ (dB) = Power\ Splitter\ Loss\ (dB) + Cable\ Loss\ (dB) + 20dB\ Attenuator.$
- 3. The value in bold is the worst.

Page 34 Rev.00

Channel Bandwidth: 5MHz

Conducted Output Power (16QAM 1 RB ALLOCATED AT THE LOWER EDGE)			
Frequency	Channel	Output Power	
(MHz)		(dBm)	(W)
826.5	20425	23.05	0.20184
836	20520	23.12	0.20512
846.5	20625	23.20	0.20893

Report No.: T130708W02-RP1

Conducted Output Power (16QAM 1 RB ALLOCATED AT THE UPPER EDGE)			
Frequency	CI I	Output Power	
(MHz)	Channel	(dBm)	(W)
826.5	20425	22.75	0.18836
836	20520	22.87	0.19364
846.5	20625	23.03	0.20091

Conducted Output Power (16QAM 50% RB ALLOCATION CENTERED)			
Frequency	Frequency (MHz) Channel	Output Power	
(MHz)		(dBm)	(W)
826.5	20425	21.95	0.15668
836	20520	22.09	0.16181
846.5	20625	22.14	0.16368

Conducted Output Power (16QAM 100% RB ALLOCATION)			
Frequency	Charmal	Output Power	
(MHz)	Channel	(dBm) (W)	(W)
826.5	20425	21.67	0.14689
836	20520	21.78	0.15066
846.5	20625	22.78	0.18967

Remarks:

- 1. $Output\ Power\ (dBm) = Raw\ Value\ (dBm) + Correction\ Factor\ (dB)$.
- 2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB) + 20dB Attenuator.
- 3. The value in bold is the worst.

Page 35 Rev.00

LTE Band 5

Channel Bandwidth: 10MHz

Conducted Output Power (QPSK 1 RB ALLOCATED AT THE LOWER EDGE)			
Frequency	CI. I	Output Power	
(MHz)	Channel	(dBm)	(W)
829	20450	23.75	0.23714
836	20520	23.92	0.24660
844	20600	24.06	0.25468

Report No.: T130708W02-RP1

Conducted Output Power (QPSK 1 RB ALLOCATED AT THE UPPER EDGE)			
Frequency	CI I	Output Power	
(MHz)	Channel	(dBm) (W)	(W)
829	20450	22.71	0.18664
836	20520	22.87	0.19364
844	20600	22.96	0.19770

Conducted Output Power (QPSK 50% RB ALLOCATION CENTERED)			
Frequency	Charmal	Output Power	
(MHz)	Channel	(dBm) (W)	(W)
829	20450	22.98	0.19861
836	20520	23.06	0.20230
844	20600	23.13	0.20559

Conducted Output Power (QPSK 100% RB ALLOCATION)			
Frequency	CI I	Output Power	
(MHz)	Channel	(dBm)	(W)
829	20450	21.67	0.14689
836	20520	21.78	0.15066
844	20600	22.00	0.15849

Remarks:

- 1. $Output\ Power\ (dBm) = Raw\ Value\ (dBm) + Correction\ Factor\ (dB)$.
- 2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB) + 20dB Attenuator.
- 3. The value in bold is the worst.

Page 36 Rev.00

Conducted Output Power (16QAM 1 RB ALLOCATED AT THE LOWER EDGE)				
Frequency	Channel	Output	tput Power	
(MHz)	Channel	(dBm)	(W)	
829	20450	22.25	0.16788	
836	20520	22.48	0.17701	
844	20600	22.98	0.19861	

Conducted Output Power (16QAM 1 RB ALLOCATED AT THE UPPER EDGE)			
Frequency	Output	Output Power	
(MHz)	Channel	(dBm)	(W)
829	20450	21.63	0.14555
836	20520	21.77	0.15031
844	20600	21.92	0.15560

Conducted Output Power (16QAM 50% RB ALLOCATION CENTERED)			
Frequency	Channel	Output	Power
(MHz)	Channel	(dBm)	(W)
829	20450	22.10	0.16218
836	20520	22.25	0.16788
844	20600	22.65	0.18408

Conducted Output Power (16QAM 100% RB ALLOCATION)			
Frequency	Channal	Output Power	
(MHz)	Channel	(dBm)	(W)
829	20450	20.54	0.11324
836	20520	20.67	0.11668
844	20600	20.83	0.12106

Remarks:

- 1. Output Power(dBm) = Raw Value(dBm) + Correction Factor(dB).
- 2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB) + 20dB Attenuator.
- 3. The value in bold is the worst.

Page 37 Rev.00

Channel Bandwidth: 5MHz

Conducted Output Power (QPSK 1 RB ALLOCATED AT THE LOWER EDGE)			
Frequency Channel Output Power			
(MHz)	Channel	(dBm)	(W)
1852.5	18625	24.14	0.25942
1880	18900	24.33	0.27102
1907.5	19175	24.19	0.26242

Report No.: T130708W02-RP1

Conducted Output Power (QPSK 1 RB ALLOCATED AT THE UPPER EDGE)			
Frequency Output Power			
(MHz)	Channel	(dBm)	(W)
1852.5	18625	23.10	0.20417
1880	18900	23.35	0.21627
1907.5	19175	23.19	0.20845

Conducted Output Power (QPSK 50% RB ALLOCATION CENTERED)			
Frequency	Channal	Output	Power
(MHz)		(dBm)	(W)
1852.5	18625	23.63	0.23067
1880	18900	23.72	0.23550
1907.5	19175	23.53	0.22542

Conducted Output Power (QPSK 100% RB ALLOCATION)			
Frequency Output Power			
(MHz)	Channel	(dBm)	(W)
1852.5	18625	22.11	0.16255
1880	18900	22.20	0.16596
1907.5	19175	22.15	0.16406

Remarks:

- 1. $Output\ Power\ (dBm) = Raw\ Value\ (dBm) + Correction\ Factor\ (dB)$.
- 2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB) + 20dB Attenuator.
- 3. The value in bold is the worst.

Page 38 Rev.00

Channel Bandwidth: 5MHz

Conducted Output Power (16QAM 1 RB ALLOCATED AT THE LOWER EDGE)			
Frequency	Channel	Output Power	
(MHz)	Channer	(dBm)	(W)
1852.5	18625	23.40	0.21878
1880	18900	23.76	0.23768
1907.5	19175	23.47	0.22233

Report No.: T130708W02-RP1

Conducted Output Power (16QAM 1 RB ALLOCATED AT THE UPPER EDGE)				
Frequency	equency Output Power		C)	Power
(MHz)	Channel	(dBm)	(W)	
1852.5	18625	22.04	0.15996	
1880	18900	23.08	0.20324	
1907.5	19175	22.14	0.16368	

Conducted Output Power (16QAM 50% RB ALLOCATION CENTERED)			
Frequency	Channel	Output	Power
(MHz)	Chamei	(dBm)	(W)
1852.5	18625	21.98	0.15776
1880	18900	22.36	0.17219
1907.5	19175	22.14	0.16368

Conducted Output Power (16QAM 100% RB ALLOCATION)			
Frequency	Channal	Output Power	
(MHz)	Channel	(dBm)	(W)
1852.5	18625	21.76	0.14997
1880	18900	22.57	0.18072
1907.5	19175	21.90	0.15488

Remarks:

- 1. $Output\ Power\ (dBm) = Raw\ Value\ (dBm) + Correction\ Factor\ (dB)$.
- 2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB) + 20dB Attenuator.
- 3. The value in bold is the worst.

Page 39 Rev.00

Channel Bandwidth: 10MHz

Conducted Output Power (QPSK 1 RB ALLOCATED AT THE LOWER EDGE)					
Frequency	ency Output Power			CI I	Power
(MHz)	Channel	(dBm)	(W)		
1855	18650	24.01	0.25177		
1880	18900	24.34	0.27164		
1905	19150	24.23	0.26485		

Report No.: T130708W02-RP1

Conducted Output Power (QPSK 1 RB ALLOCATED AT THE UPPER EDGE)					
Frequency	Output Power			Ci. I	Power
(MHz)	Channel	(dBm)	(W)		
1855	18650	22.99	0.19907		
1880	18900	23.82	0.24099		
1905	19150	23.72	0.23550		

Conducted Output Power (QPSK 50% RB ALLOCATION CENTERED)					
Frequency	Output Power			CI I	Power
(MHz)	Channel	(dBm)	(W)		
1855	18650	23.54	0.22594		
1880	18900	23.94	0.24774		
1905	19150	23.74	0.23659		

Conducted Output Power (QPSK 100% RB ALLOCATION)						
Frequency	Output Power				Ci. I	Power
(MHz)		(dBm)	(W)			
1855	18650	22.05	0.16032			
1880	18900	22.97	0.19815			
1905	19150	22.78	0.18967			

Remarks:

- 1. $Output\ Power\ (dBm) = Raw\ Value\ (dBm) + Correction\ Factor\ (dB)$.
- 2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB) + 20dB Attenuator.
- 3. The value in bold is the worst.

Page 40 Rev.00

Conducted Output Power (16QAM RB ALLOCATED AT THE LOWER EDGE)			
Frequency	Channal	Power	
(MHz)	Channel	(dBm)	(W)
1855	18650	22.20	0.16596
1880	18900	23.52	0.22491
1905	19150	23.38	0.21777

Conducted Output Power (16QAM RB ALLOCATED AT THE UPPER EDGE)					
Frequency	Output Power			G. I	Power
(MHz)	Channel	(dBm)	(W)		
1855	18650	22.10	0.16218		
1880	18900	22.97	0.19815		
1905	19150	22.32	0.17061		

Conducted Output Power (16QAM 50% RB ALLOCATION CENTERED)				
Frequency	Output Power		Charmal	Power
(MHz)	Channel	(dBm)	(W)	
1855	18650	22.09	0.16181	
1880	18900	22.21	0.16634	
1905	19150	22.12	0.16293	

Conducted Output Power (16QAM 100% RB ALLOCATION)			
Frequency	Channal	Power	
(MHz)	Channel	(dBm)	(W)
1855	18650	21.53	0.14223
1880	18900	22.01	0.15885
1905	19150	21.90	0.15488

Remarks:

- 1. Output Power(dBm) = Raw Value(dBm) + Correction Factor(dB).
- 2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB) + 20dB Attenuator.
- 3. The value in bold is the worst.

Page 41 Rev.00

Channel Bandwidth: 20MHz

Conducted Output Power (QPSK 1 RB ALLOCATED AT THE LOWER EDGE)					
Frequency	Output Power			CI I	Power
(MHz)	Channel	(dBm)	(W)		
1860	18700	23.24	0.21086		
1880	18900	24.64	0.29107		
1900	19100	24.29	0.26853		

Report No.: T130708W02-RP1

Conducted Output Power (QPSK 1 RB ALLOCATED AT THE UPPER EDGE)					
Frequency	Output Power			G. I	Power
(MHz)	Channel	(dBm)	(W)		
1860	18700	21.80	0.15136		
1880	18900	23.97	0.24946		
1900	19100	23.67	0.23281		

Conducted Output Power (QPSK 50% RB ALLOCATION CENTERED)			
Frequency	Output Power		Power
(MHz)	Channel	(dBm)	(W)
1860	18700	22.08	0.16144
1880	18900	23.97	0.24946
1900	19100	23.19	0.20845

Conducted Output Power (QPSK 100% RB ALLOCATION)				
Frequency	Frequency Output Power			
(MHz)	Channel	(dBm)	(W)	
1860	18700	22.32	0.17061	
1880	18900	23.00	0.19953	
1900	19100	22.80	0.19055	

Remarks:

- 1. $Output\ Power\ (dBm) = Raw\ Value\ (dBm) + Correction\ Factor\ (dB)$.
- 2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB) + 20dB Attenuator.
- 3. The value in bold is the worst.

Page 42 Rev.00

Conducted Output Power (16QAM 1 RB ALLOCATED AT THE LOWER EDGE)								
Frequency	Channal	Output Power						
(MHz)	Channel	(dBm)	(W)					
1860	18700	23.48	0.22284					
1880	18900	23.78	0.23878					
1900	19100	23.54	0.22594					

Conducted Output Power (16QAM 1 RB ALLOCATED AT THE UPPER EDGE)								
Frequency	Channel	Output Power						
(MHz)	Channel	(dBm)	(W)					
1860	18700	21.48	0.14060					
1880	18900	22.04	0.15996					
1900	19100	21.70	0.14791					

Conducted Output Power (16QAM 50% RB ALLOCATION CENTERED)								
Frequency	Channel	Output Power						
(MHz)	Channel	(dBm)	(W)					
1860	18700	22.72	0.18707					
1880	18900	22.96	0.19770					
1900	19100	20.80	0.12023					

Conducted Output Power (16QAM 100% RB ALLOCATION)								
Frequency	Channel	Output Power						
(MHz)	Channel	(dBm)	(W)					
1860	18700	21.00	0.12589					
1880	18900	21.76	0.14997					
1900	19100	21.22	0.13243					

Remarks:

- 1. Output Power $(dBm) = Raw\ Value\ (dBm) + Correction\ Factor\ (dB)$.
- 2. Correction Factor (dB) = Power Splitter Loss (dB) + Cable Loss (dB) + 20dB Attenuator.
- 3. The value in bold is the worst.

Page 43 Rev.00

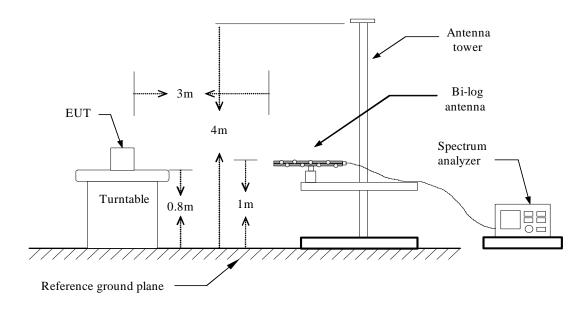
7.3ERP & EIRP MEASUREMENT

LIMIT

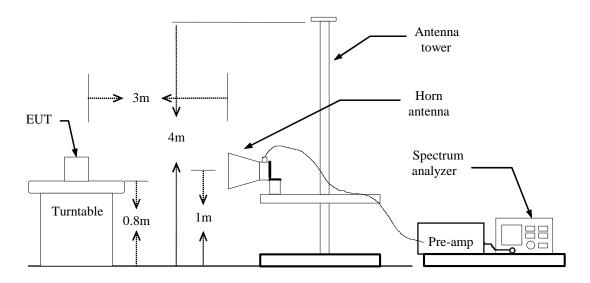
According to FCC §2.1046

FCC 22.913(b): The Effective Radiated Power (ERP) of mobile transmitters must not exceed 7 Watts.

Report No.: T130708W02-RP1

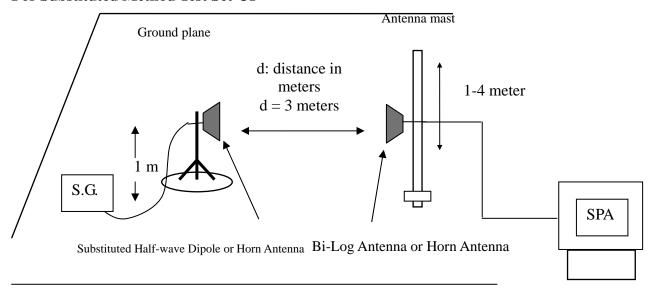

RSS-132 § 4.4 The maximum (ERP) shall be 6.3 Watts for mobile stations.

FCC 24.232(b): The equivalent Isotropic Radiated Power (EIRP) must not exceed 2 Watts.


RSS133 § 6.4: Mobile stations and hand-held portables are limited to 2 watts maximum (EIRP).

Test Configuration

Below 1 GHz



Above 1 GHz

Page 44 Rev.00

For Substituted Method Test Set-UP

Report No.: T130708W02-RP1

TEST PROCEDURE

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement of the EUT, the resolution bandwidth was set to 3MHz and the average bandwidth was set to 3MHz. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824-849MHz, and EIRP in frequency band 1851.25 –1910MHz were measured using a substitution method. The EUT was replaced by half-wave dipole (824-849MHz) or horn antenna (1851.25-1910MHz) connected to a signal generator. The spectrum analyzer reading was recorded and ERP/EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)-2.15 EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

TEST RESULTS

No non-compliance noted.

Page 45 Rev.00

LTE BAND 5

Channel Bandwidth: 5MHz / QPSK

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
20425	826.5	V	6.41	3.39	6.28	9.30	38.45	-29.15
20425	826.5	Н	19.86	3.39	6.28	22.75	38.45	-15.70
20520	836	V	6.52	3.4	6.37	9.49	38.45	-28.96
20520	836	Н	20.79	3.4	6.37	*23.76	38.45	-14.69
20625	846.5	V	6.51	3.4	6.4	9.51	38.45	-28.94
	846.5	Н	19.91	3.4	6.4	22.91	38.45	-15.54

Channel Bandwidth: 5MHz / 16QAM

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
20425	826.5	V	7.33	3.39	6.29	10.23	38.45	-28.22
20423	826.5	Н	20.76	3.39	6.28	23.65	38.45	-14.80
20520	836	V	7.42	3.41	6.38	10.39	38.45	-28.06
20520	836	Н	21.23	3.41	6.38	*24.20	38.45	-14.25
20625	846.5	V	6.25	3.4	6.4	9.25	38.45	-29.20
20625	846.5	Н	19.72	3.4	6.4	22.72	38.45	-15.73

Remark:

- 1. $Output\ Power\ (dBm) = Raw\ Value\ (dBm) + Correction\ Factor\ (dB)$.
- 2. Correction Factor (dB) = S.G Level + Gain of Substitution horn + TX cable loss.
- 3. The value in bold is the worst.

Page 46 Rev.00

Channel Bandwidth: 10MHz/QPSK

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
20450	829	V	5.18	3.39	6.26	8.05	38.45	-30.40
20450	829	Н	18.32	3.39	6.26	21.19	38.45	-17.26
20520	836	V	5.22	3.41	6.38	8.19	38.45	-30.26
20520	836	Н	19.38	3.41	6.39	*22.36	38.45	-16.09
20.600	844	V	5.31	3.41	6.4	8.30	38.45	-30.15
20600	844	Н	18.86	3.41	6.4	21.85	38.45	-16.60

Channel Bandwidth: 10MHz / 16QAM

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
20450	829	V	5.66	3.39	6.26	8.53	38.45	-29.92
20450	829	Н	19.05	3.39	6.29	21.95	38.45	-16.50
20520	836	V	5.94	3.41	6.38	8.91	38.45	-29.54
20520	836	Н	19.34	3.41	6.38	*22.31	38.45	-16.14
20600	844	V	5.07	3.41	6.4	8.06	38.45	-30.39
	844	Н	19.13	3.41	6.4	22.12	38.45	-16.33

Remark:

- 1. $Output\ Power\ (dBm) = Raw\ Value\ (dBm) + Correction\ Factor\ (dB)$.
- 2. $Correction\ Factor\ (dB) = S.G\ Level + Gain\ of\ Substitution\ horn\ +\ TX\ cable\ loss.$
- 3. The value in bold is the worst.

Page 47 Rev.00

LTE BAND 2

Channel Bandwidth: 5MHz / QPSK

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
19650	1852.5	V	10.66	5.38	5.66	10.94	33.00	-22.06
18650	1852.5	Н	26.61	5.38	5.66	26.89	33.00	-6.11
19000	1880	V	10.36	5.41	5.62	10.57	33.00	-22.43
18900	1880	Н	27.33	5.41	5.62	27.54	33.00	-5.46
10150	1907.5	V	9.37	5.46	5.57	9.48	33.00	-23.52
19150	1907.5	Н	27.6	5.46	5.57	*27.71	33.00	-5.29

Channel Bandwidth: 5MHz / 16QAM

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
18650	1852.5	V	11.07	5.38	5.66	11.35	33.00	-21.65
18030	1852.5	Н	26.98	5.38	5.66	27.26	33.00	-5.74
10000	1880	V	10.58	5.41	5.62	10.79	33.00	-22.21
18900	1880	Н	27.73	5.41	5.62	*27.94	33.00	-5.06
10150	1907.5	V	9.48	5.47	5.57	9.58	33.00	-23.42
19150	1907.5	Н	27.71	5.46	5.57	27.82	33.00	-5.18

Remark:

- 1. $Output\ Power\ (dBm) = Raw\ Value\ (dBm) + Correction\ Factor\ (dB)$.
- 2. Correction Factor (dB) = S.G Level + Gain of Substitution horn + TX cable loss.
- 3. The value in bold is the worst.

Page 48 Rev.00

Channel Bandwidth: 10MHz/QPSK

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
18625	1855	V	10.88	5.38	5.65	11.15	33.00	-21.85
18023	1855	Н	26.79	5.38	5.66	27.07	33.00	-5.93
19000	1880	V	10.49	5.41	5.62	10.70	33.00	-22.30
18900	1880	Н	27.4	5.41	5.62	27.61	33.00	-5.39
10175	1905	V	9.38	5.45	5.58	9.51	33.00	-23.49
19175	1905	Н	27.79	5.45	5.58	*27.92	33.00	-5.08

Channel Bandwidth: 10MHz / 16QAM

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
19625	1855	V	10.88	5.38	5.65	11.15	33.00	-21.85
18625	1855	Н	26.79	5.38	5.66	27.07	33.00	-5.93
19000	1880	V	10.42	5.41	5.62	10.63	33.00	-22.37
18900	1880	Н	27.08	5.41	5.62	27.29	33.00	-5.71
10175	1905	V	9.47	5.45	5.58	9.60	33.00	-23.40
19175	1905	Н	27.89	5.46	5.57	*28.00	33.00	-5.00

Remark:

- 1. Output Power(dBm) = Raw Value(dBm) + Correction Factor(dB).
- 2. $Correction\ Factor\ (dB) = S.G\ Level + Gain\ of\ Substitution\ horn + TX\ cable\ loss.$
- 3. The value in bold is the worst.

Page 49 Rev.00

Channel Bandwidth: 20MHz / QPSK

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
18700	1860	V	10.04	5.39	5.64	10.29	33.00	-22.71
18700	1860	Н	25.81	5.39	5.64	26.06	33.00	-6.94
18900	1880	V	9.1	5.42	5.62	9.30	33.00	-23.70
18900	1880	Н	26.06	5.41	5.62	26.27	33.00	-6.73
10100	1900	V	8.51	5.44	5.59	8.66	33.00	-24.34
19100	1900	Н	26.85	5.44	5.59	*27.00	33.00	-6.00

Channel bandwidth: 20MHz / 16QAM

Channel	Frequency (MHz)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
19700	1860	V	10.37	5.39	5.64	10.62	33.00	-22.38
18700	1860	Н	26.25	5.39	5.64	26.50	33.00	-6.50
10000	1880	V	9.63	5.41	5.62	9.84	33.00	-23.16
18900	1880	Н	26.05	5.42	5.62	26.25	33.00	-6.75
10100	1900	V	8.68	5.45	5.59	8.82	33.00	-24.18
19100	1900	Н	26.74	5.44	5.59	*26.89	33.00	-6.11

Remark:

- 1. Output Power(dBm) = Raw Value(dBm) + Correction Factor(dB).
- 2. Correction Factor (dB) = S.G Level + Gain of Substitution horn + TX cable loss.
- 3. The value in bold is the worst.

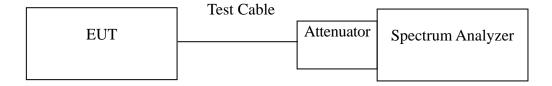
Page 50 Rev.00

7.4OUT OF BAND EMISSION AT ANTENNA TERMINALS

LIMIT

According to FCC §2.1051, FCC §22.917, FCC §24.238(a). RSS-132 (4.5.2), RSS-133 (6.6).

<u>Out of Band Emissions:</u> The mean power of emission must be attenuated below the mean power of the non-modulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at lease 43 + 10 log P dB.


Report No.: T130708W02-RP1

<u>Mobile Emissions in Base Frequency Range:</u> The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitters operated must be attenuated to a level not exceed –80 dBm at the transmit antenna connector.

Band Edge Requirements: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at lease 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the Out of band Emission

Test Configuration

Out of band emission at antenna terminals:

TEST PROCEDURE

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10 th harmonic. Limit = -13dBm

Band Edge Requirements (824 MHz and 849 MHz /1850MHz and 1910MHz): In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13dBm.

TEST RESULTS

No non-compliance noted.

Page 51 Rev.00

Test Data

LTE Band 5

Channel Bandwidth: 5MHz / QPSK

Mode	СН	Location	Description
	20425	Figure 7-1	Conducted spurious emissions, 9kHz - 20GHz
LTE Band 5	20520	Figure 7-2	Conducted spurious emissions, 9kHz - 20GHz
	20625	Figure 7-3	Conducted spurious emissions, 9kHz - 20GHz

Report No.: T130708W02-RP1

Channel Bandwidth: 5MHz / 16QAM

Mode	СН	Location	Description
	20425	Figure 8-1	Conducted spurious emissions, 9kHz - 20GHz
LTE Band 5	20520	Figure 8-2	Conducted spurious emissions, 9kHz - 20GHz
	20625	Figure 8-3	Conducted spurious emissions, 9kHz - 20GHz

Channel Bandwidth: 10MHz / QPSK

Mode	СН	Location	Description
	20450	Figure 9-1	Conducted spurious emissions, 9kHz - 20GHz
LTE Band 5	20520	Figure 9-2	Conducted spurious emissions, 9kHz - 20GHz
	20600	Figure 9-3	Conducted spurious emissions, 9kHz - 20GHz

Mode	СН	Location	Description
LTED 15	20450	Figure 10-1	Band Edge emissions
LTE Band 5	20600	Figure 10-2	Band Edge emissions

Channel Bandwidth: 10MHz / 16QAM

Mode	СН	Location	Description
	20450	Figure 11-1	Conducted spurious emissions, 9kHz - 20GHz
LTE Band 5	20520	Figure 11-2	Conducted spurious emissions, 9kHz - 20GHz
	20600	Figure 11-3	Conducted spurious emissions, 9kHz - 20GHz

Mode	СН	Location	Description
LTED 15	20450	Figure 12-1	Band Edge emissions
LTE Band 5	20600	Figure 12-2	Band Edge emissions

Page 52 Rev.00

Channel Bandwidth: 5MHz / QPSK

Mode	СН	Location	Description
	18625	Figure 13-1	Conducted spurious emissions, 9kHz - 20GHz
LTE Band 2	18900	Figure 13-2	Conducted spurious emissions, 9kHz - 20GHz
	19175	Figure 13-3	Conducted spurious emissions, 9kHz - 20GHz

Report No.: T130708W02-RP1

Channel Bandwidth: 5MHz / 16QAM

Mode	СН	Location	Description
	18625	Figure 14-1	Conducted spurious emissions, 9kHz - 20GHz
LTE Band 2	18900	Figure 14-2	Conducted spurious emissions, 9kHz - 20GHz
	19175	Figure 14-3	Conducted spurious emissions, 9kHz - 20GHz

Channel Bandwidth: 10MHz / QPSK

Mode	СН	Location	Description
	18650	Figure 15-1	Conducted spurious emissions, 9kHz - 20GHz
LTE Band 2	18900	Figure 15-2	Conducted spurious emissions, 9kHz - 20GHz
	19150	Figure 15-3	Conducted spurious emissions, 9kHz - 20GHz

Mode	СН	Location	Description
LTED 10	18650	Figure 16-1	Band Edge emissions
LTE Band 2	19150	Figure 16-2	Band Edge emissions

Channel Bandwidth: 10MHz / 16QAM

Mode	СН	Location	Description	
	18650	Figure 17-1	Conducted spurious emissions, 9kHz - 20GHz	
LTE Band 2	18900	Figure 17-2	Conducted spurious emissions, 9kHz - 20GHz	
	19150	Figure 17-3	Conducted spurious emissions, 9kHz - 20GHz	

Mode	СН	Location	Description
LTE Band 2	18650	Figure 18-1	Band Edge emissions
	19150	Figure 18-2	Band Edge emissions

Page 53 Rev.00

Channel Bandwidth: 20MHz / QPSK

Mode	СН	Location	Description
LTE Band 2	18700	Figure 19-1	Conducted spurious emissions, 9kHz - 20GHz
	18900	Figure 19-2	Conducted spurious emissions, 9kHz - 20GHz
	19100	Figure 19-3	Conducted spurious emissions, 9kHz - 20GHz

Report No.: T130708W02-RP1

Mode	СН	Location	Description
LTE Band 2	18700	Figure 20-1	Band Edge emissions
	19100	Figure 20-2	Band Edge emissions

Channel Bandwidth: 20MHz / 16QAM

Mode	СН	Location	Description
LTE Band 2	18700	Figure 21-1	Conducted spurious emissions, 9kHz - 20GHz
	18900	Figure 21-2	Conducted spurious emissions, 9kHz - 20GHz
	19100	Figure 21-3	Conducted spurious emissions, 9kHz - 20GHz

Mode	СН	Location	Description
LTE Band 2	18700	Figure 22-1	Band Edge emissions
	19100	Figure 22-2	Band Edge emissions

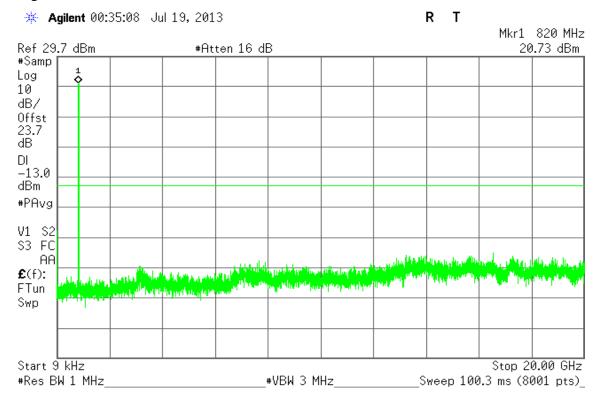
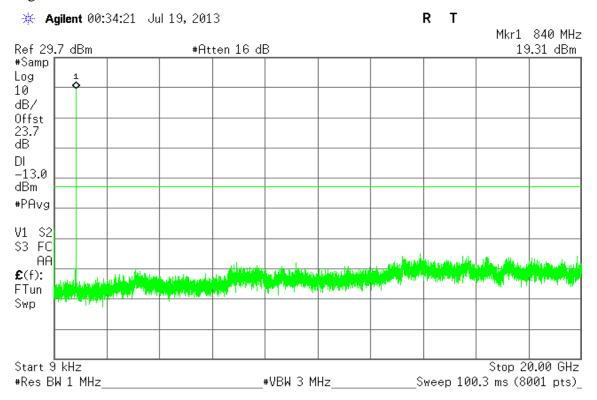
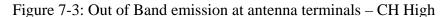
Page 54 Rev.00

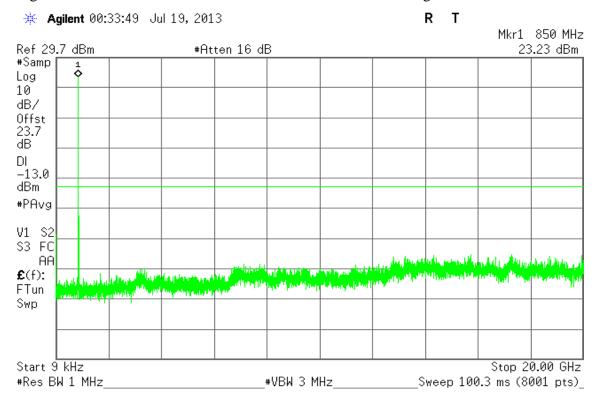
Test Plot

LTE Band 5

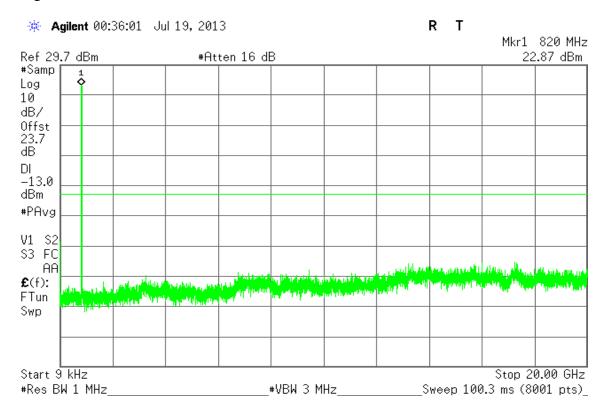
Channel Bandwidth: 5MHz / QPSK

Figure 7-1: Out of Band emission at antenna terminals – CH Low

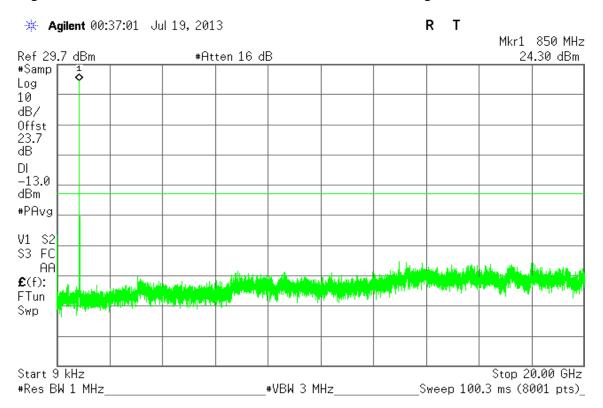

Figure 7-2: Out of Band emission at antenna terminals – CH Mid

Page 55 Rev.00


131A-LE920NA Report No.: T130708W02-RP1

Channel Bandwidth: 5MHz / 16QAM

Figure 8-1: Out of Band emission at antenna terminals – CH Low


Page 56 Rev.00

Report No.: T130708W02-RP1

Figure 8-2: Out of Band emission at antenna terminals – CH Mid

Figure 8-3: Out of Band emission at antenna terminals – CH High

Page 57 Rev.00

LTE Band 5

Channel Bandwidth: 10MHz/QPSK

Figure 9-1: Out of Band emission at antenna terminals – CH Low

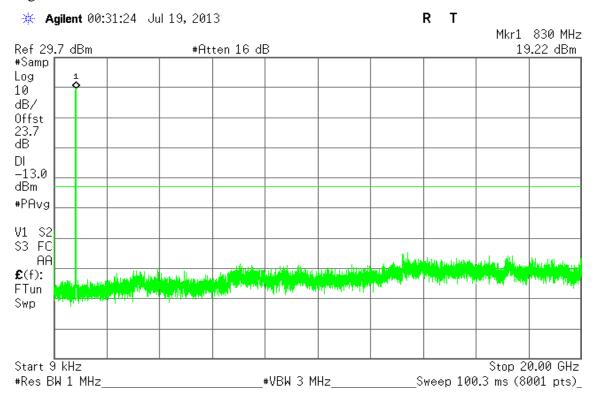
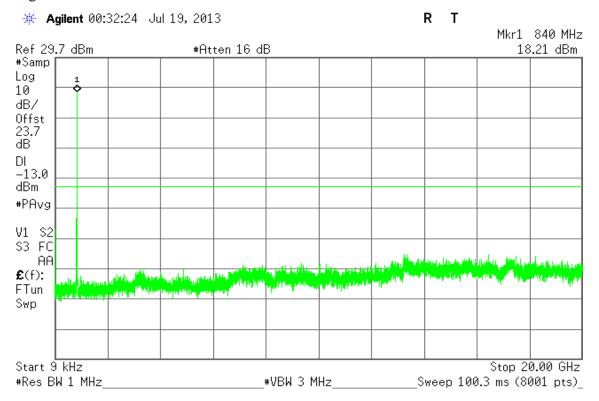
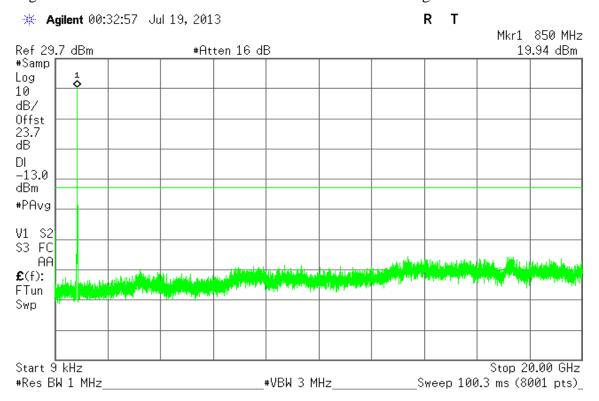
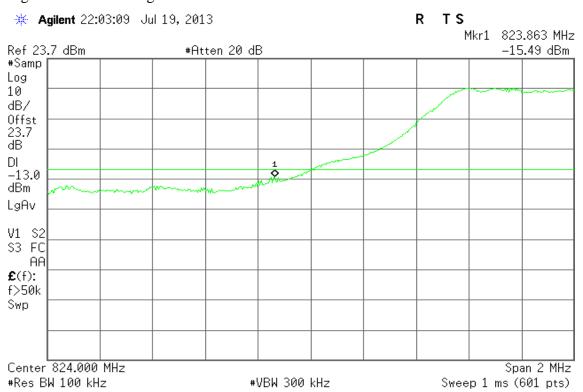



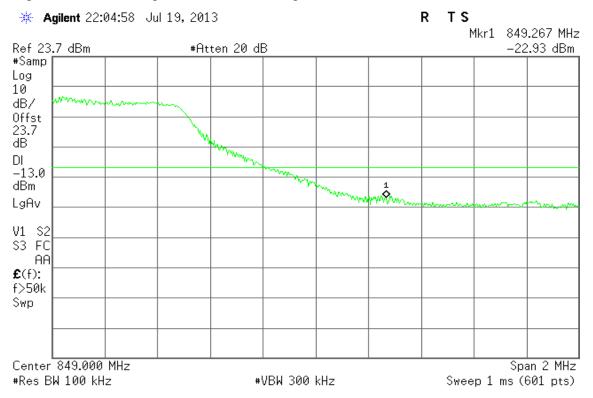
Figure 9-2: Out of Band emission at antenna terminals – CH Mid

Page 58 Rev.00

IC: 5131A-LE920NA Report No.: T130708W02-RP1

Figure 9-3: Out of Band emission at antenna terminals – CH High


Figure 10-1: Band Edge emissions – CH Low

Page 59 Rev.00

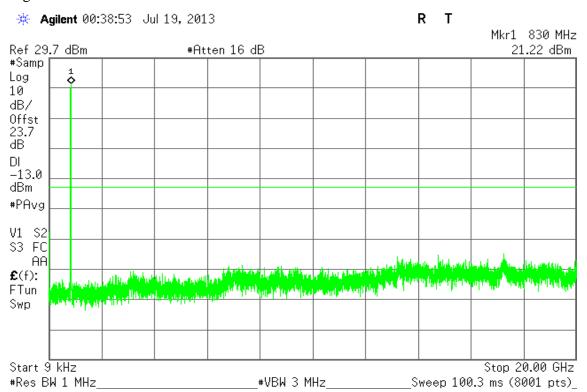

C: 5131A-LE920NA Report No.: T130708W02-RP1

Figure 10-2: Band Edge emissions – CH High

Channel Bandwidth: 10MHz / 16QAM

Figure 11-1: Out of Band emission at antenna terminals – CH Low

Page 60 Rev.00

Report No.: T130708W02-RP1

Figure 11-2: Out of Band emission at antenna terminals – CH Mid

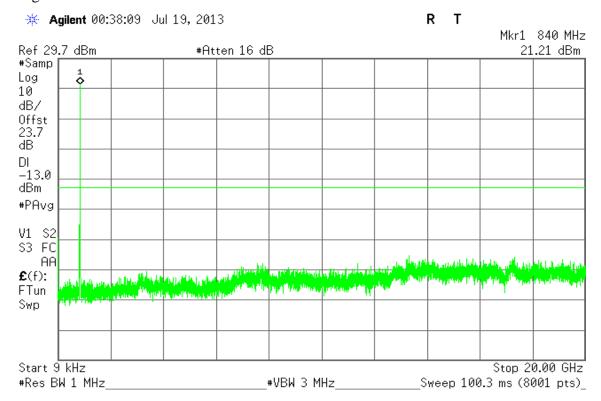
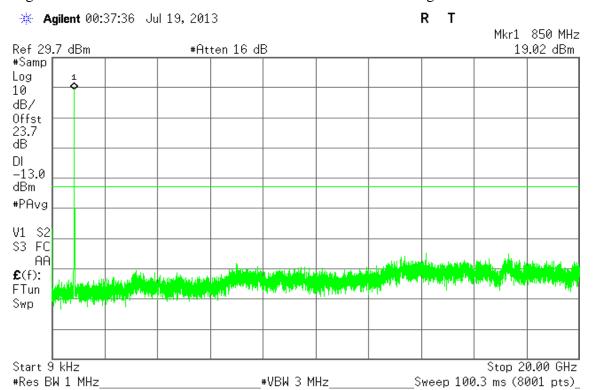
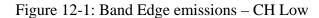




Figure 11-3: Out of Band emission at antenna terminals – CH High

Page 61 Rev.00

P20NA Report No.: T130708W02-RP1

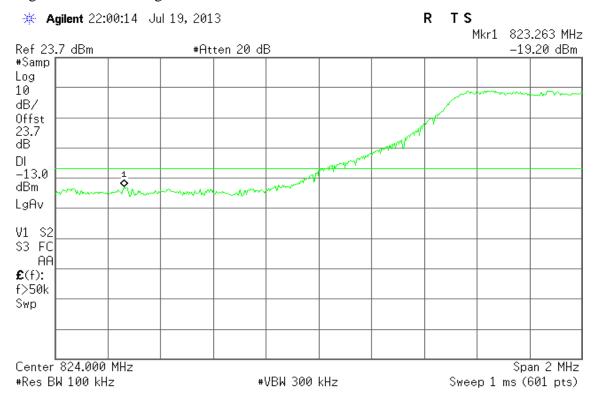
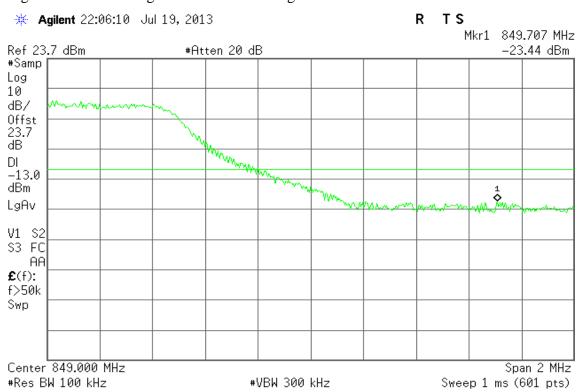



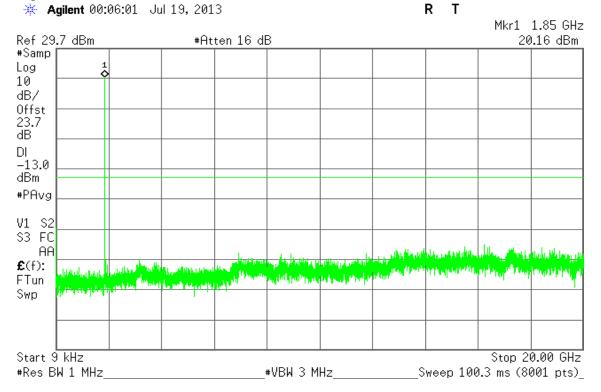
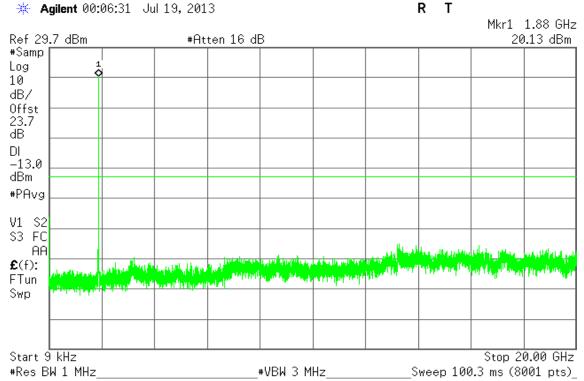
Figure 12-2: Band Edge emissions – CH High

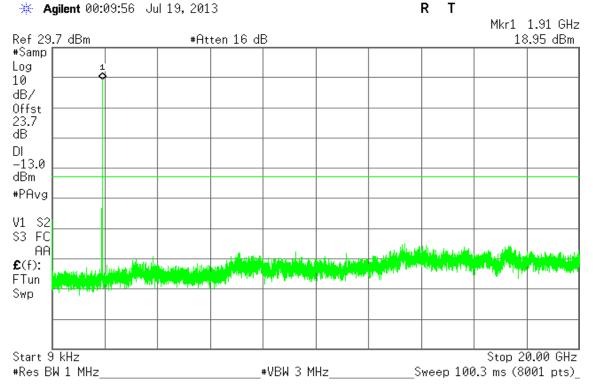
Page 62 Rev.00

LTE Band 2

Channel Bandwidth: 5MHz/QPSK

Figure 13-1: Out of Band emission at antenna terminals – CH Low


Figure 13-2: Out of Band emission at antenna terminals – CH Mid

Page 63 Rev.00

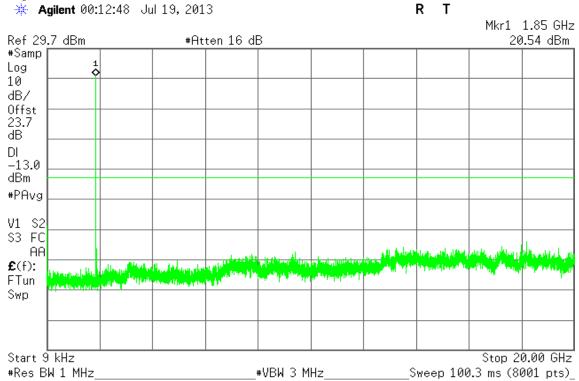

FCC ID: RI7LE920NA IC: 5131A-LE920NA Report No.: T130708W02-RP1

Figure 13-3: Out of Band emission at antenna terminals – CH High

Channel Bandwidth: 5MHz / 16QAM

Figure 14-1: Out of Band emission at antenna terminals – CH Low

Page 64 Rev.00

Figure 14-2: Out of Band emission at antenna terminals – CH Mid

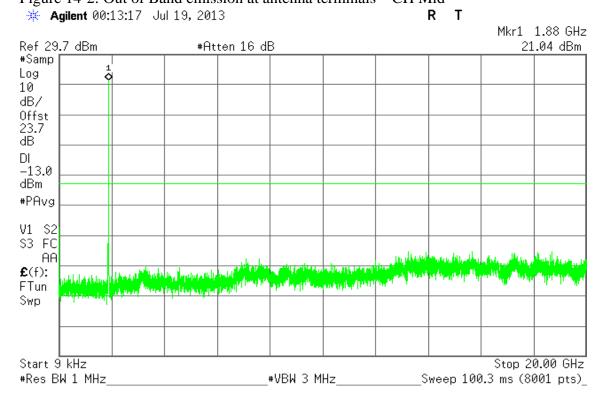


Figure 14-3: Out of Band emission at antenna terminals – CH High

X Agilent 00:1	4:24 Jul 19, 20		R̈́Τ	Mkr3 3.82 GHz
Ref 29.7 dBm	#H	tten 16 dB		-35.95 dBm
#Samp				
Log -				
10				
dB/				
Offst				
23.7				
dB				
DI	3			
-13.0	ŶΫ́	1 14 40	البرينيا ويتنافع فياليان أراري	de la contra del la contra de la contra de la contra del la cont
dBm	del months and the decision of the designation of the second		The state of the s	the later of the same of the s
#PAvg	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
V1 S2				
Start 9 kHz				Stop 20.00 GHz
#Res BW 1 MHz		#VBW 3 MHz	Sweep 1	00.3 ms (8001 pts)
Marker Trac	е Туре	X Axis	Amplitude	,
1 (1)		1.91 GHz	22.48 dBm	
2 (1)		3.08 GHz	-37.83 dBm	
3 (1)	Freq	3.82 GHz	-35.95 dBm	
I				

Page 65 Rev.00

LTE Band 2

Channel Bandwidth: 10MHz/QPSK

Figure 15-1: Out of Band emission at antenna terminals – CH Low

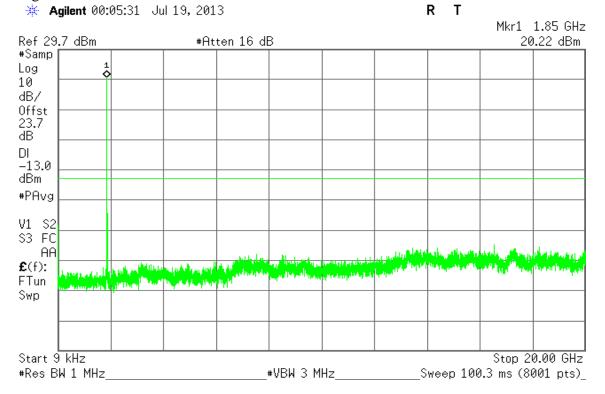
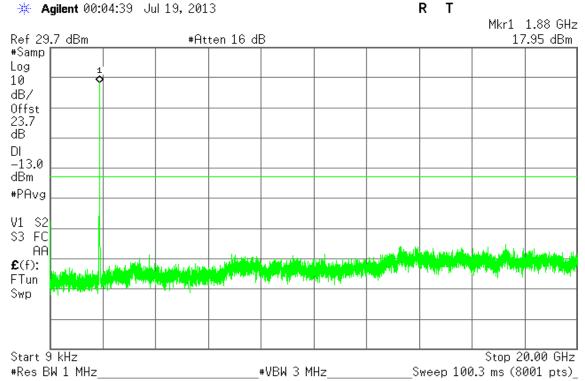
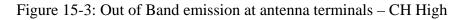




Figure 15-2: Out of Band emission at antenna terminals – CH Mid

Page 66 Rev.00

A Report No.: T130708W02-RP1

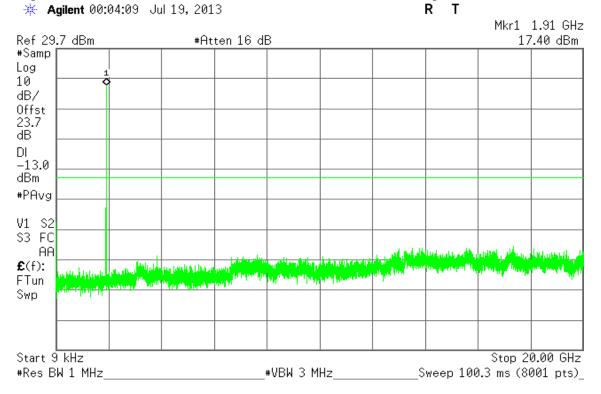
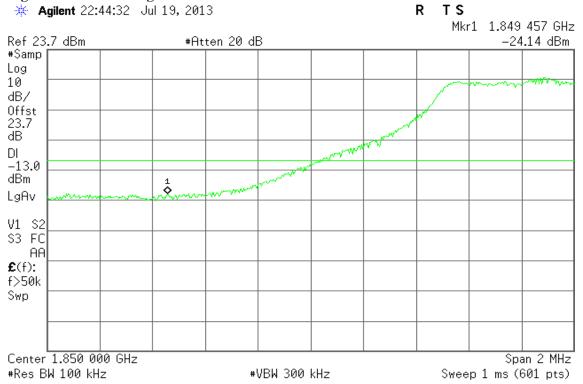
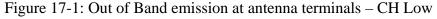
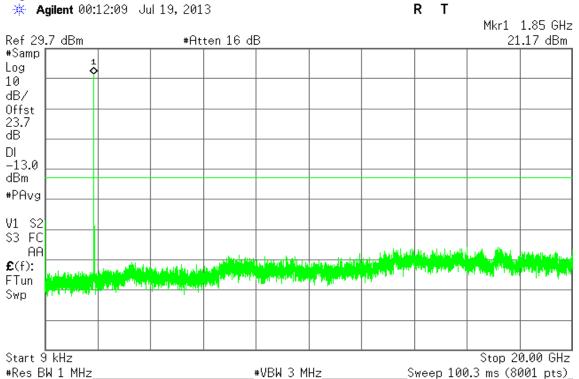



Figure 16-1: Band Edge emissions – CH Low




Page 67 Rev.00

FCC ID: RI7LE920NA IC: 5131A-LE920NA Report No.: T130708W02-RP1

Figure 16-2: Band Edge emissions – CH High ΤS * Agilent 22:47:02 Jul 19, 2013 R Mkr1 1.910 257 GHz Ref 23.7 dBm #Atten 20 dB -23.12 dBm #Samp Log 10 dB/ 0ff<u>s</u>t 23.7 dB making the the state of the sta DΙ -13.0dBm LgAv V1 S2 S3 FC AA £(f): f>50k Swp Center 1.910 000 GHz Span 2 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 1 ms (601 pts)

Channel Bandwidth: 10MHz / 16QAM

Page 68 Rev.00

FCC ID: RI7LE920NA IC: 5131A-LE920NA Report No.: T130708W02-RP1

Figure 17-2: Out of Band emission at antenna terminals – CH Mid

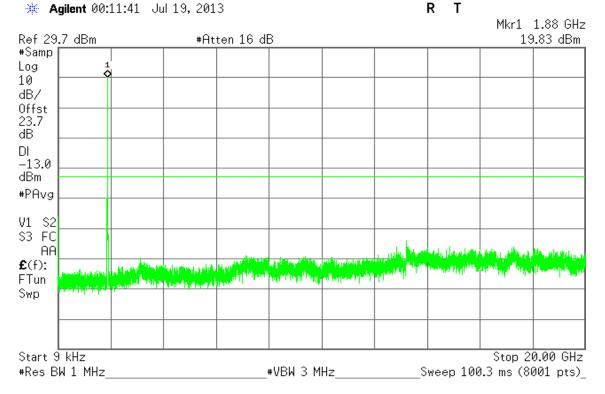
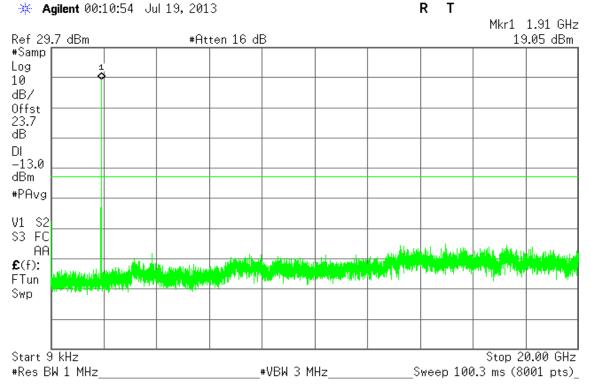



Figure 17-3: Out of Band emission at antenna terminals – CH High

Page 69 Rev.00

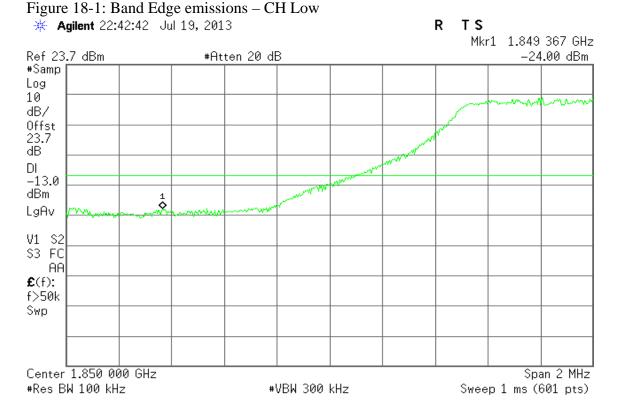
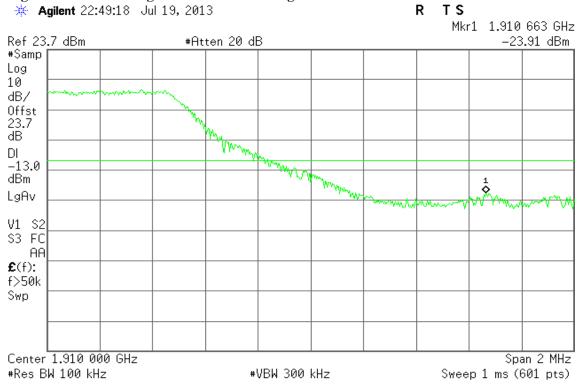



Figure 18-2: Band Edge emissions – CH High

Page 70 Rev.00

LTE Band 2

Channel Bandwidth: 20MHz/QPSK

Figure 19-1: Out of Band emission at antenna terminals – CH Low

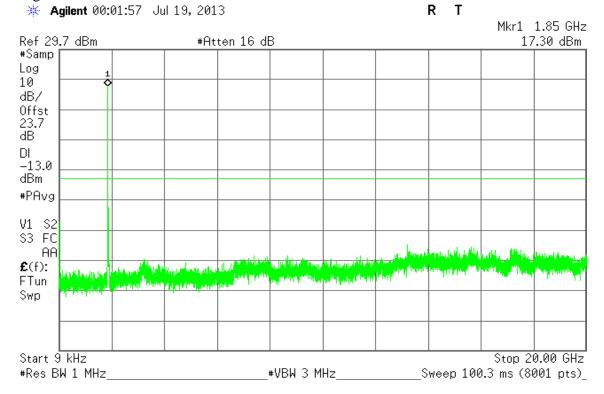
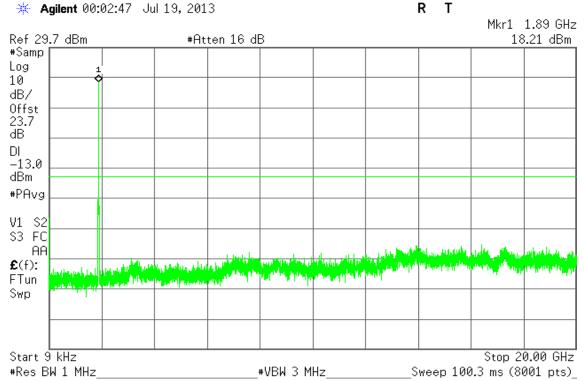



Figure 19-2: Out of Band emission at antenna terminals – CH Mid

Page 71 Rev.00

Figure 19-3: Out of Band emission at antenna terminals – CH High

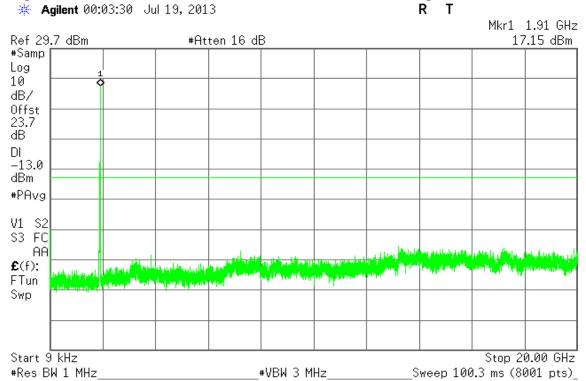
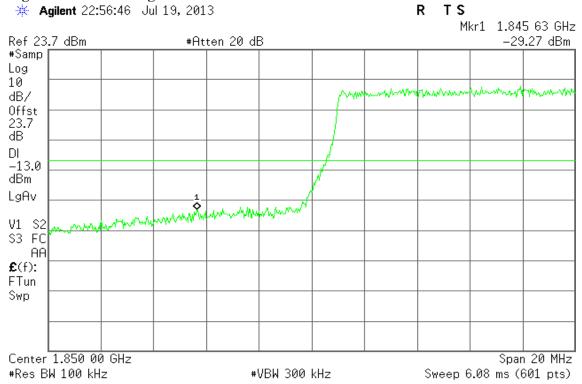
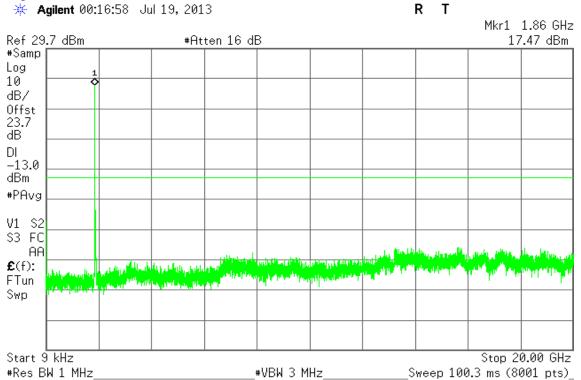



Figure 20-1: Band Edge emissions – CH Low

Page 72 Rev.00

FCC ID: RI7LE920NA IC: 5131A-LE920NA Report No.: T130708W02-RP1

Figure 20-2: Band Edge emissions – CH High * Agilent 22:53:29 Jul 19, 2013 TS R Mkr1 1.914 13 GHz Ref 23.7 dBm #Atten 20 dB -29.33 dBm #Samp Log 10 dB/ 0ffst 23.7 dB DΙ -13.0dBm LgAv V1 S2 S3 FC AA £(f): FTun Swp Center 1.910 00 GHz Span 20 MHz


#VBW 300 kHz

LTE Band 2

#Res BW 100 kHz

Channel Bandwidth: 20MHz / 16QAM

Figure 21-1: Out of Band emission at antenna terminals – CH Low

Page 73 Rev.00

Sweep 6.08 ms (601 pts)

FCC ID: RI7LE920NA IC: 5131A-LE920NA Report No.: T130708W02-RP1

Figure 21-2: Out of Band emission at antenna terminals – CH Mid

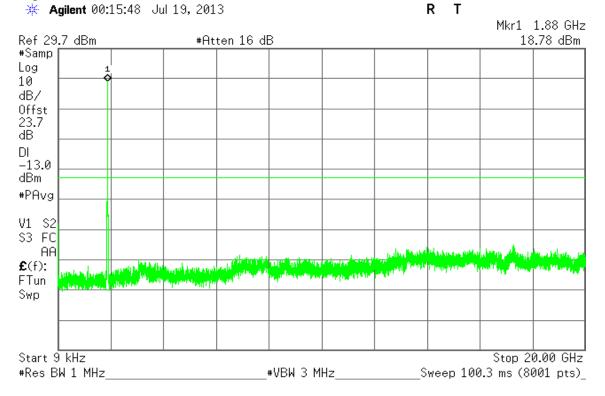
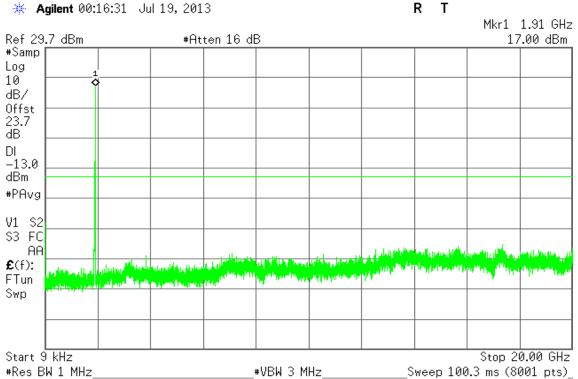



Figure 21-3: Out of Band emission at antenna terminals – CH High

Page 74 Rev.00

Figure 22-1: Band Edge emissions – CH Low

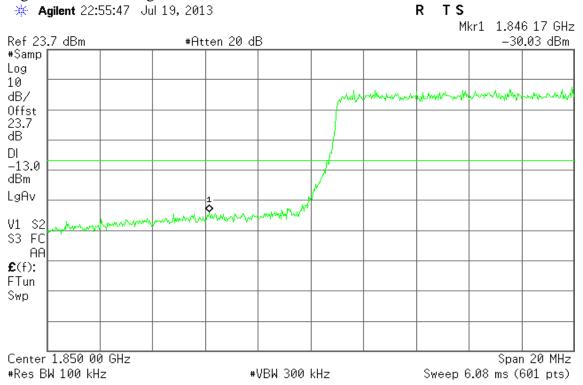
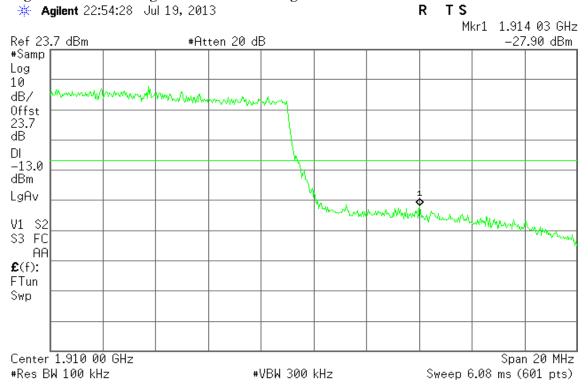
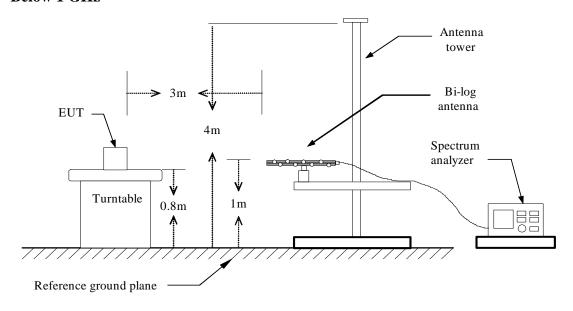



Figure 22-2: Band Edge emissions – CH High

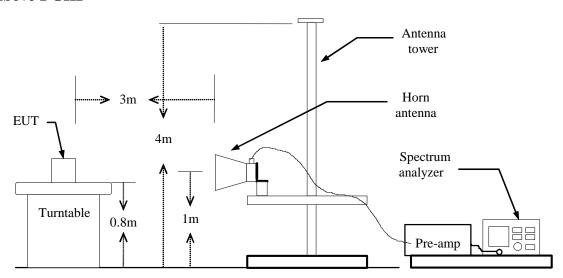
Page 75 Rev.00

Report No.: T130708W02-RP1

7.5FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

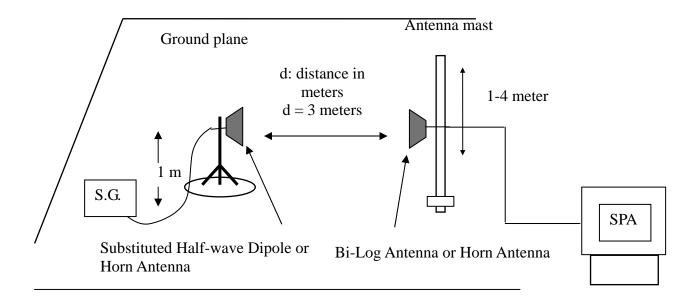

Report No.: T130708W02-RP1

LIMIT


According to FCC §2.1053, RSS-132 (4.6) & RSS-133 (6.5).

Test Configuration

Below 1 GHz



Above 1 GHz

Page 76 Rev.00

Substituted Method Test Set-up

Report No.: T130708W02-RP1

TEST PROCEDURE

The EUT was placed on a non-conductive, the measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB)

TEST RESULTS

Refer to the attached tabular data sheets.

Page 77 Rev.00

Radiated Spurious Emission Measurement Result / Below 1GHz

LTE Band 5 / channel bandwidth: 5MHz

Operation Mode: Tx / Low channel **Test Date:** July 23, 2013

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-59.39	0.97	-1.61	-61.97	-13.00	-48.97	V
150.2800	-68.82	1.43	0.71	-69.54	-13.00	-56.54	V
256.0100	-82.19	1.88	5.63	-78.44	-13.00	-65.44	V
309.3600	-81.16	2.13	5.78	-77.51	-13.00	-64.51	V
354.9500	-75.97	2.25	5.75	-72.47	-13.00	-59.47	V
448.0700	-79.58	2.58	5.74	-76.42	-13.00	-63.42	V
71.7100	-48.1	0.97	-1.61	-50.68	-13.00	-37.68	Н
150.2800	-60.54	1.43	0.71	-61.26	-13.00	-48.26	Н
234.6700	-74.59	1.8	5.38	-71.01	-13.00	-58.01	Н
342.3400	-70.32	2.18	5.8	-66.70	-13.00	-53.70	Н
415.0900	-74.45	2.45	5.86	-71.04	-13.00	-58.04	Н
516.9400	-75.18	2.7	6.07	-71.81	-13.00	-58.81	Н

Remark:

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 78 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-59.28	0.97	-1.61	-61.86	-13.00	-48.86	V
150.2800	-68.51	1.43	0.71	-69.23	-13.00	-56.23	V
276.3800	-81.98	1.99	5.23	-78.74	-13.00	-65.74	V
354.9500	-76.26	2.25	5.75	-72.76	-13.00	-59.76	V
450.9800	-79.7	2.59	5.74	-76.55	-13.00	-63.55	V
516.9400	-80.81	2.7	6.07	-77.44	-13.00	-64.44	V
71.7100	-48.25	0.97	-1.61	-50.83	-13.00	-37.83	Н
150.2800	-60.2	1.43	0.71	-60.92	-13.00	-47.92	Н
234.6700	-73.02	1.8	5.38	-69.44	-13.00	-56.44	Н
319.0600	-72.31	2.17	5.71	-68.77	-13.00	-55.77	Н
379.2000	-70.81	2.31	5.98	-67.14	-13.00	-54.14	Н
511.1200	-75.13	2.69	6.01	-71.81	-13.00	-58.81	Н

Remark:

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 79 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-59.33	0.97	-1.61	-61.91	-13.00	-48.91	V
150.2800	-68.69	1.43	0.71	-69.41	-13.00	-56.41	V
297.7200	-81.83	2.08	5.55	-78.36	-13.00	-65.36	V
354.9500	-75.76	2.25	5.75	-72.26	-13.00	-59.26	V
448.0700	-77.81	2.58	5.74	-74.65	-13.00	-61.65	V
516.9400	-80.39	2.7	6.07	-77.02	-13.00	-64.02	V
71.7100	-48.53	0.97	-1.61	-51.11	-13.00	-38.11	Н
120.2100	-57.68	1.27	-2.06	-61.01	-13.00	-48.01	Н
306.4500	-72.26	2.12	5.73	-68.65	-13.00	-55.65	Н
357.8600	-69.46	2.26	5.72	-66.00	-13.00	-53.00	Н
499.4800	-75.41	2.7	5.89	-72.22	-13.00	-59.22	Н
577.0800	-76.64	2.88	6.04	-73.48	-13.00	-60.48	Н

Remark:

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 80 Rev.00

LTE Band 5 / channel bandwidth: 10MHz

Operation Mode: Tx / Low channel **Test Date:** July 23, 2013

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-58.97	0.97	-1.61	-61.55	-13.00	-48.55	V
150.2800	-68.22	1.43	0.71	-68.94	-13.00	-55.94	V
256.0100	-80.43	1.88	5.63	-76.68	-13.00	-63.68	V
309.3600	-79.4	2.13	5.78	-75.75	-13.00	-62.75	V
354.9500	-74.61	2.25	5.75	-71.11	-13.00	-58.11	V
450.9800	-79.17	2.59	5.74	-76.02	-13.00	-63.02	V
71.7100	-47.66	0.97	-1.61	-50.24	-13.00	-37.24	Н
150.2800	-60.22	1.43	0.71	-60.94	-13.00	-47.94	Н
312.2700	-71.69	2.14	5.76	-68.07	-13.00	-55.07	Н
369.5000	-70.66	2.3	5.8	-67.16	-13.00	-54.16	Н
499.4800	-74.97	2.7	5.89	-71.78	-13.00	-58.78	Н
824.4300	-68.8	3.39	6.24	-65.95	-13.00	-52.95	Н

Remark:

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 81 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-59.35	0.97	-1.61	-61.93	-13.00	-48.93	V
150.2800	-68.24	1.43	0.71	-68.96	-13.00	-55.96	V
234.6700	-81.72	1.8	5.38	-78.14	-13.00	-65.14	V
354.9500	-75.33	2.25	5.75	-71.83	-13.00	-58.83	V
390.8400	-76.96	2.32	6	-73.28	-13.00	-60.28	V
450.9800	-79.06	2.59	5.74	-75.91	-13.00	-62.91	V
71.7100	-48.2	0.97	-1.61	-50.78	-13.00	-37.78	Н
95.9600	-55.65	1.13	0.26	-56.52	-13.00	-43.52	Н
150.2800	-60.47	1.43	0.71	-61.19	-13.00	-48.19	Н
296.7500	-72.6	2.07	5.53	-69.14	-13.00	-56.14	Н
357.8600	-69.35	2.26	5.72	-65.89	-13.00	-52.89	Н
415.0900	-74.79	2.45	5.86	-71.38	-13.00	-58.38	Н

Remark:

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 82 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-59.35	0.97	-1.61	-61.93	-13.00	-48.93	V
150.2800	-68.41	1.43	0.71	-69.13	-13.00	-56.13	V
252.1300	-80.96	1.85	5.68	-77.13	-13.00	-64.13	V
354.9500	-74.91	2.25	5.75	-71.41	-13.00	-58.41	V
450.9800	-79.42	2.59	5.74	-76.27	-13.00	-63.27	V
529.5500	-80.6	2.75	6	-77.35	-13.00	-64.35	V
71.7100	-48.08	0.97	-1.61	-50.66	-13.00	-37.66	Н
150.2800	-59.64	1.43	0.71	-60.36	-13.00	-47.36	Н
304.5100	-70.98	2.11	5.69	-67.40	-13.00	-54.40	Н
357.8600	-69.87	2.26	5.72	-66.41	-13.00	-53.41	Н
516.9400	-75.45	2.7	6.07	-72.08	-13.00	-59.08	Н
604.2400	-77.15	2.92	6.36	-73.71	-13.00	-60.71	Н

Remark:

- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 83 Rev.00

LTE Band 2 / channel bandwidth: 5MHz

Operation Mode: GSM 1900 / TX / CH 512 Test Date: July 23, 2013

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-59.79	0.97	-1.61	-62.37	-13.00	-49.37	V
150.2800	-69.07	1.43	0.71	-69.79	-13.00	-56.79	V
306.4500	-80.27	2.12	5.73	-76.66	-13.00	-63.66	V
352.0400	-75.77	2.24	5.78	-72.23	-13.00	-59.23	V
450.9800	-78.91	2.59	5.74	-75.76	-13.00	-62.76	V
781.7500	-75.77	3.31	6.13	-72.95	-13.00	-59.95	V
71.7100	-48.65	0.97	-1.61	-51.23	-13.00	-38.23	Н
120.2100	-56.23	1.27	-2.06	-59.56	-13.00	-46.56	Н
153.1900	-62	1.44	0.94	-62.50	-13.00	-49.50	Н
234.6700	-73.74	1.8	5.38	-70.16	-13.00	-57.16	Н
330.7000	-72.11	2.16	5.71	-68.56	-13.00	-55.56	Н
369.5000	-71.42	2.3	5.8	-67.92	-13.00	-54.92	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 84 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-59.8	0.97	-1.61	-62.38	-13.00	-49.38	V
150.2800	-68.82	1.43	0.71	-69.54	-13.00	-56.54	V
252.1300	-81.84	1.85	5.68	-78.01	-13.00	-65.01	V
354.9500	-75.81	2.25	5.75	-72.31	-13.00	-59.31	V
456.8000	-78.99	2.6	5.84	-75.75	-13.00	-62.75	V
781.7500	-74.06	3.31	6.13	-71.24	-13.00	-58.24	V
71.7100	-48.84	0.97	-1.61	-51.42	-13.00	-38.42	Н
150.2800	-61	1.43	0.71	-61.72	-13.00	-48.72	Н
309.3600	-71.75	2.13	5.78	-68.10	-13.00	-55.10	Н
369.5000	-71.63	2.3	5.8	-68.13	-13.00	-55.13	Н
505.3000	-75.15	2.69	5.95	-71.89	-13.00	-58.89	Н
685.7200	-75.05	3.11	6.5	-71.66	-13.00	-58.66	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 85 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-60.25	0.97	-1.61	-62.83	-13.00	-49.83	V
150.2800	-68.78	1.43	0.71	-69.50	-13.00	-56.50	V
309.3600	-79.84	2.13	5.78	-76.19	-13.00	-63.19	V
354.9500	-75.61	2.25	5.75	-72.11	-13.00	-59.11	V
450.9800	-79.13	2.59	5.74	-75.98	-13.00	-62.98	V
781.7500	-75.48	3.31	6.13	-72.66	-13.00	-59.66	V
71.7100	-48.99	0.97	-1.61	-51.57	-13.00	-38.57	Н
150.2800	-60.86	1.43	0.71	-61.58	-13.00	-48.58	Н
207.5100	-73	1.67	4.95	-69.72	-13.00	-56.72	Н
321.9700	-71.19	2.18	5.7	-67.67	-13.00	-54.67	Н
369.5000	-70.93	2.3	5.8	-67.43	-13.00	-54.43	Н
505.3000	-74.77	2.69	5.95	-71.51	-13.00	-58.51	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 86 Rev.00

LTE Band 2 / channel bandwidth: 10MHz

Operation Mode: Tx / Low channel **Test Date:** July 23, 2013

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-60.26	0.97	-1.61	-62.84	-13.00	-49.84	V
150.2800	-68.84	1.43	0.71	-69.56	-13.00	-56.56	V
354.9500	-77.16	2.25	5.75	-73.66	-13.00	-60.66	V
450.9800	-78.61	2.59	5.74	-75.46	-13.00	-62.46	V
529.5500	-80.22	2.75	6	-76.97	-13.00	-63.97	V
721.6100	-78.99	3.17	6.49	-75.67	-13.00	-62.67	V
71.7100	-48.94	0.97	-1.61	-51.52	-13.00	-38.52	Н
150.2800	-60.14	1.43	0.71	-60.86	-13.00	-47.86	Н
234.6700	-74.28	1.8	5.38	-70.70	-13.00	-57.70	Н
357.8600	-71.14	2.26	5.72	-67.68	-13.00	-54.68	Н
459.7100	-75.57	2.6	5.88	-72.29	-13.00	-59.29	Н
589.6900	-75.4	2.89	6.19	-72.10	-13.00	-59.10	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 87 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-60.21	0.97	-1.61	-62.79	-13.00	-49.79	V
150.2800	-68.86	1.43	0.71	-69.58	-13.00	-56.58	V
249.2200	-82.79	1.84	5.65	-78.98	-13.00	-65.98	V
354.9500	-75.78	2.25	5.75	-72.28	-13.00	-59.28	V
450.9800	-79.21	2.59	5.74	-76.06	-13.00	-63.06	V
691.5400	-79.62	3.13	6.48	-76.27	-13.00	-63.27	V
71.7100	-49.05	0.97	-1.61	-51.63	-13.00	-38.63	Н
150.2800	-60.35	1.43	0.71	-61.07	-13.00	-48.07	Н
231.7600	-73.62	1.8	5.4	-70.02	-13.00	-57.02	Н
345.2500	-71.3	2.2	5.8	-67.70	-13.00	-54.70	Н
516.9400	-76.2	2.7	6.07	-72.83	-13.00	-59.83	Н
577.0800	-76.23	2.88	6.04	-73.07	-13.00	-60.07	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 88 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-60.04	0.97	-1.61	-62.62	-13.00	-49.62	V
150.2800	-68.52	1.43	0.71	-69.24	-13.00	-56.24	V
352.0400	-76.17	2.24	5.78	-72.63	-13.00	-59.63	V
448.0700	-79.46	2.58	5.74	-76.30	-13.00	-63.30	V
516.9400	-80.28	2.7	6.07	-76.91	-13.00	-63.91	V
721.6100	-77.99	3.17	6.49	-74.67	-13.00	-61.67	V
71.7100	-48.95	0.97	-1.61	-51.53	-13.00	-38.53	Н
150.2800	-60.91	1.43	0.71	-61.63	-13.00	-48.63	Н
234.6700	-74.92	1.8	5.38	-71.34	-13.00	-58.34	Н
357.8600	-69.89	2.26	5.72	-66.43	-13.00	-53.43	Н
499.4800	-75.46	2.7	5.89	-72.27	-13.00	-59.27	Н
733.2500	-74.25	3.19	6.31	-71.13	-13.00	-58.13	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 89 Rev.00

LTE Band 2 / channel bandwidth: 20MHz

Operation Mode: Tx / Low channel **Test Date:** July 23, 2013

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-60.01	0.97	-1.61	-62.59	-13.00	-49.59	V
150.2800	-68.85	1.43	0.71	-69.57	-13.00	-56.57	V
261.8300	-81.22	1.92	5.51	-77.63	-13.00	-64.63	V
354.9500	-75.62	2.25	5.75	-72.12	-13.00	-59.12	V
448.0700	-79.21	2.58	5.74	-76.05	-13.00	-63.05	V
605.2100	-82.47	2.92	6.35	-79.04	-13.00	-66.04	V
71.7100	-48.91	0.97	-1.61	-51.49	-13.00	-38.49	Н
150.2800	-60.16	1.43	0.71	-60.88	-13.00	-47.88	Н
234.6700	-75.14	1.8	5.38	-71.56	-13.00	-58.56	Н
369.5000	-71.67	2.3	5.8	-68.17	-13.00	-55.17	Н
511.1200	-75.48	2.69	6.01	-72.16	-13.00	-59.16	Н
745.8600	-74.3	3.2	6.1	-71.40	-13.00	-58.40	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 90 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-60.04	0.97	-1.61	-62.62	-13.00	-49.62	V
150.2800	-69.22	1.43	0.71	-69.94	-13.00	-56.94	V
256.0100	-82.77	1.88	5.63	-79.02	-13.00	-66.02	V
354.9500	-76.06	2.25	5.75	-72.56	-13.00	-59.56	V
448.0700	-78.57	2.58	5.74	-75.41	-13.00	-62.41	V
516.9400	-80.6	2.7	6.07	-77.23	-13.00	-64.23	V
71.7100	-49.26	0.97	-1.61	-51.84	-13.00	-38.84	Н
150.2800	-59.86	1.43	0.71	-60.58	-13.00	-47.58	Н
267.6500	-74.73	1.96	5.22	-71.47	-13.00	-58.47	Н
369.5000	-70.44	2.3	5.8	-66.94	-13.00	-53.94	Н
529.5500	-74.28	2.75	6	-71.03	-13.00	-58.03	Н
685.7200	-75.84	3.11	6.5	-72.45	-13.00	-59.45	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 91 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
71.7100	-60.35	0.97	-1.61	-62.93	-13.00	-49.93	V
150.2800	-69.06	1.43	0.71	-69.78	-13.00	-56.78	V
234.6700	-82.15	1.8	5.38	-78.57	-13.00	-65.57	V
354.9500	-76.77	2.25	5.75	-73.27	-13.00	-60.27	V
450.9800	-78.03	2.59	5.74	-74.88	-13.00	-61.88	V
598.4200	-80.99	2.9	6.37	-77.52	-13.00	-64.52	V
71.7100	-48.48	0.97	-1.61	-51.06	-13.00	-38.06	Н
150.2800	-60.25	1.43	0.71	-60.97	-13.00	-47.97	Н
234.6700	-73.74	1.8	5.38	-70.16	-13.00	-57.16	Н
382.1100	-70.81	2.31	5.99	-67.13	-13.00	-54.13	Н
499.4800	-74.58	2.7	5.89	-71.39	-13.00	-58.39	Н
589.6900	-75.96	2.89	6.19	-72.66	-13.00	-59.66	Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 92 Rev.00

Above 1GHz

LTE Band 5 / channel bandwidth: 5MHz

Operation Mode: Tx / Low channel **Test Date:** July 23, 2013

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1749.000	-45.51	5.2	5.85	-44.86	-13.00	-31.86	V
3856.000	-55.49	8.33	9.26	-54.56	-13.00	-41.56	V
N/A							
1658.000	-49.29	5.06	6.02	-48.33	-13.00	-35.33	Н
3898.000	-54.63	8.39	9.3	-53.72	-13.00	-40.72	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 93 Rev.00

Report No.: T130708W02-RP1

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1749.000	-42.99	5.2	5.85	-42.34	-13.00	-29.34	V
3884.000	-55.29	8.37	9.28	-54.38	-13.00	-41.38	V
N/A							
1672.000	-48.67	5.07	5.99	-47.75	-13.00	-34.75	Н
3338.000	-56.03	7.5	8.41	-55.12	-13.00	-42.12	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 94 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
2211.000	-58.51	5.96	5.7	-58.77	-13.00	-45.77	V
3107.000	-56.44	7.18	7.72	-55.90	-13.00	-42.90	V
N/A							
1686.000	-46.68	5.09	5.97	-45.80	-13.00	-32.80	Н
3107.000	-56.57	7.18	7.72	-56.03	-13.00	-43.03	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 95 Rev.00

LTE Band 5 / channel bandwidth: 10MHz

Operation Mode: GPRS 850 / TX / CH 128 Test Date: July 23, 2013

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
2358.000	-57.65	6.13	5.9	-57.88	-13.00	-44.88	V
4479.000	-55.27	8.85	9.78	-54.34	-13.00	-41.34	V
N/A							
1658.000	-50.98	5.06	6.02	-50.02	-13.00	-37.02	Н
3541.000	-56.72	7.97	8.94	-55.75	-13.00	-42.75	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 96 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
2260.000	-58.36	6.02	5.76	-58.62	-13.00	-45.62	V
4206.000	-55.24	8.5	9.56	-54.18	-13.00	-41.18	V
N/A							
1672.000	-50.81	5.07	5.99	-49.89	-13.00	-36.89	Н
2995.000	-56.58	7.02	7.39	-56.21	-13.00	-43.21	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 97 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
2232.000	-58.21	5.99	5.72	-58.48	-13.00	-45.48	V
2974.000	-56.52	7.05	7.33	-56.24	-13.00	-43.24	V
N/A							
1686.000	-47.48	5.09	5.97	-46.60	-13.00	-33.60	Н
2946.000	-56.19	7.09	7.26	-56.02	-13.00	-43.02	Н
N/A							Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 98 Rev.00

LTE Band 2 / channel bandwidth: 5MHz

Operation Mode: Tx / Low channel **Test Date:** July 23, 2013

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3709.000	-53.39	8.21	9.11	-52.49	-13.00	-39.49	V
6215.000	-51.84	11.15	11.07	-51.92	-13.00	-38.92	V
N/A							
3709.000	-44.2	8.21	9.11	-43.30	-13.00	-30.30	Н
5564.000	-47.46	10.1	10.81	-46.75	-13.00	-33.75	Н
N/A							
	·						

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 99 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3758.000	-52.49	8.23	9.16	-51.56	-13.00	-38.56	V
5074.000	-54.86	9.44	10.63	-53.67	-13.00	-40.67	V
N/A							
3758.000	-34.59	8.23	9.16	-33.66	-13.00	-20.66	Н
5641.000	-49.74	10.18	10.83	-49.09	-13.00	-36.09	Н
N/A							Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 100 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3807.000	-53.38	8.27	9.21	-52.44	-13.00	-39.44	V
5662.000	-53.76	10.17	10.83	-53.10	-13.00	-40.10	V
N/A							
3814.000	-38.3	8.28	9.21	-37.37	-13.00	-24.37	Н
5718.000	-48.79	10.21	10.84	-48.16	-13.00	-35.16	Н
N/A							Н

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 101 Rev.00

LTE Band 2 / channel bandwidth: 10MHz

Operation Mode: Tx / Low channel **Test Date:** July 23, 2013

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3163.000	-57.27	7.23	7.89	-56.61	-13.00	-43.61	V
4430.000	-55.61	8.72	9.74	-54.59	-13.00	-41.59	V
N/A							
3702.000	-48.27	8.2	9.1	-47.37	-13.00	-34.37	Н
5557.000	-53.21	10.08	10.81	-52.48	-13.00	-39.48	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 102 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3100.000	-57.2	7.17	7.7	-56.67	-13.00	-43.67	V
3758.000	-54.71	8.23	9.16	-53.78	-13.00	-40.78	V
N/A							
3758.000	-39.97	8.23	9.16	-39.04	-13.00	-26.04	Н
5641.000	-52.58	10.18	10.83	-51.93	-13.00	-38.93	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 103 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3814.000	-52.91	8.28	9.21	-51.98	-13.00	-38.98	V
5158.000	-54.87	9.51	10.66	-53.72	-13.00	-40.72	V
N/A							
3821.000	-37.14	8.29	9.22	-36.21	-13.00	-23.21	Н
5718.000	-51.86	10.21	10.84	-51.23	-13.00	-38.23	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 104 Rev.00

LTE Band 2 / channel bandwidth: 20MHz

Operation Mode: Tx / Low channel **Test Date:** July 23, 2013

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
2750.000	-57.73	6.77	6.75	-57.75	-13.00	-44.75	V
3723.000	-54.8	8.21	9.12	-53.89	-13.00	-40.89	V
N/A							
2720,000	42.40	0.22	0.12	41.50	12.00	20.50	11
3730.000	-42.49	8.22	9.13	-41.58	-13.00	-28.58	Н
5578.000	-50.53	10.13	10.82	-49.84	-13.00	-36.84	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 105 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3758.000	-53.47	8.23	9.16	-52.54	-13.00	-39.54	V
4948.000	-55.18	9.33	10.52	-53.99	-13.00	-40.99	V
N/A							
3758.000	-38.43	8.23	9.16	-37.50	-13.00	-24.50	Н
5641.000	-52.03	10.18	10.83	-51.38	-13.00	-38.38	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 106 Rev.00

Report No.: T130708W02-RP1

Temperature: 26°C **Tested by:** Wayne Tasi

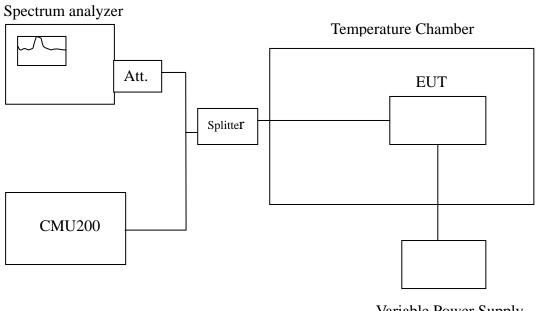
Humidity: 60 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
3800.000	-54.08	8.26	9.2	-53.14	-13.00	-40.14	V
4969.000	-54.88	9.36	10.55	-53.69	-13.00	-40.69	V
N/A							
3793.000	-46.94	8.26	9.19	-46.01	-13.00	-33.01	Н
5690.000	-52.85	10.16	10.84	-52.17	-13.00	-39.17	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

Page 107 Rev.00


7.6FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235, RSS-132 (4.3) & RSS-133 (6.3).

Frequency Tolerance: 2.5 ppm

Test Configuration

Variable Power Supply

Report No.: T130708W02-RP1

Remark: Measurement setup for testing on Antenna connector.

Page 108 Rev.00

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

Report No.: T130708W02-RP1

Page 109 Rev.00

TEST RESULTS

No non-compliance noted.

LTE Band 5

R	Reference Frequency: LTE Band 5 836 MHz @ 20°C									
	Limit: ± 2.5 ppm = 4331Hz									
Power Supply Vdc	1 Frequency 1 Frequency 1					Limit (Hz)				
3.8	50	836499997	-6	836500006	2					
3.8	40	836499998	-5	836499992	-12					
3.8	30	836499999	-4	836499996	-8					
3.8	20	836500003	0	836500004	0					
3.8	10	836499993	-10	836499994	-10	4331				
3.8	0	836499992	-11	836499997	-7					
3.8	-10	836499994	-9	836499994	-10					
3.8	-20	836499991	-12	836499995	-9					
3.8	-30	836500008	5	836499999	-5					

LTE Band 2

	Reference Frequency: LTE Band 2 1880 MHz @ 20°C									
	Limit: ± 2.5 ppm = 4700Hz									
Power Supply Vdc	Environment Temperature (°C)	5M Frequency (Hz)	Delta (Hz)	10M Frequency (Hz)	Delta (Hz)	20M Frequency (Hz)	Delta (Hz)	Limit (Hz)		
3.8	50	1879999998	-9	1879999996	-10	1879999972	-34			
3.8	40	1879999996	-11	1879999998	-8	1880000038	32			
3.8	30	1879999999	-8	1880000000	-6	1880000033	27			
3.8	20	1880000007	0	1880000006	0	1880000030	0			
3.8	10	1879999992	-15	1879999998	-8	1879999967	-39	4700		
3.8	0	1879999988	-19	1880000004	-2	1879999975	-31			
3.8	-10	1879999989	-18	1879999995	-11	1880000032	26			
3.8	-20	1879999998	-9	1879999994	-12	1880000034	28			
3.8	-30	1879999997	-10	1879999993	-13	1879999963	-43			

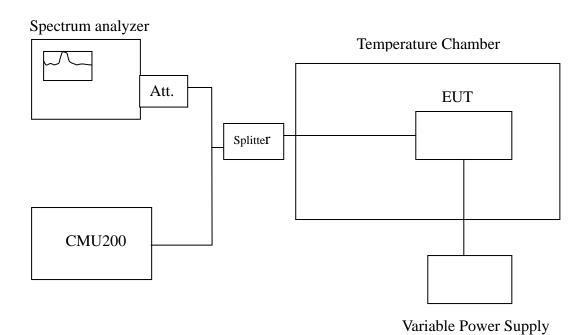
Page 110 Rev.00

Report No.: T130708W02-RP1

7.7FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235,


Frequency Tolerance: 2.5 ppm.

According to RSS-132 (4.3) & RSS-133 (6.3).

The carrier frequency shall not depart from the reference frequency in excess of ± 2.5 ppm for mobile stations and ± 1.0 ppm for base stations.

Report No.: T130708W02-RP1

Test Configuration

Remark: Measurement setup for testing on Antenna connector.

Page 111 Rev.00

TEST PROCEDURE

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Report No.: T130708W02-RP1

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

No non-compliance noted.

LTE Band 5

Reference Frequency: LTE Band 5 836 MHz @ 20°C									
Limit: ± 2.5 ppm = 2091Hz									
Power Supply Vdc	Environment Temperature (°C)	Frequency			Delta (Hz)	Limit (Hz)			
4.18		836500000	-3	836500003	-1				
3.8	20	836500003	0	836500004	0	2091			
3.23		836500077	74	836500084	80				

LTE Band 2

ETE Dana 2	="									
	Reference Frequency: LTE Band 2 1880 MHz @ 20°C									
		Lim	it: ± 2.5	5 ppm = 4700 Hz	Z					
Power Supply Vdc	Frequency Frequency Frequency Frequency						Limit (Hz)			
4.18		1880000009	2	1880000003	-3	1880000044	14			
3.8	20	1880000007	0	1880000006	0	1880000030	0	4700		
3.23		1880000087	80	1880000069	63	1880000057	27			

Page 112 Rev.00