

ELEMENT WASHINGTON DC LLC

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.element.com

Part 96 MEASUREMENT REPORT

Applicant Name:

Telit Communications S.p.A. Viale Stazione di Prosecco 5/b Trieste, 34010 Italy Date of Testing: 09/23/2022 - 11/21/2022 Test Report Issue Date: 11/28/2022 Test Site/Location: Element Lab., Columbia, MD, USA Test Report Serial No.: 1M2209070102-01.RI7

FCC ID: APPLICANT:

RI7FN980

Telit Communications S.p.A.

Application Type:	Class II Permissive Change
Model:	FN980
EUT Type:	Module
FCC Classification:	Citizens Band End User Devices (CBE)
FCC Rule Part(s):	96
Test Procedure(s):	ANSI C63.26-2015, KDB 940660 D01 v03,
	WINNF-18-IN-00178 v1.0.0.00, WINNF-TS-0122 v1.0.2
Class II Permissive Change:	Adding 5G NR n48 capability

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RJ Ortanez Executive Vice President

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	
Test Report S/N:	Test Dates:	EUT Type:	Dama 4 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 1 of 40
© 2022 ELEMENT	·		V11.0 9/14/2022

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	3
	1.1	Scope	3
	1.2	Element Test Location	3
	1.3	Test Facility / Accreditations	3
2.0	PROD	DUCT INFORMATION	4
	2.1	Equipment Description	4
	2.2	Device Capabilities	4
	2.3	Test Configuration	4
	2.4	Software and Firmware	4
	2.5	EMI Suppression Device(s)/Modifications	4
3.0	DESC	RIPTION OF TESTS	5
	3.1	Measurement Procedure	5
	3.2	Radiated Power and Radiated Spurious Emissions	5
4.0	MEAS	SUREMENT UNCERTAINTY	6
5.0	TEST	EQUIPMENT CALIBRATION DATA	7
6.0	SAMF	PLE CALCULATIONS	8
7.0	TEST	RESULTS	9
	7.1	Summary	9
	7.2	Conducted Output Power / EIRP Data	10
	7.3	Occupied Bandwidth	13
	7.4	Spurious and Harmonic Emissions at Antenna Terminal	19
	7.5	Band Edge Emissions at Antenna Terminal	22
	7.6	Radiated Spurious Emissions Measurements	27
	7.7	Frequency Stability / Temperature Variation	35
	7.8	End User Device Additional Requirement (CBSD Protocol)	37
8.0	CON	CLUSION	.40

FCC ID: RI7FN980	PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 2 of 40
© 2022 ELEMENT			V11.0 9/14/2022

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Element Test Location

These measurement tests were conducted at the Element Laboratory located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element Lab located in Columbia, MD 21046, U.S.A.

- Element Washington DC LLC is a OnGo Alliance Approved Test Lab (ATL)
- Element Washington DC LLC is a WInnForum Approved Test Lab
- Element Washington DC LLC is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Washington DC LLC TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- Element Washington DC LLC facility is a registered (2451B) test laboratory with the site description on file with ISED.
- Element Washington DC LLC is a Recognized U.S. Certification Assessment Body (CAB # US0110) for ISED Canada as designated by NIST under the U.S. and Canada Mutual Recognition Agreement.

FCC ID: RI7FN980	PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 3 of 40
© 2022 ELEMENT	•		V11.0 9/14/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Telit Module FCC ID: RI7FN980**. The test data contained in this report pertains only to the emissions due to the EUT's NR n48 operation in the CBRS band. Per FCC Part 96, this device is evaluated as a Citizens Band End User Device (CBE).

Test Device Serial No.: 49499

2.2 Device Capabilities

This device contains the following capabilities:

Multi-Band LTE and Multi-Band 5G NR, including n48 (Standalone and Non-Standalone operation)

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015 and KDB 940660 D01 v03. See Section 7.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

2.4 Software and Firmware

Testing was performed on device(s) using software/firmware version 0 installed on the EUT.

2.5 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: RI7FN980	PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 4 of 40
© 2022 ELEMENT			V11.0 9/14/2022

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015) and KDB 940660 D01 v03 were used in the measurement of the EUT.

Deviation from Measurement Procedure......None

3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI C63.26-2015. For emissions below 1GHz, a half-wave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi];$

where P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to P_{g [dBm]} – cable loss [dB].

For radiated spurious emissions measurements, the field strength conversion method is used per the formulas in Section 5.2.7 of ANSI C63.26-2015. Field Strength (EIRP) is calculated using the following formulas:

 $E_{[dB\mu V/m]}$ = Measured amplitude level $_{[dBm]}$ + 107 + Cable Loss $_{[dB]}$ + Antenna Factor $_{[dB/m]}$ And EIRP $_{[dBm]}$ = $E_{[dB\mu V/m]}$ + 20logD - 104.8; where D is the measurement distance in meters.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI C63.26-2015.

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		
Test Report S/N:	Test Dates:	EUT Type:	Daga E of 40	
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 5 of 40	
© 2022 ELEMENT	•		V11.0 9/14/2022	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: RI7FN980	PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 6 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 6 of 40
© 2022 ELEMENT	·	•	V11.0 9/14/2022

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	N9038A	MXE EMI Receiver	1/21/2022	Annual	1/21/2023	MY51210133
Emco	3115	Horn Antenna (1-18GHz)	8/8/2022	Biennial	8/8/2024	9704-5182
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	8/29/2022	Annual	8/29/2023	100342
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	8/25/2022	Annual	8/25/2023	100348
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	11/13/2020	Biennial	11/13/2022	A051107
Anritsu	MT8821C	Radio Communication Analyzer MT8821C	5/2/2022	Annual	5/2/2023	6200901190
Anritsu	MT8000A	Radio Communication Test Station	3/30/2022	Annual	3/30/2023	6261914237
Agilent	N9030A	50GHz PXA Signal Analyzer	9/9/2022	Annual	9/9/2023	US51350301

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: RI7FN980	PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 7 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 7 of 40
© 2022 ELEMENT	•		V11.0 9/14/2022

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (7250 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80).

FCC ID: RI7FN980	PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 0 of 40	
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 8 of 40	
© 2022 ELEMENT			V11.0 9/14/2022	

7.0 TEST RESULTS

7.1 Summary

Company Name:	Telit Communications S.p.A.
FCC ID:	<u>RI7FN980</u>
FCC Classification:	Citizens Band End User Devices (CBE)
Mode(s):	NR

Test Condition	Test Description	FCC Part Section(s)	Test Limit	Test Result	Reference
	Conducted Power / EIRP	2.1046, 96.41(b)	23 dBm / 10 MHz EIRP	PASS	Section 7.2
	Occupied Bandwidth	2.1049(h)	N/A	PASS	Section 7.3
CONDUCTED	Conducted Band Edge / Spurious Emissions (EUD)	2.1051, 96.41(e)	 -13 dBm/MHz at frequencies within 0-B MHz of channel edge (where B is the bandwidth of the assigned channel) -25 dBm/MHz at frequencies greater than B MHz above and below channel edge -40 dBm/MHz at frequencies below 3530 MHz and above 3720 MHz 	PASS	Sections 7.4, 7.5
CO	Frequency Stability	2.1055	Fundamental emissions stay within authorized frequency block	PASS	Section 7.7
	End User Device Additional Requirements (CBSD Protocol)	96.47	End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation. An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.	PASS	Section 7.8
RADIATED	Radiated Spurious Emissions	2.1053, 96.41(e)	-40 dBm/MHz	PASS	Section 7.6

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is EMC Software Tool v1.1.

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 0 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 9 of 40
© 2022 ELEMENT			V11.0 9/14/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

7.2 Conducted Output Power / EIRP Data

Test Overview

The EUT is set up to transmit at maximum power for NR. All power levels are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.2

Test Settings

- 1. Span = 2 x OBW to 3 x OBW
- 2. RBW = 1% to 5% of the OBW
- 3. Number of measurement points in sweep \geq 2 x span / RBW
- 4. Sweep = auto-couple (less than transmission burst duration)
- 5. Detector = RMS (power)
- 6. Trigger was set to enable power measurements only on full power bursts
- 7. Trace was allowed to stabilize
- 8. Spectrum analyzer's "Channel Power" function was used to compute the power by integrating the spectrum across the OBW of the signal

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

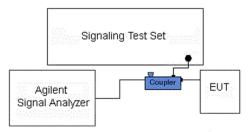


Figure 7-1. Test Instrument & Measurement Setup

Test Notes

- 1. Conducted power measurements were evaluated using various combinations of RB size, RB offset, modulation, and channel bandwidth. Channel bandwidth data is shown in the tables below based only on the channel bandwidths that were supported in this device.
- 2. The maximum EIRP is calculated based on a 0.5dBi gain. The 0.5dBi gain applied in this section is based on the maximum allowed antenna gain for RF Exposure compliance as shown in the MPE report in this filing.

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 10 of 40
© 2022 ELEMENT			V11.0 9/14/2022

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

NR Conducted Output Power / EIRP

Bandwidth	Modulation	Channel	Frequency [MHz]	RB Size/Offset	Conducted Power [dBm]	Ant Gain [dBi]	EIRP [dBm/10MHz]	EIRP Limit [dBm/10MHz]	Margin [dB]
		638000	3570.0	1 / 79	21.35	0.50	21.85	23.00	-1.15
	π/2 BPSK	641666	3625.0	1 / 79	21.80	0.50	22.30	23.00	-0.70
		645332	3680.0	1 / 26	21.51	0.50	22.01	23.00	-0.99
		638000	3570.0	1 / 79	21.22	0.50	21.72	23.00	-1.28
	QPSK	641666	3625.0	1 / 53	21.85	0.50	22.35	23.00	-0.65
		645332	3680.0	1 / 53	21.36	0.50	21.86	23.00	-1.14
F		638000	3570.0	1 / 26	20.35	0.50	20.85	23.00	-2.15
40 MHz	16-QAM	641666	3625.0	1 / 79	20.70	0.50	21.20	23.00	-1.80
40		645332	3680.0	1 / 26	20.39	0.50	20.89	23.00	-2.11
		638000	3570.0	1 / 53	18.79	0.50	19.29	23.00	-3.71
	64-QAM	641666	3625.0	1 / 53	19.65	0.50	20.15	23.00	-2.85
		645332	3680.0	1 / 26	19.58	0.50	20.08	23.00	-2.92
		638000	3570.0	1 / 53	16.72	0.50	17.22	23.00	-5.78
	256-QAM	641666	3625.0	1 / 53	17.33	0.50	17.83	23.00	-5.17
		645332	3680.0	1 / 26	17.05	0.50	17.55	23.00	-5.45
		637334	3560.0	1 / 13	20.99	0.50	21.49	23.00	-1.51
	π/2 BPSK	641666	3625.0	1 / 37	21.55	0.50	22.05	23.00	-0.95
		646000	3690.0	1 / 25	21.12	0.50	21.62	23.00	-1.38
		637334	3560.0	1 / 13	20.92	0.50	21.42	23.00	-1.58
	QPSK	641666	3625.0	1 / 37	21.52	0.50	22.02	23.00	-0.98
		646000	3690.0	1 / 13	21.12	0.50	21.62	23.00	-1.38
20 MHz		637334	3560.0	1 / 37	19.81	0.50	20.31	23.00	-2.69
N N N N N N N N N N N N N N N N N N N	16-QAM	641666	3625.0	1 / 25	20.62	0.50	21.12	23.00	-1.88
20		646000	3690.0	1 / 13	19.98	0.50	20.48	23.00	-2.52
		637334	3560.0	1 / 37	18.46	0.50	18.96	23.00	-4.04
	64-QAM	641666	3625.0	1 / 37	19.02	0.50	19.52	23.00	-3.48
		646000	3690.0	1 / 25	18.76	0.50	19.26	23.00	-3.74
		637334	3560.0	1 / 37	16.50	0.50	17.00	23.00	-6.00
	256-QAM	641666	3625.0	1 / 37	16.97	0.50	17.47	23.00	-5.53
		646000	3690.0	1 / 25	16.65	0.50	17.15	23.00	-5.85
		637000	3555.0	1/6	20.82	0.50	21.32	23.00	-1.68
	π/2 BPSK	641666	3625.0	1 / 17	21.52	0.50	22.02	23.00	-0.98
		646332	3695.0	1/6	21.10	0.50	21.60	23.00	-1.40
		637000	3555.0	1/6	20.79	0.50	21.29	23.00	-1.71
	QPSK	641666	3625.0	1 / 17	21.49	0.50	21.99	23.00	-1.01
N		646332	3695.0	1 / 17	20.98	0.50	21.48	23.00	-1.52
H		637000	3555.0	1 / 12	19.92	0.50	20.42	23.00	-2.58
10 MHz	16-QAM	641666	3625.0	1 / 12	20.58	0.50	21.08	23.00	-1.92
1		646332	3695.0	1 / 12	20.13	0.50	20.63	23.00	-2.37
		637000	3555.0	1/6	18.69	0.50	19.19	23.00	-3.81
	64-QAM	641666	3625.0	1 / 17	19.03	0.50	19.53	23.00	-3.47
		646332	3695.0	1/6	18.85	0.50	19.35	23.00	-3.65
		637000	3555.0	1/6	16.48	0.50	16.98	23.00	-6.02
	256-QAM	641666	3625.0	1 / 17	16.82	0.50	17.32	23.00	-5.68
		646332	3695.0	1/6	16.67	0.50	17.17	23.00	-5.83

Table 7-2. Conducted Output Power Spot Check Measurements

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 10
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 11 of 40
© 2022 ELEMENT	· ·		V11.0 9/14/2022

EN-DC Conducted Output Power

		NR (S	CS 30kHz)						LTE			NR	LTE	EN-DC
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset	Conducted Power	Conducted Power [dBm]	Total Tx. Power [dBm]
				QPSK	100/0					QPSK	1/0	17.20	22.64	23.73
				QPSK	1/79					QPSK	100/0	17.72	21.79	23.23
n48	40	Mid	3625	QPSK	100/0	2	20	Mid	1880	QPSK	100/0	19.65	21.82	23.88
				QPSK	1/79					QPSK	1/0	17.25	22.61	23.72
				16Q	100/0					16Q	1/0	20.97	20.80	23.90

Table 7-3. EN-DC Conducted Output Power (NR n48 + LTE B2)

		NR (S	CS 30kHz)						LTE			NR	LTE	EN-DC
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset		Conducted Power [dBm]	Total Tx. Power [dBm]
				QPSK	100/0					QPSK	1/0	17.14	22.94	23.95
				QPSK	1/79					QPSK	100/0	19.68	22.02	24.02
n48	40	Mid	3625	QPSK	100/0	66	20	Mid	1745	QPSK	100/0	19.71	22.00	24.01
				QPSK	1/79					QPSK	1/0	17.19	22.94	23.96
				16Q	1/79					16Q	1/0	19.71	22.25	24.17

Table 7-4. EN-DC Conducted Output Power (NR n48 + LTE B66)

		NR (S	CS 30kHz)						LTE					
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset	Power	LTE Conducted Power [dBm]	EN-DC Total Tx. Power [dBm]
				QPSK	100/0					QPSK	1/25	17.13	22.76	23.81
				QPSK	1/79					QPSK	50/0	19.68	21.76	23.85
n48	40	Mid	3625	QPSK	100/0	5	10	Mid	836.5	QPSK	50/0	19.68	21.85	23.91
				QPSK	1/79					QPSK	1/25	17.23	22.66	23.75
				16Q	100/0					16Q	50/0	20.96	20.76	23.87
			Table					· · · ·		40				

Table 7-5. EN-DC Conducted Output Power (NR n48 + LTE B5)

		NR (S	CS 30kHz)						LTE			NR	d Conducted To Power P	EN-DC
NR Band	NR Bandwidth [MHz]	NR Channel	NR Frequency [MHz]	Mod.	NR RB#/Offset	LTE Band	LTE Bandwidth [MHz]	LTE Channel	LTE Frequency [MHz]	Mod.	LTE RB#/Offset			Total Tx. Power [dBm]
				QPSK	100/0					QPSK	1/0	17.08	22.80	23.83
				QPSK	1/0					QPSK	50/0	19.42	21.98	23.90
n48	40	Mid	3625	QPSK	100/0	13	10	Mid	782	QPSK	50/0	19.65	22.01	24.00
				QPSK	1/0					QPSK	1/0	16.92	22.71	23.73
				16Q	100/0					16Q	50/0	20.92	21.04	23.99

Table 7-6. EN-DC Conducted Output Power (NR n48 + LTE B13)

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)						
Test Report S/N:	Test Dates:	Test Dates: EUT Type:						
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 12 of 40					
© 2022 ELEMENT								

7.3 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.26-2015 - Section 5.4.4

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

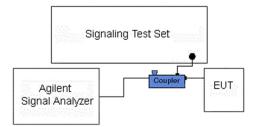


Figure 7-2. Test Instrument & Measurement Setup

Test Notes

None

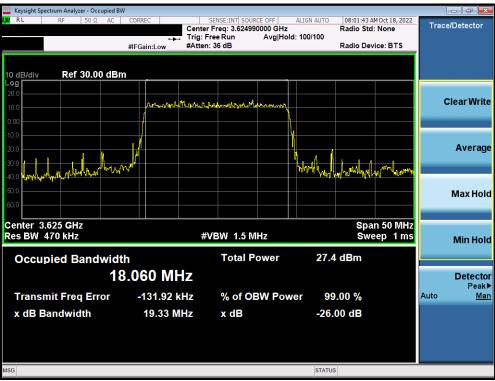
FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 42 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 13 of 40
© 2022 ELEMENT			V11.0 9/14/2022

NR Band n48

200 200 200 200 200 200 200 200	Keysight Spectrum Analyzer - Occupied BW						[- 7 💌
Image: Content of the second secon	ΙΧΊ RL RF 50 Ω AC CO						Trace	/Detector
10 dB/div Ref 30.00 dBm 10 dB/div Ref 30.00 dBm 10 dB/div Image: Clear Write 20 dB/div Image: Clear Write <		🛶 Trig: Fre	eRun Avg Ho					
Log 200 200 200 200 200 200 200 20	#IF	Gain:Low #Atten: 3	36 dB		Radio Devi	ce: BTS		
Log 200 200 200 200 200 200 200 20								
200 200 200 200 200 200 200 200								
Average Average Average Average Average Average Average Average Max Hold Center 3.625 GHz Res BW 910 kHz Span 100 MHz Sweep 1 ms Occupied Bandwidth 35.874 MHz Transmit Freq Error -1.0640 MHz % of OBW Power 99.00 % x dB Bandwidth 37.99 MHz x dB -26.00 dB								
100 1	10.0	May the product of the and the particular	warder and a stranger and a stranger				C	lear Write
200 200 200 200 200 200 200 200	0.00	<u> </u>						
300 June definition of the second	-10.0	[
4000 100	-20.0							Average
4000 100				Mind Parts in Andre	···//18			
Center 3.625 GHz Res BW 910 kHz #VBW 3 MHz Span 100 MHz Bandwidth Total Power 28.7 dBm 35.874 MHz Transmit Freq Error -1.0640 MHz % of OBW Power 99.00 % x dB Bandwidth 37.99 MHz x dB -26.00 dB				1040 1140	www.ini (When			
Center 3.625 GHz Span 100 MHz Res BW 910 kHz #VBW 3 MHz Span 100 MHz Occupied Bandwidth Total Power 28.7 dBm 35.874 MHz Detector Transmit Freq Error -1.0640 MHz % of OBW Power 99.00 % x dB Bandwidth 37.99 MHz x dB -26.00 dB	-50.0							Max Hold
Res BW 910 kHz #VBW 3 MHz Sweep 1 ms Occupied Bandwidth Total Power 28.7 dBm 35.874 MHz	-60.0							maxitora
Res BW 910 kHz #VBW 3 MHz Sweep 1 ms Occupied Bandwidth Total Power 28.7 dBm 35.874 MHz						400 5411-		
Occupied Bandwidth Total Power 28.7 dBm 35.874 MHz Transmit Freq Error -1.0640 MHz % of OBW Power 99.00 % x dB Bandwidth 37.99 MHz x dB -26.00 dB		#\/	BMC 3 MHz					
35.874 MHz Transmit Freq Error -1.0640 MHz % of OBW Power 99.00 % x dB Bandwidth 37.99 MHz x dB -26.00 dB			511 0 11112		0110	op i llio		Min Hold
Transmit Freq Error -1.0640 MHz % of OBW Power 99.00 % Auto Man x dB Bandwidth 37.99 MHz x dB -26.00 dB -26.00 dB	Occupied Bandwidth		Total Power	28.7	dBm			
Transmit Freq Error -1.0640 MHz % of OBW Power 99.00 % Auto Man x dB Bandwidth 37.99 MHz x dB -26.00 dB -26.00 dB	35.8	374 MHz						Detector
x dB Bandwidth 37.99 MHz x dB -26.00 dB								Peak▶
	Transmit Freq Error	-1.0640 MHz	% of OBW Pov	ver 99	.00 %		Auto	Man
ISG STATUS	x dB Bandwidth	37.99 MHz	x dB	-26.0	00 dB			
ISG STATUS								
ISG STATUS								
ISG STATUS								
	MSG			STATUS				

Plot 7-1. Occupied Bandwidth Plot (NR Band n48 - 40MHz π/2 BPSK - Full RB Configuration)

Keysight Spectrum Analyzer - Occupied BW CRL RF 50 Ω AC	CORREC Center	SENSE:INT SOURCE OFF Freq: 3.624990000 GHz Free Run Avg Ho : 36 dB	ALIGN AUTO Z DId: 100/100	07:41:52 AM 0 Radio Std: N	one	Trace/D	etector
10 dB/div Ref 30.00 dBm							
-• • 9 20.0 10.0	un and a second and	mhome later and for the				Cle	ear Writ
10.0 20.0 30.0	dul		Wattana	สบุรายประสาท	hildonautro		Averag
40.0						N	lax Hol
enter 3.625 GHz es BW 910 kHz		VBW 3 MHz Total Power	25.7		00 MHz p 1 ms	r	Vin Ho
Occupied Bandwidt 37	933 MHz	TOLATFOWER	25.1	UBIII		l	Detect
Transmit Freq Error	-54.290 kHz	% of OBW Po	wer 99.	00 %		Auto	Peak <u>M</u> a
x dB Bandwidth	40.21 MHz	x dB	-26.0	0 dB			
G			STATUS				


Plot 7-2. Occupied Bandwidth Plot (NR Band n48 - 40MHz QPSK - Full RB Configuration)

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	
Test Report S/N:	Test Dates:	EUT Type:	Dega 14 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 14 of 40
© 2022 ELEMENT	•		V11.0 9/14/2022

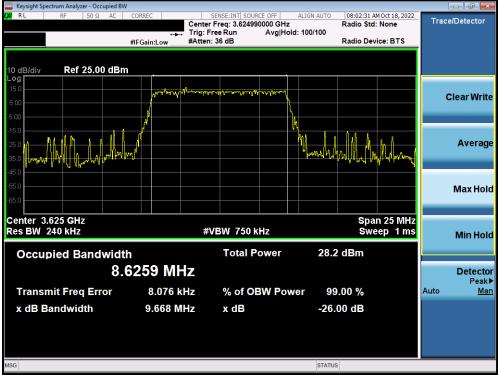
Keysight Spectrum Analyzer - Occupied BW					
UM RL RF 50Ω AC	Center	SENSE:INT SOURCE OFF r Freq: 3.624990000 GHz Free Run Avg Hol 1: 36 dB	Radio St d: 100/100	AM Oct 18, 2022 cd: None evice: BTS	Trace/Detector
10 dB/div Ref 30.00 dBm			1		
20.0	Lotitonlayuutaayuutaa	Another Marting and a second			Clear Write
-10.0 -20.0 -30.0			- June Martin Standing and Stan	utrityanya sulityanya	Average
-40.0 -50.0 -60.0					Max Hold
Center 3.625 GHz Res BW 910 kHz		VBW 3 MHz	Sw	n 100 MHz /eep 1 ms	Min Hold
Occupied Bandwidth 38	1 .104 MHz	Total Power	25.6 dBm		Detector Peak►
Transmit Freq Error x dB Bandwidth	-3.082 kHz 40.22 MHz	% of OBW Pow x dB	ver 99.00 % -26.00 dB		Auto <u>Man</u>
MSG			STATUS		

Plot 7-3. Occupied Bandwidth Plot (NR Band n48 - 40MHz 16-QAM - Full RB Configuration)

Plot 7-4. Occupied Bandwidth Plot (NR Band n48 - 20MHz π/2 BPSK - Full RB Configuration)

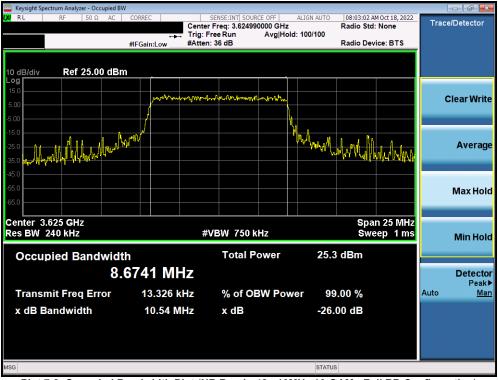
FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	
Test Report S/N:	Test Dates:	EUT Type:	Daws 45 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 15 of 40
© 2022 ELEMENT	•		V11.0 9/14/2022

Keysight Spectrum Analyzer - Occupi	ied BW				- d ×
(X/RL RF 50Ω/	AC CORREC	SENSE:INT SOURCE OFF		M Oct 18, 2022	Trace/Detector
			Id: 100/100	: None	
	#IFGain:Low #A	tten: 36 dB	Radio Dev	vice: BTS	
10 dB/div Ref 30.00 d	dBm				
Log					
20.0					Clear Write
10.0	all shared a start and a start	rolinghally and all the formation and			Clear Write
0.00					
-10.0					
-20.0			l X.		Average
					Average
-30.0	hphiletting hill		Hole may for month with	Number	
-40.0					
-50.0					Max Hold
-60.0					
Center 3.625 GHz		20 (B) (1 / C B) (1		n 50 MHz	
Res BW 470 kHz		#VBW 1.5 MHz	SW	eep 1 ms	Min Hold
Occupied Bondu	i oltlo	Total Power	25.0 dBm		
Occupied Bandw		Total Tower	23.0 UBIII		
	18.309 MHz				Detector
Tanan and it Factor	200-11		00.00.00		Peak≯ Auto Man
Transmit Freq Error	r -293 Hz	% of OBW Pov	wer 99.00 %		Auto <u>Man</u>
x dB Bandwidth	19.71 MHz	x dB	-26.00 dB		
MSG			STATUS		


Plot 7-5. Occupied Bandwidth Plot (NR Band n48 - 20MHz QPSK - Full RB Configuration)

Plot 7-6. Occupied Bandwidth Plot (NR Band n48 - 20MHz 16-QAM - Full RB Configuration)

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 of 40	
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 16 of 40	
© 2022 ELEMENT				


Plot 7-7. Occupied Bandwidth Plot (NR Band n48 - 10MHz π/2 BPSK - Full RB Configuration)

Plot 7-8. Occupied Bandwidth Plot (NR Band n48 - 10MHz QPSK - Full RB Configuration)

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	
Test Report S/N:	Test Dates:	EUT Type:	Dama 47 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 17 of 40
© 2022 ELEMENT		·	V11.0 9/14/2022

Plot 7-9. Occupied Bandwidth Plot (NR Band n48 - 10MHz 16-QAM - Full RB Configuration)

FCC ID: RI7FN980	PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 19 of 10
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 18 of 40
© 2022 ELEMENT			V11.0 9/14/2022

7.4 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/MHz.

Test Procedure Used

ANSI C63.26-2015 – Section 5.7.4

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = Max Hold
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

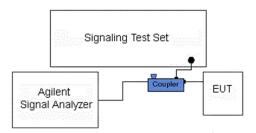
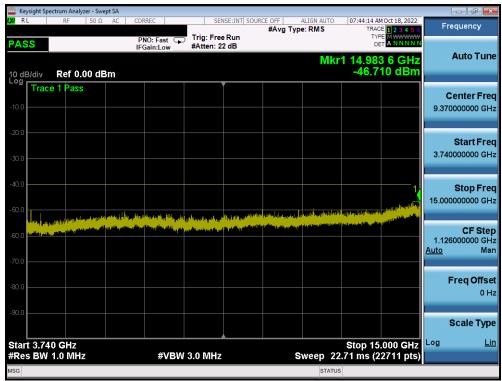


Figure 7-3. Test Instrument & Measurement Setup

Test Notes

- 1. Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.
- 3. Only the data for the widest bandwidth (40MHz) is shown in this section as all bandwidths operating at 1RB yield similar results.

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 10
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 19 of 40
© 2022 ELEMENT	· · ·		V11.0 9/14/2022


Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

NR Band n48

🔤 Keysight Spectrum Analyzer - S	Swept SA				
RL RF 50	Ω AC CORREC	SENSE:INT SOUR	CE OFF ALIGN AUTO #Avg Type: RMS	07:43:53 AM Oct 18, 2022 TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast 🕞 IFGain:Low	⊖ Trig: Free Run #Atten: 22 dB	M		Auto Tune
10 dB/div Ref 0.00 (dBm	V V		-45.813 dBm	
-10.0					Center Fred 1.770000000 GH2
-20.0					Start Free 30.000000 MHz
-40.0			der part of the instance of the processing starts of the second starts o		Stop Fred 3.510000000 GHz
-60.0	والمحققة والمنابعين ويتحقق والمرققاتين أقامتهم منظوماتهم وتقديم ومرضي ويتراط المتأوية ومراكبتهم			And the second s	CF Step
-70.0					348.000000 MH: <u>Auto</u> Mar
					Freq Offse
-80.0					0 H:
-90.0					Scale Type
Start 30 MHz #Res BW 1.0 MHz	#VBM	/ 3.0 MHz	Sweep 4	Stop 3.510 GHz .767 ms (7151 pts)	Log <u>Lir</u>
MSG			STATUS		

Plot 7-10. Conducted Spurious Plot (NR Band n48 - 40MHz QPSK - Mid Channel)

Plot 7-11. Conducted Spurious Plot (NR Band n48 - 40MHz QPSK - Mid Channel)

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 20 of 40
© 2022 ELEMENT	-		V11.0 9/14/2022

Keysight Spectrum Analyzer - Swept SA				
LX/RL RF 50Ω AC	CORREC SENSE:	INT SOURCE OFF ALIGN AUTO #Avg Type: RMS	07:44:35 AM Oct 18, 2022 TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast Trig: Free Ru IFGain:Low Atten: 10 dB	in	TYPE M WANNAWAY DET A N N N N N	
	IFGam. to up		1 26.163 5 GHz	Auto Tune
10 dB/div Ref 0.00 dBm			-45.431 dBm	
Trace 1 Pass				Center Freq
-10.0				21.000000000 GHz
-20.0				Start Freq
-30.0				15.00000000 GHz
-40.0			1	Stop Freq
				27.00000000 GHz
-50.0		enhanne earle an teanne aller train air patala a bhasta		
-60.0 Land Alexandric Strength and and the strength of the str	والمتلفظ والمتعاولية والتجوير وتحاصر والمحالية	and an a start of the start of	teribert for the second second	CF Step
when the state of				1.200000000 GHz <u>Auto</u> Man
-70.0				
-80.0				Freq Offset
-00.0				0 Hz
-90.0				
				Scale Type
Start 15.000 GHz			Stop 27.000 GHz	Log <u>Lin</u>
#Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 30	.40 ms (24001 pts)	
MSG		STATUS		

Plot 7-12. Conducted Spurious Plot (NR Band n48 - 40MHz QPSK - Mid Channel)

FCC ID: RI7FN980		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Derra 21 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 21 of 40
© 2022 ELEMENT			V11.0 9/14/2022

7.5 Band Edge Emissions at Antenna Terminal

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

For an End User Device, the conducted power of any emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B MHz (where B is the bandwidth in MHz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B MHz below the lower CBSD-assigned channel edge. At all frequencies greater than B MHz above the upper CBSD assigned channel edge and less than B MHz below the lower CBSD-assigned channel edge, the conducted power of any end user device emission shall not exceed -25 dBm/MHz. The conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

Test Procedure Used

ANSI C63.26-2015 – Section 5.7.3

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW <u>></u> 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

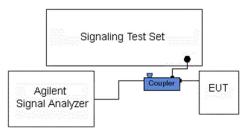


Figure 7-4. Test Instrument & Measurement Setup

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 40		
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 22 of 40		
© 2022 ELEMENT			V11.0 9/14/2022		

Test Notes

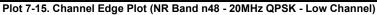
- 1. Per 96.41(e)(3)(i), compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's authorized frequency channel, a resolution bandwidth of no less than one percent of the fundamental emission bandwidth may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full reference bandwidth (i.e., 1 MHz or 1 percent of emission bandwidth, as specified). The fundamental emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- 2. For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

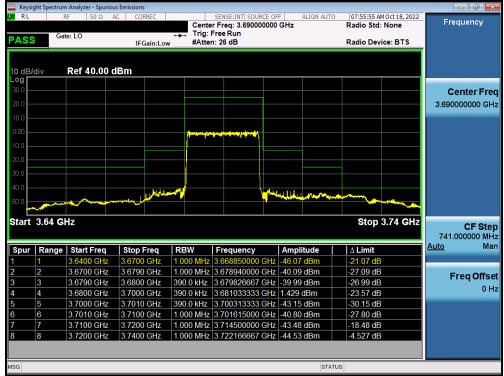
FCC ID: RI7FN980		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dego 22 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 23 of 40
© 2022 ELEMENT	•		V11.0 9/14/2022

NR Band n48

		F 50 Ω	AC CO	ORREC		SENSE:INT SOURCE r Freq: 3.570000 Free Run		ALIGN AUTO	07:49:42	M Oct 18, 2022 : None	Frequency
ASS	Gat	e: LO	IF	Gain:Lo	-	n: 26 dB			Radio De	vice: BTS	
0 dB/ og [/div	Ref 30.00) dBm								
20.0											Center Fre 3.570000000 GF
).00											
20.0											
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and and a start and a start and a start				Marana and a second	••••••••••••••••••••••••••••••••••••••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
tart	3.51 GI	łz							Stop	3.64 GHz	
start		HZ Start Freq	Stop	Freq	RBW	Frequency	Ampli	tude	Stop	3.64 GHz	CF Ste 741.000000 Mi <u>Auto</u> Mi
				Freq 0 GHz		Frequency 3.527800000 G					741.000000 M
		Start Freq	3.530		1.000 MHz		Hz -44.07	dBm	∆ Limit	3	741.000000 Mi <u>Auto</u> M
Spur	Range	Start Freq	2 3.530 2 3.540	0 GHz	1.000 MHz 1.000 MHz	3.527800000 G	Hz -44.07 Hz -41.75	dBm dBm	∆ Limit -4.075 dt	3 3	741.000000 M <u>Auto</u> M Freq Offs
Spur	Range	Start Freq 3.5100 GHz 3.5300 GHz	2 3.530 2 3.540 2 3.549	0 GHz 0 GHz	1.000 MHz 1.000 MHz 1.000 MHz	3.527800000 G 3.539900000 G	Hz -44.07 Hz -41.75 Hz -40.88	dBm dBm dBm	∆ Limit -4.075 dt	3 3 3	741.000000 M <u>Auto</u> M Freq Offs
Spur	Range 1 2 3	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz	2 3.530 2 3.540 2 3.549 2 3.550	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	1.000 MHz 1.000 MHz 1.000 MHz 750.0 kHz	3.527800000 G 3.539900000 G 3.544050000 G	Hz -44.07 Hz -41.75 Hz -40.88 Hz -40.80	dBm dBm dBm dBm	∆ Limit -4.075 df -16.75 df -27.88 df	3 3 3 3 3	741.000000 M <u>Auto</u> M Freq Offs
Spur	Range 1 2 3 4	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz	2 3.530 2 3.540 2 3.549 2 3.550 2 3.590	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	1.000 MHz 1.000 MHz 1.000 MHz 750.0 kHz 750.0 kHz	3.527800000 G 3.539900000 G 3.544050000 G 3.549970000 G	Hz -44.07 Hz -41.75 Hz -40.88 Hz -40.80 Hz -40.80 Hz -1.029	dBm dBm dBm dBm dBm	Δ Limit -4.075 df -16.75 df -27.88 df -27.80 df	3 3 3 3 3 3 3	741.000000 M <u>Auto</u> M
Spur	Range 1 2 3 4 5	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz	2 3.530 2 3.540 2 3.549 2 3.550 2 3.590 2 3.591	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 750.0 kHz 750.0 kHz 750.0 kHz 750.0 kHz	3.527800000 G 3.539900000 G 3.544050000 G 3.549970000 G 3.570952381 G	Hz -44.07 Hz -41.75 Hz -40.88 Hz -40.80 Hz -1.029 Hz -40.72	dBm	△ Limit -4.075 df -16.75 df -27.88 df -27.80 df -26.03 df	3 3 3 3 3 3 3 3 3	741.000000 M <u>Auto</u> M Freq Offs
Spur	Range 1 2 3 4 5 6	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5500 GHz	2 3.530 2 3.540 2 3.549 2 3.550 2 3.590 2 3.591 2 3.600	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	1.000 MHz 1.000 MHz 1.000 MHz 750.0 kHz 750.0 kHz 750.0 kHz 1.000 MHz	3.527800000 G 3.539900000 G 3.544050000 G 3.549970000 G 3.570952381 G 3.590130000 G	Hz -44.07 GHz -41.75 GHz -40.88 GHz -40.80 GHz -1.029 GHz -40.72 GHz -40.82	dBm	Δ Limit -4.075 df -16.75 df -27.88 df -27.80 df -26.03 df -26.03 df -27.72 df	3 3 3 3 3 3 3 3 3 3 3 3 3	741.000000 M <u>Auto</u> M Freq Offs

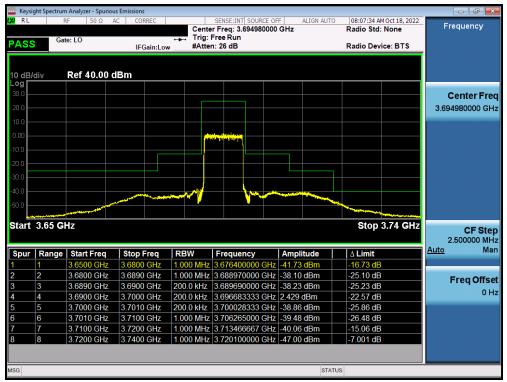
Plot 7-13. Channel Edge Plot (NR Band n48 - 40MHz QPSK - Low Channel)




Plot 7-14. Channel Edge Plot (NR Band n48 - 40MHz QPSK - High Channel)

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			
Test Report S/N:	Test Dates:	EUT Type:	Dego 24 of 40		
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 24 of 40		
© 2022 ELEMENT	•		V11.0 9/14/2022		

X/RL	R	Analyzer - Spuri		RREC		SENSE:INT SOUR	RCE OFF	ALIGN	AUTO	07:57:17 A	M Oct 18, 2022	
						r Freq: 3.56001				Radio Std		Frequency
PASS	Gat	e: LO	IF	Gain:Lo	-	Free Run n: 26 dB				Radio Dev	vice: BTS	
				Guimeo								
10 dB/o	aliu	Ref 30.00	dBm									
		Ker 30.00	dDm									
20.0												Center Fre
10.0												3.560010000 GH
0.00												
10.0						4-5 4-4004-40	h l					
20.0							t,					
-30.0												
40.0				ليليلون								
-50.0 🚾	- Marine Carline		- Josephering -				1	and the second s			and the second designed and the second designed and the second designed and the second designed and the second	
-60.0												
-0U.U												
Start	3.51 G									Stop	3.61 GHz	
Start	3.51 G	Hz								Stop	3.61 GHz	CF Ste 741.000000 M⊦
			Stop	Freq	RBW	Frequency		mplitude		Stop	3.61 GHz	
	Range		Stop			Frequency 3.520733333		mplitude 1.77 dBm				741.000000 MH
Spur 1	Range	Start Freq	3.5300	0 GHz	1.000 MHz		GHz -4	1.77 dBm		∆ Limit	3	741.000000 MH <u>Auto</u> Ma
Spur 1 2	Range 1 2	Start Freq 3.5100 GHz	3.5300 3.5400	0 GHz 0 GHz	1.000 MHz 1.000 MHz	3.520733333	GHz -4 GHz -4	1.77 dBm 1.92 dBm		∆ Limit -1.770 dE	3 3	741.000000 MH <u>Auto</u> Ma Freq Offs
Spur 1 2 3 4	Range 1 2 3 4	Start Freq 3.5100 GHz 3.5300 GHz	3.5300 3.5400 3.5490	0 GHz 0 GHz 0 GHz	1.000 MHz 1.000 MHz 1.000 MHz	3.520733333 3.538233333	GHz -4 GHz -4 GHz -3	1.77 dBm 1.92 dBm 8.68 dBm		∆ Limit -1.770 dE -16.92 dE	3 3 3 3	741.000000 MH <u>Auto</u> Ma Freq Offs
Spur 1 2 3 4 5	Range 1 2 3 4 5	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz	3.5300 3.5400 3.5490 3.5500 3.5500	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	1.000 MHz 1.000 MHz 1.000 MHz 390.0 KHz 390.0 KHz	3.520733333 3.538233333 3.548025000 3.549263333 3.568933333	GHz -4 GHz -4 GHz -3 GHz -4 GHz 0.	1.77 dBm 1.92 dBm 8.68 dBm 2.32 dBm 482 dBm		∆ Limit -1.770 dE -16.92 dE -25.68 dE -29.32 dE -24.52 dE	3 3 3 3 3 3 3	741.000000 MH <u>Auto</u> Ma Freq Offs
Start Spur 1 2 3 4 5 6	Range 1 2 3 4 5 6	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5700 GHz	3.5300 3.5400 3.5490 3.5500 3.5700 3.5710	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	1.000 MHz 1.000 MHz 1.000 MHz 390.0 KHz 390.0 KHz 390.0 KHz	3.520733333 3.538233333 3.548025000 3.549263333 3.568933333 3.570678333	GHz -4 GHz -4 GHz -3 GHz -3 GHz -4 GHz 0.1 GHz 0.1 GHz -2	1.77 dBm 1.92 dBm 8.68 dBm 2.32 dBm 482 dBm 3.72 dBm		Δ Limit -1.770 dE -16.92 dE -25.68 dE -29.32 dE -24.52 dE -10.72 dE	3 3 3 3 3 3 3 3 3	741.000000 MH
Spur 1 2 3 4 5 6 7	Range 1 2 3 4 5 6 7	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5700 GHz 3.5710 GHz	3.5300 3.5400 3.5490 3.5500 3.5700 3.5710 3.5710	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	1.000 MHz 1.000 MHz 1.000 MHz 390.0 kHz 390.0 kHz 390.0 kHz 1.000 MHz	3.520733333 3.538233333 3.548025000 3.549263333 3.568933333 3.570678333 3.572155000	GHz -4 GHz -4 GHz -4 GHz -3 GHz -4 GHz -3 GHz -4 GHz -4 GHz -4 GHz -4 GHz -4 GHz -4 GHz -4	1.77 dBm 1.92 dBm 8.68 dBm 2.32 dBm 482 dBm 3.72 dBm 0.59 dBm		∆ Limit -1.770 dE -16.92 dE -25.68 dE -29.32 dE -24.52 dE -10.72 dE -27.59 dE	3 3 3 3 3 3 3 3 3 3 3 3 3	741.000000 MH <u>Auto</u> Ma Freq Offs
Spur 1 2 3 4 5	Range 1 2 3 4 5 6 7	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5700 GHz	3.5300 3.5400 3.5490 3.5500 3.5700 3.5710 3.5710	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	1.000 MHz 1.000 MHz 1.000 MHz 390.0 kHz 390.0 kHz 390.0 kHz 1.000 MHz	3.520733333 3.538233333 3.548025000 3.549263333 3.568933333 3.570678333	GHz -4 GHz -4 GHz -4 GHz -3 GHz -4 GHz -3 GHz -4 GHz -4 GHz -4 GHz -4 GHz -4 GHz -4 GHz -4	1.77 dBm 1.92 dBm 8.68 dBm 2.32 dBm 482 dBm 3.72 dBm 0.59 dBm		Δ Limit -1.770 dE -16.92 dE -25.68 dE -29.32 dE -24.52 dE -10.72 dE	3 3 3 3 3 3 3 3 3 3 3 3 3	741.000000 MH <u>Auto</u> Ma Freq Offs
Spur	Range 1 2 3 4 5 6 7	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5700 GHz 3.5710 GHz	3.5300 3.5400 3.5490 3.5500 3.5700 3.5710 3.5710	0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz 0 GHz	1.000 MHz 1.000 MHz 1.000 MHz 390.0 kHz 390.0 kHz 390.0 kHz 1.000 MHz	3.520733333 3.538233333 3.548025000 3.549263333 3.568933333 3.570678333 3.572155000	GHz -4 GHz -4 GHz -4 GHz -3 GHz -4 GHz -3 GHz -4 GHz -4 GHz -4 GHz -4 GHz -4 GHz -4 GHz -4	1.77 dBm 1.92 dBm 8.68 dBm 2.32 dBm 482 dBm 3.72 dBm 0.59 dBm		∆ Limit -1.770 dE -16.92 dE -25.68 dE -29.32 dE -24.52 dE -10.72 dE -27.59 dE	3 3 3 3 3 3 3 3 3 3 3 3 3	741.000000 MH <u>Auto</u> Ma Freq Offs


Plot 7-16. Channel Edge Plot (NR Band n48 - 20MHz QPSK - High Channel)

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			
Test Report S/N:	Test Dates:	EUT Type:	Dego 25 of 40		
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 25 of 40		
© 2022 ELEMENT	·		V11.0 9/14/2022		

<mark>(</mark> RL	R		AC CORREC		SENSE:INT SOURCE OF r Freq: 3.555000000 Free Run		08:06:21 AM Oct 18, 202 Radio Std: None	E Frequency
PAS	Gat	te: LO	IFGain:Low		n: 26 dB		Radio Device: BTS	
10 dB/	/div	Ref 30.00 c	IBm					
20.0								Center Free 3.555000000 GH
0.00				<u> </u>				
20.0 30.0					المراجع			
40.0 - 50.0 - 60.0 -	a dage for the state of the state							
50.0 -	3.51 GI	Hz		~~~^Y			Stop 3.6 GH	Z CF Ste 2.50000 MH
50.0 -			Stop Freq	RBW	Frequency	Amplitude	Stop 3.6 GH	Cr Sie
50.0 60.0 Start			Stop Freq 3.5300 GHz			Amplitude		2.500000 MH
50.0 50.0 Start	Range	Start Freq		1.000 MHz	Frequency	Amplitude 47.50 dBm	∆ Limit	2.500000 MH Auto Ma
50.0 50.0 Start	Range 1 2 3	Start Freq 3.5100 GHz	3.5300 GHz	1.000 MHz 1.000 MHz	Frequency 3 529633333 GHz	Amplitude -47.50 dBm -35.82 dBm	Δ Limit -7.497 dB	Auto Ma
50.0 50.0 50.1 50.0 50.0 50.0 50.0 50.0	Range 1 2 3 4	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz	1.000 MHz 1.000 MHz 1.000 MHz 200.0 kHz	Frequency 3.529633333 GHz 3.532200000 GHz 3.549925000 GHz 3.549736667 GHz	Amplitude -47.50 dBm -35.82 dBm -37.94 dBm -24.28 dBm	∆ Limit -7.497 dB -10.82 dB	Auto Ma
io.o	Range 1 2 3 4 5	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz	1.000 MHz 1.000 MHz 1.000 MHz 200.0 kHz	Frequency 3.529633333 GHz 3.532200000 GHz 3.548925000 GHz	Amplitude -47.50 dBm -35.82 dBm -37.94 dBm -24.28 dBm	Δ Limit -7.497 dB -10.82 dB -24.94 dB	Auto Ma
50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	Range 1 2 3 4 5 6	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5600 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5600 GHz 3.5610 GHz	1.000 MHz 1.000 MHz 1.000 MHz 1.000 MHz 200.0 KHz 200.0 KHz 200.0 KHz	Frequency 3.529633333 GHz 3.54925000 GHz 3.549736667 GHz 3.557300000 GHz 3.550101667 GHz	Amplitude -47.50 dBm -35.82 dBm -37.94 dBm -24.28 dBm -39.42 dBm	Δ Limit -7.497 dB -10.82 dB -24.94 dB -11.28 dB -23.10 dB -26.42 dB	Auto Ma
50.0 - 50.0 - 50.0 - 5tart Spur 2 3 4 5 5 5	Range 1 2 3 4 5 6 7	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5400 GHz 3.5500 GHz 3.5600 GHz 3.5610 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5600 GHz 3.5610 GHz 3.5700 GHz	1.000 MHz 1.000 MHz 1.000 MHz 200.0 KHz 200.0 KHz 200.0 KHz 1.000 MHz	Frequency 3.529633333 GHz 3.532200000 GHz 3.549736667 GHz 3.567300000 GHz 3.560101667 GHz 3.560101667 GHz 3.563760000 GHz	Amplitude -47.50 dBm -35.82 dBm -37.94 dBm -24.28 dBm -39.42 dBm -39.42 dBm -39.42 dBm	Δ Limit -7.497 dB -10.82 dB -24.94 dB -11.28 dB -23.10 dB -26.42 dB -21.84 dB	Auto Ma
50.0 50.0 Start	Range 1 2 3 4 5 6	Start Freq 3.5100 GHz 3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5600 GHz	3.5300 GHz 3.5400 GHz 3.5490 GHz 3.5500 GHz 3.5600 GHz 3.5610 GHz	1.000 MHz 1.000 MHz 1.000 MHz 200.0 KHz 200.0 KHz 200.0 KHz 1.000 MHz	Frequency 3.529633333 GHz 3.54925000 GHz 3.549736667 GHz 3.557300000 GHz 3.550101667 GHz	Amplitude -47.50 dBm -35.82 dBm -37.94 dBm -24.28 dBm -39.42 dBm -39.42 dBm -39.42 dBm	Δ Limit -7.497 dB -10.82 dB -24.94 dB -11.28 dB -23.10 dB -26.42 dB	2.500000 MH

Plot 7-17. Channel Edge Plot (NR Band n48 - 10MHz QPSK - Low Channel)

Plot 7-18. Channel Edge Plot (NR Band n48 - 10MHz QPSK - High Channel)

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			
Test Report S/N:	Test Dates:	t Dates: EUT Type:			
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 26 of 40		
© 2022 ELEMENT	•		V11.0 9/14/2022		

7.6 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in ANSI C63.26-2015 with the EUT transmitting into an external antenna. Measurements on signals operating below 1GHz are performed using hybrid (biconical/log) antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 - Section 5.5.4

Test Settings

- 1. RBW = 1MHz (pre-scans may use lower than 1MHz)
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = RMS
- Trace mode = Max Hold (In cases where the level is within 2dB of the limit, the final measurement is taken using triggering/gating and trace averaging.)
- 7. The trace was allowed to stabilize

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 40		
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 27 of 40		
© 2022 ELEMENT	· · ·		V11.0 9/14/2022		

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

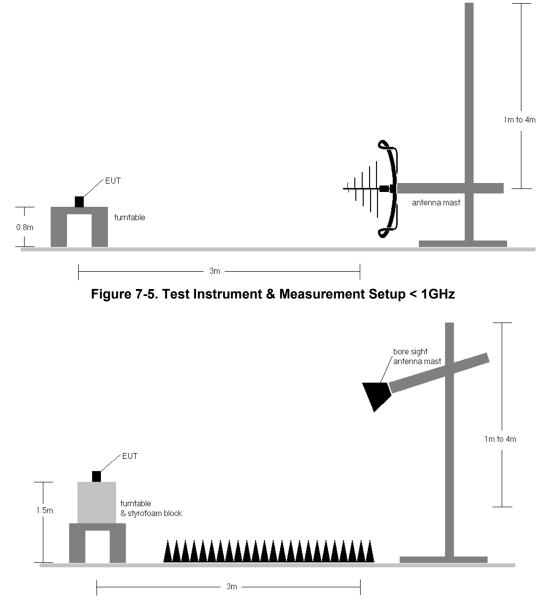


Figure 7-6. Test Instrument & Measurement Setup >1 GHz

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 40		
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 28 of 40		
© 2022 ELEMENT		·	V11.0 9/14/2022		

Test Notes


- 1) Field strengths are calculated using the Measurement quantity conversions in ANSI C63.26-2015 Section 5.2.7:
 - a) $E(dB\mu V/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m) b) EIRP (dBm) = E(dB\mu V/m) + 20logD 104.8; where D is the measurement distance in meters.$
- 2) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 3) The EUT was tested while connected to a DC power supply.
- 4) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 5) Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 6) The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 7) For NR operation, all subcarrier spacings (SCS) and transmission schemes (e.g. CP-OFDM and DFT-s-OFDM) were investigated to determine the worst case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

FCC ID: RI7FN980		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dega 20 of 40		
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 29 of 40		
© 2022 ELEMENT			V11.0 9/14/2022		

NR Band n48

<u><1GHz</u>

Plot 7-19. Radiated Spurious Plot Below 1GHz (NR Band n48)

Bandwidth (MHz):	40
Frequency (MHz):	3570.0
Modulation Signal:	QPSK
RB Config (Size / Offset):	1 / 53

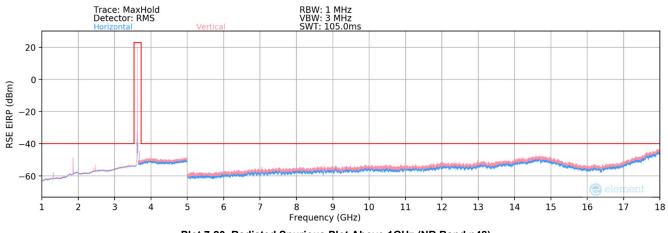
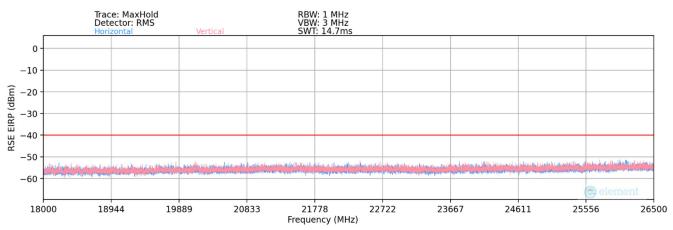
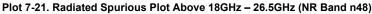
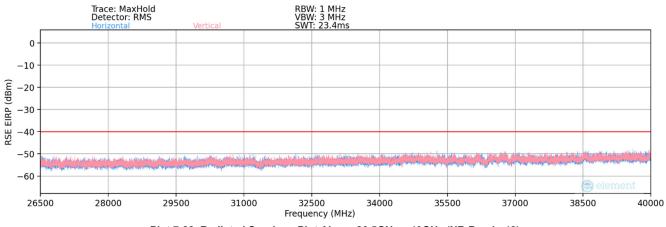
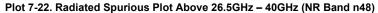

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	ERP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
31.00	V	-	-	-102.59	26.68	31.09	-66.32	-40.00	-26.32
58.00	V	-	-	-102.20	14.21	19.01	-78.40	-40.00	-38.40
99.00	V	-	-	-103.47	16.96	20.49	-76.92	-40.00	-36.92

Table 7-7. Radiated Spurious Data Below 1GHz (NR Band n48 - Mid Channel)


FCC ID: RI7FN980		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dama 20 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 30 of 40
© 2022 ELEMENT	•	·	V11.0 9/14/2022




<u>>1GHz</u>



FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			
Test Report S/N:	Test Dates:	EUT Type:	Daga 21 of 40		
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 31 of 40		
© 2022 ELEMENT	·	·	V11.0 9/14/2022		

Bandwidth (MHz):	40
Frequency (MHz):	3570.0
Modulation Signal:	QPSK
RB Config (Size / Offset):	1 / 53

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
7140.00	V	236	261	-73.52	4.18	37.66	-57.60	-40.00	-17.60
10710.00	V	-	-	-76.03	8.33	39.30	-55.96	-40.00	-15.96
14280.00	V	-	-	-76.21	12.66	43.45	-51.81	-40.00	-11.81
17850.00	V	-	-	-76.24	16.74	47.50	-47.75	-40.00	-7.75
21420.00	V	-	-	-55.27	3.84	55.57	-49.23	-40.00	-9.23

Table 7-8. Radiated Spurious Data (NR Band n48 – Low Channel)

40
3625.0
QPSK
1 / 53

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
7250.00	V	231	256	-73.22	3.95	37.73	-57.52	-40.00	-17.52
10875.00	V	-	-	-75.99	8.62	39.63	-55.63	-40.00	-15.63
14500.00	V	-	-	-75.90	13.66	44.76	-50.50	-40.00	-10.50
18125.00	V	-	-	-56.29	1.42	52.13	-52.67	-40.00	-12.67
21750.00	V	-	-	-57.61	3.83	53.22	-51.58	-40.00	-11.58

Table 7-9. Radiated Spurious Data (NR Band n48 - Mid Channel)

Bandwidth (MHz):	40
Frequency (MHz):	3680.0
Modulation Signal:	QPSK
RB Config (Size / Offset):	1 / 53

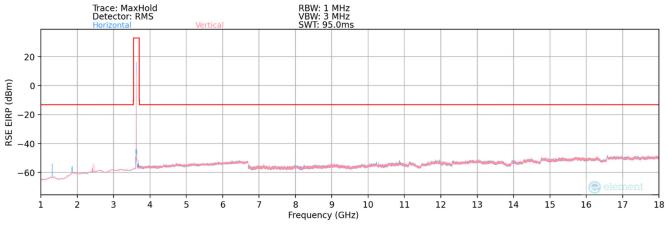

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
7360.00	V	123	175	-73.21	4.31	38.10	-57.15	-40.00	-17.15
11040.00	V	-	-	-76.31	8.90	39.59	-55.67	-40.00	-15.67
14720.00	V	-	-	-76.60	14.13	44.53	-50.73	-40.00	-10.73
18400.00	V	-	-	-57.53	1.43	50.90	-53.90	-40.00	-13.90
22080.00	V	-	-	-57.98	3.75	52.77	-52.03	-40.00	-12.03

 Table 7-10. Radiated Spurious Data (NR Band n48 – High Channel)

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 40		
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 32 of 40		
© 2022 ELEMENT	<u>.</u>		V11.0 9/14/2022		

EN-DC: NR Band n48 + LTE Band 5

NR Bandwidth (MHz):	40
NR Frequency (MHz):	3625.0
NR RB / Offset:	1 / 53
LTE Bandwidth (MHz):	20
LTE Frequency (MHz):	1880.0
LTE RB / Offset:	1 / 50
Modulation Signal:	QPSK

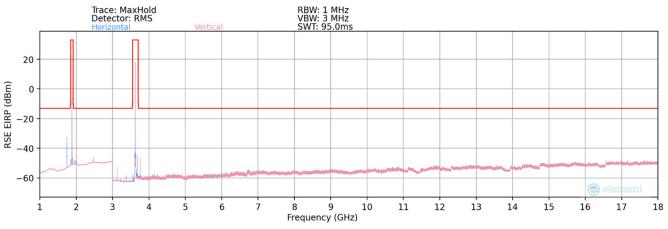

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1610.00	Н	-	-	-71.19	5.51	41.32	-53.94	-13.00	-40.94
3355.00	Н	-	-	-73.84	2.53	35.69	-59.57	-13.00	-46.57
5100.00	Н	-	-	-76.06	4.75	35.69	-59.56	-13.00	-46.56
5370.00	Н	-	-	-78.51	4.89	33.38	-61.88	-13.00	-48.88
7115.00	Н	-	-	-76.37	8.04	38.67	-66.13	-13.00	-53.13
10605.00	Н	-	-	-78.84	12.41	40.57	-64.23	-13.00	-51.23

Table 7-11. Radiated Spurious Emissions Data (EN-DC: n48 + B5)

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 40	
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 33 of 40	
© 2022 ELEMENT	•	•	V11.0 9/14/2022	

EN-DC: NR Band n48 + LTE Band 2

Plot 7-24. Radiated Spurious Emissions Plot (EN-DC: n48 + B2)

NR Bandwidth (MHz):	40
NR Frequency (MHz):	3625.0
NR RB / Offset:	1 / 53
LTE Bandwidth (MHz):	10
LTE Frequency (MHz):	836.5
LTE RB / Offset:	1/25
Modulation Signal:	QPSK

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
1952.00	Н	-	-	-72.92	-0.43	33.65	-61.61	-13.00	-48.61
4740.00	Н	-	-	-77.13	4.23	34.10	-61.16	-13.00	-48.16
6413.00	Н	-	-	-77.80	22.57	51.77	-43.49	-13.00	-30.49
7529.00	Н	-	-	-77.09	8.22	38.13	-66.67	-13.00	-53.67
9202.00	Н	-	-	-77.19	8.70	38.51	-66.29	-13.00	-53.29
10317.00	Н	-	-	-77.56	11.17	40.61	-64.19	-13.00	-51.19

Table 7-12. Radiated Spurious Emissions Data (EN-DC: n48 + B2)

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 40	
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 34 of 40	
© 2022 ELEMENT	•	·	V11.0 9/14/2022	

7.7 Frequency Stability / Temperature Variation

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

- **a.) Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- **b.) Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 96, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure Used

ANSI C63.26-2015 – Section 5.6

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

In Table 7-13, some Frequency values are shown as "-". These are situations where the module was not able to transmit at that given temperature so no data was recorded.

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 40	
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 35 of 40	
© 2022 ELEMENT	•		V11.0 9/14/2022	

Frequency Stability / Temperature Variation

NR Band	n48				
	Operating Fre	quency (Hz):	3,625,00	00,000	
	Ref. Vo	oltage (VDC):	3.3	0	
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)
		- 30	-	-	-
		- 20	-	-	-
		- 10	-	-	-
		0	3,625,255,048	4,252	0.0001173
100 %	3.30	+ 10	3,625,252,394	1,598	0.0000441
		+ 20 (Ref)	3,625,250,796	0	0.0000000
		+ 30	3,625,256,483	5,687	0.0001569
		+ 40	-	-	-
		+ 50	-	-	-
85 %	2.81	+ 20	3,625,252,481	1,685	0.0000465
115 %	3.80	+ 20	3,625,253,187	2,391	0.0000660

Table 7-13. NR Band n48 Frequency Stability Data

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 36 of 40
© 2022 ELEMENT		•	V11.0 9/14/2022

7.8 End User Device Additional Requirement (CBSD Protocol)

Test Overview and Limit

End user device additional requirements (CBSD Protocol) are tested per the test procedures listed below. During testing, the EUT is connected to a certified NR CBSD (Airspan FCC ID: PIDAV2700) as a companion device to show compliance with Part 96.47.

End User Devices may operate only if they can positively receive and decode an authorization signal transmitted by a CBSD, including the frequencies and power limits for their operation.

An End User Device must discontinue operations, change frequencies, or change its operational power level within 10 seconds of receiving instructions from its associated CBSD.

Test Procedure Used

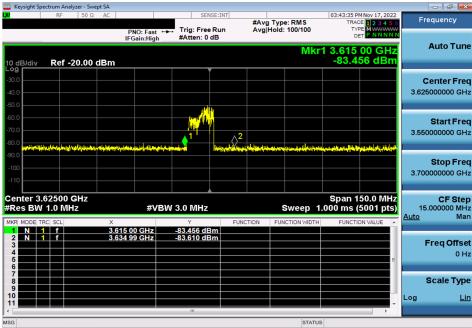
KDB 940660 D01 v03, WINNF-18-IN-00178 v1.0.0.00, WINNF-TS-0122 v1.0.2

Test Setup/Method

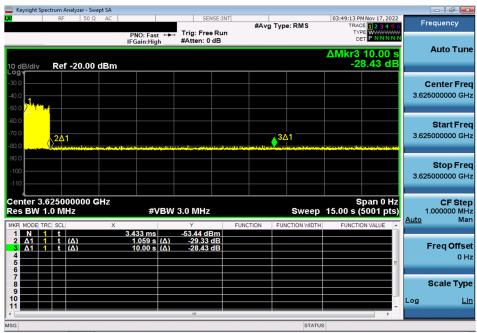
The EUT was connected via an RF cable to a certified CBSD and spectrum analyzer. The following procedure is performed by applying WINNF-TS-0122 CBRS CBSD Test Specification.

- 1. Run#1:
 - a. Setup WINNF.PT.C.HBT.1 with 3615MHz 3635MHz.
 - b. Enable AP/CBSD service.
 - c. Check EUT Tx frequency.
 - d. Disable AP/CBSD service and check EUT stop transmission within 10s.
- 2. Run#2:
 - a. Setup WINNF.PT.C.HBT.1 with 3660MHz 3680MHz.
 - b. Enable AP/CBSD service.
 - c. Check EUT Tx frequency.
 - d. Disable AP/CBSD service and check EUT stop transmission within 10s.

Test Notes


The EUT is an End User Device.

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	
Test Report S/N:	Test Dates:	EUT Type:	Dage 27 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 37 of 40
© 2022 ELEMENT	<u>.</u>		V11.0 9/14/2022


Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

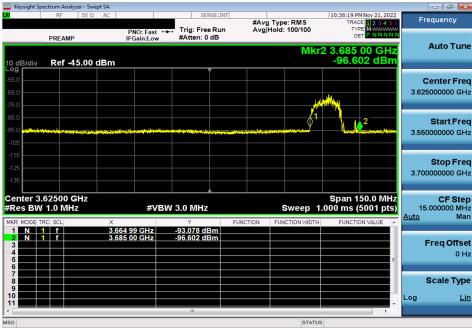
NR Band n48 Run#1:

Plot 7-25. Run#1 End User Device Frequency of Operations

Plot 7-26. Run#1 End User Device Discontinues Operations within 10s

Note:

Marker 1: CBSD sends instructions to discontinue NR operations.


Marker 2: EUT discontinues operation.

Marker 3: 10 seconds elapsed time from CBSD sending instructions to EUT.


FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		
Test Report S/N:	Test Dates:	EUT Type:	Dama 20 of 40	
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 38 of 40	
© 2022 ELEMENT	*		V11.0 9/14/2022	

NR Band n48 Run#2:

Plot 7-27. Run#2 End User Device Frequency of Operations

Plot 7-28. Run#2 End User Device Discontinues Operations within 10s

Note:

Marker 1: CBSD sends instructions to discontinue NR operations.

Marker 2: EUT discontinues operation.

Marker 3: 10 seconds elapsed time from CBSD sending instructions to EUT.

FCC ID: RI7FN980		PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		
Test Report S/N:	Test Dates:	EUT Type:	Dama 20 of 40	
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 39 of 40	
© 2022 ELEMENT			V11.0 9/14/2022	

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Telit Module FCC ID: RI7FN980** complies with all of the End User Device requirements of Part 96 of the FCC Rules for NR operation.

FCC ID: RI7FN980	PART 96 MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dawa 40 of 40
1M2209070102-01.RI7	09/23/2022 - 11/21/2022	Module	Page 40 of 40
© 2022 ELEMENT			V11.0 9/14/2022