

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

PART 22 / RSS-132 MEASUREMENT REPORT

Applicant Name:

Telit Communications S.p.A. Viale Stazione di Prosecco 5/b Trieste, 34010 Italy

Date of Testing:

01/11/2024 - 01/21/2024 **Test Report Issue Date:** 01/24/2024 **Test Site/Location:** Element Lab. Columbia, MD, USA **Test Report Serial No.:** 1M2312260131-01.RI7

FCC ID:

IC:

RI7LE910C1SNX

5131A-LE910C1SNX

Applicant Name:

Telit Communications S.p.A.

Application Type:	Class II Permissive Change
ISED Application Type:	Class III Permissive Change
Model/HVIN:	LE910C4-SNX
Additional Model/HVIN:	LE910C4-SNXD
EUT Type:	Module
FCC Classification:	PCS Licensed Transmitter (PCB)
FCC Rule Part:	22
ISED Specification:	RSS-132 Issue 4
Test Procedure(s):	ANSI C63.26-2015
Permissive Change Description:	Software update to change LTE Cat. 1 to LTE Cat.
FCC Original Grant Date:	05/04/2023
ISED Original Grant Date:	05/17/2023

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

4

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Page 1 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Fage 1 01 40
© 2024 ELEMENT			V11.1 08/28/2023

TABLE OF CONTENTS

1.0	INTR	ODUCTION	4
	1.1	Scope	4
	1.2	Element Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PROD	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	Software and Firmware	5
	2.5	EMI Suppression Device(s)/Modifications	5
3.0	DESC	RIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	Radiated Power and Radiated Spurious Emissions	6
4.0	MEAS	SUREMENT UNCERTAINTY	7
5.0	TEST	EQUIPMENT CALIBRATION DATA	8
6.0	SAMF	PLE CALCULATIONS	9
7.0	TEST	RESULTS	10
	7.1	Summary	10
	7.2	Conducted Power Output Data and ERP	11
	7.3	Occupied Bandwidth	13
	7.4	Spurious and Harmonic Emissions at Antenna Terminal	18
	7.5	Band Edge Emissions at Antenna Terminal	24
	7.6	Peak-Average Ratio	29
	7.7	Radiated Spurious Emissions Measurements	34
	7.8	Frequency Stability / Temperature Variation	
8.0	CON	CLUSION	40

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 2 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 2 of 40
© 2024 ELEMENT			V11.1 08/28/2023

PART 22 / RSS-132 MEASUREMENT REPORT

				ERP		Emission	
Mode Bandwidth		Modulation	Tx Frequency Range [MHz]	Max. Power [W]	Max. Power [dBm]	Designator	
	10 MHz	QPSK	829.0 - 844.0	0.204	23.09	9M02G7D	
		16QAM	829.0 - 844.0	0.152	21.82	9M01W7D	
	5 MHz 3 MHz	QPSK	826.5 - 846.5	0.202	23.06	4M52G7D	
LTE Band 5		16QAM	826.5 - 846.5	0.151	21.78	4M51W7D	
		QPSK	825.5 - 847.5	0.193	22.86	2M70G7D	
		16QAM	825.5 - 847.5	0.154	21.89	2M70W7D	
	1.4 MHz	QPSK	824.7 - 848.3	0.198	22.97	1M09G7D	
	1.4 IVIHZ	16QAM	824.7 - 848.3	0.156	21.94	1M10W7D	

EUT Overview

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 3 of 40
© 2024 ELEMENT			V11.1 08/28/2023

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreement.

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 4 of 40
© 2024 ELEMENT			V11.1 08/28/2023

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 **PRODUCT INFORMATION**

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Telit Module FCC ID:** RI7LE910C1SNX / IC: 5131A-LE910C1SNX. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 22 and RSS-132. This device is tested as mobile equipment.

Test Device Serial No.: 350532429997438, 3505324299997875

2.2 Device Capabilities

This device contains the following capabilities:

LTE B2, B5, B12, B13, and B66/4

This device supports LTE Cat. 4 operations.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

2.4 Software and Firmware

Testing was performed on device(s) using the following software/firmware version installed on the EUT.

Model Name	Modem FW Version
LE910C4-SNX	M0F.703007
LE910C4-SNXD	M0F.803007

2.5 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.6 Antenna Information:

The following antenna information is declared by the manufacturer:

Antenna Type: Dipole Antenna Antenna Gain: 1.5 dBi Antenna Input Impedance: 50 ohm

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Dogo 5 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 5 of 40
© 2024 ELEMENT			V11.1 08/28/2023

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015) were used in the measurement of the EUT.

Deviation from Measurement Procedure......None

3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI C63.26-2015. For emissions below 1GHz, a half-wave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

Pd [dBm] = Pg [dBm] - cable loss [dB] + antenna gain [dBd/dBi];

where P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to P_{g [dBm]} – cable loss [dB].

For radiated spurious emissions measurements, the field strength conversion method is used per the formulas in Section 5.2.7 of ANSI C63.26-2015. Field Strength (EIRP) is calculated using the following formulas:

$$\begin{split} E_{[dB\mu V/m]} &= Measured \ amplitude \ level_{[dBm]} + 107 + Cable \ Loss_{[dB]} + Antenna \ Factor_{[dB/m]} \\ And \\ EIRP_{[dBm]} &= E_{[dB\mu V/m]} + 20logD - 104.8; \ where \ D \ is the measurement \ distance \ in \ meters. \end{split}$$

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015.

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:		
1M2312260131-01.RI7	01/11/2024 - 01/21/2024		
© 2024 ELEMENT	•	·	V11.1 08/28/2023

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Dogo 7 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 7 of 40
© 2024 ELEMENT			V11.1 08/28/2023

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	ETS-001	EMC Cable and Switch System	12/11/2023	Annual	12/11/2024	ETS-001
-	ETS-002	EMC Cable and Switch System	12/11/2023	Annual	12/11/2024	ETS-002
-	LTx4	Licensed Transmitter Cable Set	11/15/2023	Annual	11/15/2024	LTx4
Anritsu	MT8821C	Radio Communication Analyzer		N/A		6201525694
Espec	SCP-220	Environmental Chamber	5/25/2022	Annual	5/25/2024	OCPS5H0612K05
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	2/27/2023	Biennial	2/27/2025	00125518
Keysight Technologies	N9030A	PXA Signal Analyzer	8/7/2023	Annual	8/7/2024	MY54490576
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	9/25/2023	Annual	9/25/2024	100342
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	3/2/2023	Biennial	3/2/2025	A051107

Table 5-1. Test Equipment

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 8 of 40	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Fage o 01 40	
© 2024 ELEMENT	<u> </u>		V11.1 08/28/2023	

6.0 SAMPLE CALCULATIONS

QPSK Modulation

Emission Designator = 8M62G7D LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 40	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Fage 9 01 40	
© 2024 ELEMENT			V11.1 08/28/2023	

7.0 TEST RESULTS

7.1 Summary

Company Name:	Telit Communications S.p.A.
FCC ID:	RI7LE910C1SNX
FCC Classification:	PCS Licensed Transmitter (PCB)
Mode(s):	LTE

Test Condition	Test Description	FCC Part Section(s)	RSS Section(s)	Test Limit	Test Result	Reference
	Transmitter Conducted Output Pow er & Effective Radiated Pow er	2.1046(a), 2.1046 22.913(a)(5)	RSS-Gen(6.12) RSS-132(5.4)	< 7 Watts max. ERP	PASS	Section 7.2
TED	Occupied Bandwidth	2.1049(h)	RSS-Gen(6.7)	₩A	PASS	Section 7.3
CONDUCTED	Conducted Band Edge / Spurious Emissions	2.1051, 22.917(a)	RSS-Gen(6.13), RSS-132(5.5)	≥ 43 + 10 log (P[Watts]) dB of attenuation below transmitter pow er	PASS	Sections 7.4, 7.5
Ö	Peak-to-Average Ratio	N/A	RSS-132(5.4)	≤ 13 dB	PASS	Section 7.6
	Frequency Stability	2.1055, 22.355	RSS-Gen(6.11), RSS-132(5.3)	The carrier frequency of the transmitter must be maintained within the 2.5ppm	PASS	Section 7.8
RADIATED	Radiated Spurious Emissions	2.1053, 22.917(a)	RSS-132(5.5)	> 43 + 10 log10 (P[Watts]) for all out-of-band emissions	PASS	Section 7.7

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is EMC Software Tool v1.2.2.

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 10 01 40
© 2024 ELEMENT	·		V11.1 08/28/2023

7.2 Conducted Power Output Data and ERP

Test Overview

All emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.2

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

- 1. Conducted power measurements were evaluated using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device.
- 2. ERP is calculated with conducted power and antenna gain.

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 11 of 40
© 2024 ELEMENT			V11.1 08/28/2023

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]	Ant Gain [dBi]	ERP [dBm]	ERP [Watts]	ERP Limit [dBm]	Margin [dB]
		20450	829.0	1 / 25	23.61	1.50	22.96	0.198	38.45	-15.49
N	QPSK	20525	836.5	1 / 49	23.67	1.50	23.02	0.200	38.45	-15.43
H		20600	844.0	1 / 25	23.74	1.50	23.09	0.204	38.45	-15.36
10 MHz		20450	829.0	1 / 25	22.42	1.50	21.77	0.150	38.45	-16.68
, , , , , , , , , , , , , , , , , , ,	16-QAM	20525	836.5	1 / 25	22.47	1.50	21.82	0.152	38.45	-16.63
		20600	844.0	1 / 0	22.43	1.50	21.78	0.151	38.45	-16.67
		20425	826.5	1 / 12	23.45	1.50	22.80	0.190	38.45	-15.65
	QPSK	20525	836.5	1 / 12	23.40	1.50	22.75	0.188	38.45	-15.70
Ë		20625	846.5	1/0	23.71	1.50	23.06	0.202	38.45	-15.39
5 MHz		20425	826.5	1 / 12	22.42	1.50	21.77	0.150	38.45	-16.68
	16-QAM	20525	836.5	1 / 24	22.16	1.50	21.51	0.141	38.45	-16.94
		20625	846.5	1 / 12	22.43	1.50	21.78	0.151	38.45	-16.67
		20415	825.5	1 / 7	23.24	1.50	22.59	0.182	38.45	-15.86
N	QPSK	20525	836.5	1 / 7	23.51	1.50	22.86	0.193	38.45	-15.59
Ë		20635	847.5	1 / 7	23.27	1.50	22.62	0.183	38.45	-15.83
3 MHz		20415	825.5	1/0	22.34	1.50	21.69	0.147	38.45	-16.76
	16-QAM	20525	836.5	1 / 7	22.08	1.50	21.43	0.139	38.45	-17.02
		20635	847.5	1 / 14	22.54	1.50	21.89	0.154	38.45	-16.57
		20407	824.7	1/3	23.62	1.50	22.97	0.198	38.45	-15.49
N	QPSK	20525	836.5	1/3	23.14	1.50	22.49	0.177	38.45	-15.96
HM 4.		20643	848.3	1/3	23.61	1.50	22.96	0.198	38.45	-15.50
4.		20407	824.7	1 / 5	22.59	1.50	21.94	0.156	38.45	-16.51
	16-QAM	20525	836.5	1/3	22.25	1.50	21.60	0.145	38.45	-16.85
		20643	848.3	1/3	22.38	1.50	21.73	0.149	38.45	-16.72

Table 7-2. Conducted Power Measurements

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 40	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 12 of 40	
© 2024 ELEMENT			V11.1 08/28/2023	

7.3 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.4.4

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

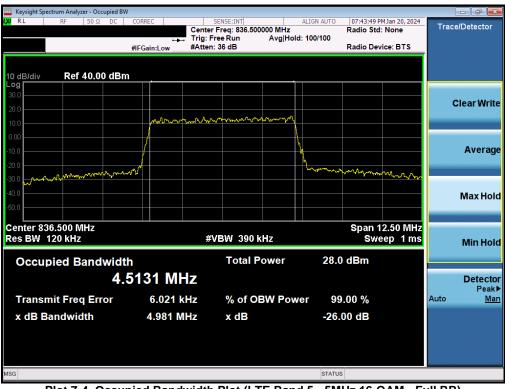
None.

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 10
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 13 of 40
© 2024 ELEMENT		·	V11.1 08/28/2023

LTE Band 5

	SENSE:INT ter Freq: 836.5000		LIGN AUTO	07:40:14 PI	4 Jan 20, 2024		
	: Free Run	00 MHz Avg Hold: '	100/100	Radio Std:	None	Trace	e/Detector
FGain:Low #Att	en: 36 dB			Radio Dev	ice: BTS		
						c	lear Write
portermente	and a contraction of the second se	Mar Marine					
1		ļ					
Į –		2					Average
		h					
^			mart ward	^{ᡁᡙ} ᠧ᠇ᢇᢧᠴᡀᢇᠰᠵ	monstall		
							Max Hold
							Μάλ Πυία
				A A			
	#VBW 750 kH	IZ					
							Min Hold
	Total Po	wer	29.5	dBm			
208 MHz							Detector
43.641 kHz	% of OB	W Powe	r 99	.00 %		Auto	Peak▶ <u>Man</u>
3.035 MINZ	A UD		-20.0				
			STATUS				
	208 MHz 43.641 kHz 9.859 MHz	Total Po 208 MHz 43.641 kHz % of OB 9.859 MHz x dB	#VBW 750 kHz Total Power 208 MHz 43.641 kHz % of OBW Power 9.859 MHz x dB	#VBW 750 kHz #VBW 750 kHz Total Power 29.5 208 MHz 43.641 kHz % of OBW Power 99 9.859 MHz x dB -26.0	#VBW 750 kHz Span 2 #VBW 750 kHz Swe Total Power 29.5 dBm 208 MHz % of OBW Power 99.00 % 9.859 MHz x dB -26.00 dB	#VBW 750 kHz Span 25.00 MHz Sweep 1 ms Total Power 29.5 dBm 208 MHz % of OBW Power 99.00 % 9.859 MHz x dB -26.00 dB	Image: status Image: status Image: status Image: status

Plot 7-1. Occupied Bandwidth Plot (LTE Band 5 - 10MHz QPSK - Full RB)


Plot 7-2. Occupied Bandwidth Plot (LTE Band 5 - 10MHz 16-QAM - Full RB)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 14 of 40	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 14 of 40	
© 2024 ELEMENT	-		V11.1 08/28/2023	

Keysight Spectrum Analyzer - Occupied B	W				
LXI RF 50 Ω DC		r Freq: 836.500000 MHz	Radio Std	M Jan 20, 2024 I: None	Trace/Detector
		Free Run Avg Hold: n: 36 dB	: 100/100 Radio Dev	vice: BTS	
10 dB/div Ref 40.00 dB	m				
30.0					
20.0	<u>مو وي الم</u>				Clear Write
10.0	mmmmmm	apart more and			
0.00					
-10.0					Average
-20.0			hummer in a second		
-30.0 molecular and a low marked and a second secon				Marria	
-40.0	<u>کر کا ا</u> ک				Max Hold
-50.0	<u>کر کا اگ</u>				
Center 836.500 MHz				12.50 MHz	
Res BW 120 kHz	#	VBW 390 kHz	Swe	eep 1 ms	Min Hold
Occupied Bandwid	th	Total Power	29.4 dBm		
	.5243 MHz				Detector
					Peak▶
Transmit Freq Error	6.899 kHz	% of OBW Powe	er 99.00 %		Auto <u>Man</u>
x dB Bandwidth	5.000 MHz	x dB	-26.00 dB		
MSG			STATUS		

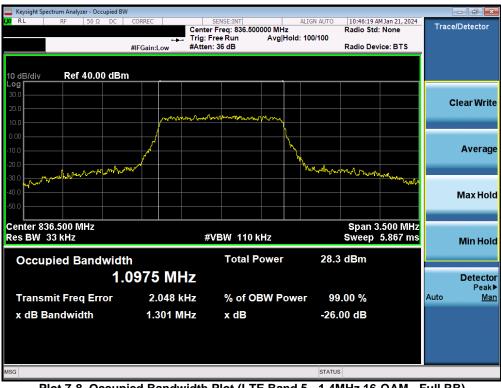
Plot 7-3. Occupied Bandwidth Plot (LTE Band 5 - 5MHz QPSK - Full RB)

Plot 7-4. Occupied Bandwidth Plot (LTE Band 5 - 5MHz 16-QAM - Full RB)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 10	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 15 of 40	
© 2024 ELEMENT	•		V11.1 08/28/2023	

🥮 Keysight Spectrum Analyzer - Occupi	ied BW					
μXIRL RF 50 Ω [T Later T	SENSE:INT Center Freq: 836.500000 MH rig: Free Run Avg l Atten: 36 dB	Hold: 100/100	07:44:41 PM Radio Std: I Radio Devic	None	Trace/Detector
10 dB/div Ref 40.00 d	dBm					
Log 30.0 20.0						Clear Write
10.0	ponnen and	Un galand and an angle and the film of the series	m			
-10.0			h			Average
-20.0 -30.0 million of the second	not the second s		- morner and	untapantavaru	surrent he	
-40.0						Max Hold
Center 836.500 MHz Res BW 68 kHz		#VBW 220 kHz		Span 7.: Sweep 1	500 MHz 2.53 ms	Min Hold
Occupied Bandw		Total Power	29.9	dBm		
	2.6978 MHz					Detector Peak►
Transmit Freq Error x dB Bandwidth	r 3.201 kHz 2.966 MHz		ower 99. -26.0	00 % 0 dB		Auto <u>Man</u>
	2.900 MH2	X dB	-2010	U dB		
MSG			STATUS			

Plot 7-5. Occupied Bandwidth Plot (LTE Band 5 - 3MHz QPSK - Full RB)


Plot 7-6. Occupied Bandwidth Plot (LTE Band 5 - 3MHz 16-QAM - Full RB)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 16 of 10	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 16 of 40	
© 2024 ELEMENT	-	•	V11.1 08/28/2023	

Plot 7-7. Occupied Bandwidth Plot (LTE Band 5 - 1.4MHz QPSK - Full RB)

Plot 7-8. Occupied Bandwidth Plot (LTE Band 5 - 1.4MHz 16-QAM - Full RB)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dego 17 of 40	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 17 of 40	
© 2024 ELEMENT		·	V11.1 08/28/2023	

7.4 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

ANSI C63.26-2015 – Section 5.7.4

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

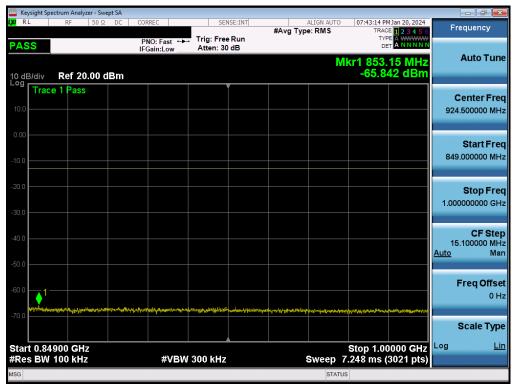
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

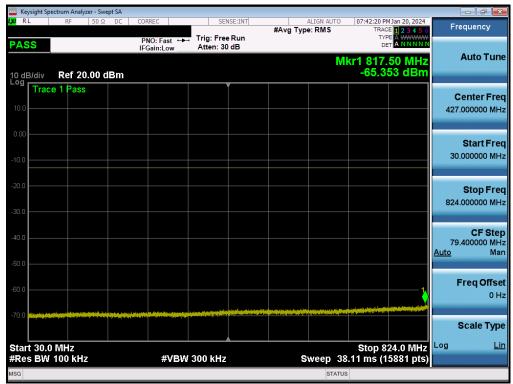
Per Part 22 and RSS-132, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater.


FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	ates: EUT Type:	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 18 of 40
© 2024 ELEMENT	•		V11.1 08/28/2023

LTE Band 5

Keysight Spec	ctrum Analyze		000050	asues with				
	RF	50Ω DC	CORREC	SENSE:INT	ALIGN #Avg Type: RN	IS TRAC	1 Jan 20, 2024 E 1 2 3 4 5 6 E A WWWW	Frequency
PASS			PNO: Fast +++ IFGain:Low	Atten: 30 dB				
10 dB/div	Ref 20.	00 dBm				Mkr1 822. -62.6	50 MHz 91 dBm	Auto Tune
Log Trace	e 1 Pass			Ĭ				Center Fred
10.0								426.500000 MH:
0.00								
								Start Free
-10.0								30.000000 MHz
20.0								Stop Free
								823.000000 MH
-30.0								
-40.0								CF Ster 79.300000 MH
								Auto Mar
-50.0								_
-60.0							1	Freq Offse 0 Hi
-70.0		distanting of the location	ang sa ng sing bang bang bang bang bang bang bang ba				-	
and the second	and a second from the head of the second	and the set of the set	and the second					Scale Type
Start 30.0	MHz					Stop 8	23.0 MHz	Log <u>Lir</u>
#Res BW			#VBW	300 kHz	Swee	p 38.06 ms (1	5861 pts)	
MSG						STATUS		

Plot 7-9. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - Low Channel)


Plot 7-10. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - Low Channel)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 10	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 19 of 40	
© 2024 ELEMENT	•	•	V11.1 08/28/2023	

🚾 Keysight Spectrum Analyzer - Swept SA				
LX RL RF 50Ω DC	CORREC SENSE:IN	T ALIGN AUTO #Avg Type: RMS	07:43:34 PM Jan 20, 2024 TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB		DET A NNNNN	. .
10 dB/div Ref 20.00 dBm		MI	r1 1.658 0 GHz -41.417 dBm	Auto Tune
Log Trace 1 Pass				Center Free
10.0				5.500000000 GH;
0.00				Start Free
-10.0				1.000000000 GH:
-20.0				Stop Free
-30.0				10.000000000 GH
-40.0				CF Stej 900.000000 MH
-50.0			and the state states	<u>Auto</u> Ma
				Freq Offse
-60.0				он
-70.0				Scale Type
Start 1.000 GHz			Stop 10.000 GHz	Log <u>Lir</u>
#Res BW 1.0 MHz	#VBW 3.0 MHz		.60 ms (18001 pts)	
MSG		STATU	5	

Plot 7-11. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - Low Channel)


Plot 7-12. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - Mid Channel)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 40	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 20 01 40	
© 2024 ELEMENT			V11.1 08/28/2023	

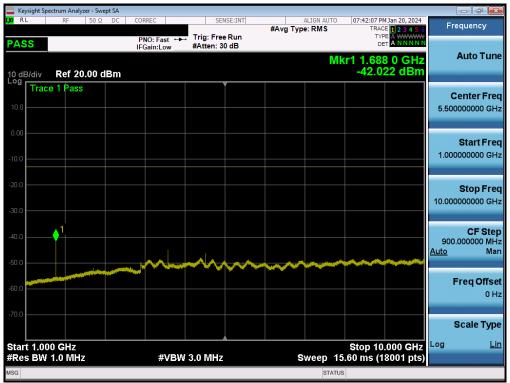
Ass PRO: Fast Program Trig: Free Run Atten: 30 dB Mkr1 855.75 MHz -65.828 dBm Center Freq 924.500000 MHz Start Freq 849.000000 MHz Start 0.84900 GHz Freq Offset 0 dB/div Center Freq 924.500000 MHz Center Freq 924.500000 MHz Start Freq 100 Center Freq 924.500000 MHz Start Center Freq 924.500000 MHz Start Center Freq 924.500000 MHz Center Freq 924.500000 MHz Start Center Freq 924.500000 MHz Start Center Freq 924.50000 MHz Start Center Freq 924.5000 MHz St			ctrum Analy		pt SA										
Atten: 30 dB Mkr1 855.75 MHz -65,828 dBm -65,828 dBm -75,828 dBm -75,828 dBm -75,828 dBm -75,828 dBm	l,XI R	L	RF	50 Ω	DC	CORREC		SEI	SE:INT					Fr	equency
0.0 dB/div Ref 20.00 dBm -65.828 dBm 0.0 dB/div Trace 1 Pass Center Freq 0.0 dB/div Start Freq 924.500000 MHz 0.0 dB/div Start Freq 849.00000 MHz 0.0 dB/div Start Freq 849.00000 MHz 0.0 dB/div Stop Freq 1.00000000 GHz 0.0 dB/div Stop Freq 1.0000000 GHz 0.0 dB/div Stop Freq 1.0000000 GHz 0.0 dB/div Stop Freq 1.0000000 GHz 0.0 dB/div WDBW 300 KHz Stop Freq 0.0 dB/div WDBW 300 KHz Stop Freq	PAS	S									м	Di			Auto Tune
Trace 1 Pass Center Freq 100 Center Freq 100 Start Freq 100 Stop Freq 100000000 GHz Stop Freq 100000000 GHz Stop Freq 1010000 GHz Stop Freq 1010000 GHz WebW 300 KHz Sweep 7.248 ms (3021 pts) Image: Stop Freq	10 di	3/div	Ref 20).00 d	Bm							-65.8	28 dBm		
000 0		Trace	e 1 Pass												
100 Start Freq 200 Start Freq 300 Stop Freq 400 Stop Freq 400 Stop Freq 400 Stop Freq 400 Stop Freq 500 Stop Freq 0 Hz Stop Freq 0 Hz Stop Freq 0 Hz Stop Freq 0 Hz Stop Freq														924	.500000 MHZ
20.0 20.0														849	
Stop Freq 1.00000000 GHz 400 400 400 400 400 400 400 40															
400 400 400 400 400 400 400 400														1.000	
400 1	-30.0														CE Sten
600 700 Start 0.84900 GHz Res BW 100 kHz #VBW 300 kHz \$	-40.0														.100000 MHz
600 1 0 Hz 700 Start 0.84900 GHz \$\$top 1.00000 GHz #VBW 300 kHz \$\$weep 7.248 ms (3021 pts)															Fred Offset
Scale Type Start 0.84900 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 7.248 ms (3021 pts)		1	(A. mathematic											
#Res BW 100 kHz #VBW 300 kHz Sweep 7.248 ms (3021 pts)			and the second	and the second			and the state of the state	and the first of the	anan yang di kang di ka	inda of a state of the state of	and and all all and all all all all all all all all all al	an in the second se	1		Scale Type
							#\/R\\/	300 kHz			Sween 7	Stop 1.0	0000 GHz	Log	Lin
	MSG	5 8 4 4	TOO KII					JOO KHZ			_		502 r pts)		

Plot 7-13. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - Mid Channel)

Plot 7-14. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - Mid Channel)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 21 of 40
© 2024 ELEMENT			V11.1 08/28/2023

Keysight Spectrum Analyzer - Swept					
LX/ R L RF 50 Ω	DC CORREC	SENSE:INT	ALIGN AUT #Avg Type: RMS	0 07:41:31 PM Jan 20, 2024 TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast ↔ IFGain:Low	Trig: Free Run Atten: 30 dB		DET A NNNN	
	in Guin.cow			Mkr1 818.35 MHz	Auto Tune
10 dB/div Ref 20.00 dE	3m			-65.900 dBm	
Trace 1 Pass		Ĭ			Center Freq
10.0					427.000000 MHz
0.00					Start Freq
-10.0					30.000000 MHz
-20.0					Stop Freq
					824.000000 MHz
-30.0					
-40.0					CF Step 79.400000 MHz
					Auto Man
-50.0					
-60.0					Freq Offset
					0 Hz
-70.0					
					Scale Type
Start 30.0 MHz		A		Stop 824.0 MHz	Log <u>Lin</u>
#Res BW 100 kHz	#VBW	300 kHz	Sweep	38.11 ms (15881 pts)	
MSG			STA	TUS	


Plot 7-15. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - High Channel)

Р	RREC NO: Fast ↔→→ Gain:Low			#Avg Typ	ALIGN AUTO e: RMS	07:41:38 PM TRACE TYPE	an 20, 2024 2 3 4 5 6 A WWWWW	Frequency
						DET	ANNNN	
					M	kr1 851.0 -63.74)5 MHz 8 dBm	Auto Tun
5								Center Fre 925.000000 M⊦
								Start Fre 850.000000 MH
								Stop Fro 1.000000000 Gi
								CF Ste 15.000000 Mi <u>Auto</u> Mi
delander of anti-anti-anti-anti-anti-anti-anti-anti-	-	Mathalia (1996) - Maria (1996)	erity that the found of	Japaton Minative Low Medice	gaayd falsiyyy a charman		Pr-Parlant V-Loc p1-1-38-1	Freq Offs 0 I
								Scale Typ
lz z	#VBW	300 kHz			Sweep 7	Stop 1.00 .200 ms (3	000 GHz 001 pts)	Log <u>L</u>
	IZ Z	Iz z #VBW	Iz z #VBW 300 kHz	z #VBW 300 kHz	Iz z #VBW 300 kHz	Iz z #VBW 300 kHz Sweep 7 status	z #VBW 300 kHz Sweep 7.200 ms (3	الإسلامية المراجع المراجع المراجع المراجع الم المراجع المراجع ال المراجع المراجع الم

Plot 7-16. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - High Channel)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 22 of 40
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-17. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - High Channel)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Fage 23 01 40
© 2024 ELEMENT	V11.1 08/28/2023		

7.5 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

ANSI C63.26-2015 - Section 5.7.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1% of the emission bandwidth
- 4. VBW \geq 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

Per 22.917(b) and RSS-132(5.5), in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 24 of 40
© 2024 ELEMENT	V11.1 08/28/2023		

LTE Band 5

Plot 7-18. Lower Band Edge Plot (LTE Band 5 - 10MHz QPSK – Full RB)

Plot 7-19. Upper Band Edge Plot (LTE Band 5 - 10MHz QPSK – Full RB)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 40	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 25 of 40	
2024 ELEMENT				

Keysight Spectrum Analyzer - Swept SA					
		SENSE:INT	ALIGN AUTO #Avg Type: RMS	07:44:20 PM Jan 20, 2024 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNN	Frequency
PASS 0 dB/div Ref 25.00 dBm	IFGain:Low #	Atten: 36 dB	Mkr	1 823.987 5 MHz -24.07 dBm	Auto Tun
15.0 Trace 1 Pass					Center Fre 824.000000 M⊦
5.00					Start Fre 817.750000 Mi
5.0		1			Stop Fr 830.250000 M
15.0				- Compa	CF St e 1.250000 M <u>Auto</u> M
5.0					Freq Offs 0
enter 824.000 MHz				Span 12.50 MHz	Scale Typ
Res BW 100 kHz	#VBW 30	00 kHz	Sweep	1.000 ms (1001 pts)	

Plot 7-20. Lower Band Edge Plot (LTE Band 5 - 5MHz QPSK – Full RB)

Plot 7-21. Upper Band Edge Plot (LTE Band 5 - 5MHz QPSK – Full RB)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 26 of 40
© 2024 ELEMENT	V11.1 08/28/2023		

Keysight Spectrum Analyze					
LXI RL RF	50 Ω DC CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	07:45:27 PM Jan 20, 2024 TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Wid IFGain:Lo		Mkr1	B23.985 0 MHz	Auto Tune
10 dB/div Ref 25.0	00 dBm			-22.84 dBm	
15.0 Trace 1 Pass					Center Freq 824.000000 MHz
5.00		men	ta miller and a second and a second	-Cur Cyclolladar Cycle	024.000000 Mil 12
-5.00					Start Freq 820.250000 MHz
-15.0					Stop Freq
-25.0					827.750000 MHz
-35.0	per and a second second	plannet and a second		turner	CF Step 750.000 kHz
-45.0 marting and and and and					<u>Auto</u> Man
-55.0					Freq Offset
-65.0					
					Scale Type
Center 824.000 MH #Res BW 100 kHz		VBW 300 kHz	Sweep 1	Span 7.500 MHz 2.53 ms (1001 pts)	Log <u>Lin</u>
MSG			STATU		

Plot 7-22. Lower Band Edge Plot (LTE Band 5 - 3MHz QPSK – Full RB)

Plot 7-23. Upper Band Edge Plot (LTE Band 5 - 3MHz QPSK – Full RB)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 27 of 40
© 2024 ELEMENT	V11.1 08/28/2023		

Plot 7-24. Lower Band Edge Plot (LTE Band 5 – 1.4MHz QPSK – Full RB)

Plot 7-25. Upper Band Edge Plot (LTE Band 5 – 1.4MHz QPSK – Full RB)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 28 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 28 of 40
© 2024 ELEMENT			

7.6 Peak-Average Ratio

Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB.

Test Procedure Used

ANSI C63.26-2015 - Section 5.2.3.4

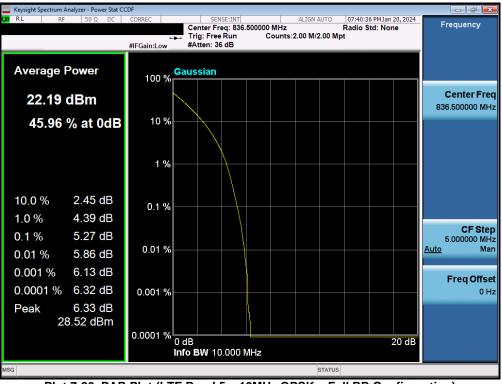
Test Settings

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

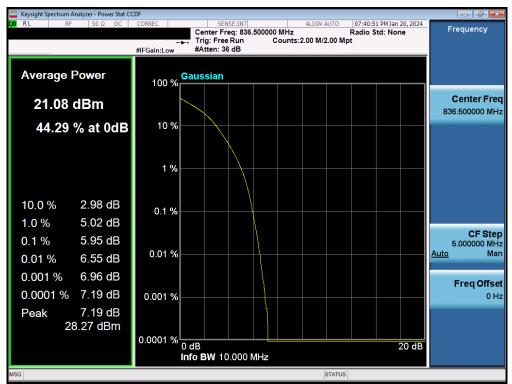
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

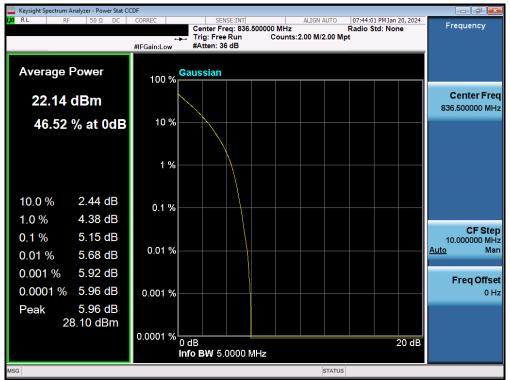
Figure 7-5. Test Instrument & Measurement Setup

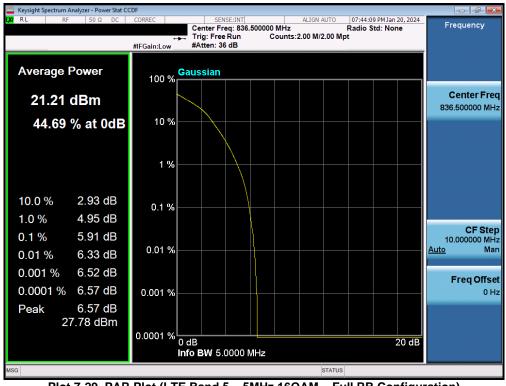

Test Notes

None.

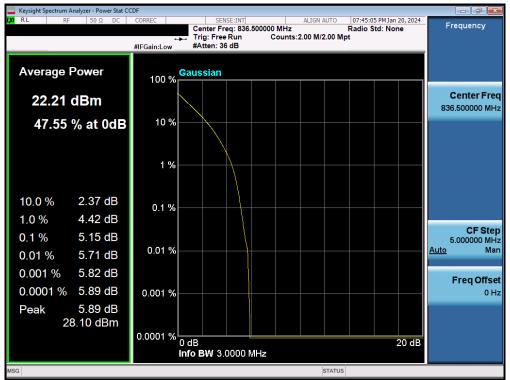

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 29 of 40
© 2024 ELEMENT	V11.1 08/28/2023		

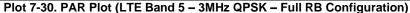
LTE Band 5




Plot 7-27. PAR Plot (LTE Band 5 – 10MHz 16QAM – Full RB Configuration)

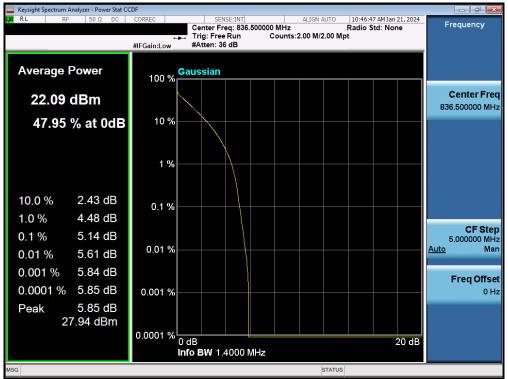
FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 40	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024 Module		Page 30 of 40	
© 2024 ELEMENT V11.1 08/28/202				

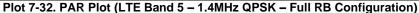


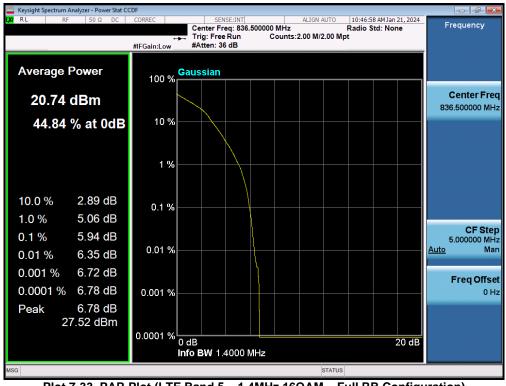


Plot 7-29. PAR Plot (LTE Band 5 – 5MHz 16QAM – Full RB Configuration)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates: EUT Type:		Page 31 of 40	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 31 01 40	
© 2024 ELEMENT V11.1 08/28/2023				






Plot 7-31. PAR Plot (LTE Band 5 – 3MHz 16QAM – Full RB Configuration)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX	PART 22 / RSS-132 MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates: EUT Type:		Dage 22 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 32 of 40
© 2024 ELEMENT			V11.1 08/28/2023

Plot 7-33. PAR Plot (LTE Band 5 – 1.4MHz 16QAM – Full RB Configuration)

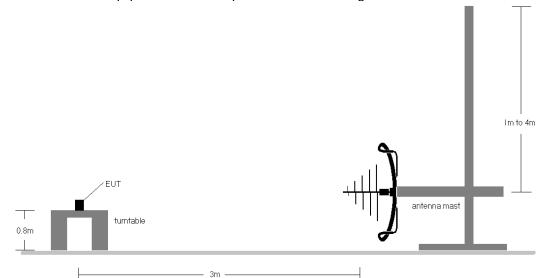
FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	
Test Report S/N:	Test Dates: EUT Type:		Daga 22 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 33 of 40
© 2024 ELEMENT V11.1 08/28/2023			

7.7 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in ANSI C63.26-2015 with the EUT transmitting while all its antenna ports are terminated with 50 ohms. Measurements on signals operating below 1GHz are performed using hybrid (biconical/log) antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used


ANSI C63.26-2015 - Section 5.5.4

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-6. Test Instrument & Measurement Setup < 1GHz

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dega 24 of 40	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 34 of 40	
© 2024 ELEMENT V11.1 08/28/2023				

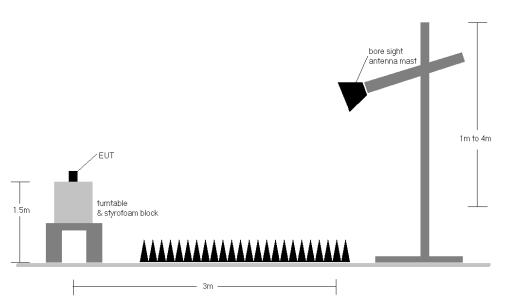
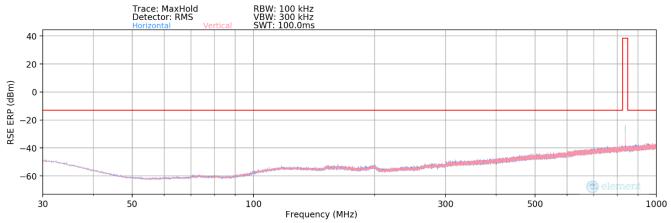


Figure 7-7. Test Instrument & Measurement Setup > 1GHz

Test Notes

1) Field strengths are calculated using the Measurement quantity conversions in ANSI C63.26-2015 Section 5.2.7:

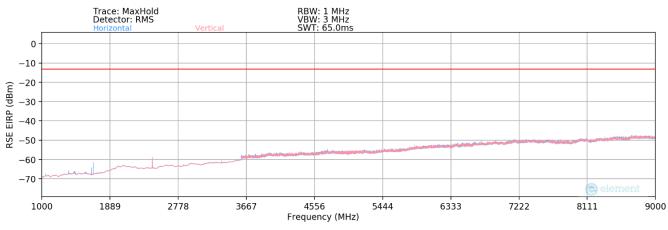
a) $E(dB\mu V/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m) b) EIRP (dBm) = E(dB\mu V/m) + 20logD - 104.8; where D is the measurement distance in meters.$


- 2) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 3) Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1-meter test distance with the application of a distance correction factor.
- 4) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	
Test Report S/N:	Test Dates: EUT Type: 01/11/2024 - 01/21/2024 Module		Dogo 25 of 40
1M2312260131-01.RI7			Page 35 of 40
© 2024 ELEMENT			V11.1 08/28/2023

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

LTE Band 5



10
836.5
1 / 25
_

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
95.67	Н	-	-	-83.99	15.97	38.98	-58.42	-13.00	-45.42
195.84	Н	-	-	-83.84	19.79	42.95	-54.45	-13.00	-41.45
489.42	Н	-	-	-83.73	25.73	49.00	-48.41	-13.00	-35.41

Table 7-3. Radiated Spurious Data Below 1GHz (LTE Band 5 – Mid Channel)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 40	
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 36 of 40	
© 2024 ELEMENT V11.1 08/28/202				

Bandwidth (MHz):	10
Frequency (MHz):	829
RB / Offset:	1 / 25

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1658.00	Н	128	160	-62.93	-7.26	36.81	-58.44	-13.00	-45.44
2487.00	Н	-	-	-76.16	-4.19	26.65	-68.61	-13.00	-55.61
3316.00	Н	329	147	-68.70	-1.07	37.23	-58.02	-13.00	-45.02
4145.00	Н	313	223	-70.49	1.73	38.24	-57.02	-13.00	-44.02
4974.00	Н	260	167	-71.33	2.82	38.49	-56.77	-13.00	-43.77
5803.00	Н	238	136	-72.01	5.31	40.30	-54.96	-13.00	-41.96
6632.00	Н	322	214	-75.37	7.37	39.00	-56.26	-13.00	-43.26
7461.00	Н	304	146	-75.79	9.02	40.23	-55.03	-13.00	-42.03

Table 7-4. Radiated Spurious Data (LTE Band 5 – Low Channel)

Bandwidth (MHz):	10
Frequency (MHz):	836.5
RB / Offset:	1 / 25

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1673.00	Н	145	156	-66.22	-7.12	33.66	-61.59	-13.00	-48.59
2509.50	Н	168	185	-75.82	-3.83	27.35	-67.91	-13.00	-54.91
3346.00	Н	297	118	-72.00	-1.08	33.92	-61.33	-13.00	-48.33
4182.50	Н	270	160	-73.31	1.57	35.26	-59.99	-13.00	-46.99
5019.00	н	269	163	-71.26	3.13	38.87	-56.39	-13.00	-43.39
5855.50	Н	249	133	-72.37	5.59	40.22	-55.04	-13.00	-42.04
6692.00	Н	-	-	-78.27	7.92	36.65	-58.61	-13.00	-45.61
7528.50	Н	321	145	-75.70	9.13	40.43	-54.83	-13.00	-41.83

Table 7-5. Radiated Spurious Data (LTE Band 5 – Mid Channel)

Bandwidth (MHz):	10
Frequency (MHz):	844
RB / Offset:	1/25

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1688.00	Н	133	155	-66.62	-6.88	33.50	-61.76	-13.00	-48.76
2532.00	Н	-	-	-76.32	-3.27	27.41	-67.85	-13.00	-54.85
3376.00	н	318	150	-73.78	-1.04	32.18	-63.08	-13.00	-50.08
4220.00	Н	302	209	-73.76	1.59	34.83	-60.42	-13.00	-47.42
5064.00	Н	376	172	-75.01	3.34	35.33	-59.92	-13.00	-46.92
5908.00	Н	242	213	-76.43	6.09	36.66	-58.60	-13.00	-45.60
6752.00	Н	-	-	-77.95	7.97	37.02	-58.24	-13.00	-45.24
7596.00	Н	306	153	-76.38	9.59	40.21	-55.04	-13.00	-42.04

Table 7-6. Radiated Spurious Data (LTE Band 5 – High Channel)

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 40
1M2312260131-01.RI7 01/11/2024 - 01/21/2024		Module	Page 37 of 40
© 2024 ELEMENT	<u>.</u>	•	V11.1 08/28/2023

7.8 Frequency Stability / Temperature Variation

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22 and RSS-132, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Test Procedure Used

ANSI C63.26-2015 – Section 5.6

Test Settings

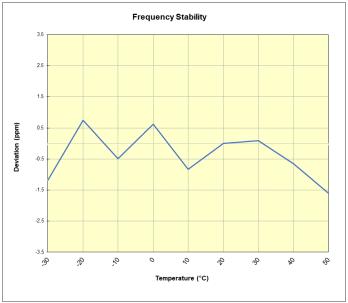
- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None


FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 40
1M2312260131-01.RI7 01/11/2024 - 01/21/2024		Module	Fage 30 01 40
© 2024 ELEMENT	•		V11.1 08/28/2023

LTE Band 5

LTE Band 5							
	Operating F	requency (Hz):	836,50				
	Ref.	Voltage (VDC):	3.				
		Deviation Limit:	± 0.00025%	or 2.5 ppm			
					-		
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)		
		- 30	836,499,623	-996	-0.0001190		
		- 20	836,501,244	625	0.0000748		
		- 10	836,500,211	-408	-0.0000488		
		0	836,501,143	524	0.0000626		
100 %	3.4	+ 10	836,499,926	-693	-0.0000828		
		+ 20 (Ref)	836,500,619	0	0.0000000		
		+ 30	836,500,690	71	0.000085		
		+ 40	836,500,070	-549	-0.0000657		
		+ 50	836,499,283	-1,336	-0.0001598		
85 %	2.89	+ 20	836,499,339	-1,280	-0.0001530		
115 %	3.91	+ 20	836,499,787	-832	-0.0000995		

Table 7-7. LTE Band 5 Frequency Stability Data

Plot 7-36. LTE Band 5 Frequency Stability Chart

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 20 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 39 of 40
© 2024 ELEMENT	•		V11.1 08/28/2023

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Telit Module FCC ID: RI7LE910C1SNX / IC: 5131A-LE910C1SNX** complies with all the requirements of Part 22 of the FCC rules and RSS-132 of the ISED rules.

FCC ID: RI7LE910C1SNX IC: 5131A-LE910C1SNX		PART 22 / RSS-132 MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Daga 40 of 40
1M2312260131-01.RI7	01/11/2024 - 01/21/2024	Module	Page 40 of 40
© 2024 ELEMENT		·	V11.1 08/28/2023