

Page 1 of 31

# ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CERTIFICATION

| Standards             |                             | Results               |
|-----------------------|-----------------------------|-----------------------|
| Regulations           | : See below                 |                       |
| Date                  | : Dec. 19, 2012             |                       |
| Report Number         | : EESZE12110004             |                       |
| Ratings               | : AC 120V/60Hz              |                       |
| FCC ID                | : RHRX-M                    |                       |
| Serial Number         | : N/A                       |                       |
| Model/Type reference  | : NeX Guard 1-M, NeX Gua    | rd 2-M, NeX Guard 3-M |
| Product<br>Trade mark | : NeX Guard<br>: Integrated |                       |
| Product               | · NoX Guard                 |                       |

StandardsResultsImage: Arrow of the second standardsImage: Arrow of the second standardsImage:

Prepared for

Integrated Security Technology (Zhongshan) Co., Ltd 5/F, Torch Building, Torch Hi-tech Industrial Development Zone, ZhongShan, Guangdong, China

> Prepared by Centre Testing International (Shenzhen) Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested by: Reviewed by: Date: Approved by: Lab manager Check No.: 47220977

Hotline



Page 2 of 31

# **TABLE OF CONTENTS**

| 1. GENERAL INFORMATION                      |  |
|---------------------------------------------|--|
| 2. TEST SUMMARY                             |  |
| 3. MEASUREMENT UNCERTAINTY4                 |  |
| 4. PRODUCT INFORMATION4                     |  |
| 5. SYSTEM TEST CONFIGURATION                |  |
| 6. TEST EQUIPMENT LIST                      |  |
| 7. SUPPORT EQUIPMENT LIST                   |  |
| 8. AC CONDUCTED EMISSIONS6                  |  |
| 8.1 LIMITS6                                 |  |
| 8.2 BLOCK DIAGRAM OF TEST SETUP6            |  |
| 8.3 TEST PROCEDURE                          |  |
| 8.4TEST RESULT                              |  |
| 9. TRANSMITTER FUNDAMENTAL FIELD STRENGTH9  |  |
| 9.1 LIMITS                                  |  |
| 9.2 BLOCK DIAGRAM OF TEST SETUP             |  |
| 9.3 TEST PROCEDURE                          |  |
| 9.4TEST RESULT9                             |  |
| 10. TRANSMITTER RADIATED SPURIOUS EMISSIONS |  |
| 10.1LIMITS                                  |  |
| 10.2 BLOCK DIAGRAM OF TEST SETUP11          |  |
| 10.3TEST PROCEDURE12                        |  |
| 10.4TEST RESULT13                           |  |
| 11 TRANSMITTER BAND EDGE RADIATED EMISSIONS |  |
| 11.1 LIMITS                                 |  |
| 11.2 BLOCK DIAGRAM OF TEST SETUP17          |  |
| 11.3 TEST PROCEDURE17                       |  |
| 11.4 TEST RESULT17                          |  |
| 12. TRANSMITTER 20 DB BANDWIDTH19           |  |
| 12.1 LIMITS                                 |  |
| 12.2 BLOCK DIAGRAM OF TEST SETUP19          |  |
| 12.3 TEST PROCEDURE19                       |  |
| 12.4 TEST RESULT19                          |  |
| 13. TRANSMITTER FREQUENCY STABILITY         |  |
| 13.1 LIMITS                                 |  |
| 13.2 BLOCK DIAGRAM OF TEST SETUP20          |  |
| 13.3 TEST PROCEDURE                         |  |
| 13.4 TEST RESULT20                          |  |
| APPENDIX 1 PHOTOGRAPHS OF TEST SETUP21      |  |
| APPENDIX 2 PHOTOGRAPHS OF EUT23             |  |
| (Note: N/A means not applicable)            |  |







Page 3 of 31

# 1. GENERAL INFORMATION

| Applicant:            | Integrated Security Technology (Zhongshan) Co., Ltd<br>5/F, Torch Building, Torch Hi-tech Industrial Development Zone,<br>ZhongShan, Guangdong, China |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer:         | Integrated Security Technology (Zhongshan) Co., Ltd<br>5/F, Torch Building, Torch Hi-tech Industrial Development Zone,<br>ZhongShan, Guangdong, China |
| Product:              | NeX Guard                                                                                                                                             |
| Trade mark:           | Integrated                                                                                                                                            |
| Model/Type reference: | NeX Guard 1-M, NeX Guard 2-M, NeX Guard 3-M                                                                                                           |
| FCC ID:               | RHRX-M                                                                                                                                                |
| Sample Received Date: | Dec. 12, 2012                                                                                                                                         |
| Report Number:        | EESZE12110004                                                                                                                                         |
| Date of Test:         | Dec. 12, 2012 to Dec. 19, 2012                                                                                                                        |
| <b>T</b> I            |                                                                                                                                                       |

The above equipment was tested by Centre Testing International for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, Subpart C and the measurement procedure according to ANSI C63.4:2003.

### 2. TEST SUMMARY

The complete list of measurements is given below:

| No. | Test Item                                                            | Rule                         | Result |
|-----|----------------------------------------------------------------------|------------------------------|--------|
| 1   | AC Conducted Emissions                                               | Part 15.207                  | PASS   |
| 2   | Transmitter Fundamental Field Strength                               | Part 15.225(a)(b)(c)(d)      | PASS   |
| 3   | Transmitter Radiated Spurious Emissions                              | Part 15.209(a), 15.225(d)    | PASS   |
| 4   | Transmitter Band Edge Radiated Emissions                             | Part 15.209(a), 15.225(c)(d) | PASS   |
| 5   | Transmitter 20 dB Bandwidth                                          | Part 2.1049                  | PASS   |
| 6   | Transmitter Frequency Stability<br>(Temperature & Voltage Variation) | Part 15.225(e)               | PASS   |
| 7   | Antenna Requirements *                                               | Part 15.203                  | PASS   |

\*: According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The EUT has a built in antenna which is a short wire solder on the PCB, this is permanently attached antenna and meets the requirements of this section.







# **3. MEASUREMENT UNCERTAINTY**

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| Measuremen                                | Measurement items |  |         |  |  |  |  |  |
|-------------------------------------------|-------------------|--|---------|--|--|--|--|--|
| Radiated Emissions / Out of Band Emission | 4.5 dB            |  |         |  |  |  |  |  |
| AC Voltage                                |                   |  | ±0.06 % |  |  |  |  |  |
| Temperature                               | ±1%               |  |         |  |  |  |  |  |

# 4. PRODUCT INFORMATION

| Items              |   | Description                       |
|--------------------|---|-----------------------------------|
| Rating             | ~ | AC 120V/60Hz input, DC 12V output |
| Product type       |   | Intentional Transmitter           |
| Modulation         |   | ASK                               |
| Operated Frequency | , | 13.56MHz                          |

There are three models, NeX Guard 1-M, NeX Guard 2-M and NeX Guard 3-M.All the models are same product, and NeX Guard 2-M and NeX Guard 3-M just delete some functions. The test model is NeX Guard 1-M.

### **5. SYSTEM TEST CONFIGURATION**

For emission testing, the equipment under test (Product) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables were manipulated to produce worst case emissions. It was powered by AC 120V/60Hz. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 200Hz from 9kHz to 150kHz, 9kHz from 150kHz to 30MHz and 100kHz or greater for frequencies between 30MHz to 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

The unit was operated standalone and placed in the center of the turntable.

Hotline







Page 5 of 31

The equipment under test (Product) was configured for testing in a typical fashion (as the customers would normally use it). The Product was placed on a turn table, and the Antenna of Product was fully extended, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

For simplicity of testing, the unit was wired to transmit continuously.

## 6. TEST EQUIPMENT LIST

| Equipment                           | Manufacturer | Model Number | Serial Number | Due Date   |
|-------------------------------------|--------------|--------------|---------------|------------|
| Receiver                            | R&S          | ESCI         | 100009        | 07/19/2013 |
| LISN                                | R&S          | ENV216       | 100098        | 07/19/2013 |
| 3M Chamber &<br>Accessory Equipment | ETS-LINDGREN | FACT-3       | 3510          | 07/09/2013 |
| Receiver                            | R&S          | ESCI         | 100435        | 07/19/2013 |
| Spectrum Analyzer                   | Agilent      | E4440A       | MY46185649    | 03/07/2013 |
| TRILOG Broadband<br>Antenna         | schwarzbeck  | VULB 9163    | 401           | 07/06/2013 |
| Multi device Controller             | ETS-LINGREN  | 2090         | 00057230      | N/A        |
| Loop Antenna                        | ETS-LINDGERN | 6502         | 71730         | 07/06/2013 |
| Temperature & ESPEC                 |              | EL-04KA      | N/A           | 01/19/2013 |

# 7. SUPPORT EQUIPMENT LIST

No special auxiliary equipment used.



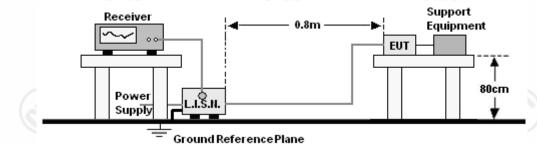




Page 6 of 31

Report No. : EESZE12110004

## 8. AC CONDUCTED EMISSIONS

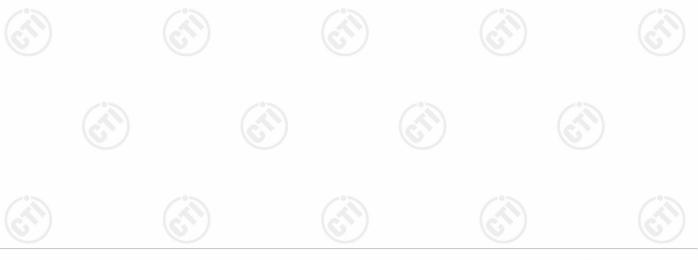

#### 8.1 LIMITS

| Limits dB(µV) |                              |  |  |  |
|---------------|------------------------------|--|--|--|
| Quasi-peak    | Average                      |  |  |  |
| 66 to 56      | 56 to 46                     |  |  |  |
| 56            | 46                           |  |  |  |
| 60            | 50                           |  |  |  |
|               | Quasi-peak<br>66 to 56<br>56 |  |  |  |

#### NOTE:

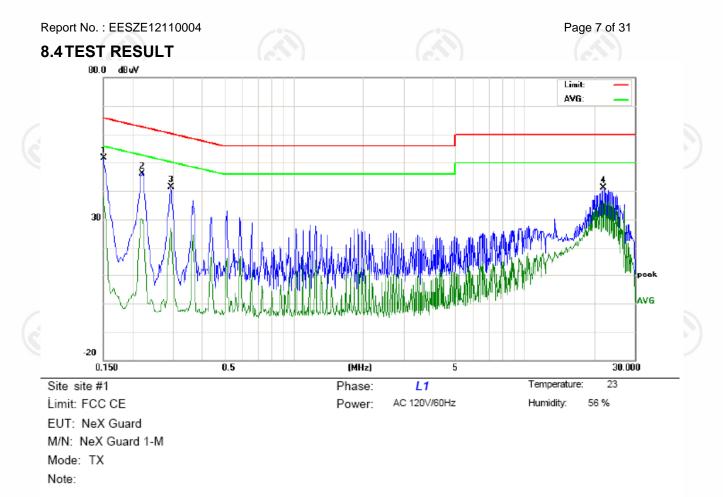
- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 to 0.50 MHz.

### 8.2 BLOCK DIAGRAM OF TEST SETUP

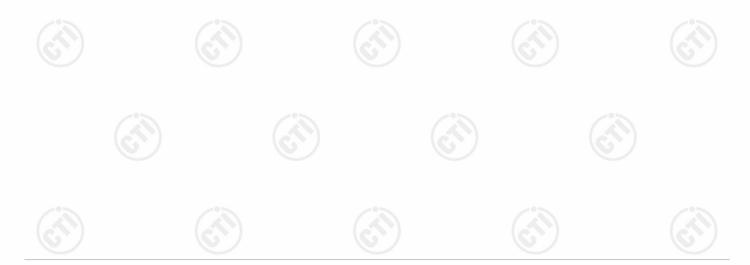



#### **8.3 TEST PROCEDURE**

a. The Product was placed on a nonconductive table above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).


b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

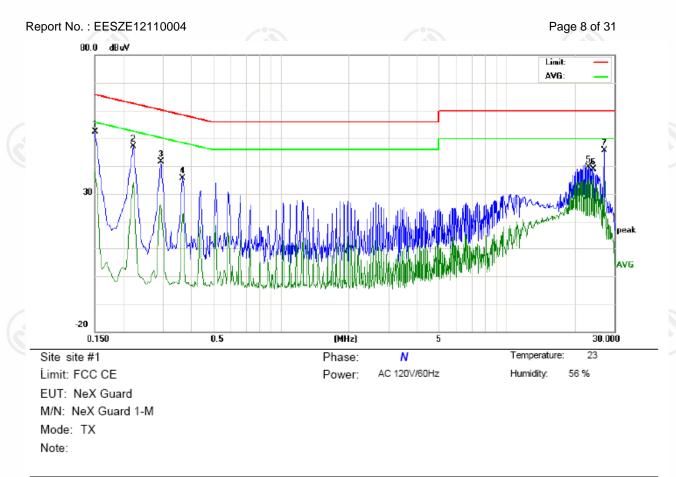
c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.




Hotline 400-6788-333






Reading\_Level Measurement Margin Correct Limit No. Freq. (dBuV) Factor (dBuV) (dBuV) (dB) MHz Peak QP AVG dB QP AVG QP AVG QP AVG P/F Comment peak 37.94 Ρ 0.1500 41.61 36.23 28.04 9.90 51.51 46.13 65.99 55.99 -19.86 -18.05 1 2 0.2180 35.37 29.60 20.14 9.90 45.27 39.50 30.04 62.89 52.89 -23.39 -22.85 Ρ 17.22 9.90 41.37 38.02 27.12 Ρ 3 0.2940 31.47 28.12 60.41 50.41 -22.39 -23.29 21.9180 30.39 28.20 25.84 10.72 38.92 36.56 60.00 50.00 -21.08 4 41.11 -13.44 Ρ



Hotline







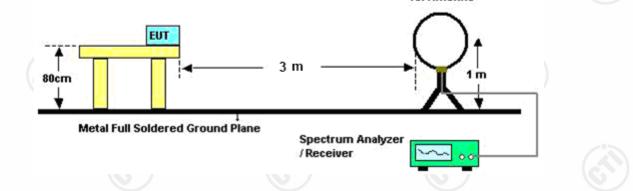
| No. | Freq.   |       | ding_Le<br>dBuV) | vel   | Correct<br>Factor | M     | leasuren<br>(dBuV) |       | Lin<br>(dB |       |        | rgin<br>dB) |     |         |
|-----|---------|-------|------------------|-------|-------------------|-------|--------------------|-------|------------|-------|--------|-------------|-----|---------|
|     | MHz     | Peak  | QP               | AVG   | dB                | peak  | QP                 | AVG   | QP         | AVG   | QP     | AVG         | P/F | Comment |
| 1   | 0.1500  | 42.39 | 35.20            | 28.02 | 9.90              | 52.29 | 45.10              | 37.92 | 65.99      | 55.99 | -20.89 | -18.07      | Ρ   |         |
| 2   | 0.2220  | 37.11 | 30.25            | 24.32 | 9.90              | 47.01 | 40.15              | 34.22 | 62.74      | 52.74 | -22.59 | -18.52      | Ρ   |         |
| 3   | 0.2940  | 31.81 | 25.20            | 16.24 | 9.90              | 41.71 | 35.10              | 26.14 | 60.41      | 50.41 | -25.31 | -24.27      | Ρ   |         |
| 4   | 0.3700  | 24.31 | 20.12            | 13.05 | 9.90              | 34.21 | 30.02              | 22.95 | 58.50      | 48.50 | -28.48 | -25.55      | Ρ   |         |
| 5   | 23.0580 | 28.85 | 22.01            | 25.01 | 10.73             | 39.58 | 32.74              | 35.74 | 60.00      | 50.00 | -27.26 | -14.26      | Ρ   |         |
| 6   | 24.1820 | 28.14 | 21.02            | 24.41 | 10.74             | 38.88 | 31.76              | 35.15 | 60.00      | 50.00 | -28.24 | -14.85      | Ρ   |         |
| 7   | 27.1260 | 34.79 | 29.30            | 23.88 | 10.77             | 45.56 | 40.07              | 34.65 | 60.00      | 50.00 | -19.93 | -15.35      | Ρ   |         |





Hotline 400-6788-333






# 9. TRANSMITTER FUNDAMENTAL FIELD STRENGTH

#### 9.1 LIMITS

The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters

## 9.2 BLOCK DIAGRAM OF TEST SETUP



### 9.3 TEST PROCEDURE

a. The Product is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the Product and rotated about its vertical axis for maximum response at each azimuth about the Product. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the Product.

b. For each suspected emission, the Product was arranged to its worst case and then turn table was turned from 0 degrees to 360 degrees to find the maximum reading.

c. The test frequency analyzer system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

### 9.4 TEST RESULT

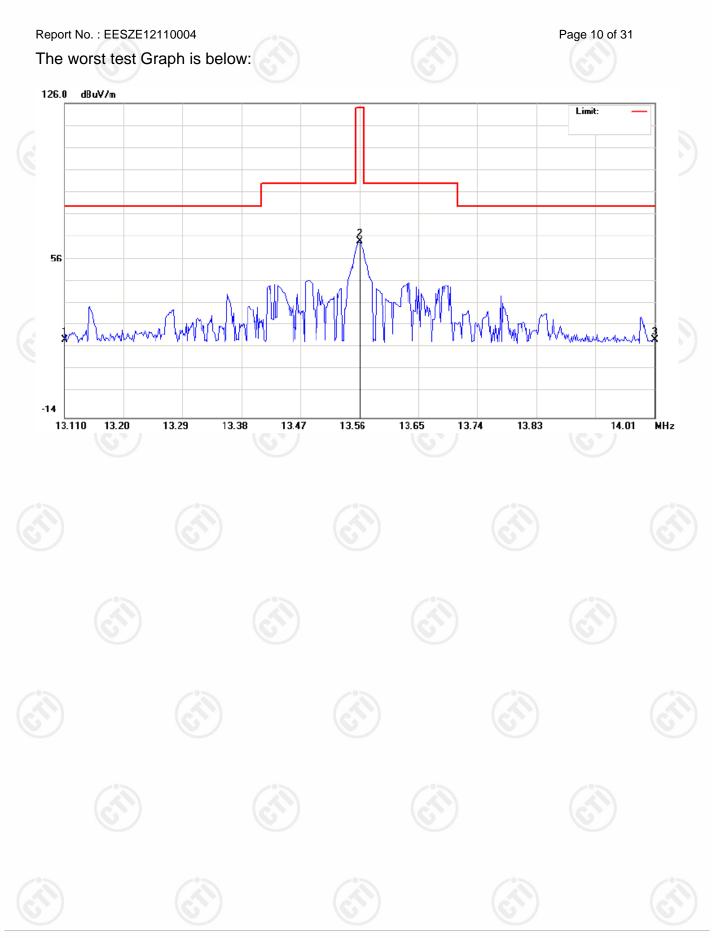
The worst data are below:

| Frequency<br>(MHz) | Antenna<br>Polarity | PK Level<br>(dBµV/m) | QP Level<br>(dBµV/m) | Test limit_QP<br>(dBµV/m) | Test distance<br>(m) | Result |
|--------------------|---------------------|----------------------|----------------------|---------------------------|----------------------|--------|
| 13.56              | 90° to EUT          | 66.20                | 64.40                | 124                       | 3                    | Pass   |

1. Measurements were performed at 3 metres and results extrapolated to 30 metres.

2. The limit is specified at a test distance of 30 metres. However, as specified by FCC Section 15.31 (f)(2), measurements may be performed at a closer distance and the measured level corrected to the specified measurement distance by making the measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.






400-6788-333

Page 9 of 31

**RX Antenna** 







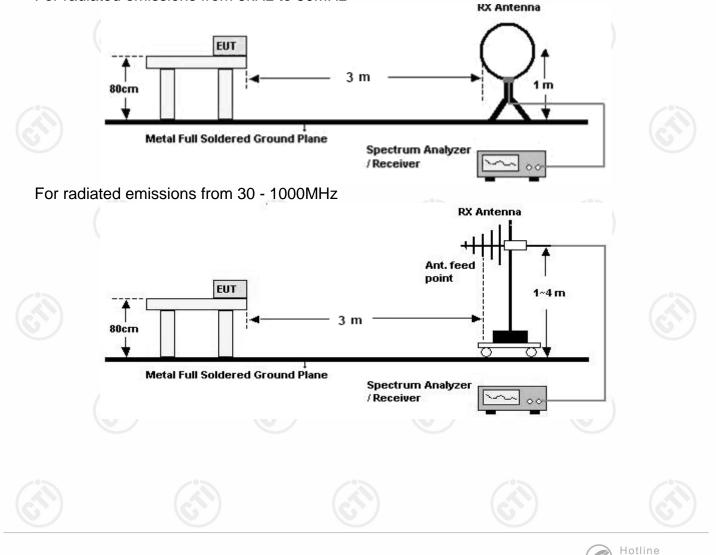






Page 11 of 31

Report No. : EESZE12110004


### 10. TRANSMITTER RADIATED SPURIOUS EMISSIONS 10.1LIMITS

The field strength of any emissions, which appear outside of operating frequency band specified in 15.225, shall not exceed the general radiated emission limits as below.

| Frequency (MHz) | Field strength (μV/m) | Distance (m) |
|-----------------|-----------------------|--------------|
| 0.009-0.490     | 2400/F(kHz)           | 300          |
| 0.490-1.705     | 24000/F(kHz)          | 30           |
| 1.705-30.0      | 30                    | 30           |
| 30-88           | 100                   | 3            |
| 88-216          | 150                   | 3            |
| 216-960         | 200                   | 3            |
| Above 960       | 500                   | 3            |

10.2 BLOCK DIAGRAM OF TEST SETUP

For radiated emissions from 9kHz to 30MHz







**10.3TEST PROCEDURE** A. Above 30MHz

a. The Product was placed on the top of a turntable 0.8 meters above the ground in the chamber, 3 meters away from the antenna, which was mounted on the top of a variable-height antenna tower. The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.

Page 12 of 31

b. For each suspected emission, the Product was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.

c. The test frequency analyzer system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

#### B. Below 30MHz

a. The Product is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the Product and rotated about its vertical axis for maximum response at each azimuth about the Product. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the Product.

b. For each suspected emission, the Product was arranged to its worst case and then turn table was turned from 0 degrees to 360 degrees to find the maximum reading.

c. The test frequency analyzer system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Hotline







Page 13 of 31

Report No. : EESZE12110004

### **10.4TEST RESULT**

The worst test data are below:

Below 30MHz:

| Frequency<br>(MHZ) | Polarization<br>(H/V) | Emission _PK<br>(dBµV/m) @3M | Emission _QP<br>(dBµV/m) @3M | Limit_QP<br>(dBµV/m) @3M | Results<br>(P/F) |
|--------------------|-----------------------|------------------------------|------------------------------|--------------------------|------------------|
| 0.15               | н                     | 53.76                        | 50.23                        | 104                      | Pass             |
| 13.56*             | н                     | 66.20                        | 64.40                        | 124                      | Pass             |
|                    |                       |                              |                              | 6                        |                  |
| 0.15               | V                     | 52.12                        | 49.36                        | 104                      | Pass             |
| 13.56*             | V                     | 61.23                        | 60.01                        | 124                      | Pass             |
| <u> </u>           | (C)                   |                              | S                            | S                        | Q                |

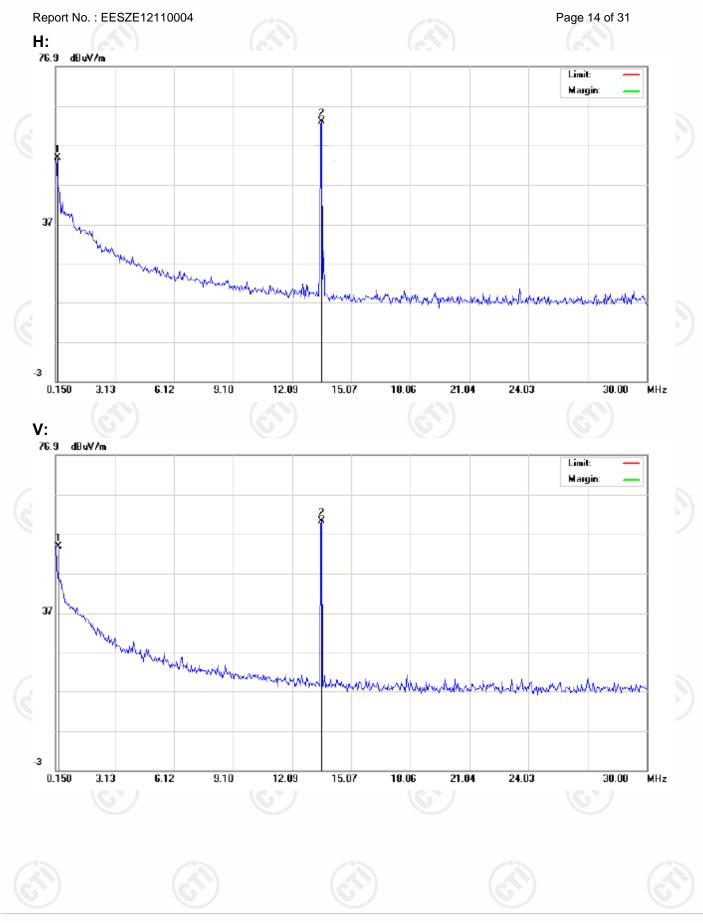
Note:

1. The emissions below 150kHz are not reported for they are much lower than the limits.

2. \*: Operated frequency

3. Measurements were performed at 3 metres and results extrapolated to 30 metres and 300 metres.

4. The limit is specified at a test distance of 30 metres and 300 metres. However, as specified by FCC Section 15.31 (f)(2), measurements may be performed at a closer distance and the measured level corrected to the specified measurement distance by making the measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor.

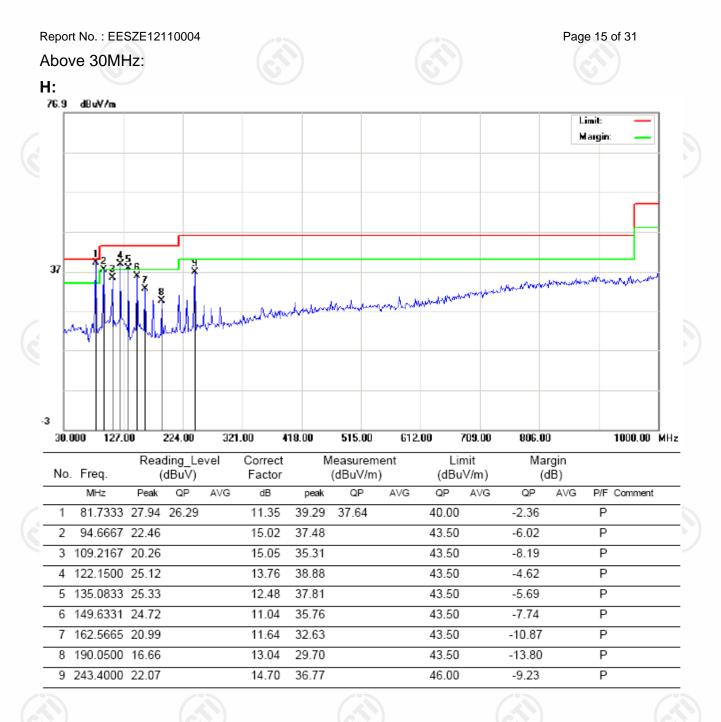



Hotline







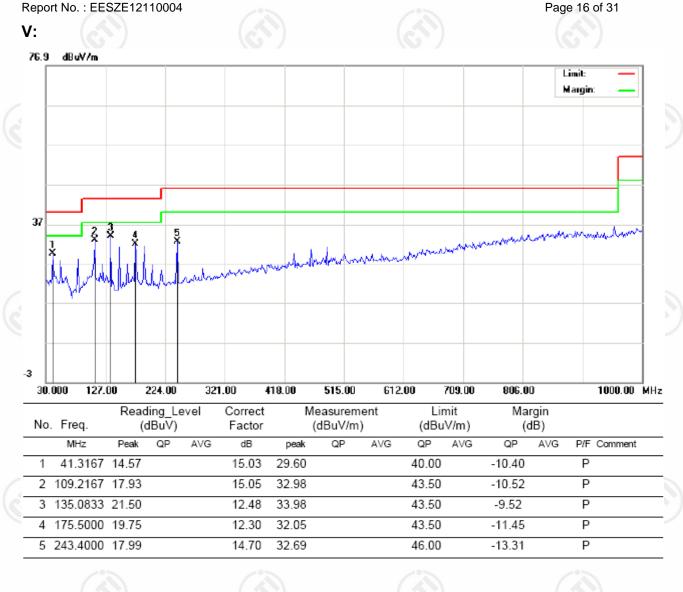























www.cti-cert.com

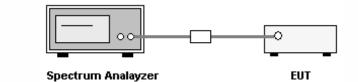
E-mail:info@cti-cert.com







Page 17 of 31


Report No. : EESZE12110004

## 11 TRANSMITTER BAND EDGE RADIATED EMISSIONS 11.1 LIMITS

Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.

The field strength of any emissions appearing outside of the 13.110–14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

#### **11.2 BLOCK DIAGRAM OF TEST SETUP**



#### **11.3 TEST PROCEDURE**

1. The transmitter output was connected to the spectrum analyzer.

2. Set spectrum analyzer's RBW and VBW to applicable value with Peak in Max Hold.

3. Record the emission drops at the band-edge relative to the highest fundamental emission level.

4. Use the marker-delta method to determine band-edge compliance as required.

#### 11.4 TEST RESULT

| 0 | Channel Frequency<br>(MHz) | Fundamental Emission<br>(dBµV/m) | Delta<br>(dB) | Final Emission<br>(dBµV/m) | Limit_QP<br>@ 3m | Result |
|---|----------------------------|----------------------------------|---------------|----------------------------|------------------|--------|
|   | (141112)                   | PK                               |               | PK                         |                  |        |
|   | 13.56                      | 66.20                            |               |                            |                  |        |
|   | 13.11                      |                                  | 41.14         | 25.06                      | 80.5             | Pass   |
|   | 14.01                      |                                  | 42.96         | 23.24                      | 80.5             | Pass   |

1. Measurements were performed at 3 metres and results extrapolated to 30 metres.

2. A transducer factor on the measuring instrument was used to extrapolate the results at 3 metres to a distance of 30 metres where required.







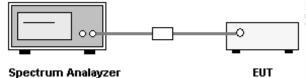




www.cti-cert.com

E-mail:info@cti-cert.com








Page 19 of 31

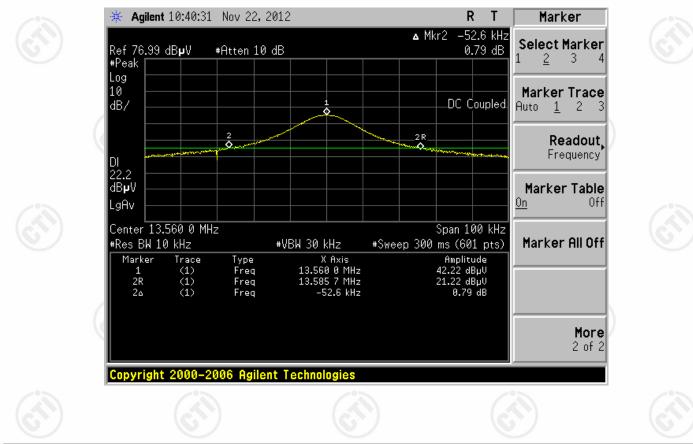
Report No. : EESZE12110004 **12. TRANSMITTER 20 DB BANDWIDTH 12.1 LIMITS** None

### **12.2 BLOCK DIAGRAM OF TEST SETUP**



# 12.3 TEST PROCEDURE

1. The transmitter output (antenna port) was connected to the spectrum analyzer.


2. Set spectrum analyzer's RBW and VBW to applicable value with Peak in Max Hold.

3. A PEAK output reading was taken, a DISPLAY line was drawn 20 dB lower than PEAK level.

4. The 20dB bandwidth was determined from where the channel output spectrum intersected the display line.

### 12.4 TEST RESULT











#### 13. TRANSMITTER FREQUENCY STABILITY 13.1 LIMITS

The frequency tolerance of the carrier signal shall be maintained within  $\pm 0.01\%$  of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

#### **13.2 BLOCK DIAGRAM OF TEST SETUP**



EUT

#### Spectrum Analayzer 13.3 TEST PROCEDURE

1. The transmitter output (antenna port) was connected to the spectrum analyzer.

2. Set spectrum analyzer's RBW and VBW to applicable value with Peak in Max Hold.

### **13.4 TEST RESULT**

| Environmental Conditions: |    |  |
|---------------------------|----|--|
| Temperature (°C):         | 20 |  |
| Relative Humidity (%):    | 57 |  |

Maximum frequency error of the EUT with variations in ambient temperature:

| Temperature<br>(°C) | Nominal<br>Frequency<br>(MHz) | Measured<br>Frequency<br>(MHz) | Frequency<br>Error (Hz) | Frequency<br>Error (%) | Limit (%) | Result |
|---------------------|-------------------------------|--------------------------------|-------------------------|------------------------|-----------|--------|
| -20                 | 13.56                         | 13.559978                      | -22                     | 0.000162               | 0.01      | Pass   |
| 20                  | 13.56                         | 13.560000                      | 0                       | 0                      | 0.01      | Pass   |
| 50                  | 13.56                         | 13.559927                      | -73                     | 0.000538               | 0.01      | Pass   |

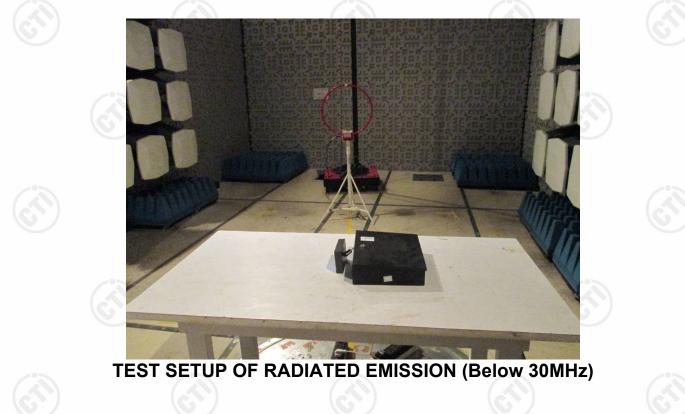
Maximum frequency error of the EUT with variations in nominal operating voltage at an ambient temperature of 20°C:

| 3 | Supply<br>Voltage (V) | Nominal<br>Frequency<br>(MHz) | Measured<br>Frequency<br>(MHz) | Frequency<br>Error (Hz) | Frequency<br>Error (%) | Limit (%) | Result |
|---|-----------------------|-------------------------------|--------------------------------|-------------------------|------------------------|-----------|--------|
|   | 102                   | 13.56                         | 13.559979                      | -21                     | 0.000155               | 0.01      | Pass   |
|   | 120                   | 13.56                         | 13.560000                      | 0                       | 0                      | 0.01      | Pass   |
|   | 138                   | 13.56                         | 13.559980                      | -20                     | 0.000147               | 0.01      | Pass   |










Page 21 of 31

# **APPENDIX 1 PHOTOGRAPHS OF TEST SETUP**



**TEST SETUP OF CONDUCTED EMISSION** 











TEST SETUP OF RADIATED EMISSION (30MHz~1GHz)

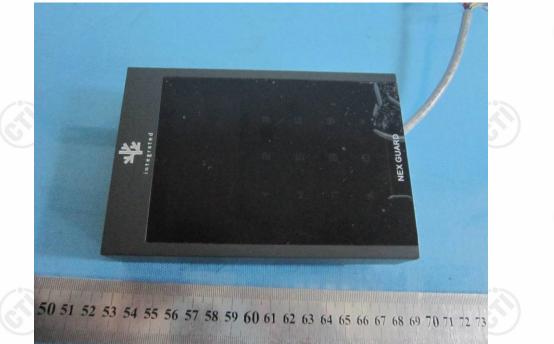


TEST SETUP OF TRANSMITTER FREQUENCY STABILITY

www.cti-cert.com












Page 23 of 31

# **APPENDIX 2 PHOTOGRAPHS OF EUT**



View of EUT-1(NeX Guard 1-M)



































