DigitalPath, Inc.

TEST REPORT FOR

Gen7 AP
Models: G7RL10H and G7RL10S

Tested to The Following Standards:

FCC Part 15 Subpart E Section(s)

15.207 & 15.407 UNII 2c AND UNII 3

Report No.: 100331-24

Date of issue: December 18, 2017

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 197 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	8
FCC Part 15 Subpart E	9
15.215 Occupied Bandwidth	9
15.407(a) Output Power	36
15.407(a) Power Spectral Density	78
15.407(b), (b)(1), (b)(3) & (b)(4) Radiated Emissions & Band Edge	119
15.207 AC Conducted Emissions	185
Supplemental Information	196
Measurement Uncertainty	196
Emissions Test Details	196

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY

DigitalPath, Inc.

Terri Rayle

1065 Marauder St.

CKC Laboratories, Inc.

Chico, CA 95973

5046 Sierra Pines Drive

Mariposa, CA 95338

Representative: Brock Eastman Project Number: 100331

DATE OF EQUIPMENT RECEIPT: October 4, 2017

DATE(S) OF TESTING: October 4, 2017 and November3-17, 2017

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Steve 2 Be

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Page 3 of 197 Report No.: 100331-24

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

1120 Fulton Place Fremont, CA 94539

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.11

Site Registration & Accreditation Information

Location	NIST CB #	TAIWAN	CANADA	FCC	JAPAN
Fremont, CA	US0082	SL2-IN-E-1148R	3082B-1	US1023	A-0149
Mariposa A, CA	US0103	SL2-IN-E-1147R	3082A-2	US1024	A-0136

Page 4 of 197 Report No.: 100331-24

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart E - 15.407 (UNII 2c and UNII 3)

Test Procedure	Description	Modifications	Results
15.215	Occupied Bandwidth	Mod. #1	Pass
15.407(a)	Output Power	Mod. #1	Pass
15.407(a)	Power Spectral Density	Mod. #1	Pass
15.407(b), (b)(1), (b)(3) & (b)(4)	Radiated Emissions & Band Edge	Mod. #1	Pass
15.207	AC Conducted Emissions	Mod. #1	Pass

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

Modification #1: A new GPS unit was installed into the product in order to pass spurious emissions.

Product Name: ublox7 Model: Max-7 GNSS module

Serial: NA

Manufacturer: ublox

All testing was repeated to insure validity of test results.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

When Chains 0 & 1 are active the max data rates are 173Mbps, 360MBps and 780Mbps.

Page 5 of 197 Report No.: 100331-24

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power	Ubiquiti Networks	GP-C500-120G	1713-0000107
Supply			

Support Equipment:

Device	Manufacturer	Model #	S/N
AC/DC power Adapter	НР	Series PPP012H-S	F12941126327228
Laptop Computer	HP	Probook 6565b	None

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Gen7 AP	DigitalPath, Inc.	G7RL10S	000001	
Switching Gigabit Power	Ubiquiti Networks	GP-C500-120G	1713-0000107	
Supply				
30 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-30	None	

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

Configuration 4

Equipment Tested:

Device	Manufacturer	Model #	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power Supply	Ubiquiti Networks	GP-C500-120G	1713-0000107
90 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-90	None

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

Page 6 of 197 Report No.: 100331-24

Configuration 5

Equipment Tested:

Device	Manufacturer	Model #	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10H	0000002
Switching Gigabit Power	Ubiquiti Networks	GP-C500-120G	1713-0000107
Supply			

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop Computer	НР	Probook 6565b	None
AC/DC power Adapter	НР	Series PPP012H-S	F12941126327228

Configuration 6

Equipment Tested:

Device	Manufacturer	Model #	S/N
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power Supply	Ubiquiti Networks	GP-C500-120G	1713-0000107
Dish Antenna	PacWireless	DP-D-5-29	None

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop Computer	HP	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

Configuration 7

Equipment Tested:

Device	Manufacturer	Model #	S/N
Dish Antenna	PacWireless	DP-D-5-29	None
90 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-90	None
50 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-50	None
30 Degree Horn Antenna	DigitalPath, Inc.	DP-TP-5-30	None
Gen7 AP	DigitalPath, Inc.	G7RL10H	0000002
Gen7 AP	DigitalPath, Inc.	G7RL10S	0000001
Switching Gigabit Power	Ubiquiti Networks	GP-C500-120G	1713-0000107
Supply			

Support Equipment:

Device	Manufacturer	Model #	S/N
Laptop Computer	НР	Probook 6565b	None
AC/DC power Adapter	HP	Series PPP012H-S	F12941126327228

Page 7 of 197 Report No.: 100331-24

General Product Information:

Product Information	Manufacturer-Provided Details		
Equipment Type:	Stand-Alone Equipment		
Type of Wideband System:	802.11ac		
Operating Frequency Range:	5.470 – 5.850 GHz		
Modulation Type(s):	OFDM		
Maximum Duty Cycle:	100%		
Number of TX Chains:	4 (All are identical)		
	30 Degree Horn / 17.5dBi		
	50 Degree Horn / 13dBi		
Antenna Type(s) and Gain:	90 Degree Horn / 9dBi		
	HexHorn / 13dBi		
	Pac Wireless Parabolic Dish / 28dBi		
Beamforming Type:	None		
Antonno Connection Type	Integral PCB Trace (13dBi, 17.5dBi, and 9dBi Antennas)		
Antenna Connection Type:	and External Connector (SMA) for 28dBi antennas		
Nominal Input Voltage:	48VDC POE		
Firmware / Software used for Test	Web Interface on EUT to Atheros TX99 Tool: athtestcmd provided by		
Firmware / Software used for Test:	Qualcomm		

Note: The 50 Degree Horn and the HexHorn are identical. The HexHorn has 6 of the 50 Degree horns within it and it uses the same exact radio.

Within the definitions provided within KDB 662911 D01 v02r01, the manufacturer declares the output from all antennas to be *completely uncorrelated* therefore, power aggregation is not required.

Page 8 of 197 Report No.: 100331-24

FCC Part 15 Subpart E

15.215 Occupied Bandwidth

Test Setup/Conditions					
Test Location:	Mariposa Lab A Test Engineer: Benny Lovan				
Test Method:	ANSI C63.10 (2013), KDB 789033	Test Date(s):	11/3/2017		
	v01r04 (May 2, 2017)				
Configuration:	1				
Test Setup:	The EUT is setup on a table wit	th its antenna port d	irectly connected to an analyzer		
	through 11.4dB of attenuation.				
	The EUT has two antenna ports that are identical.				
	Testing was performed on Port 1				
Declaration:	Modification #1 was in place durir	ng testing.			

Environmental Conditions					
Temperature (ºC) 20 Relative Humidity (%): 42					

Test Equipment							
Asset# Description Manufacturer Model Cal Date Cal							
02660	Spectrum Analyzer	Agilent	E4446A	10/10/2016	10/10/2018		
03361	Cable	Astrolab	32022-2-29094- 48TC	1/10/2017	1/10/2019		
P05935	Attenuator	Weinschel	84A-10	1/18/2016	1/18/2018		

Page 9 of 197 Report No.: 100331-24

26dB Occupied Bandwidth

	Test Data Summary UNII 2c						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results		
5500	1	OFDM / 20MHz	23564				
5600	1	OFDM / 20MHz	23541				
5700	1	OFDM / 20MHz	23565				
5500	1	OFDM / 40MHz	43912				
5520	1	OFDM / 40MHz	43662	None	NIA		
5595	1	OFDM / 40MHz	44002	None	NA		
5700	1	OFDM / 40MHz	43569				
5510	1	OFDM / 80MHz	89013				
5540	1	OFDM / 80MHz	89544				
5600	1	OFDM / 80MHz	88683				

	Test Data Summary – UNII 3						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results		
5745	1	OFDM / 20MHz	23746				
5785	1	OFDM / 20MHz	23857				
5795	1	OFDM / 20MHz	26779				
5840	1	OFDM / 20MHz	24692				
5745	1	OFDM / 40MHz	44589				
5760	1	OFDM / 40MHz	45746				
5785	1	OFDM / 40MHz	45376				
5800	1	OFDM / 40MHz	60445	None	NIA		
5825	1	OFDM / 40MHz	44406	None	NA		
5840	1	OFDM / 40MHz	64087				
5760	1	OFDM / 80MHz	88616				
5785	1	OFDM / 80MHz	88095				
5815	1	OFDM / 80MHz	97587				
5820	1	OFDM / 80MHz	97972				
5825	1	OFDM / 80MHz	60428				
5840	1	OFDM / 80MHz	87005				

Page 10 of 197 Report No.: 100331-24

99% Occupied Bandwidth

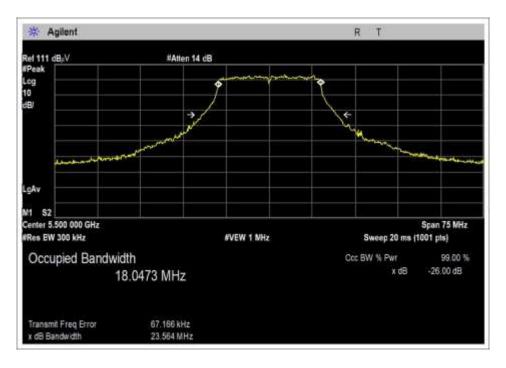
Test Data Summary – UNII 2c						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5500	1	OFDM / 20MHz	18047.3			
5600	1	OFDM / 20MHz	18041.6			
5700	1	OFDM / 20MHz	18044.1			
5500	1	OFDM / 40MHz	36426.9			
5520	1	OFDM / 40MHz	36378.0	None	NIA	
5595	1	OFDM / 40MHz	36422.7	None	NA	
5700	1	OFDM / 40MHz	36501.6			
5510	1	OFDM / 80MHz	76246.8			
5540	1	OFDM / 80MHz	76411.8			
5600	1	OFDM / 80MHz	76192.2			

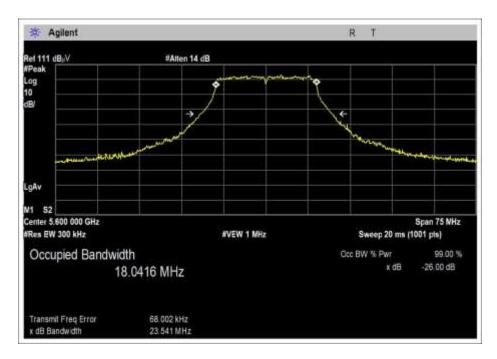
	Test Data Summary – UNII 3					
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5745	1	OFDM / 20MHz	18067.7			
5785	1	OFDM / 20MHz	18068.6			
5795	1	OFDM / 20MHz	18287.3			
5840	1	OFDM / 20MHz	18096.5			
5745	1	OFDM / 40MHz	36665.6			
5760	1	OFDM / 40MHz	36697.8			
5785	1	OFDM / 40MHz	36765.7			
5800	1	OFDM / 40MHz	36842.3	None	NA	
5825	1	OFDM / 40MHz	36664.7			
5840	1	OFDM / 40MHz	36875.8			
5760	1	OFDM / 80MHz	76267.6			
5785	1	OFDM / 80MHz	76284.9			
5815	1	OFDM / 80MHz	76406.6			
5820	1	OFDM / 80MHz	76185.9			
5840	1	OFDM / 80MHz	76203.3			

Page 11 of 197 Report No.: 100331-24

-6dB Minimum BW

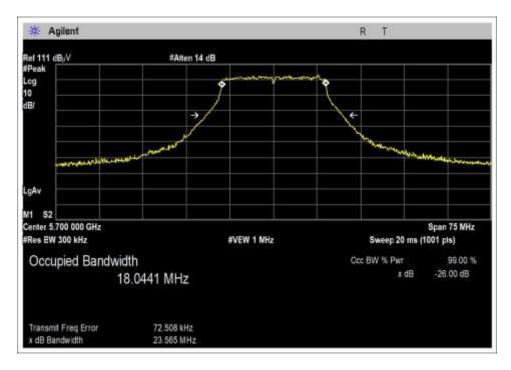
Test Data Summary – UNII 3 Only						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
5745	1	OFDM / 20MHz	17783			
5785	1	OFDM / 20MHz	17784			
5795	1	OFDM / 20MHz	17784			
5840	1	OFDM / 20MHz	17784			
5745	1	OFDM / 40MHz	36508			
5760	1	OFDM / 40MHz	36488			
5785	1	OFDM / 40MHz	36509	>500kHz	PASS	
5800	1	OFDM / 40MHz	36474			
5825	1	OFDM / 40MHz	36481			
5840	1	OFDM / 40MHz	36478			
5760	1	OFDM / 80MHz	76621			
5785	1	OFDM / 80MHz	76633			
5840	1	OFDM / 80MHz	76629			


Page 12 of 197 Report No.: 100331-24


Plots

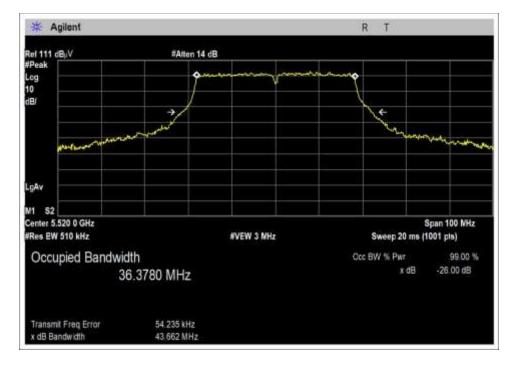
UNII 2c

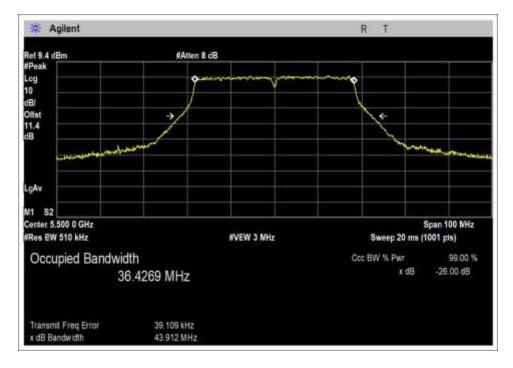
20MHz / -26dB

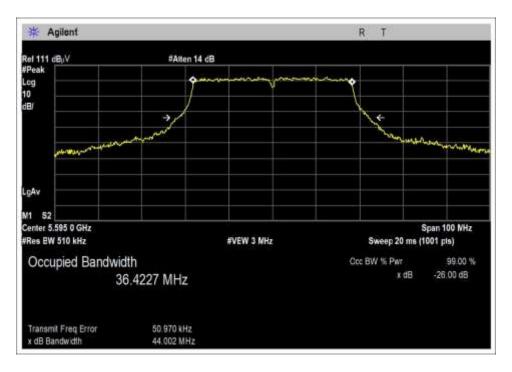


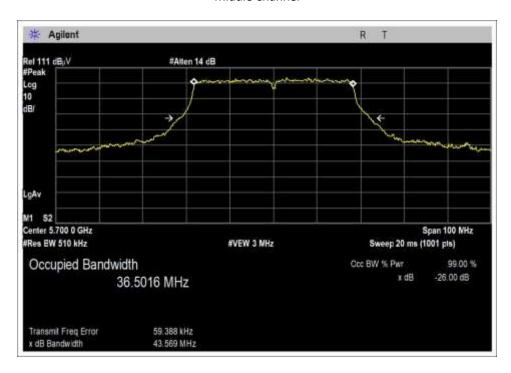
Low Channel

Middle Channel

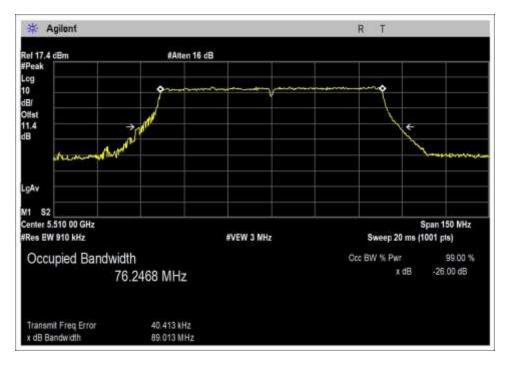



High Channel

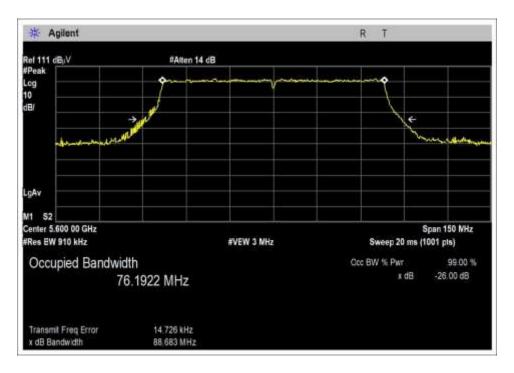

40MHz / -26dB


Low Channel

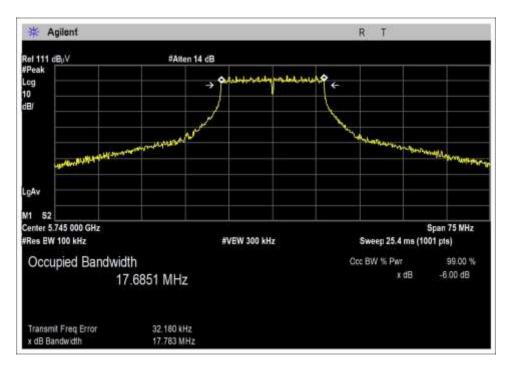
Middle Channel



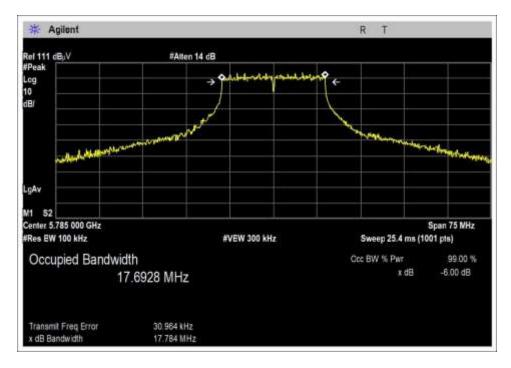
High Channel


80MHz / -26dB

Low Channel 5510

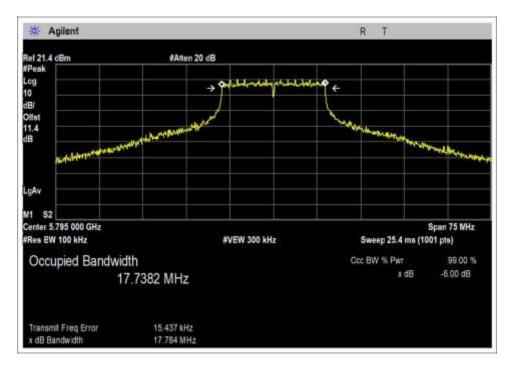


High Channel

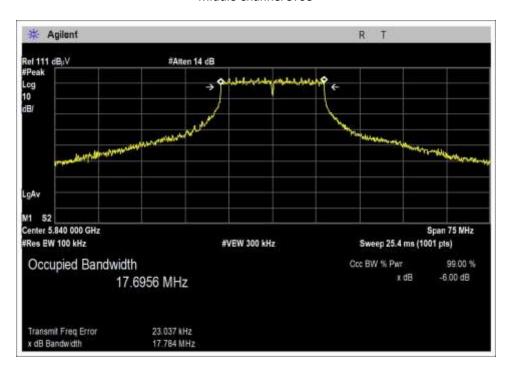


UNII 3

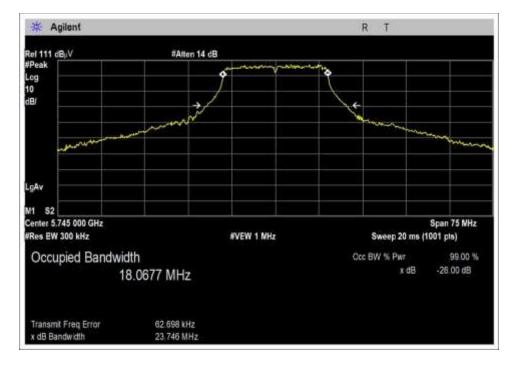
20MHz / -6dB

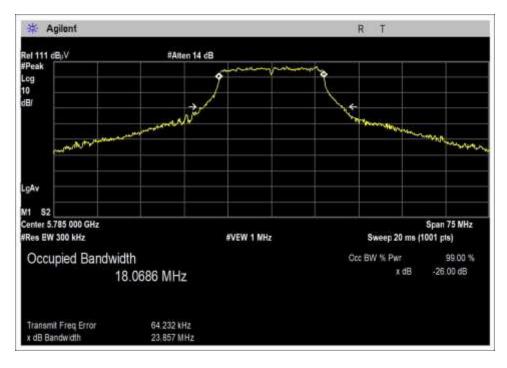


Low Channel

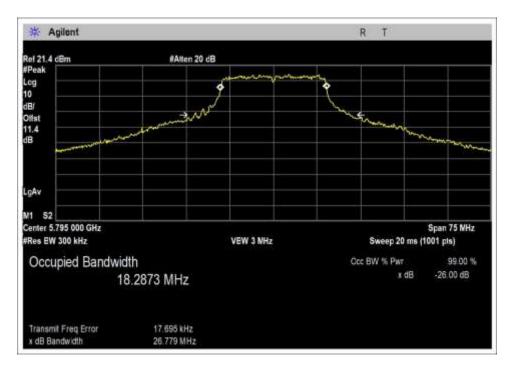


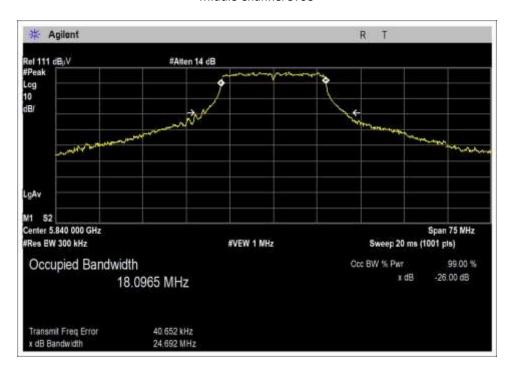
Middle Channel


Middle Channel 5795

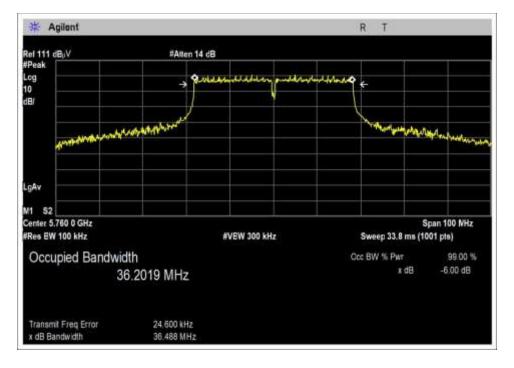


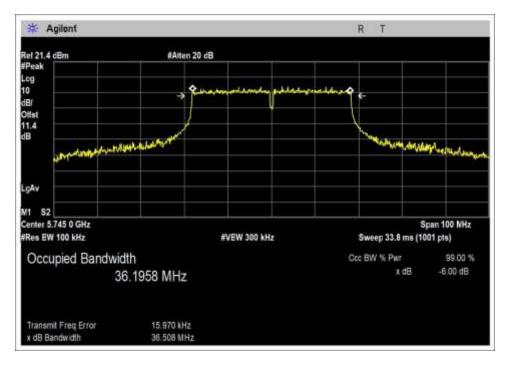
High Channel


20MHz / -26dB

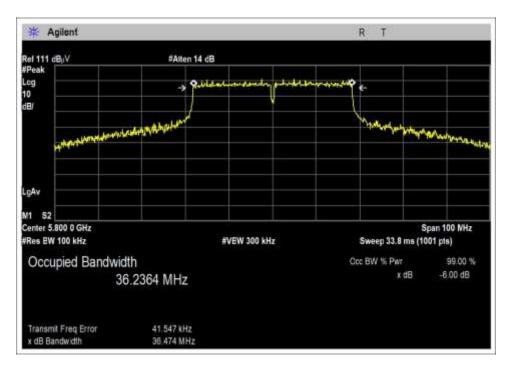


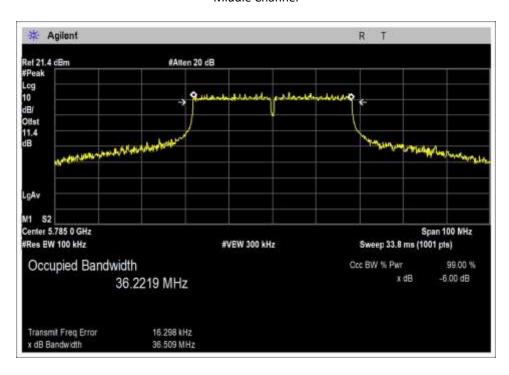
Middle Channel


Middle Channel 5795

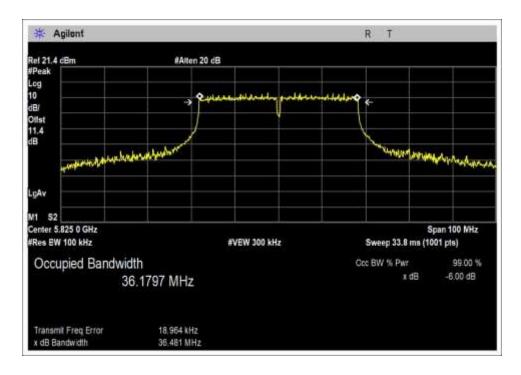


High Channel

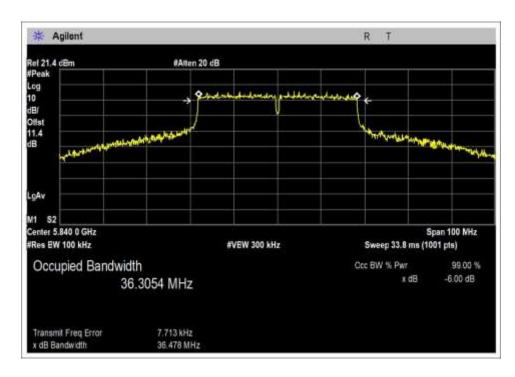

40MHz / -6dB



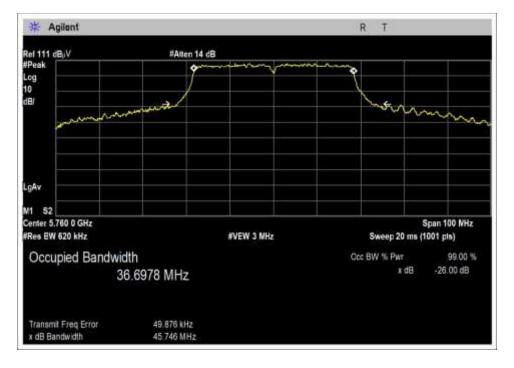
Low Channel 5745

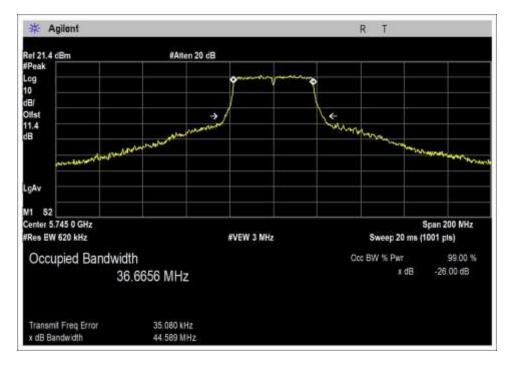


Middle Channel

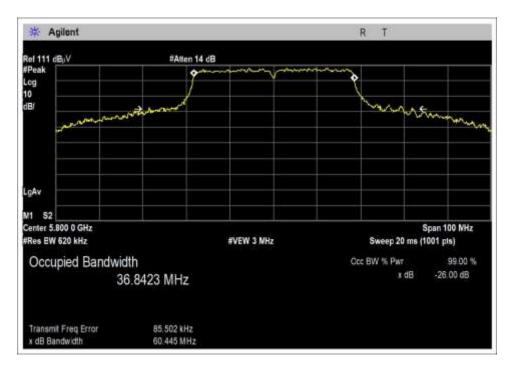


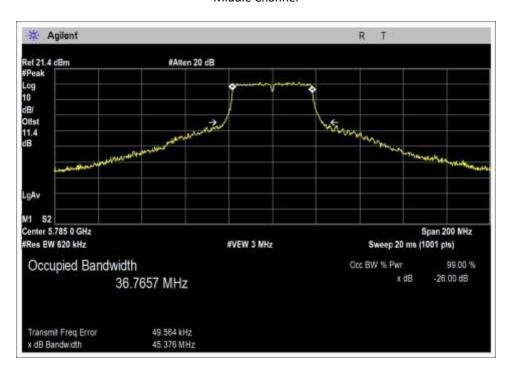
Middle Channel 5785


High Channel 5825

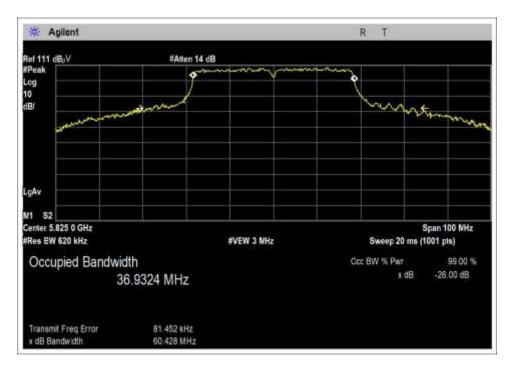


High Channel 5840

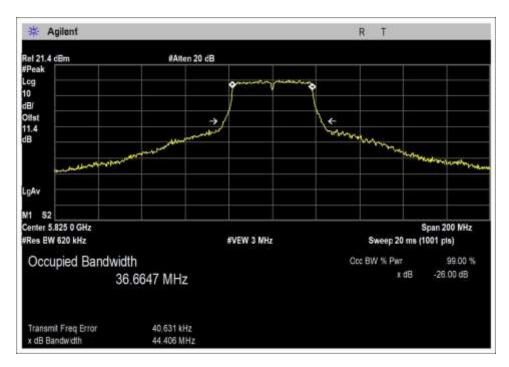

40MHz / -26dB



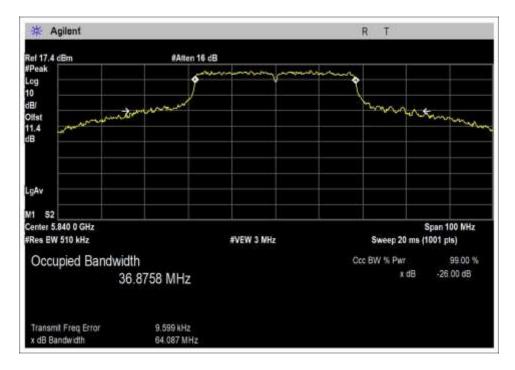
Low Channel 5745



Middle Channel

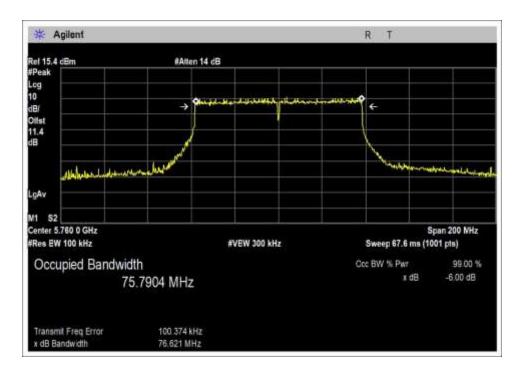


Middle Channel 5785



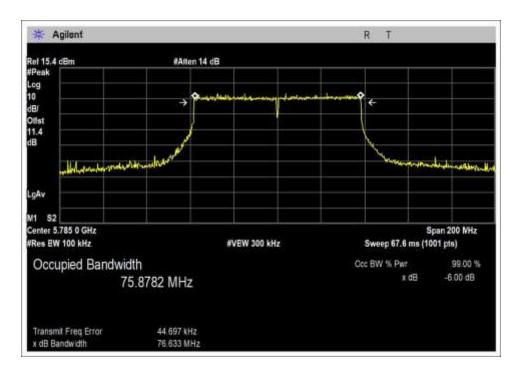
High Channel

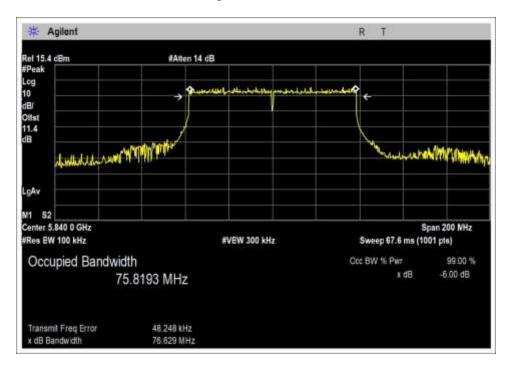
High Channel 5825



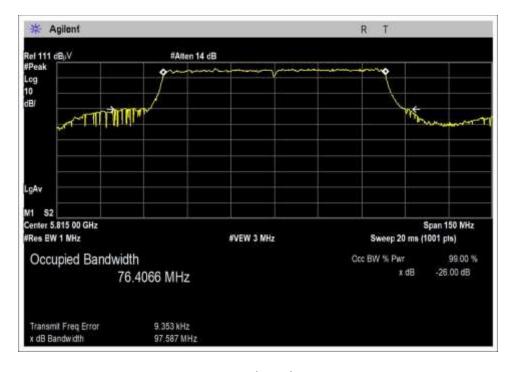
High Channel 5840

Page 29 of 197 Report No.: 100331-24

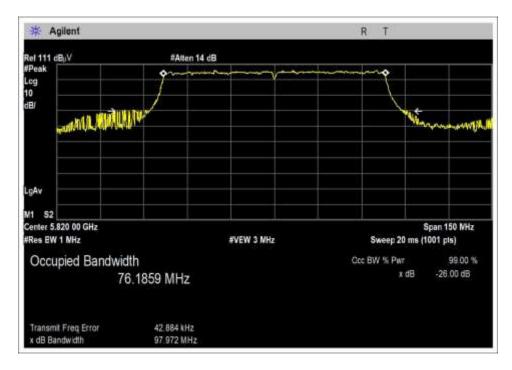

80MHz / -6dB

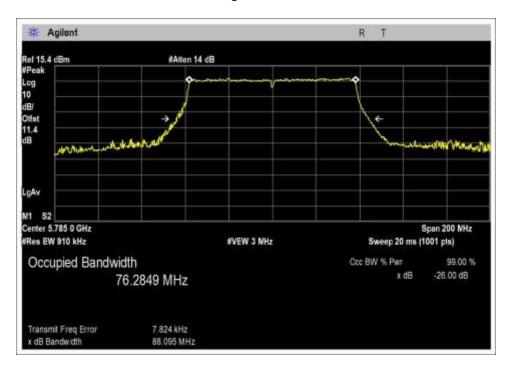

Low Channel 5760

Page 30 of 197 Report No.: 100331-24

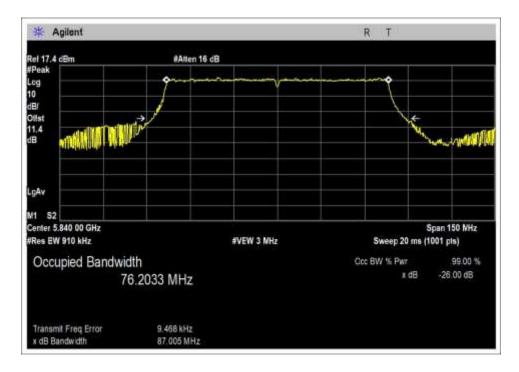

High Channel 5785

High Channel 5840


80MHz / -26dB



Low Channel 5760



High Channel

High Channel 5785

High Channel 5840

Test Setup Photos

Page 35 of 197 Report No.: 100331-24

15.407(a) Output Power

Test Setup/Conditions					
Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan		
Test Method:	ANSI C63.10 (2013), KDB 789033	Test Date(s):	11/14/2017 – 11/15/2017		
	v01r04 (May 2, 2017)				
Configuration:	1				
Test Setup:	The EUT is setup on a table with its antenna port directly connected to an analyzer				
	through 11.4dB of attenuation.				
	The EUT has two antenna ports that are identical.				
	Testing was performed on Port 1				
Declaration:	Modification #1 was in place during testing.				

Environmental Conditions					
Temperature (ºC)	20-22	Relative Humidity (%):	42-45		

Test Equipment							
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due		
02660	Spectrum Analyzer	Agilent	E4446A	10/10/2016	10/10/2018		
03361	Cable	Astrolab	32022-2-29094- 48TC	1/10/2017	1/10/2019		
P05935	Attenuator	Weinschel	84A-10	1/18/2016	1/18/2018		

Page 36 of 197 Report No.: 100331-24

Test Data Summary - Voltage Variations-20MHz Channel Bandwidth							
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)		
UNII 2c							
5500	OFDM / Ant Port 1	20.64	20.64	20.63	0.01		
5600	OFDM / Ant Port 1	19.46	19.47	19.49	0.03		
5700	OFDM / Ant Port 1	19.64	19.63	19.63	0.01		
UNII 3							
5745	OFDM / Ant Port 1	22.80	22.82	22.82	0.02		
5795	OFDM / Ant Port 1	23.10	23.08	23.08	0.02		
5840	OFDM / Ant Port 1	23.33	23.32	23.33	0.01		

Test performed using operational mode with the highest output power, representing worst case.

Test Data Summary - Voltage Variations-40MHz Channel Bandwidth								
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)			
	UNII 2c							
5500	OFDM / Ant Port 1	16.37	16.37	16.37	0.00			
5595	OFDM / Ant Port 1	16.26	16.25	16.24	0.02			
5700	OFDM / Ant Port 1	16.50	16.49	16.49	0.01			
UNII 3								
5745	OFDM / Ant Port 1	22.77	22.78	22.79	0.02			
5785	OFDM / Ant Port 1	23.01	23.00	23.00	0.01			
5840	OFDM / Ant Port 1	21.47	21.50	21.48	0.03			

Test performed using operational mode with the highest output power, representing worst case.

Test Data Summary - Voltage Variations-80MHz Channel Bandwidth								
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)			
	UNII 2c							
5510	OFDM / Ant Port 1	10.53	10.51	10.50	0.03			
5600	OFDM / Ant Port 1	17.40	17.40	17.41	0.01			
UNII 3								
5815	OFDM / Ant Port 1	18.36	18.38	18.37	0.02			
5840	OFDM / Ant Port 1	18.44	18.42	18.45	0.03			

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal ± 15%.

Parameter	Value
V _{Nominal} :	48 VDC
V _{Minimum} :	40.8 VDC
V _{Maximum} :	55.2 VDC

Page 37 of 197 Report No.: 100331-24

UNII2c Test Data Summary - RF Conducted Measurement						
Measurement Option: AVGSA-1						
Frequency	Madulation	Ant. Type / Gain	Measured	Limit	Desults	
(MHz)	Modulation	(dBi)	(dBm)	(dBm)	Results	
		20MHz Chann	el BW			
5500	OFDM	17.5dBi 30DegHorn	12.46	≤ 12.5	Pass	
5600	OFDM	17.5dBi 30DegHorn	12.01	≤ 12.5	Pass	
5700	OFDM	17.5dBi 30DegHorn	12.06	≤ 12.5	Pass	
5500	OFDM	13 dBi 50DegHorn	14.38	≤ 17	Pass	
5600	OFDM	13 dBi 50DegHorn	14.92	≤ 17	Pass	
5700	OFDM	13 dBi 50DegHorn	15.57	≤ 17	Pass	
5500	OFDM	9dBi 90DegHron	20.36	≤ 21	Pass	
5600	OFDM	9 dBi 90DegHron	19.23	≤ 21	Pass	
5700	OFDM	9 dBi 90DegHron	19.45	≤ 21	Pass	
		40MHz Chann	el BW			
5520	OFDM	17.5dBi 30DegHorn	12.21	≤ 12.5	Pass	
5595	OFDM	17.5dBi 30DegHorn	12.21	≤ 12.5	Pass	
5700	OFDM	17.5dBi 30DegHorn	12.34	≤ 12.5	Pass	
5500	OFDM	13 dBi 50DegHorn	13.73	≤ 17	Pass	
5595	OFDM	13 dBi 50DegHorn	16.59	≤ 17	Pass	
5700	OFDM	13 dBi 50DegHorn	16.91	≤ 17	Pass	
5500	OFDM	9dBi 90DegHron	15.88	≤ 21	Pass	
5595	OFDM	9 dBi 90DegHron	15.97	≤ 21	Pass	
5700	OFDM	9 dBi 90DegHron	16.46	≤ 21	Pass	
80MHz Channel BW						
5540	OFDM	17.5dBi 30DegHorn	8.51	≤ 12.5	Pass	
5600	OFDM	17.5dBi 30DegHorn	7.96	≤ 12.5	Pass	
5515	OFDM	13 dBi 50DegHorn	11.47	≤ 17	Pass	
5540	OFDM	13 dBi 50DegHorn	12.51	≤ 17	Pass	
5600	OFDM	13 dBi 50DegHorn	16.60	≤ 17	Pass	
5510	OFDM	9dBi 90DegHron	10.04	≤ 21	Pass	
5600	OFDM	9 dBi 90DegHron	17.18	≤ 21	Pass	

The limit is calculated in accordance with 15.407(a)(2): $Limit = The \ lesser \ of \begin{cases} 24 \ dBm - (G - 6) \\ 11 dBm + 10 LOG(B) - (G - 6) \end{cases}$

Page 38 of 197 Report No.: 100331-24

UNII 3 Test Data Summary - RF Conducted Measurement						
Measurement Option: AVGSA-1						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results	
20MHz Channel BW						
5745	OFDM	17.5dBi 30DegHorn	16.37	≤ 18.5	Pass	
5785	OFDM	17.5dBi 30DegHorn	16.48	≤ 18.5	Pass	
5840	OFDM	17.5dBi 30DegHorn	17.11	≤ 18.5	Pass	
5745	OFDM	13 dBi 50DegHorn	19.92	≤ 23	Pass	
5785	OFDM	13 dBi 50DegHorn	20.02	≤ 23	Pass	
5840	OFDM	13 dBi 50DegHorn	20.28	≤ 23	Pass	
5745	OFDM	9dBi 90DegHron	19.61	≤ 27	Pass	
5785	OFDM	9 dBi 90DegHron	20.65	≤ 27	Pass	
5840	OFDM	9 dBi 90DegHron	21.10	≤ 27	Pass	
5745	OFDM	28dBi Dish	22.61	≤ 30	Pass	
5795	OFDM	28dBi Dish	22.82	≤ 30	Pass	
5840	OFDM	28dBi Dish	22.94	≤ 30	Pass	
		40MHz Chann	el BW			
5760	OFDM	17.5dBi 30DegHorn	18.3	≤ 18.5	Pass	
5800	OFDM	17.5dBi 30DegHorn	18.48	≤ 18.5	Pass	
5825	OFDM	17.5dBi 30DegHorn	18.44	≤ 18.5	Pass	
5760	OFDM	13 dBi 50DegHorn	20.17	≤ 23	Pass	
5800	OFDM	13 dBi 50DegHorn	20.57	≤ 23	Pass	
5840	OFDM	13 dBi 50DegHorn	20.48	≤ 23	Pass	
5760	OFDM	9dBi 90DegHron	20.88	≤ 27	Pass	
5800	OFDM	9 dBi 90DegHron	21.51	≤ 27	Pass	
5840	OFDM	9 dBi 90DegHron	20.93	≤ 27	Pass	
5745	OFDM	28dBi Dish	19.80	≤ 30	Pass	
5785	OFDM	28dBi Dish	20.02	≤ 30	Pass	
5825	OFDM	28dBi Dish	18.53	≤ 30	Pass	

Page 39 of 197 Report No.: 100331-24

UNII 3 Test Data Summary - RF Conducted Measurement - continued							
Measuremen	Measurement Option: AVGSA-1						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm)	Limit (dBm)	Results		
		80MHz Chanı	nel BW				
5815	OFDM	17.5dBi 30DegHorn	16.4	≤ 18.5	Pass		
5820	OFDM	17.5dBi 30DegHorn	16.5	≤ 18.5	Pass		
5815	OFDM	13 dBi 50DegHorn	19.44	≤ 23	Pass		
5820	OFDM	13 dBi 50DegHorn	19.53	≤ 23	Pass		
5840	OFDM	13 dBi 50DegHorn	16.45	≤ 23	Pass		
5815	OFDM	9dBi 90DegHron	18.05	≤ 27	Pass		
5840	OFDM	9 dBi 90DegHron	18.15	≤ 27	Pass		
5760	OFDM	28dBi Dish	13.63	≤ 30	Pass		
5785	OFDM	28dBi Dish	16.31	≤ 30	Pass		
5815	OFDM	28dBi Dish	10.95	≤ 30	Pass		

For equipment using antennas other than in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(3):

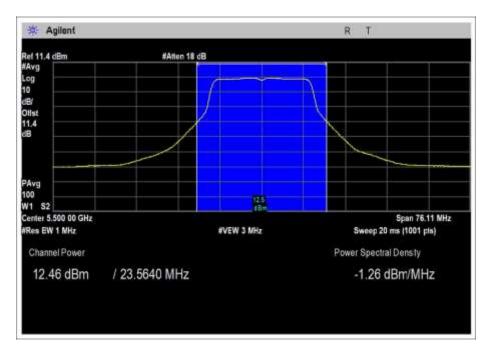
Limit = 30 - Roundup(G - 6)

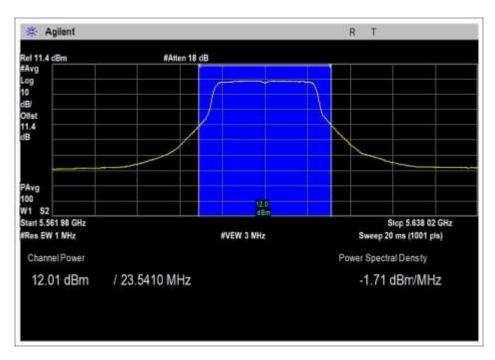
Note: This equation was used for the 17.5dBi, 13dBi and 9dBi antennas.

For equipment using antennas in fixed point-to-point applications, the limit is calculated in accordance with 15.407(a)(3):

Limit = 30

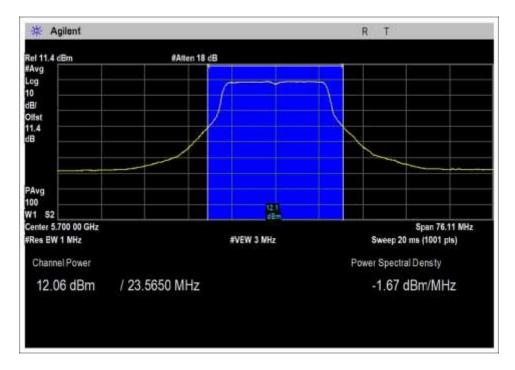
Note: This equation was used for the 28dBi Dish.


Page 40 of 197 Report No.: 100331-24

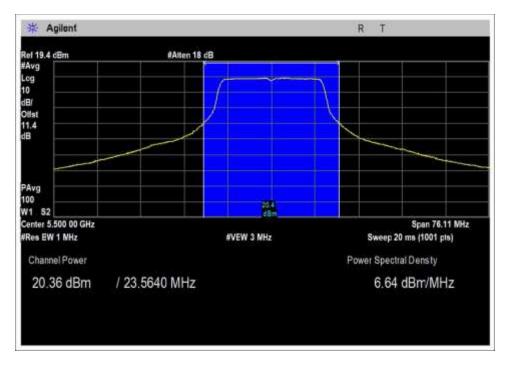

Plots

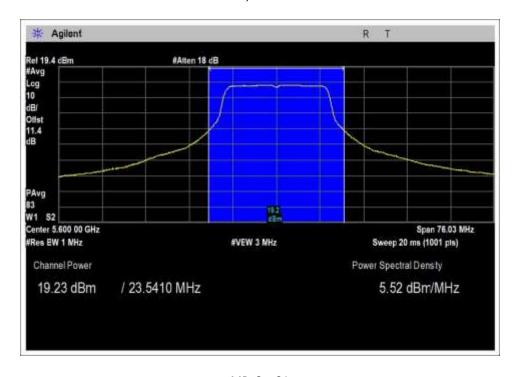
UNII 2c

20MHz / 30Deg / 17.5dBi

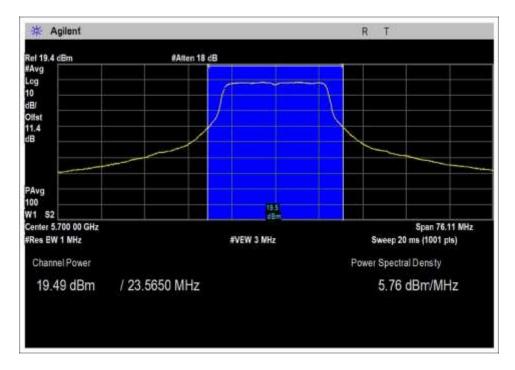


LB, Set 14.5

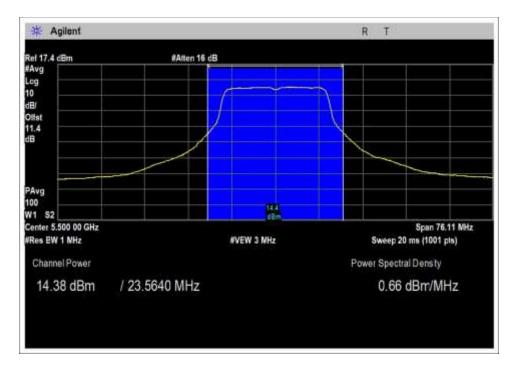

MB, Set 14

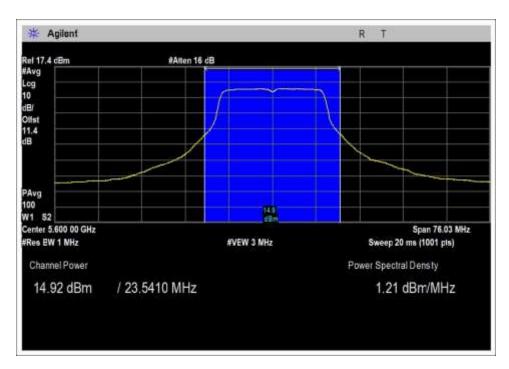


HB, Set 13.5



LB, Set 22

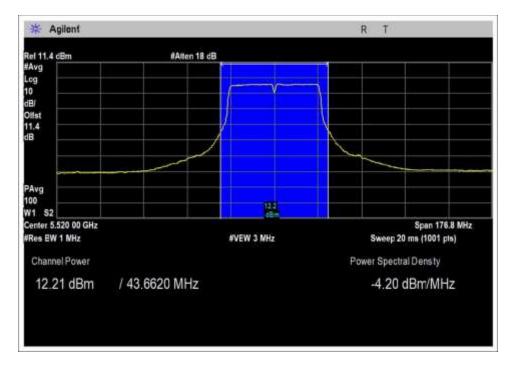

MB, Set 21



HB, Set 21

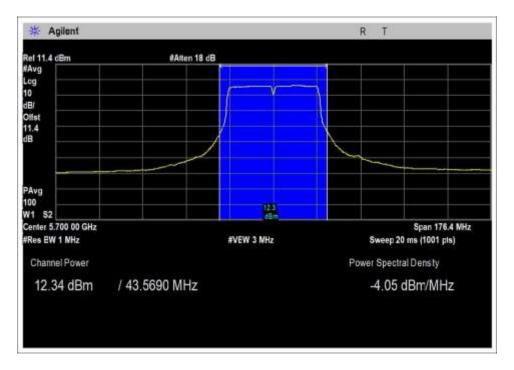
LB Set 16.5

MB, Set 16.5

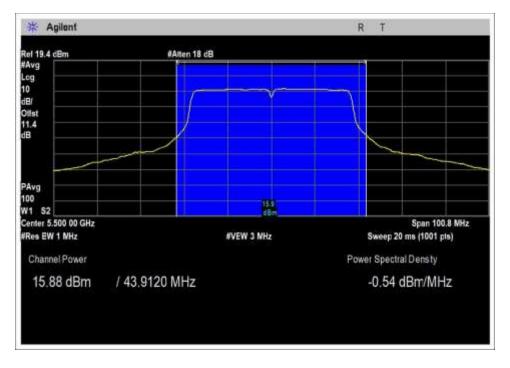


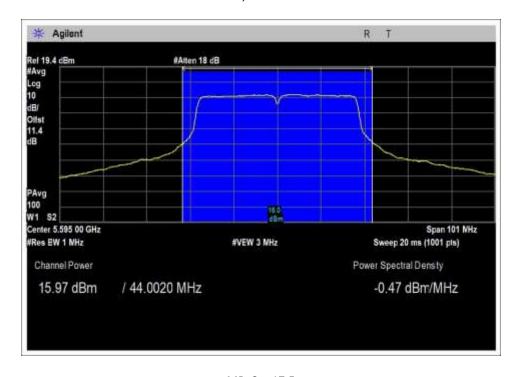
HB, Set 16.5

40MHz / 30Deg / 17.5dBi

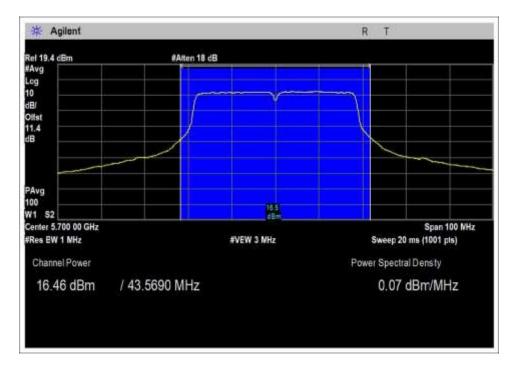


LB, Set 14

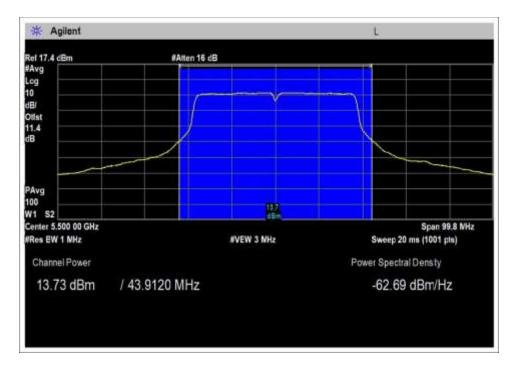

MB, Set 14

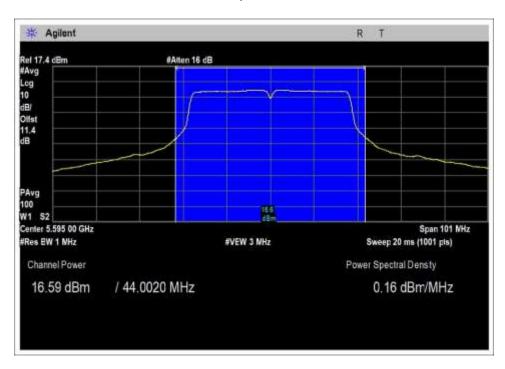


HB, Set 13.5

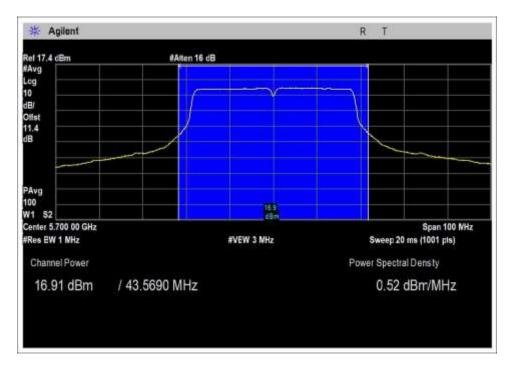


LB, Set 17.5


MB, Set 17.5

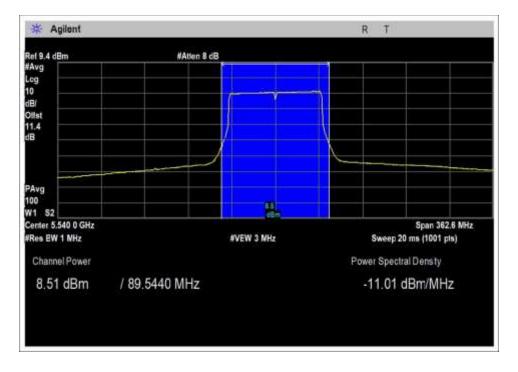


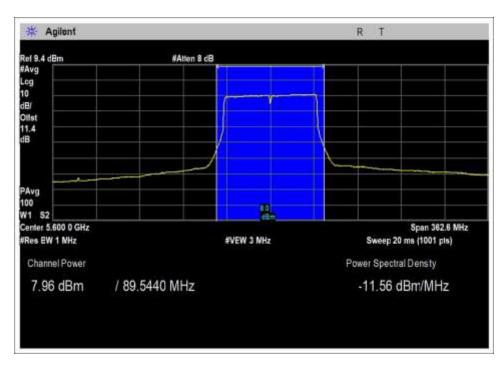
HB, Set 17.5



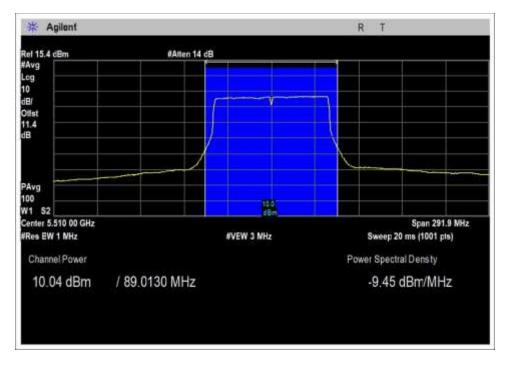
LB, Set 17

MB, Set 17

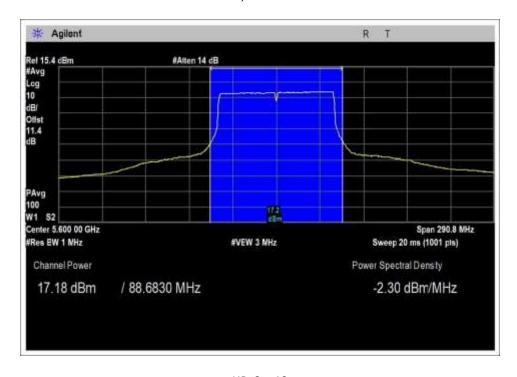



HB, Set 17

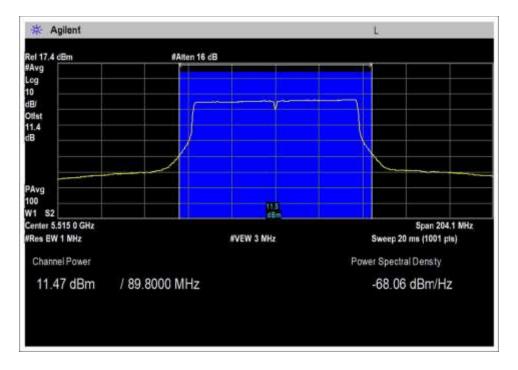
80MHz / 30Deg / 17.5dBi



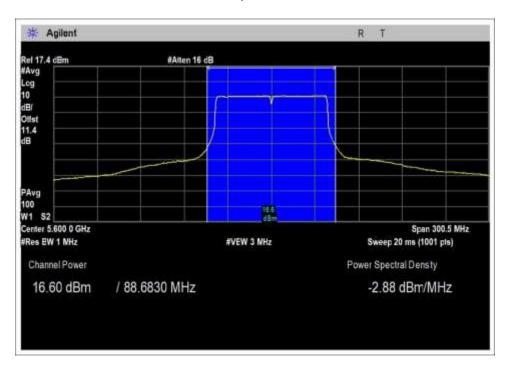
LB, Set 10



HB, Set 10

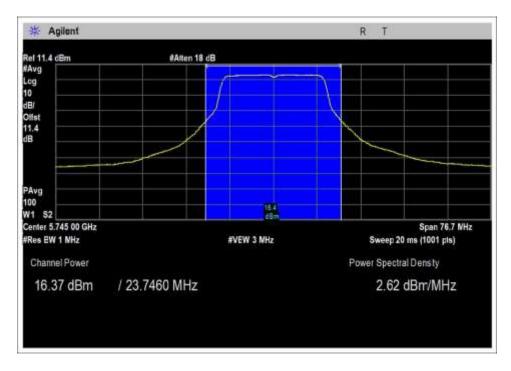


LB, Set 11.5

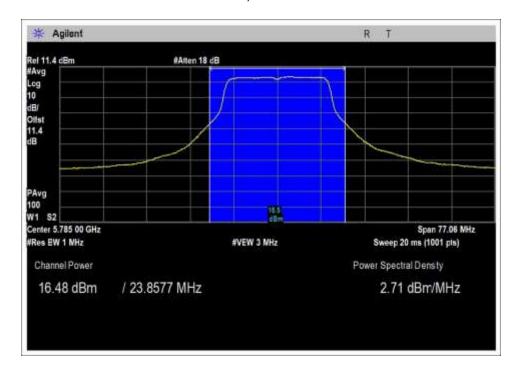


HB, Set 19

LB, Set 13



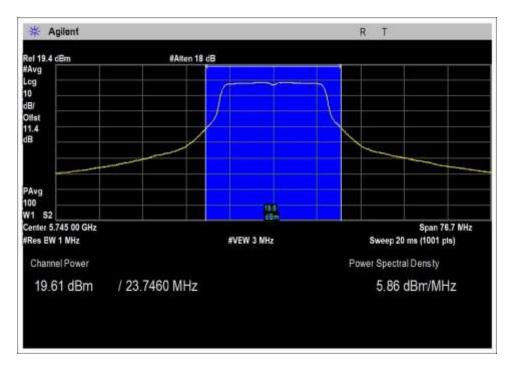
HB, Set 17

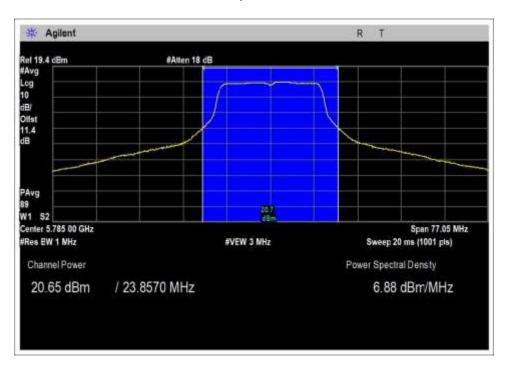


UNII 3

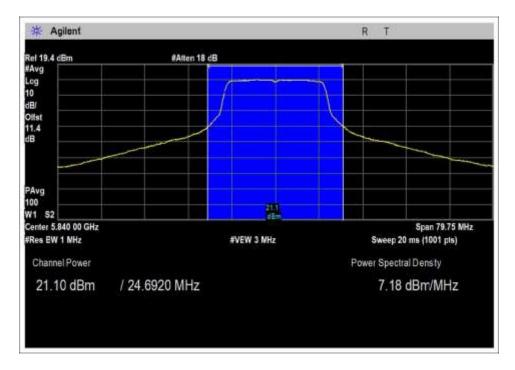
20MHz / 30Deg / 17.5dBi

LB, Set 18


MB, Set 18

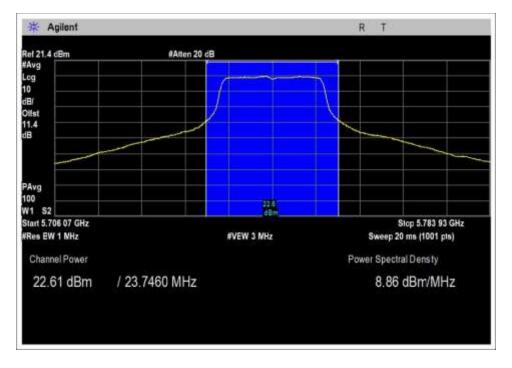


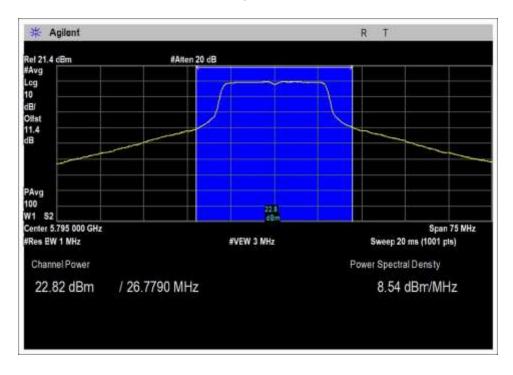
HB, Set 18



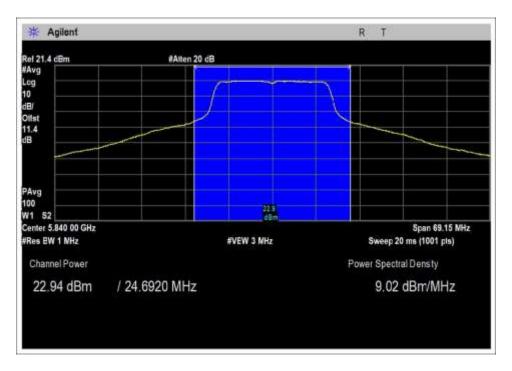
LB, Set 21

MB, Set 22

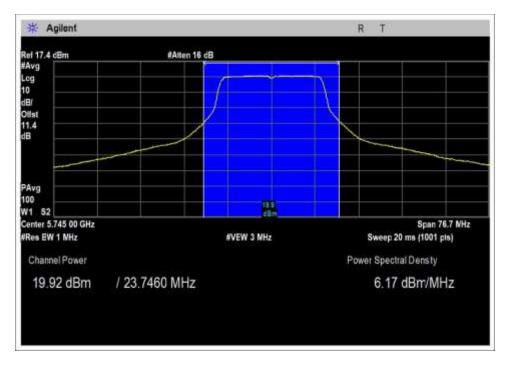


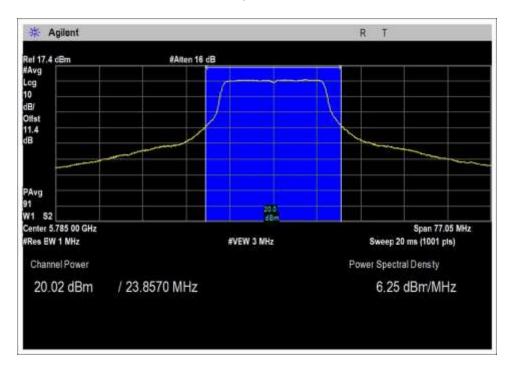

HB, Set 22

20MHz / Dish / 28dBi

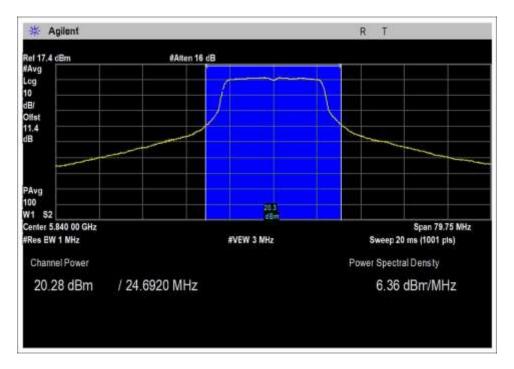


LB, Set 24


MB, Set 24

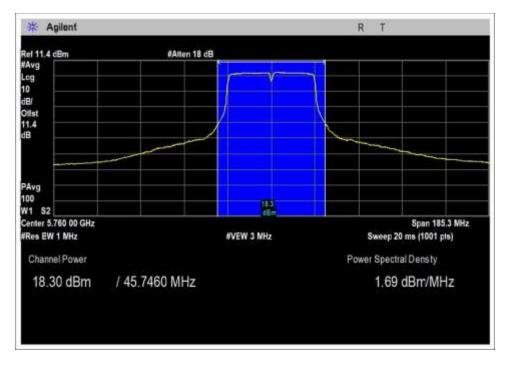


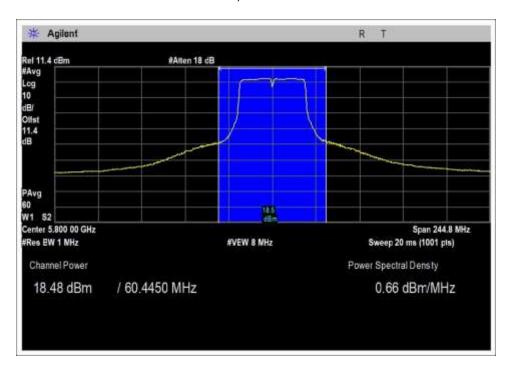
HB, Set 24



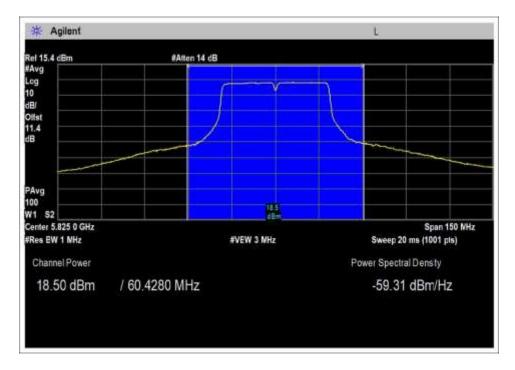
LB, Set 20

MB, Set 20

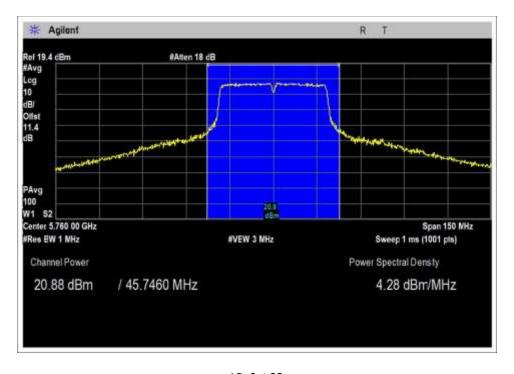


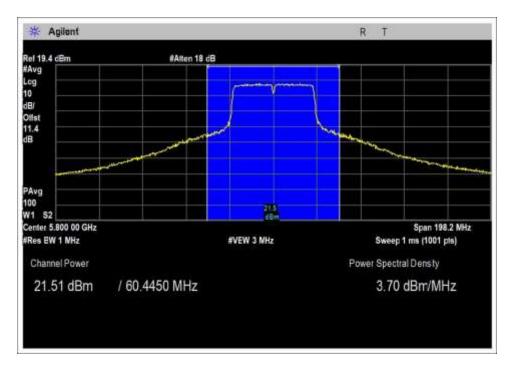

HB, Set 20

40MHz / 30Deg / 17.5dBi

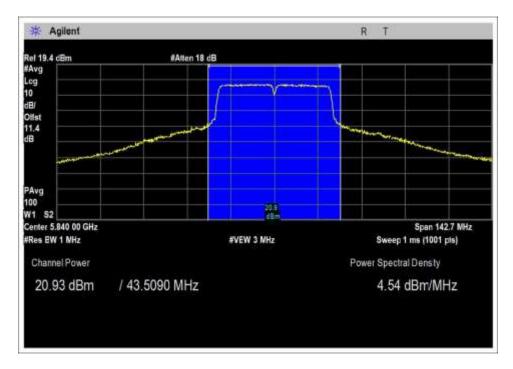


LB, Set 19.5


MB, Set 19.5

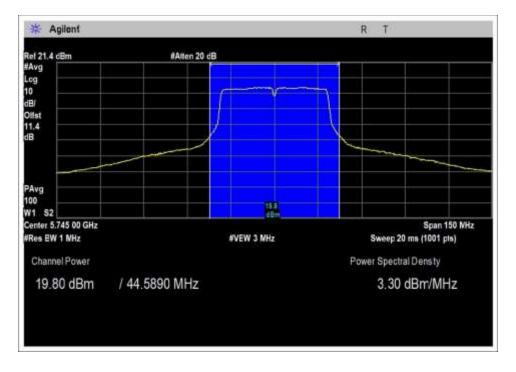


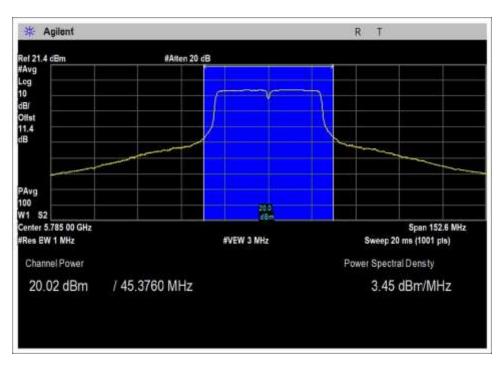
HB, Set 19.5



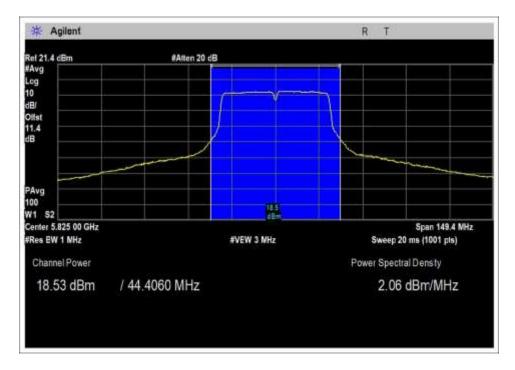
LB, Set 22

MB, Set 22

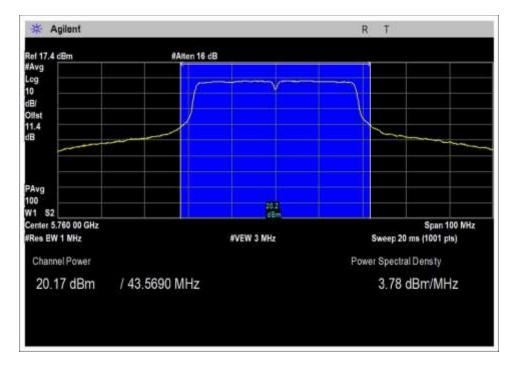


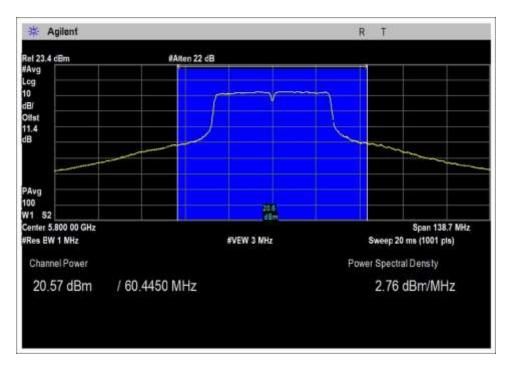

HB, Set 22

40MHz / Dish / 28dBi

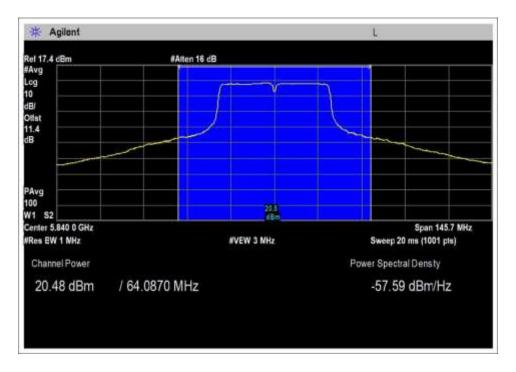


LB, Set 21


MB, Set 21

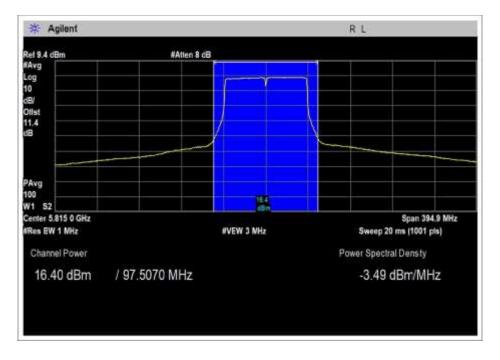


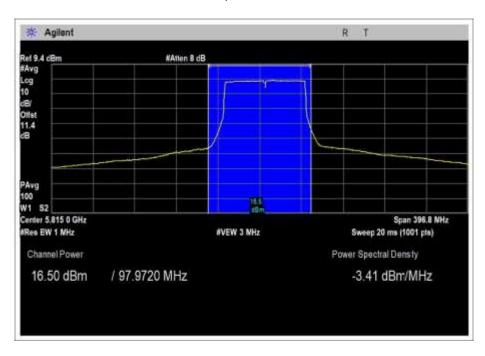
HB, Set 19



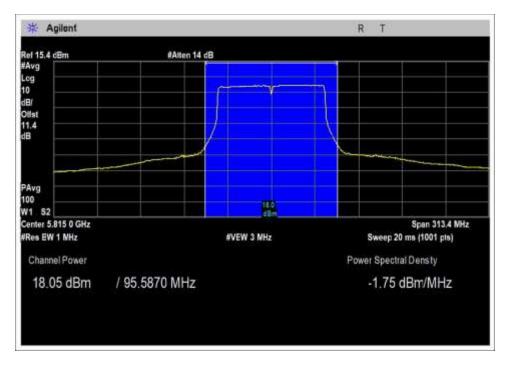
LB, Set 20

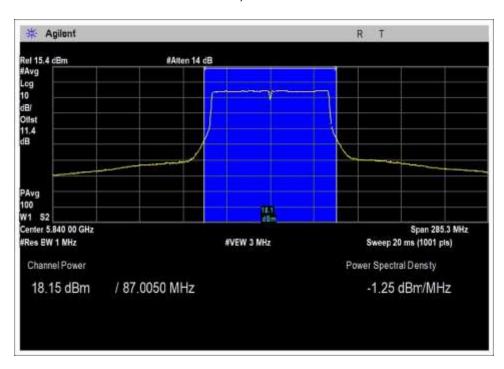
MB, Set 20



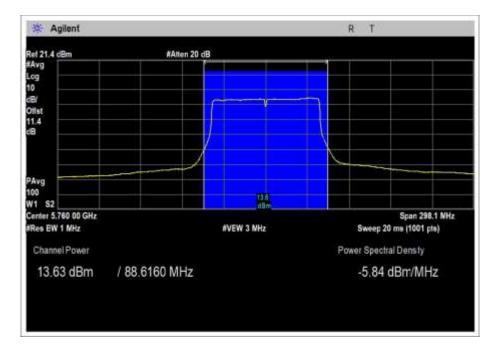

HB, Set 22

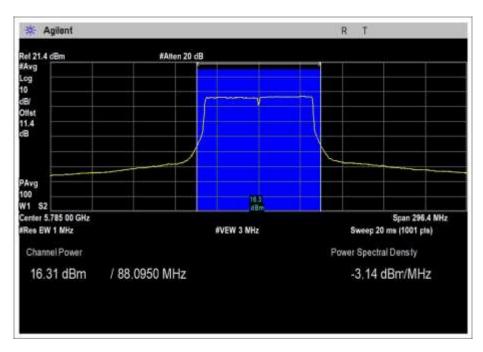
80MHz / 30Deg / 17.5dBi


LB, Set 17.5


HB, Set 17.5

Note: The output power measurement was re-measured and after re-measuring, it has been determined that the data reported is valid and represents worst-case.

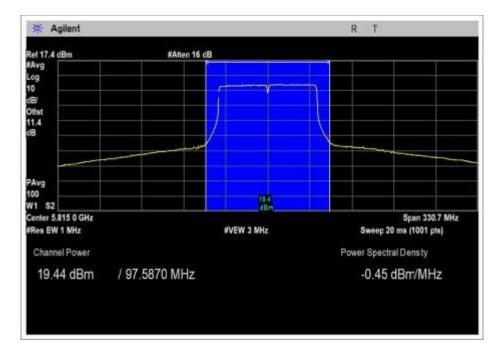

LB, Set 19

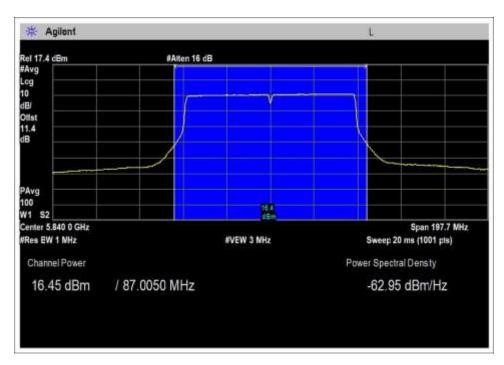

HB, Set 19

80MHz / Dish / 28dBi

LB, Set 15

MB, Set 17.5




HB, Set 12

80MHz / HexHorn / 13dBi

LB, Set 19

HB, Set 19

Note: The output power measurement was re-measured and after re-measuring, it has been determined that the data reported is valid and represents worst-case.

Test Setup Photos

Page 77 of 197 Report No.: 100331-24

15.407(a) Power Spectral Density

Test Setup/Conditions						
Test Location:	Mariposa Lab A	Test Engineer:	Benny Lovan			
Test Method:	ANSI C63.10 (2013), KDB 789033	Test Date(s):	11/14/2017 – 11/15/2017			
	v01r04 (May 2, 2017)					
Configuration:	1					
Test Setup:	The EUT is setup on a table with its antenna port directly connected to an analyzer through 11.4dB of attenuation. The EUT has two antenna ports that are identical. Testing was performed on Port 1					
	The Average Power Spectral Density measurement was made, using the PSD Wire feature of the analyzer. This method provides the peak of the averaged waveform MHz. The method by which the analyzer makes this message is in accordance with KDB.					
Declaration:	Modification #1 was in place durir	ng testing.				

Environmental Conditions					
Temperature (°C)	20-22	Relative Humidity (%):	42-45		

Test Equipment						
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02660	Spectrum Analyzer	Agilent	E4446A	10/10/2016	10/10/2018	
03361	Cable	Astrolab	32022-2-29094- 48TC	1/10/2017	1/10/2019	
P05935	Attenuator	Weinschel	84A-10	1/18/2016	1/18/2018	

Page 78 of 197 Report No.: 100331-24

UNII 2c Test Data Summary - RF Conducted Measurement						
Measurement Option: AVGSA-1						
Frequency	Madulation	Ant. Type / Gain	Measured	Limit	Desulte	
(MHz)	Modulation	(dBi)	(dBm/MHz)	(dBm/MHz)	Results	
		20MHz Channo	el BW			
5500	OFDM	17.5dBi 30DegHorn	-1.26	≤ -0.5	Pass	
5600	OFDM	17.5dBi 30DegHorn	-1.71	≤ -0.5	Pass	
5700	OFDM	17.5dBi 30DegHorn	-1.67	≤ -0.5	Pass	
5500	OFDM	13 dBi 50DegHorn	0.66	≤ 4	Pass	
5600	OFDM	13 dBi 50DegHorn	1.21	≤ 4	Pass	
5700	OFDM	13 dBi 50DegHorn	1.85	≤ 4	Pass	
5500	OFDM	9dBi 90DegHron	6.64	≤ 8	Pass	
5600	OFDM	9 dBi 90DegHron	5.52	≤ 8	Pass	
5700	OFDM	9 dBi 90DegHron	5.72	≤8	Pass	
		40MHz Channo	el BW			
5520	OFDM	17.5dBi 30DegHorn	-4.20	≤ -0.5	Pass	
5595	OFDM	17.5dBi 30DegHorn	-4.23	≤ -0.5	Pass	
5700	OFDM	17.5dBi 30DegHorn	-4.05	≤ -0.5	Pass	
5500	OFDM	13 dBi 50DegHorn	-1.142	≤ 4	Pass	
5595	OFDM	13 dBi 50DegHorn	0.16	≤ 4	Pass	
5700	OFDM	13 dBi 50DegHorn	0.52	≤ 4	Pass	
5500	OFDM	9dBi 90DegHron	-0.54	≤8	Pass	
5595	OFDM	9 dBi 90DegHron	-0.47	≤ 8	Pass	
5700	OFDM	9 dBi 90DegHron	0.07	≤8	Pass	
		80MHz Channo	el BW			
5540	OFDM	17.5dBi 30DegHorn	-11.01	≤ -0.5	Pass	
5600	OFDM	17.5dBi 30DegHorn	-11.56	≤ -0.5	Pass	
5515	OFDM	13 dBi 50DegHorn	-6.75	≤ 4	Pass	
5540	OFDM	13 dBi 50DegHorn	-7.01	≤ 4	Pass	
5600	OFDM	13 dBi 50DegHorn	-2.88	≤ 4	Pass	
5510	OFDM	9dBi 90DegHron	-9.45	≤8	Pass	
5600	OFDM	9 dBi 90DegHron	-2.30	≤8	Pass	

The limit is calculated in accordance with 15.407(a)(2):

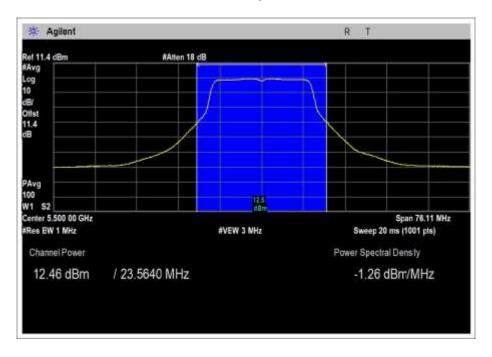
Limit = 11 - Roundup(G - 6)

Page 79 of 197 Report No.: 100331-24

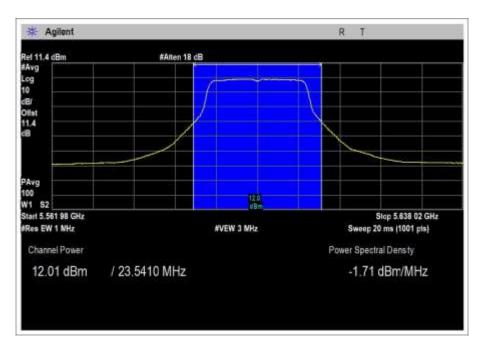
UNII 3 Test Data Summary - RF Conducted Measurement							
Measurement Option: AVGSA-1							
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/MHz)	Limit (dBm/MHz)	Results		
20MHz Channel BW							
5745	OFDM	17.5dBi 30DegHorn	1.642	≤ 18.5	Pass		
5785	OFDM	17.5dBi 30DegHorn	1.752	≤ 18.5	Pass		
5840	OFDM	17.5dBi 30DegHorn	2.060	≤ 18.5	Pass		
5745	OFDM	13 dBi 50DegHorn	5.027	≤ 23	Pass		
5785	OFDM	13 dBi 50DegHorn	5.197	≤ 23	Pass		
5840	OFDM	13 dBi 50DegHorn	5.519	≤ 23	Pass		
5745	OFDM	9dBi 90DegHron	5.226	≤ 27	Pass		
5785	OFDM	9 dBi 90DegHron	6.353	≤ 27	Pass		
5840	OFDM	9 dBi 90DegHron	6.663	≤27	Pass		
5745	OFDM	28dBi Dish	7.595	≤ 30	Pass		
5795	OFDM	28dBi Dish	8.091	≤ 30	Pass		
5840	OFDM	28dBi Dish	8.371	≤ 30	Pass		
		40MHz Channe	el BW				
5760	OFDM	17.5dBi 30DegHorn	0.391	≤ 18.5	Pass		
5800	OFDM	17.5dBi 30DegHorn	0.964	≤ 18.5	Pass		
5825	OFDM	17.5dBi 30DegHorn	1.240	≤ 18.5	Pass		
5760	OFDM	13 dBi 50DegHorn	2.566	≤ 23	Pass		
5800	OFDM	13 dBi 50DegHorn	2.785	≤ 23	Pass		
5840	OFDM	13 dBi 50DegHorn	2.745	≤ 23	Pass		
5760	OFDM	9dBi 90DegHron	3.335	≤ 27	Pass		
5800	OFDM	9 dBi 90DegHron	3.404	≤ 27	Pass		
5840	OFDM	9 dBi 90DegHron	4.031	≤27	Pass		
5745	OFDM	28dBi Dish	2.171	≤ 30	Pass		
5785	OFDM	28dBi Dish	2.262	≤ 30	Pass		
5825	OFDM	28dBi Dish	0.956	≤ 30	Pass		

Page 80 of 197 Report No.: 100331-24

UNII 3 Test Data Summary - RF Conducted Measurement - continued						
Measurement Option: AVGSA-1						
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured (dBm/MHz)	Limit (dBm/MHz)	Results	
		80MHz Chann	el BW			
5815	OFDM	17.5dBi 30DegHorn	-4.513	≤ 18.5	Pass	
5820	OFDM	17.5dBi 30DegHorn	-4.709	≤ 18.5	Pass	
5815	OFDM	13 dBi 50DegHorn	-1.641	≤ 23	Pass	
5820	OFDM	13 dBi 50DegHorn	-1.587	≤ 23	Pass	
5840	OFDM	13 dBi 50DegHorn	-4.634	≤ 23	Pass	
5815	OFDM	9dBi 90DegHron	-2.871	≤ 27	Pass	
5840	OFDM	9 dBi 90DegHron	-2.93	≤ 27	Pass	
5760	OFDM	28dBi Dish	-7.325	≤ 8	Pass	
5785	OFDM	28dBi Dish	-4.410	≤ 8	Pass	
5815	OFDM	28dBi Dish	-9.516	≤8	Pass	

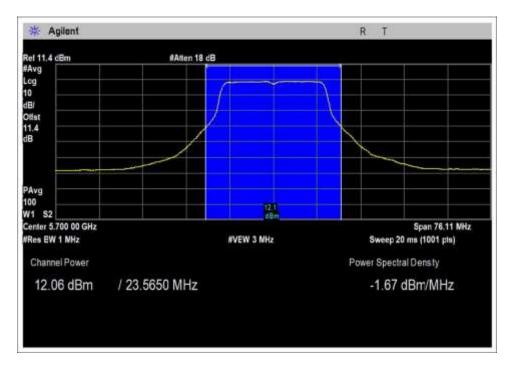

The limit is calculated in accordance with 15.407(a)(3): Limit = 30 - Roundup(G - 6)

Page 81 of 197 Report No.: 100331-24

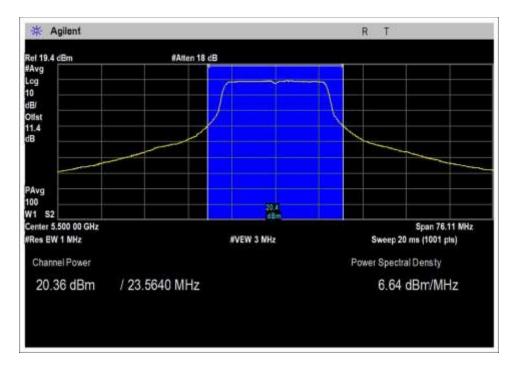


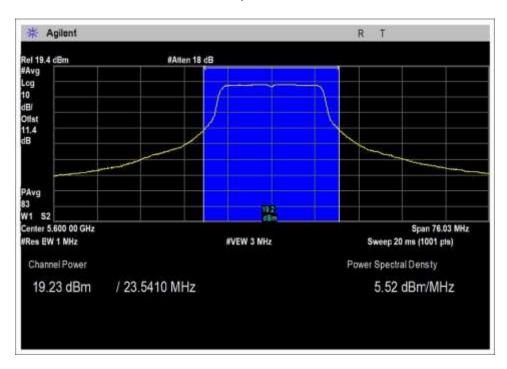
Plots UNII 2c

20MHz / 30Deg / 17.5dBi

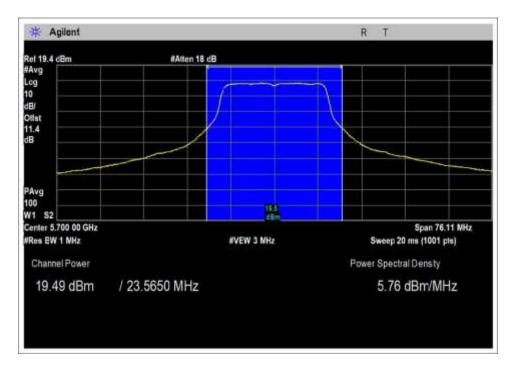


LB Set 14.5


MB Set 14

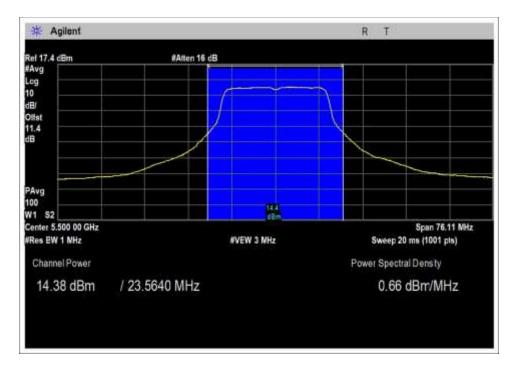


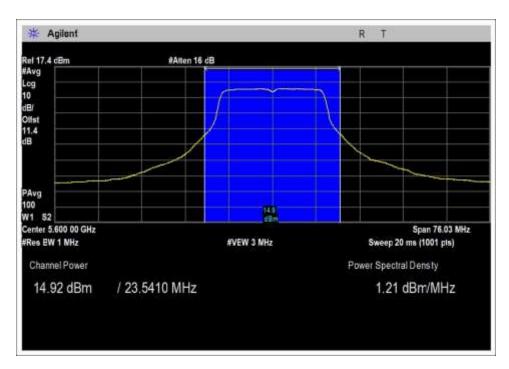
HB Set 13.5



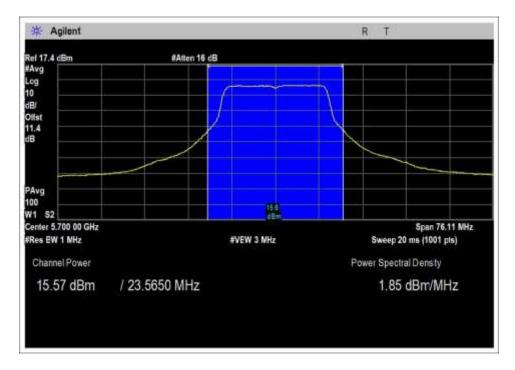
LB, Set 22

MB, Set 21



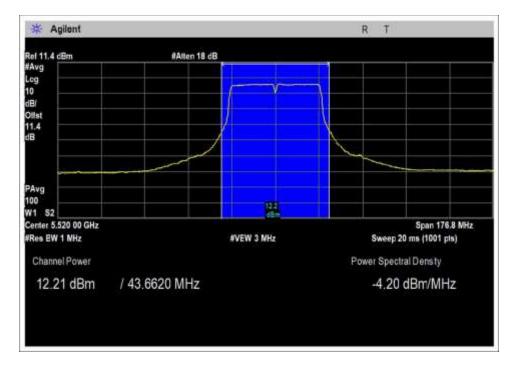

HB, Set 21

20MHz / HexHorn / 13dBi



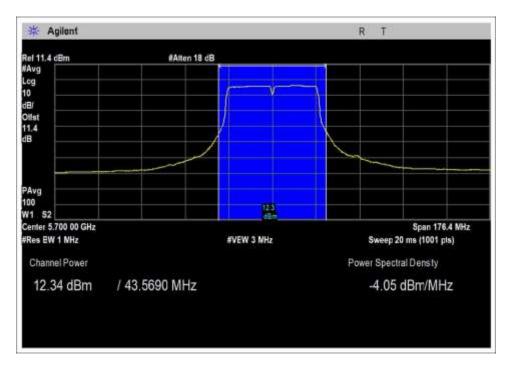
LB Set 16.5

MB, Set 16.5

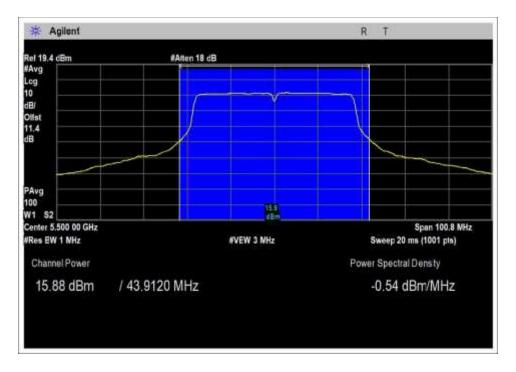


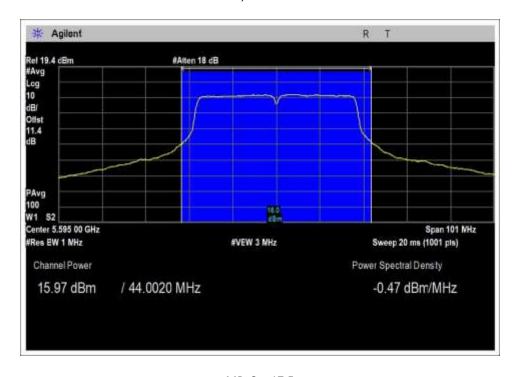
HB, Set 16.5

40MHz / 30Deg / 17.5dBi

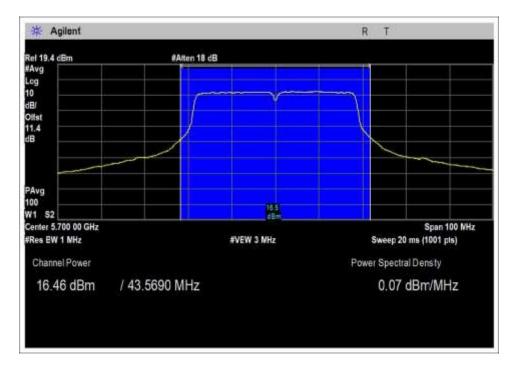


LB, Set 14


MB, Set 14

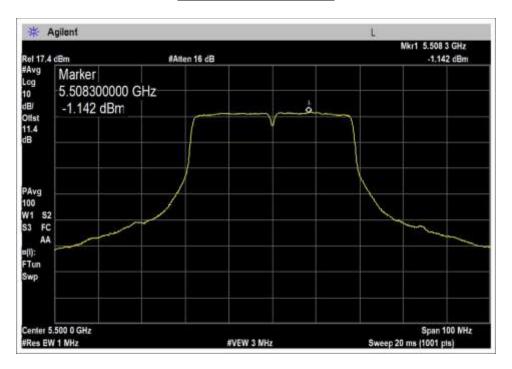


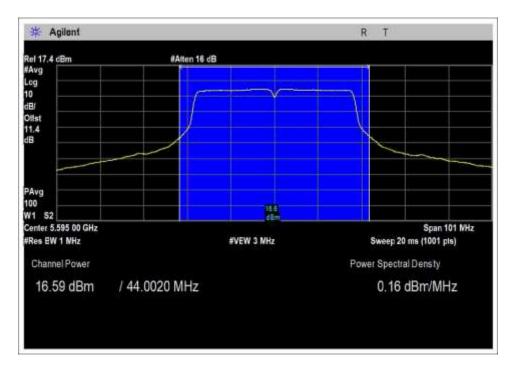
HB, Set 13.5



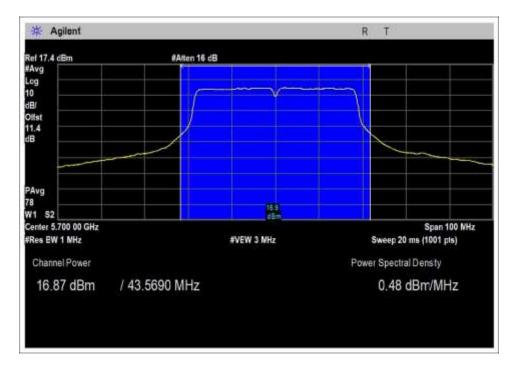
LB, Set 17.5

MB, Set 17.5



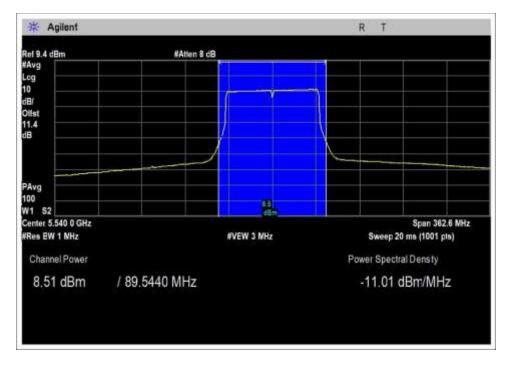

HB, Set 17.5

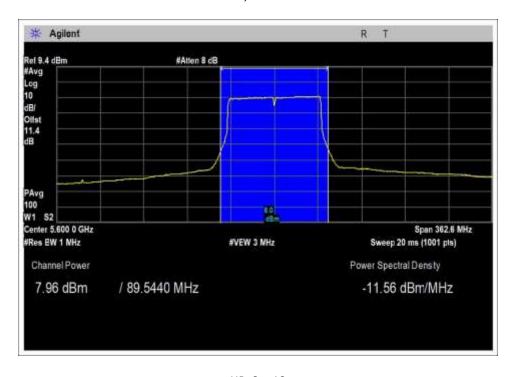
40MHz / HexHorn / 13dBi



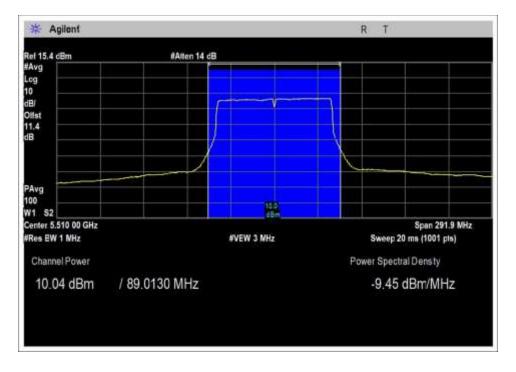
LB, Set 17

MB, Set 17

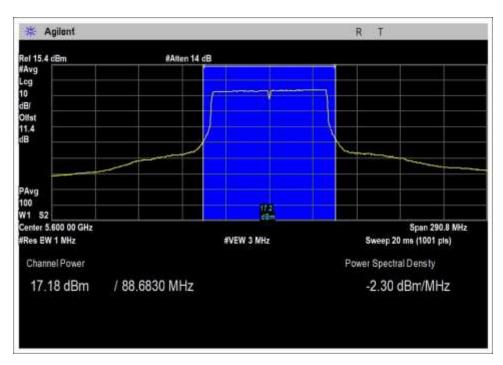



HB, Set 17

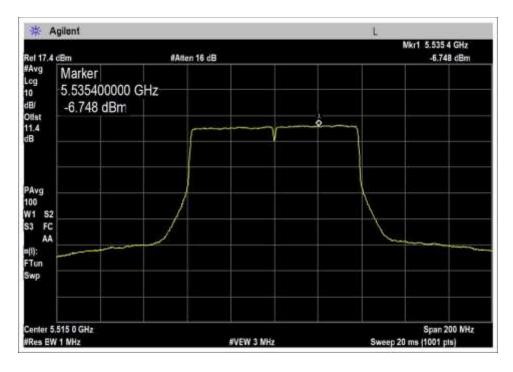
80MHz / 30Deg / 17.5dBi

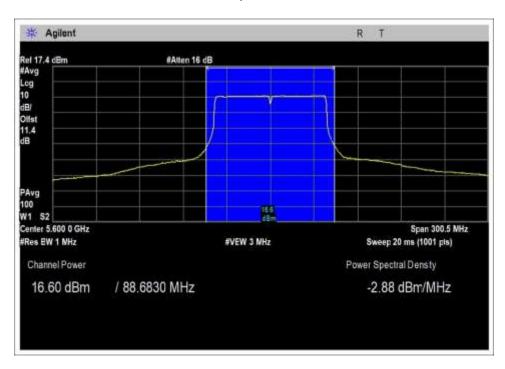


LB, Set 10



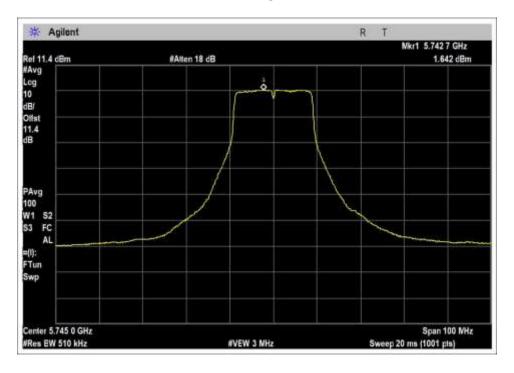
HB, Set 10


LB, Set 11.5

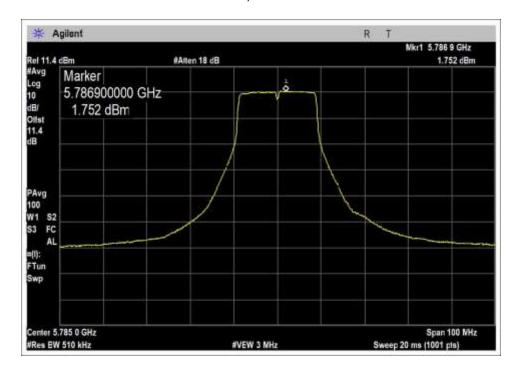

HB, Set 19

80MHz / HexHorn / 13dBi

LB, Set 13

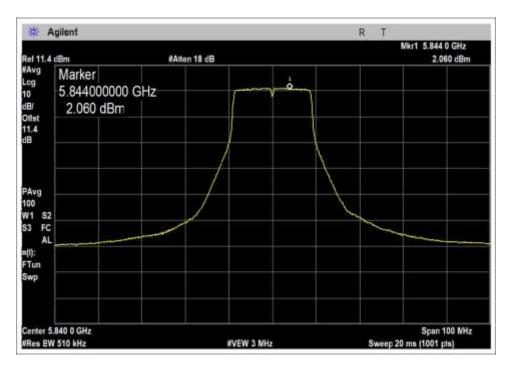


HB, Set 17

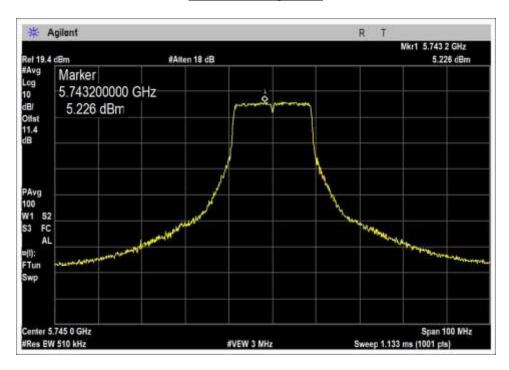


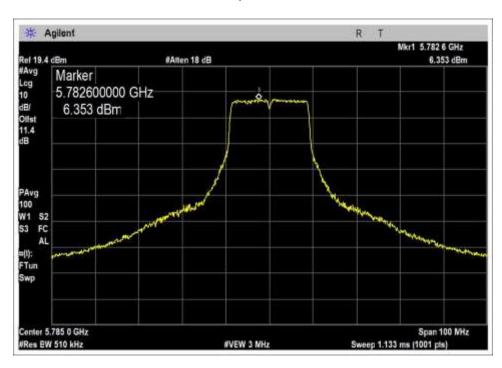
UNII 3

20MHz / 30Deg / 17.5dBi

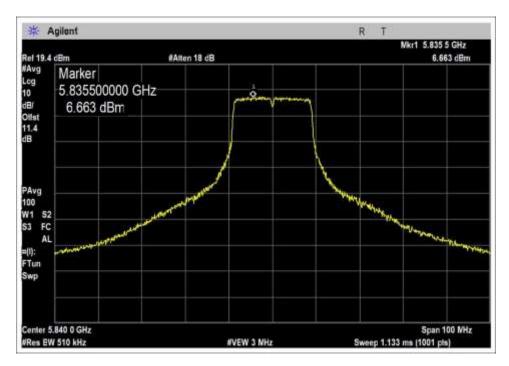


LB, Set 18


MB, Set 18



HB, Set 18

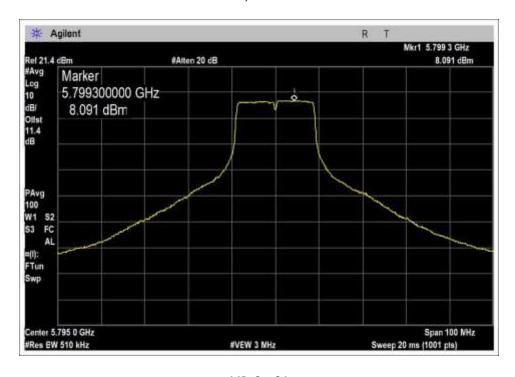


LB, Set 21

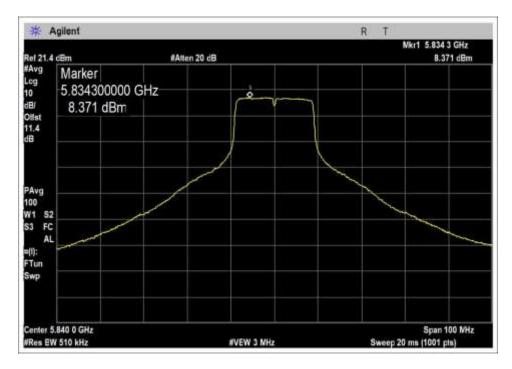
MB, Set 22



HB, Set 22

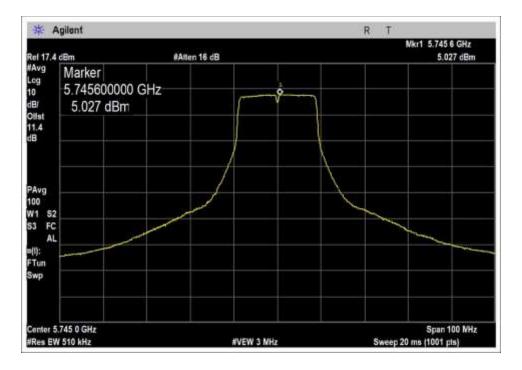

Page 100 of 197 Report No.: 100331-24

20MHz / Dish / 28dBi

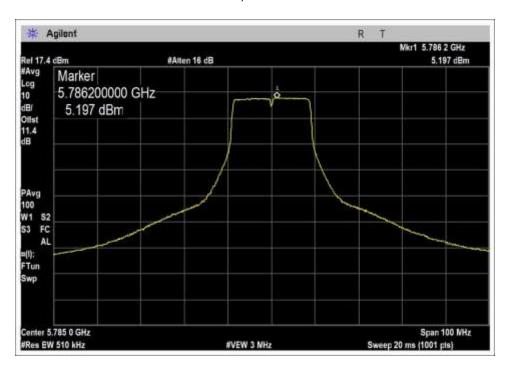


LB, Set 24

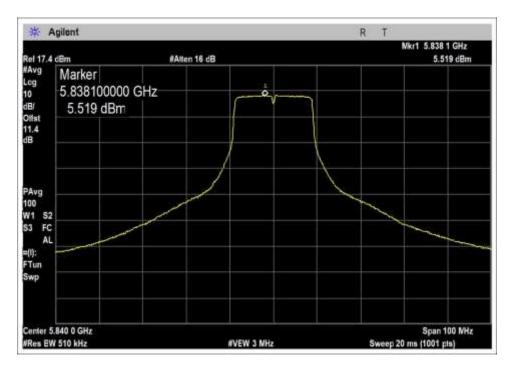
MB, Set 24



HB, Set 24

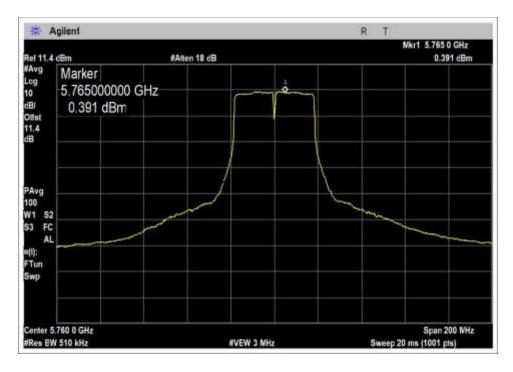

Page 102 of 197 Report No.: 100331-24

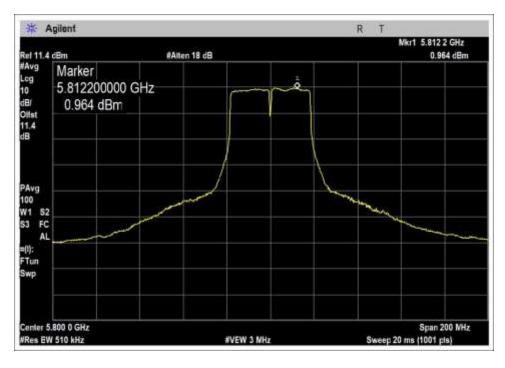
20MHz / HexHorn / 13dBi



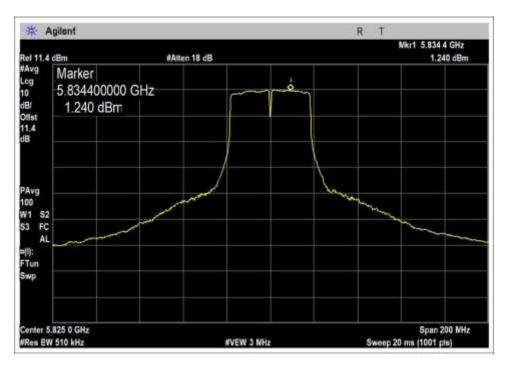
LB, Set 20

MB, Set 20



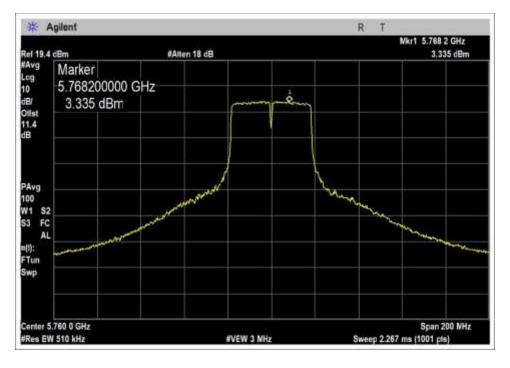

HB, Set 20

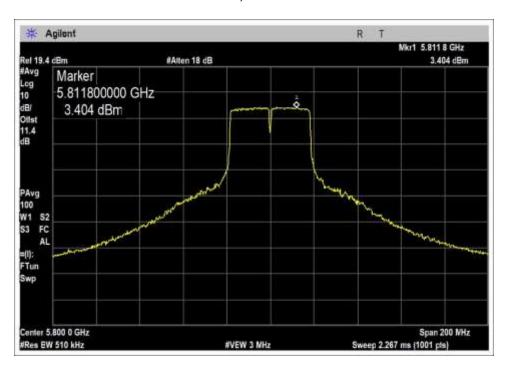
40MHz / 30Deg / 17.5dBi



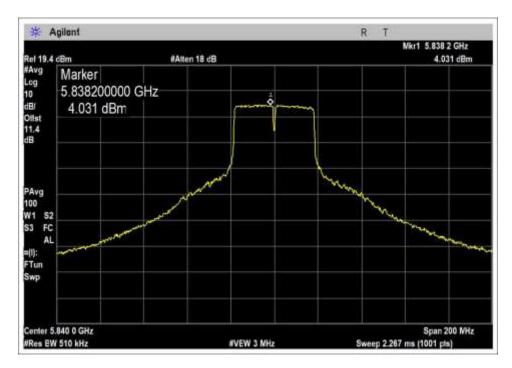
LB, Set 19.5

MB, Set 19.5



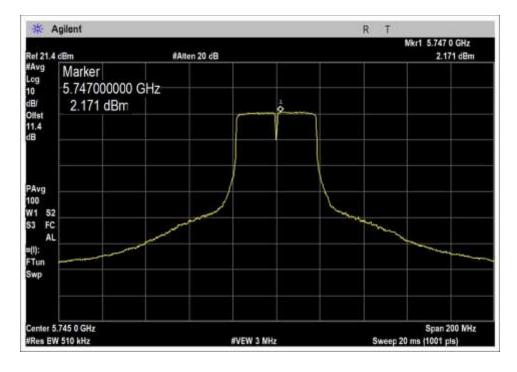

HB, Set 19.5

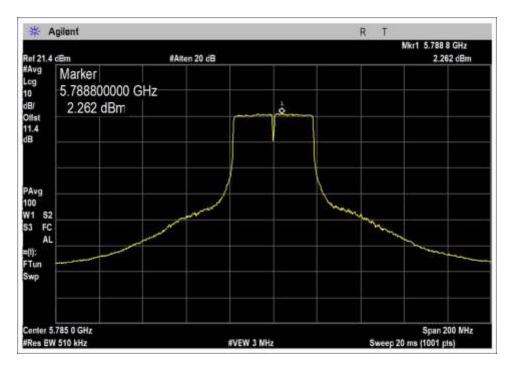
Page 106 of 197 Report No.: 100331-24



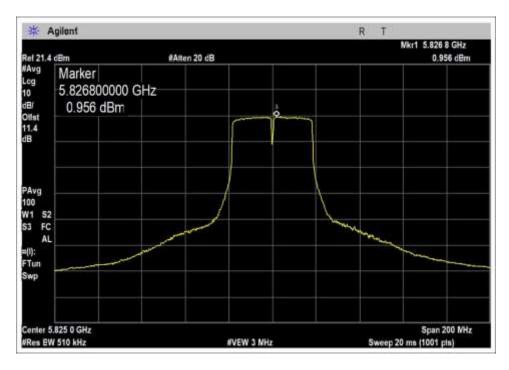
LB, Set 22

MB, Set 22



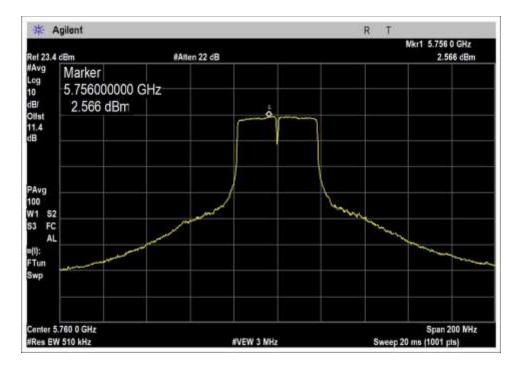

HB, Set 22

40MHz / Dish / 28dBi

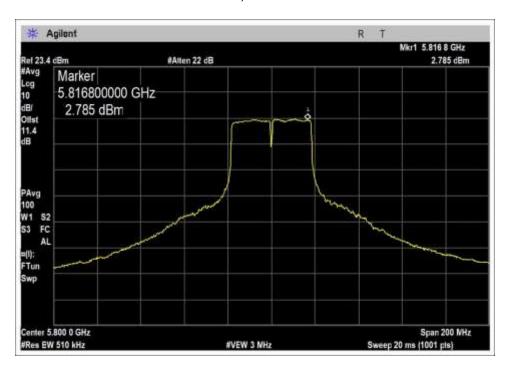


LB, Set 21

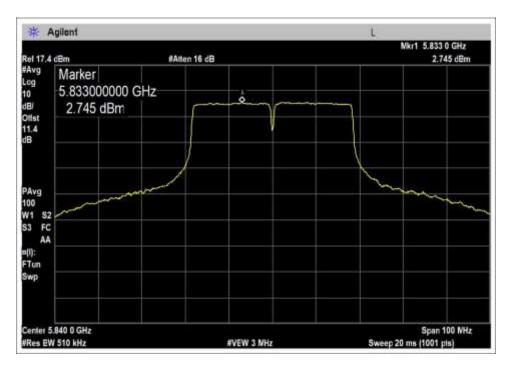
MB, Set 21



HB, Set 19

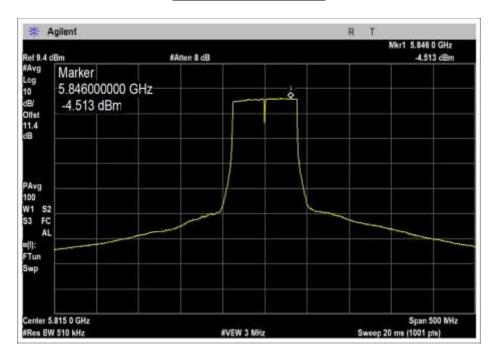

Page 110 of 197 Report No.: 100331-24

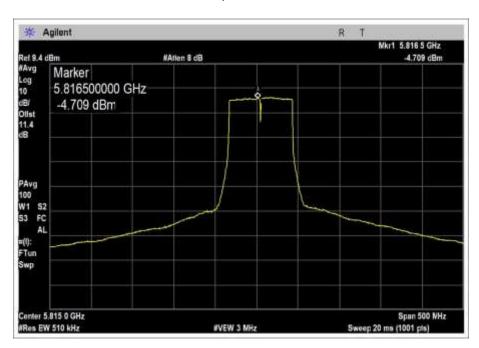
40MHz / HexHorn / 13dBi



LB, Set 20

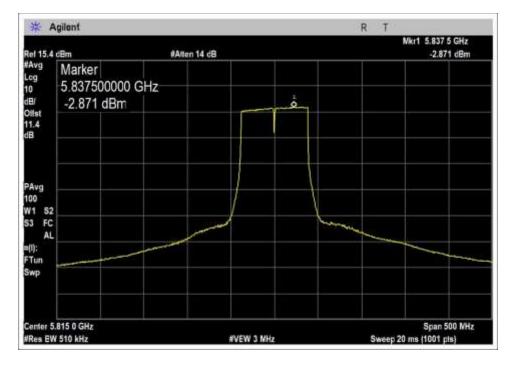
MB, Set 20



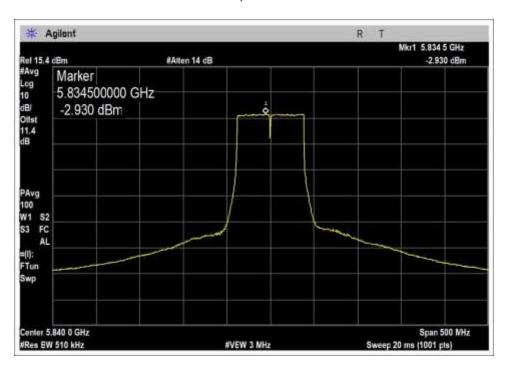

HB, Set 22

80MHz / 30Deg / 17.5dBi

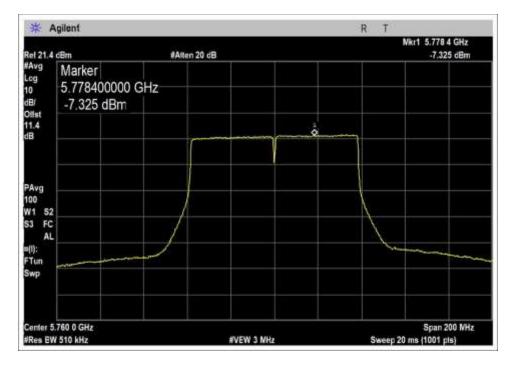
LB, Set 17.5

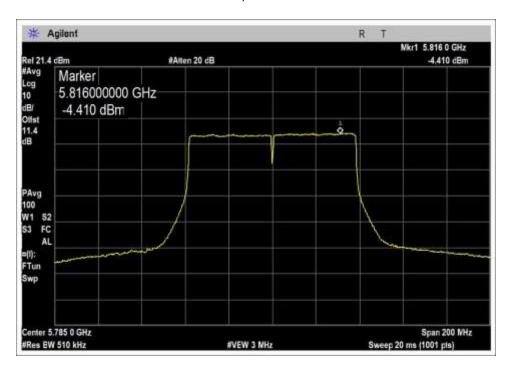

HB, Set 17.5

Note: The output power measurement was re-measured and after re-measuring, it has been determined that the data reported is valid and represents worst-case.

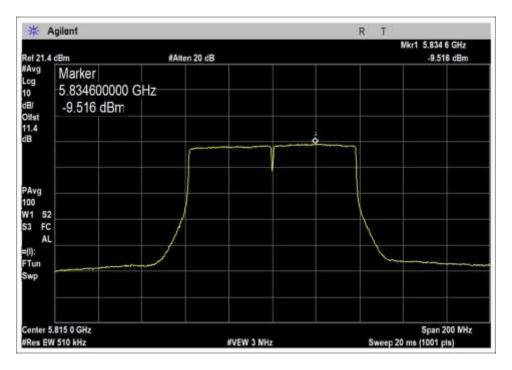

Page 113 of 197 Report No.: 100331-24

80MHz / 90Deg / 9dBi


LB, Set 19

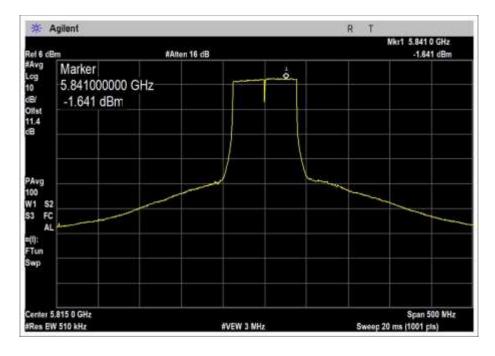

HB, Set 19

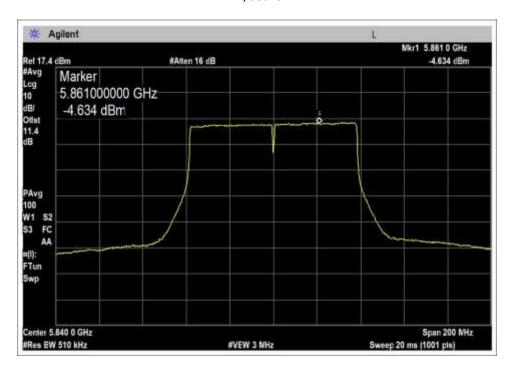
80MHz / Dish / 28dBi



LB, Set 15

MB, Set 17.5




HB, Set 12

80MHz / HexHorn / 13dBi

LB, Set 19

HB, Set 19

Test Setup Photos

Page 118 of 197 Report No.: 100331-24

15.407(b), (b)(1), (b)(3), & (b)(4) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b) / 15.209 Radiated Spurious Emissions

Work Order #: 100331 Date: 10/4/2017
Test Type: Radiated Scan Time: 14:41:25
Tested By: Benny Lovan Sequence#: 5

Software: EMITest 5.03.11

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 7

Support Equipment:

Device Manufacturer Model # S/N
Configuration 7

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP and PTP applications.

Modulation used: OFDM (802.11ac) Unit is outputting on all three radios.

Antenna: All Antennas

Operational Frequency: Radio 1 is at 5745MHz, Radio 2: 5540MHz and Radio 3: 5180MHz

Data Rate:

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate =86Mbps per chain Radio 3: 5240MHz – Max Data Rate =86Mbps per chain

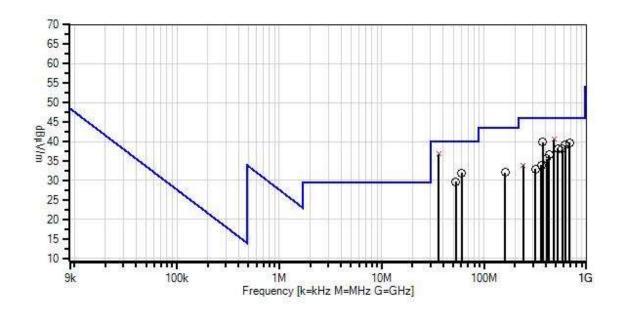
Power Output Setting: all radios set to 17dBm

Frequency Range Investigated: 30-1000M

Highest Generated Frequency not related to radio: 1.4GHz

Temperature: 18°C Rel. Humidity: 27%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)


This data sheet is for all antennas. The radio is identical in every configuration with the antenna being the only thing that changes. The radio is exercising all three radios within the system. For the HexHorn, all radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 119 of 197 Report No.: 100331-24

Digital Path WO#: 100331 Sequence#: 5 Date: 10/4/2017 15.407(b) / 15.209 Radiated Spurious Emissions Test Distance: 10 Meters Horiz

ReadingsQP Readings

▼ Ambient

1 - 15.407(b) / 15.209 Radiated Spurious Emissions

O Peak Readings

Average Readings Software Version: 5.03.11

> Page 120 of 197 Report No.: 100331-24

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN01993	Biconilog Antenna	CBL6111C	11/1/2016	11/1/2018
T2	ANP05656	Attenuator	PE7004-6	12/22/2015	12/22/2017
T3	AN00449	Preamp-Top Amp (dB)	8447F	2/18/2016	2/18/2018
T4	ANP06847	Cable	LMR195-FR-6	7/31/2017	7/31/2019
T5	ANP06883	Cable	LMR195-FR-3	8/2/2017	8/2/2019
T6	ANP04249	Cable	CXTA04A-50	3/3/2016	3/3/2018
T7	ANP06230	Cable-Amplitude +15C	CXTA04A-50	11/29/2016	11/29/2018
		to +45C (dB)			
Т8	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 10 Meter	rs.	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	35.910M	30.5	+15.5	+6.0	-27.1	+0.2	+10.5	36.8	40.0	-3.2	Vert
	QP		+0.1	+0.5	+0.6	+0.0					
^	35.910M	52.0	+15.5	+6.0	-27.1	+0.2	+10.5	58.3	40.0	+18.3	Vert
			+0.1	+0.5	+0.6	+0.0					
3	479.998M	28.5	+17.7	+6.0	-27.6	+0.7	+10.5	40.6	46.0	-5.4	Horiz
	QP		+0.4	+1.8	+2.6	+0.0					
^	479.998M	31.6	+17.7	+6.0	-27.6	+0.7	+10.5	43.7	46.0	-2.3	Horiz
			+0.4	+1.8	+2.6	+0.0					
5	375.100M	29.9	+15.4	+6.0	-26.8	+0.6	+10.5	39.8	46.0	-6.2	Horiz
			+0.4	+1.6	+2.2	+0.0					
6	685.100M	24.0	+20.6	+6.0	-27.9	+0.8	+10.5	39.7	46.0	-6.3	Horiz
			+0.4	+2.2	+3.1	+0.0					
7	622.850M	23.8	+20.4	+6.0	-27.9	+0.8	+10.5	39.1	46.0	-6.9	Vert
			+0.4	+2.1	+3.0	+0.0					
8	524.700M	25.0	+18.7	+6.0	-27.7	+0.7	+10.5	38.2	46.0	-7.8	Horiz
			+0.4	+1.9	+2.7	+0.0					
9	581.700M	23.5	+19.9	+6.0	-27.9	+0.8	+10.5	38.1	46.0	-7.9	Vert
			+0.4	+2.0	+2.9	+0.0					
10	60.326M	34.9	+5.8	+6.0	-27.1	+0.3	+10.5	31.9	40.0	-8.1	Vert
			+0.1	+0.6	+0.8	+0.0					
11	431.700M	25.5	+16.7	+6.0	-27.3	+0.7	+10.5	36.5	46.0	-9.5	Vert
			+0.3	+1.7	+2.4	+0.0					

Page 121 of 197 Report No.: 100331-24

12	53.142M	31.3	+7.4	+6.0	-27.2	+0.2	+10.5	29.7	40.0	-10.3	Horiz
			+0.1	+0.6	+0.8	+0.0					
13	409.000M	24.9	+16.2	+6.0	-27.2	+0.7	+10.5	35.5	46.0	-10.5	Horiz
			+0.4	+1.7	+2.3	+0.0					
14	160.034M	28.8	+10.5	+6.0	-26.8	+0.4	+10.5	32.0	43.5	-11.5	Horiz
			+0.2	+1.0	+1.4	+0.0					
15	361.710M	24.3	+15.1	+6.0	-26.7	+0.6	+10.5	33.9	46.0	-12.1	Vert
			+0.3	+1.6	+2.2	+0.0					
16	240.000M	28.0	+12.0	+6.0	-26.4	+0.5	+10.5	33.9	46.0	-12.1	Vert
	QP		+0.3	+1.3	+1.7	+0.0					
^	240.000M	35.4	+12.0	+6.0	-26.4	+0.5	+10.5	41.3	46.0	-4.7	Vert
			+0.3	+1.3	+1.7	+0.0					
18	318.878M	24.3	+14.0	+6.0	-26.2	+0.6	+10.5	32.9	46.0	-13.1	Vert
			+0.3	+1.4	+2.0	+0.0					

Page 122 of 197 Report No.: 100331-24

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices

Work Order #: 100331 Date: 11/2/2017
Test Type: Radiated Scan Time: 15:40:00
Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP and PTP applications.

Modulation used: OFDM (802.11ac)

Antenna: All Antennas

Operational Frequency: Radio 1 is at 5745MHz, Radio 2: 5540MHz and Radio 3: 5180MHz

Data Rate:

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate = 86Mbps per chain

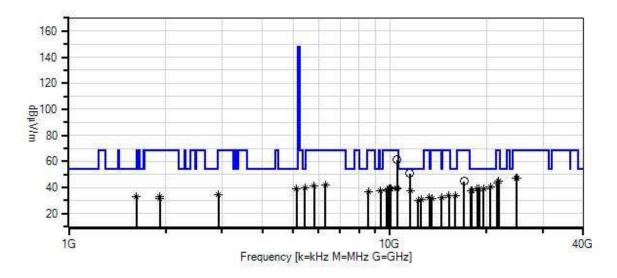
Radio 3: 5240MHz - Max Data Rate =86Mbps per chain. Power Output Setting: all radios set to 17dBm

Frequency Range Investigated: 1-26.5G

Highest Generated Frequency not related to radio: 1.4GHz

Temperature: 20.9°C Rel. Humidity: 46.1%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)


This data sheet is for all antennas. The radio is identical in every configuration with the antenna being the only thing that changes. The radio is exercising all three radios within the system. For the HexHorn, all radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 123 of 197 Report No.: 100331-24

Digital Path WO#: 100331 Sequence#: 6 Date: 11/2/2017 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices Test Distance: 3 Meters Horiz

--- Readings

- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient

Software Version: 5.03.11

1 - 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02115	Preamp	83051A	2/27/2017	2/27/2019
T2	AN00327	Horn Antenna	3115	3/4/2016	3/4/2018
T3	AN03361	Cable	32022-2-29094-	1/10/2017	1/10/2019
			48TC		
T4	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018
T5	AN03543	Cable	32022-29094K-	11/2/2015	11/2/2017
			29094K-10M		
T6	ANP06239	Attenuator	54A-10	8/8/2016	8/8/2018
T7	AN01417	High Pass Filter	84300-80039	1/18/2016	1/18/2018
T8	AN03366	Horn Antenna-ANSI	GH-62-25	2/9/2016	2/9/2018
		C63.5 Calibration			
Т9	AN02046	Horn Antenna	MWH-1826/B	10/7/2016	10/7/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Тє	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9								
	MHz	dΒμV	dB	dB	dB	dB		$dB\mu V/m$		dB	Ant
1	11527.500	31.5	-32.9	+36.5	+2.2	+0.0	+0.0	50.6	54.0	-3.4	Horiz
	M		+12.9	+0.0	+0.4	+0.0					
			+0.0								
2	10527.500	42.1	-32.1	+36.1	+2.1	+0.0	+0.0	61.2	68.2	-7.0	Horiz
	M		+12.3	+0.0	+0.7	+0.0					
			+0.0								
3	20528.500	19.1	-33.8	+0.0	+2.8	+0.0	+0.0	40.5	54.0	-13.5	Vert
	M		+17.7	+0.0	+0.9	+0.0					
	Ave	22.0	+33.8	0.0	2.0	0.0	0.0		540	0.6	T. 7 .
^	20320.300	32.0	-33.8	+0.0	+2.8	+0.0	+0.0	53.4	54.0	-0.6	Vert
	M		+17.7	+0.0	+0.9	+0.0					
	5 4 2 0 5 0 0 M	20.0	+33.8	. 21.1	. 1 5	. 0. 0	. 0. 0	20.6	540	1.4.4	TT
) 3	5429.500M	20.8	-32.5	+31.1	+1.5	+0.0	+0.0	39.6	54.0	-14.4	Horiz
	Ave		$+8.8 \\ +0.0$	+9.9	+0.0	+0.0					
	5429.500M	35.0	-32.5	+31.1	+1.5	+0.0	+0.0	53.8	54.0	-0.2	Horiz
, ,	3429.300M	33.0	-32.3 +8.8	+31.1 +9.9	+1.5 +0.0	+0.0 +0.0	+0.0	33.8	34.0	-0.2	попи
			+0.0	⊤ ⊅.⊅	+0.0	+0.0					
7	19565.000	18.3	-33.4	+0.0	+2.8	+0.0	+0.0	38.9	54.0	-15.1	Horiz
,	M	10.5	+17.1	+0.0	+0.5	+0.0	10.0	30.7	34.0	-13.1	HOHZ
	Ave		+33.6	10.0	10.5	10.0					
^	19565.000	30.6	-33.4	+0.0	+2.8	+0.0	+0.0	51.2	54.0	-2.8	Horiz
	M	20.0	+17.1	+0.0	+0.5	+0.0	10.0	31.2	5 1.0	2.0	110112
	-1-2		+33.6	. 0.0	. 0.2	. 0.0					
9	18915.000	17.5	-32.5	+0.0	+2.8	+0.0	+0.0	38.8	54.0	-15.2	Vert
	M	· · ·	+16.8	+0.0	+0.5	+0.0					
	Ave		+33.7								
^		30.9	-32.5	+0.0	+2.8	+0.0	+0.0	52.2	54.0	-1.8	Vert
	M		+16.8	+0.0	+0.5	+0.0					
			+33.7								
1											

Page 125 of 197 Report No.: 100331-24

11 18663.000	17.4	-32.5	+0.0	+2.7	+0.0	+0.0	38.8	54.0	-15.2	Horiz
M		+16.7	+0.0	+0.7	+0.0					
Ave		+33.8								
^ 18663.000	29.9	-32.5	+0.0	+2.7	+0.0	+0.0	51.3	54.0	-2.7	Horiz
M		+16.7	+0.0	+0.7	+0.0					
		+33.8								
13 5116.500M	21.2	-32.6	+30.4	+1.4	+0.0	+0.0	38.7	54.0	-15.3	Horiz
Ave		+8.4	+9.9	+0.0	+0.0					
		+0.0								
^ 5116.500M	37.3	-32.6	+30.4	+1.4	+0.0	+0.0	54.8	54.0	+0.8	Horiz
		+8.4	+9.9	+0.0	+0.0					
		+0.0								
15 9352.000M	19.1	-31.8	+36.2	+2.0	+0.0	+0.0	37.6	54.0	-16.4	Vert
Ave		+11.6	+0.0	+0.5	+0.0					
		+0.0								
^ 9352.000M	29.0	-31.8	+36.2	+2.0	+0.0	+0.0	47.5	54.0	-6.5	Vert
		+11.6	+0.0	+0.5	+0.0					
		+0.0								
17 11587.000	18.3	-32.9	+36.4	+2.2	+0.0	+0.0	37.4	54.0	-16.6	Vert
M		+13.0	+0.0	+0.4	+0.0					
Ave		+0.0								
^ 11587.000	31.4	-32.9	+36.4	+2.2	+0.0	+0.0	50.5	54.0	-3.5	Vert
M		+13.0	+0.0	+0.4	+0.0					
		+0.0								
19 17830.500	18.3	-32.5	+0.0	+2.6	+0.0	+0.0	37.2	54.0	-16.8	Horiz
M		+16.4	+0.0	+1.1	+31.3					
Ave		+0.0								
^ 17830.500	28.9	-32.5	+0.0	+2.6	+0.0	+0.0	47.8	54.0	-6.2	Horiz
M		+16.4	+0.0	+1.1	+31.3					
		+0.0								
21 17988.300	18.0	-32.5	+0.0	+2.6	+0.0	+0.0	37.1	54.0	-16.9	Vert
M		+16.4	+0.0	+1.2	+31.4					
Ave		+0.0								
^ 17988.300	28.5	-32.5	+0.0	+2.6	+0.0	+0.0	47.6	54.0	-6.4	Vert
M		+16.4	+0.0	+1.2	+31.4					
		+0.0								
23 15988.300	19.2	-34.3	+0.0	+2.5	+0.0	+0.0	33.6	54.0	-20.4	Vert
M		+15.3	+0.0		+30.1					
Ave		+0.0								
^ 15988.300	29.3	-34.3	+0.0	+2.5	+0.0	+0.0	43.7	54.0	-10.3	Vert
M		+15.3	+0.0	+0.8	+30.1					
		+0.0								
25 1625.000M	29.9	-35.6	+23.2	+0.8	+0.0	+0.0	32.8	54.0	-21.2	Horiz
Ave		+4.6	+9.9	+0.0	+0.0					
		+0.0								
^ 1625.000M	38.4	-35.6	+23.2	+0.8	+0.0	+0.0	41.3	54.0	-12.7	Horiz
		+4.6	+9.9	+0.0	+0.0					
		+0.0		. 0.0	. 0.0					
27 24768.000	23.7	-34.0	+0.0	+3.2	+0.0	+0.0	46.9	68.2	-21.3	Vert
M		+19.6	+0.0	+0.0	+0.0					
Ave		+34.4	. 0.0	. 0.0	. 0.0					

Page 126 of 197 Report No.: 100331-24

^ 24768.000	36.7	-34.0	+0.0	+3.2	+0.0	+0.0	59.9	68.2	-8.3	Vert
M		+19.6	+0.0	+0.0	+0.0					
		+34.4								
29 24730.000	23.8	-34.0	+0.0	+3.2	+0.0	+0.0	46.9	68.2	-21.3	Horiz
M		+19.6	+0.0	+0.0	+0.0					
Ave		+34.3								
^ 24730.000	35.2	-34.0	+0.0	+3.2	+0.0	+0.0	58.3	68.2	-9.9	Horiz
M		+19.6	+0.0	+0.0	+0.0					
		+34.3								
31 13250.000	20.1	-33.6	+0.0	+2.2	+0.0	+0.0	32.0	54.0	-22.0	Horiz
M		+14.0	+0.0	+0.5	+28.8					
Ave		+0.0								
^ 13250.000	30.4	-33.6	+0.0	+2.2	+0.0	+0.0	42.3	54.0	-11.7	Horiz
M		+14.0	+0.0	+0.5	+28.8					
		+0.0								
33 14488.300	19.7	-34.4	+0.0	+2.3	+0.0	+0.0	31.9	54.0	-22.1	Vert
M	17.7	+14.6	+0.0	+0.4	+29.3	. 0.0	01.,	0		, 010
Ave		+0.0	10.0	10.1	127.3					
^ 14488.300	31.5	-34.4	+0.0	+2.3	+0.0	+0.0	43.7	54.0	-10.3	Vert
M	51.5	+14.6	+0.0	+0.4	+29.3	10.0	13.7	51.0	10.5	, 616
111		+0.0	10.0	10.1	127.3					
35 12488.300	19.1	-33.2	+0.0	+2.2	+0.0	+0.0	30.7	54.0	-23.3	Vert
M	17.1	+13.5	+0.0	+0.5	+28.6	10.0	30.7	31.0	23.3	V 011
Ave		+0.0	10.0	10.5	120.0					
^ 12488.300	31.8	-33.2	+0.0	+2.2	+0.0	+0.0	43.4	54.0	-10.6	Vert
M	31.0	+13.5	+0.0	+0.5	+28.6	10.0	73.7	34.0	-10.0	VCIT
IVI		+0.0	+0.0	+0.5	⊤20.0					
37 16988.300	28.4	-33.4	+0.0	+2.5	+0.0	+0.0	44.8	68.2	-23.4	Vert
M	20.4	+15.9	+0.0	+0.8	+30.6	+0.0	44.0	06.2	-23.4	VEIL
IVI		+0.0	+0.0	+0.8	+30.0					
38 21781.500	18.7		+0.0	+3.0	ι Ο Ο	+0.0	44.7	68.2	-23.5	Vont
	16.7	-31.4			+0.0	+0.0	44.7	08.2	-23.3	Vert
M		+18.2	+0.0	+1.6	+0.0					
Ave	21.7	+34.6	0.0	2.0	0.0	0.0		60.2	10.7	X 7 .
^ 21781.500	31.7	-31.4	+0.0	+3.0	+0.0	+0.0	57.7	68.2	-10.5	Vert
M		+18.2	+0.0	+1.6	+0.0					
40 40050 000	10.6	+34.6	0.0		0.0	0.0	20.2	7 40	22.0	** .
	18.6		+0.0	+2.2	+0.0	+0.0	30.2	54.0	-23.8	Horiz
M		+13.4	+0.0	+0.6	+28.5					
Ave		+0.0								
^ 12250.000	29.3	-33.1	+0.0	+2.2	+0.0	+0.0	40.9	54.0	-13.1	Horiz
M		+13.4	+0.0	+0.6	+28.5					
		+0.0								
42 21567.000	17.9	-31.7	+0.0	+3.0	+0.0	+0.0	43.4	68.2	-24.8	Horiz
M		+18.2	+0.0	+1.5	+0.0					
Ave		+34.5								
^ 21567.000	30.8	-31.7	+0.0	+3.0	+0.0	+0.0	56.3	68.2	-11.9	Horiz
M		+18.2	+0.0	+1.5	+0.0					
		+34.5								
44 6298.500M	19.7	-31.8	+32.8	+1.6	+0.0	+0.0	41.6	68.2	-26.6	Vert
Ave		+9.4	+9.9	+0.0	+0.0					
		+0.0								

Page 127 of 197 Report No.: 100331-24

^	6298.500M	30.3	-31.8	+32.8	+1.6	+0.0	+0.0	52.2	68.2	-16.0	Vert
			+9.4	+9.9	+0.0	+0.0					
			+0.0								
46	5798.500M	21.5	-32.2	+31.7	+1.5	+0.0	+0.0	41.4	68.2	-26.8	Vert
	Ave		+9.0	+9.9	+0.0	+0.0					
			+0.0								
^	5798.500M	39.0	-32.2	+31.7	+1.5	+0.0	+0.0	58.9	68.2	-9.3	Vert
			+9.0	+9.9	+0.0	+0.0					
			+0.0								
48	5797.000M	21.1	-32.2	+31.7	+1.5	+0.0	+0.0	41.0	68.2	-27.2	Horiz
	Ave		+9.0	+9.9	+0.0	+0.0					
			+0.0								
^	5797.000M	37.8	-32.2	+31.7	+1.5	+0.0	+0.0	57.7	68.2	-10.5	Horiz
			+9.0	+9.9	+0.0	+0.0					
			+0.0								
50	10537.978	20.5	-32.1	+36.1	+2.1	+0.0	+0.0	39.6	68.2	-28.6	Horiz
	M		+12.3	+0.0	+0.7	+0.0					
	Ave		+0.0								
^	10537.978	46.4	-32.1	+36.1	+2.1	+0.0	+0.0	65.5	68.2	-2.7	Horiz
	M		+12.3	+0.0	+0.7	+0.0					
			+0.0								
52	10002.500	18.9	-32.1	+37.4	+2.1	+0.0	+0.0	39.1	68.2	-29.1	Vert
	M		+12.1	+0.0	+0.7	+0.0					
	Ave		+0.0								
^	10002.500	31.0	-32.1	+37.4	+2.1	+0.0	+0.0	51.2	68.2	-17.0	Vert
	M		+12.1	+0.0	+0.7	+0.0					
			+0.0								
	9909.500M	18.9	-32.1	+37.2	+2.1	+0.0	+0.0	38.8	68.2	-29.4	Vert
	Ave		+12.0	+0.0	+0.7	+0.0					
			+0.0								
^	9909.500M	32.4	-32.1	+37.2	+2.1	+0.0	+0.0	52.3	68.2	-15.9	Vert
			+12.0	+0.0	+0.7	+0.0					
			+0.0								
56	10049.200	18.6	-32.2	+37.3	+2.1	+0.0	+0.0	38.7	68.2	-29.5	Horiz
	M		+12.1	+0.0	+0.8	+0.0					
	Ave		+0.0								
^	10049.200	37.2	-32.2	+37.3	+2.1		+0.0	57.3	68.2	-10.9	Horiz
	M			+0.0	+0.8	+0.0					
		4	+0.0						45 -		
58	10527.043	19.6	-32.1	+36.1	+2.1	+0.0	+0.0	38.7	68.2	-29.5	Horiz
	M		+12.3	+0.0	+0.7	+0.0					
	Ave		+0.0						45 -		
	9769.500M	19.0	-32.0	+36.8	+2.0	+0.0	+0.0	38.3	68.2	-29.9	Vert
	Ave		+11.9	+0.0	+0.6	+0.0					
	0840 5055	60 -	+0.0	G			<u> </u>	40.		10.	• •
_ ^	9769.500M	30.3	-32.0	+36.8	+2.0	+0.0	+0.0	49.6	68.2	-18.6	Vert
			+11.9	+0.0	+0.6	+0.0					
			+0.0						45 -		
	8549.200M	19.2	-31.5	+34.9	+1.9	+0.0	+0.0	36.6	68.2	-31.6	Horiz
	Ave		+11.1	+0.0	+1.0	+0.0					
1			+0.0								

Page 128 of 197 Report No.: 100331-24

^ 8549.200M	39.8	-31.5	+34.9	+1.9	+0.0	+0.0	57.2	68.2	-11.0	Horiz
		+11.1	+0.0	+1.0	+0.0					
		+0.0								
63 2921.500M	23.4	-33.1	+26.7	+1.1	+0.0	+0.0	34.2	68.2	-34.0	Vert
Ave		+6.2	+9.9	+0.0	+0.0					
		+0.0								
^ 2921.500M	35.5	-33.1	+26.7	+1.1	+0.0	+0.0	46.3	68.2	-21.9	Vert
		+6.2	+9.9	+0.0	+0.0					
		+0.0								
65 15250.000	20.3	-34.4	+0.0	+2.4	+0.0	+0.0	33.7	68.2	-34.5	Horiz
M		+15.0	+0.0	+0.6	+29.8					
Ave		+0.0								
^ 15250.000	31.5	-34.4	+0.0	+2.4	+0.0	+0.0	44.9	68.2	-23.3	Horiz
M		+15.0	+0.0	+0.6	+29.8					
		+0.0								
67 1921.500M	26.1	-33.6	+24.5	+0.9	+0.0	+0.0	32.8	68.2	-35.4	Vert
Ave		+5.1	+9.8	+0.0	+0.0					
		+0.0								
^ 1921.500M	42.1	-33.6	+24.5	+0.9	+0.0	+0.0	48.8	68.2	-19.4	Vert
		+5.1	+9.8	+0.0	+0.0					
		+0.0								
69 1923.500M	24.9	-33.6	+24.5	+0.9	+0.0	+0.0	31.6	68.2	-36.6	Horiz
Ave		+5.1	+9.8	+0.0	+0.0					
		+0.0								
^ 1923.500M	45.9	-33.6	+24.5	+0.9	+0.0	+0.0	52.6	68.2	-15.6	Horiz
		+5.1	+9.8	+0.0	+0.0					
		+0.0								
71 13488.300	19.4	-33.8	+0.0	+2.2	+0.0	+0.0	31.2	68.2	-37.0	Vert
M		+14.1	+0.0	+0.5	+28.8					
Ave		+0.0								
^ 13488.300	31.3	-33.8	+0.0	+2.2	+0.0	+0.0	43.1	68.2	-25.1	Vert
M		+14.1	+0.0	+0.5	+28.8					
		+0.0								

Page 129 of 197 Report No.: 100331-24

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices

Work Order #: 100331 Date: 11/10/2017

Test Type: Radiated Scan Time: 06:30:36

Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 7				

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 7			

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP and PTP applications.

Modulation used: OFDM (802.11ac)

Antenna: All Horns

Operational Frequency: Radio 1 is at 5745MHz, Radio 2: 5540MHz and Radio 3: 5180MHz

Data Rate:

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate =86Mbps per chain Radio 3: 5240MHz – Max Data Rate =86Mbps per chain

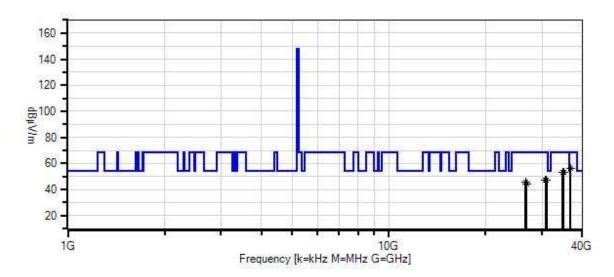
Power Output Setting: all radios set to 17dBm

Frequency Range Investigated: 26.5-40G

Highest Generated Frequency not related to radio: 1.4GHz

Temperature: 20.9°C Rel. Humidity: 46.1%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)


This data sheet is for all antennas. The radio is identical in every configuration with the antenna being the only thing that changes. The radio is exercising all three radios within the system. For the HexHorn, all radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 130 of 197 Report No.: 100331-24

Digital Path WO#: 100331 Sequence#: 6 Date: 11/10/2017 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices Test Distance: 3 Meters Vert

--- Readings

- Peak Readings
- × QP Readings
- * Average Readings
- ▼ Ambient
 - Software Version: 5.03.11

1 - 15.407(b)(1) / 15.209 Radiated Spurious Emissions - Fixed PTP Devices

Page 131 of 197 Report No.: 100331-24

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03543	Cable	32022-29094K-	11/7/2017	11/7/2019
			29094K-10M		
	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018
T2	AN02695	Active Horn Antenna-	AMFW-5F-	5/11/2017	5/11/2019
		ANSI C63.5 Calibration	260400-33-8P		

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Te	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	36762.000	28.8	+25.3	+2.1			+0.0	56.2	68.2	-12.0	Horiz
	M										
	Ave										
^	36762.000	34.1	+25.3	+2.1			+0.0	61.5	68.2	-6.7	Horiz
	M										
3	36762.000	28.8	+25.3	+2.1			+0.0	56.2	68.2	-12.0	Vert
	M										
<u> </u>	Ave	27.0	27.2	2.1			0.0			1.0	**
^	36762.000	35.9	+25.3	+2.1			+0.0	63.3	68.2	-4.9	Vert
	M										
	34762.000	25.3	+24.6	+3.0			+0.0	52.9	68.2	-15.3	Vert
3	34762.000 M	23.3	+24.0	+3.0			+0.0	32.9	08.2	-13.3	vert
	Ave										
^	34762.000	32.3	+24.6	+3.0			+0.0	59.9	68.2	-8.3	Vert
	M	32.3	124.0	13.0			10.0	37.7	00.2	0.5	VCIt
	171										
7	34967.000	25.3	+24.7	+2.9			+0.0	52.9	68.2	-15.3	Horiz
	M		. –	,							
	Ave										
^	34967.000	29.9	+24.7	+2.9			+0.0	57.5	68.2	-10.7	Horiz
	M										
9	30967.000	20.8	+22.9	+3.6			+0.0	47.3	68.2	-20.9	Horiz
	M										
	Ave										
^	30967.000	31.4	+22.9	+3.6			+0.0	57.9	68.2	-10.3	Horiz
	M										

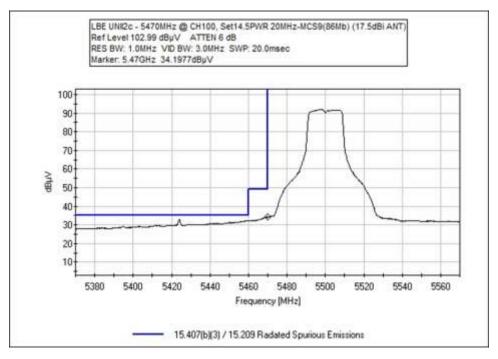
Page 132 of 197 Report No.: 100331-24

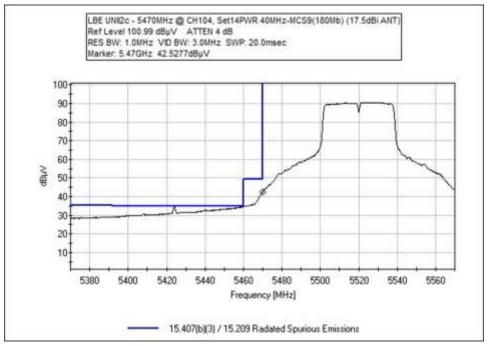
11 30762.000	21.0	+22.8	+3.5	+0.0	47.3	68.2	-20.9	Vert
M								
Ave								
^ 30762.000	32.8	+22.8	+3.5	+0.0	59.1	68.2	-9.1	Vert
M								
13 26563.000	21.7	+21.1	+2.9	+0.0	45.7	68.2	-22.5	Horiz
M								
Ave								
^ 26563.000	33.9	+21.1	+2.9	+0.0	57.9	68.2	-10.3	Horiz
M								
15 26762.000	20.5	+21.2	+2.7	+0.0	44.4	68.2	-23.8	Vert
M								
Ave								
^ 26762.000	32.8	+21.2	+2.7	+0.0	56.7	68.2	-11.5	Vert
M								
M Ave ^ 26762.000								

Page 133 of 197 Report No.: 100331-24

Band Edge

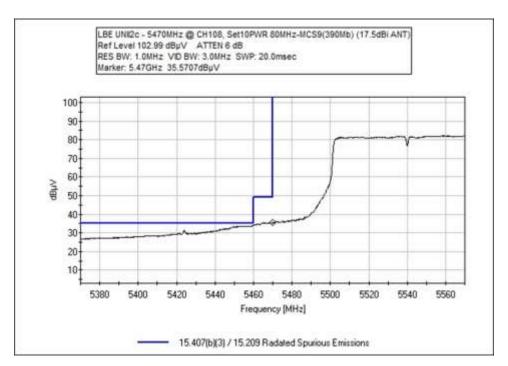
Band Edge Summary								
Frequency	Modulation	Ant. Type	Field Strength	Limit	Results			
(MHz)	Wiodulation	Ant. Type	(dBuV/m @3m)	(dBuV/m @3m)				
Low – 5500	OFDM – 20MHz	90 Degree Horn / 9dBi	55.9	< 68.2	Pass			
High – 5840	OFDM – 20MHz	90 Degree Horn / 9dBi	91.4	< 122.2	Pass			
Low - 5500	OFDM – 40MHz	90 Degree Horn / 9dBi	57.2	< 68.2	Pass			
High – 5840	OFDM – 40MHz	90 Degree Horn / 9dBi	107.6	< 122.2	Pass			
Low - 5510	OFDM – 80MHz	90 Degree Horn / 9dBi	67.9	< 68.2	Pass			
High – 5840	OFDM – 80MHz	90 Degree Horn / 9dBi	101.4	< 122.2	Pass			
Low – 5500	OFDM – 20MHz	50 Degree Horn / HexHorn 13dBi	50.8	< 68.2	Pass			
High – 5840	OFDM – 20MHz	50 Degree Horn / HexHorn 13dBi	94.3	< 122.2	Pass			
Low – 5500	OFDM – 40MHz	50 Degree Horn / HexHorn 13dBi	55.1	< 68.2	Pass			
High – 5840	OFDM – 40MHz	50 Degree Horn / HexHorn 13dBi	110.0	< 122.2	Pass			
Low – 5515	OFDM – 80MHz	50 Degree Horn / HexHorn 13dBi	55.7	< 68.2	Pass			
High – 5840	OFDM – 80MHz	50 Degree Horn / HexHorn 13dBi	103.0	< 122.2	Pass			
Low - 5500	OFDM – 20MHz	30 Degree Horn / 17.5dBi	53.5	< 68.2	Pass			
High – 5840	OFDM – 20MHz	30 Degree Horn / 17.5dBi	94.8	< 122.2	Pass			
Low – 5520	OFDM – 40MHz	30 Degree Horn / 17.5dBi	61.6	< 68.2	Pass			
High – 5825	OFDM – 40MHz	30 Degree Horn / 17.5dBi	89.8	< 122.2	Pass			
Low - 5540	OFDM – 80MHz	30 Degree Horn / 17.5dBi	54.5	< 68.2	Pass			
High – 5820	OFDM – 80MHz	30 Degree Horn / 17.5dBi	107.0	< 122.2	Pass			
Low – 5745	OFDM – 20MHz	PacWireless Dish / 28dBi	90.0	< 68.2	Pass			
High – 5840	OFDM – 20MHz	PacWireless Dish / 28dBi	112.5	< 122.2	Pass			
Low – 5745	OFDM – 40MHz	PacWireless Dish / 28dBi	100.6	< 68.2	Pass			
High – 5825	OFDM – 40MHz	PacWireless Dish / 28dBi	86.3	< 122.2	Pass			
Low – 5760	OFDM – 80MHz	PacWireless Dish / 28dBi	115.0	< 68.2	Pass			
High – 5815	OFDM – 80MHz	PacWireless Dish / 28dBi	113.8	< 122.2	Pass			


Page 134 of 197 Report No.: 100331-24

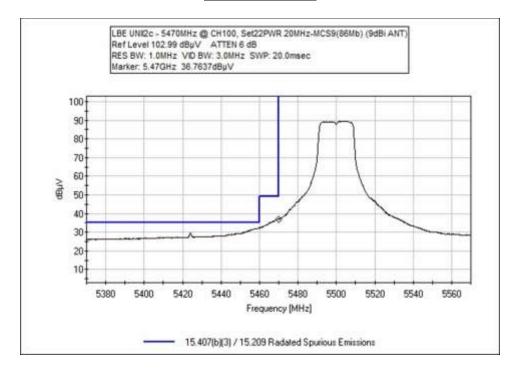


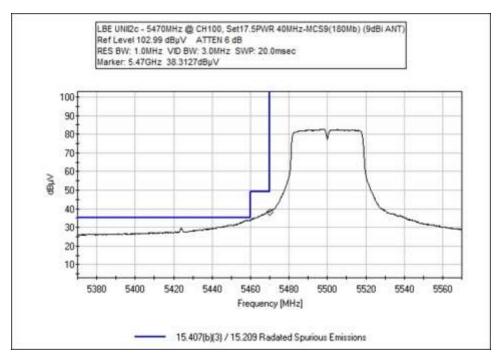
Band Edge Plots

UNII 2c

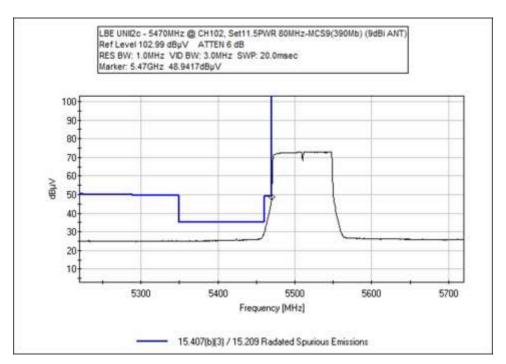

30Deg / 17.5dBi

Page 135 of 197 Report No.: 100331-24

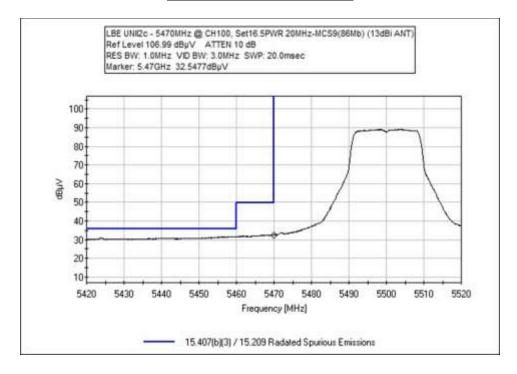


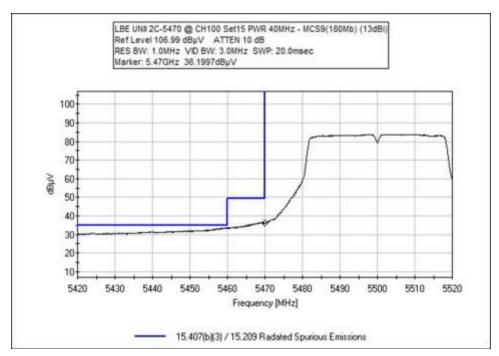


Page 136 of 197 Report No.: 100331-24

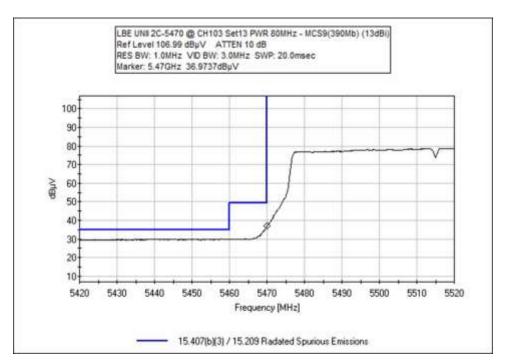

90Deg Horn / 9dBi

Page 137 of 197 Report No.: 100331-24

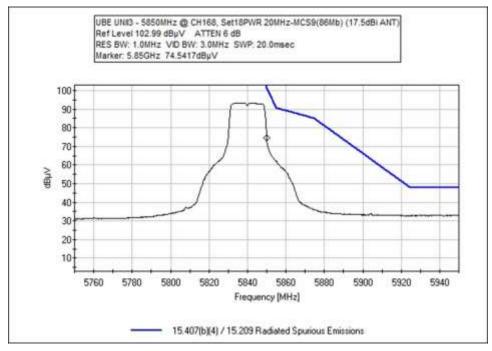


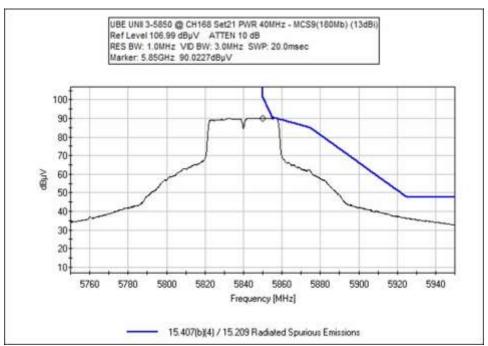


Page 138 of 197 Report No.: 100331-24

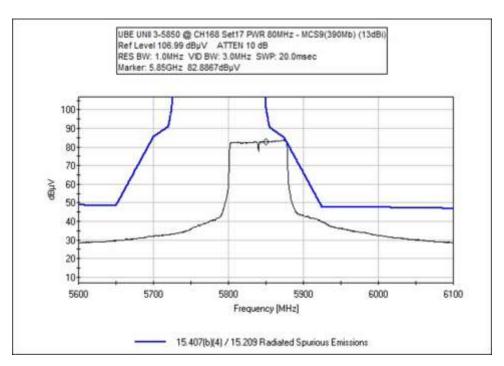

HexHorn / 50Deg Horn / 13dBi

Page 139 of 197 Report No.: 100331-24

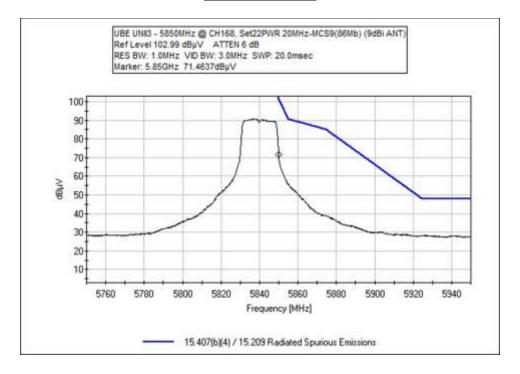


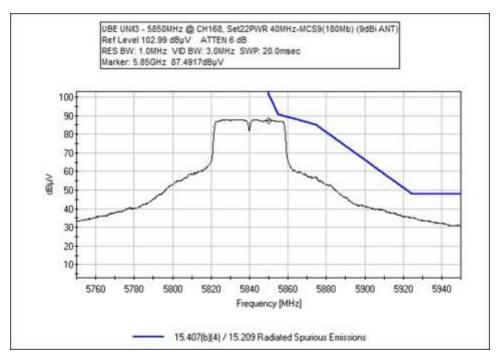

Page 140 of 197 Report No.: 100331-24

UNII 3

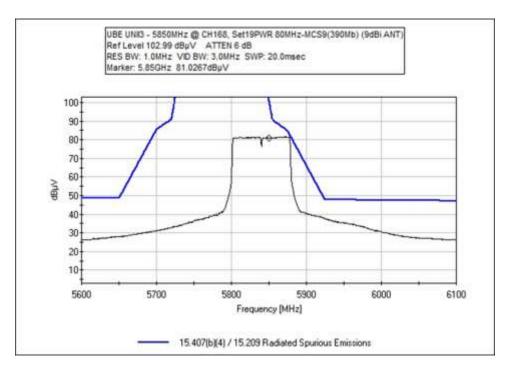

30Deg / 17.5dBi

Page 141 of 197 Report No.: 100331-24

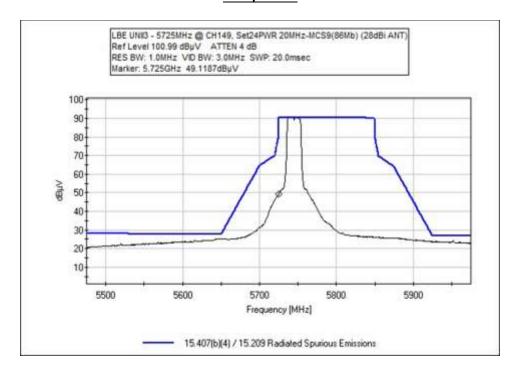


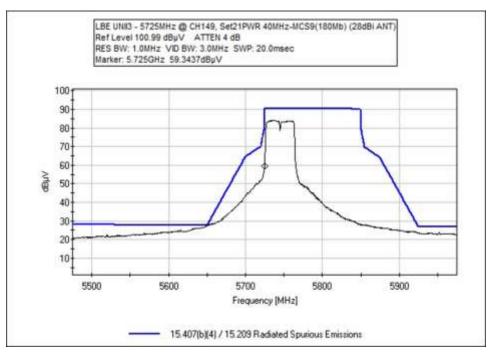


Page 142 of 197 Report No.: 100331-24

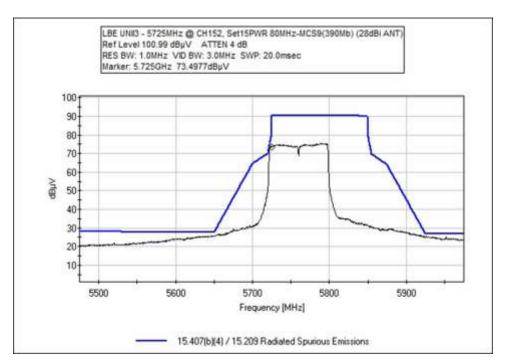

90Deg Horn / 9dBi

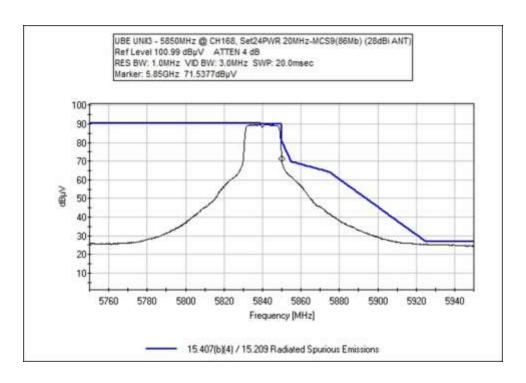
Page 143 of 197 Report No.: 100331-24

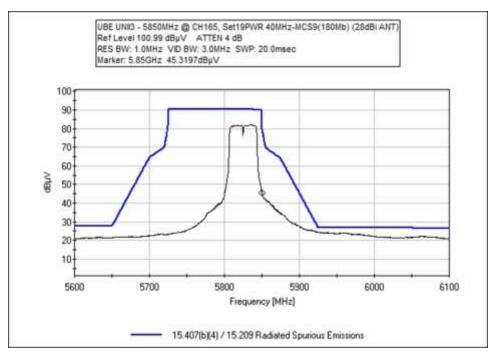




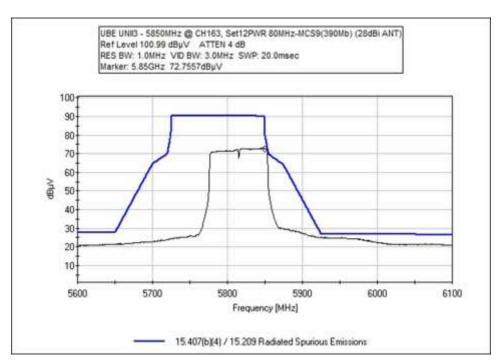
Page 144 of 197 Report No.: 100331-24


Dish / 28dBi

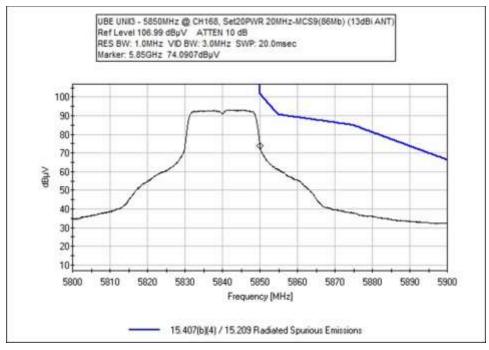

Page 145 of 197 Report No.: 100331-24

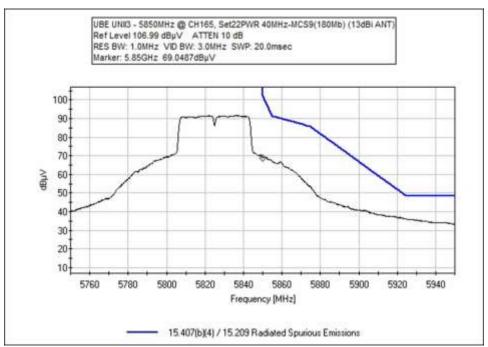


Page 146 of 197 Report No.: 100331-24

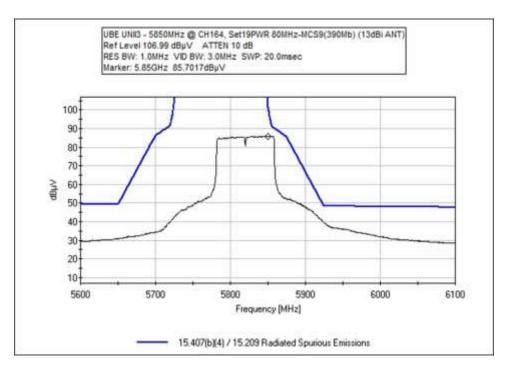


Page 147 of 197 Report No.: 100331-24





Page 148 of 197 Report No.: 100331-24


HexHorn / 50Deg Horn / 13dBi

Page 149 of 197 Report No.: 100331-24

Page 150 of 197 Report No.: 100331-24

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(3) / 15.209 Radiated Spurious Emissions

Work Order #: 100331 Date: 11/17/2017
Test Type: Radiated Scan Time: 14:35:35
Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)

unit is in continuous mode Antenna: 30 degree Horn

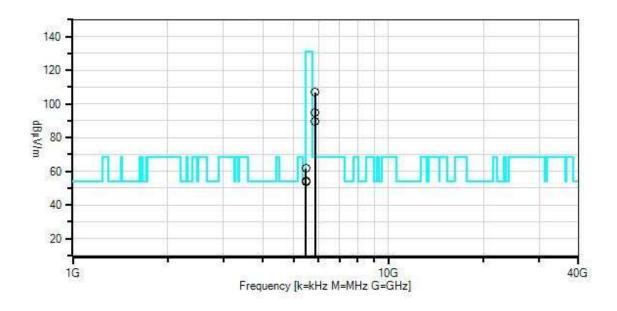
Gain: 17.5dBi

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate =86Mbps per chain Radio 3: 5240MHz – Max Data Rate =86Mbps per chain

Temperature: 17.8 °C Rel. Humidity: 48%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)


The EUT is usually setup on a roof or tower. For testing, it has been placed on a tripod that mimics actual installation. The EUT has multiple radios within the EUT but all are identical. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 151 of 197 Report No.: 100331-24

Digital Path WO#: 100331 Sequence#: 6 Date: 11/17/2017 15.407(b)(3) / 15.209 Radated Spurious Emissions Test Distance: 3 Meters Horiz

Readings× QP Readings▼ Ambient

- 1 - 15.407(b)(3) / 15.209 Radated Spurious Emissions

O Peak Readings * Average Readings Software Version: 5.03.11

> Page 152 of 197 Report No.: 100331-24

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00327	Horn Antenna	3115	3/4/2016	3/4/2018
T2	AN02115	Preamp	83051A	2/27/2017	2/27/2019
T3	AN03361	Cable	32022-2-29094-	1/10/2017	1/10/2019
			48TC		
T4	ANP05935	Attenuator	84A-10	1/18/2016	1/18/2018
T5	AN03543	Cable	32022-29094K-	11/7/2017	11/7/2019
			29094K-10M		
T6	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018

# Freq Rdng T1 T2 T3 T4 Dist Corr Spec Margin Polar MHz	Measu	rement Data:	Re	eading lis	ted by ma	rgin.		Τe	est Distanc	e: 3 Meters		
MHz dBμV dB dB dB dB dB Table dBμV/m dBμV/m dB Ant	#	Freq	Rdng			T3	T4	Dist	Corr	Spec	Margin	Polar
1 5470.000M 42.6 +31.1 -32.5 +1.5 +9.8 +0.0 61.6 68.2 -6.6 Horiz			15. 11			150	175		10 11/	170 111	170	
+9.1 +0.0 LBE UNII2c - 5470MHz @ CH104, Set14PWR 40MHz- MCS9(180Mb) (9dBi ANT) 2 5470.000M 35.5 +31.1 -32.5 +1.5 +9.8 +0.0 54.5 68.2 -13.7 Horiz			•						•			
S470MHz @ CH104, Set14PWR 40MHz- MCS9(180Mb) (9dBi ANT)	1	5470.000M	42.6			+1.5	+9.8	+0.0	61.6			Horiz
CH104, Set14PWR 40MHz- MCS9(180Mb) (9dBi ANT) 2 5470.000M 35.5 +31.1 -32.5 +1.5 +9.8 +0.0 54.5 68.2 -13.7 Horiz LBE UNII2c - 5470MHz @ CH108, Set10PWR 80MHz- MCS9(390Mb) (17.5dBi ANT) 3 5470.000M 34.5 +31.1 -32.5 +1.5 +9.8 +0.0 53.5 68.2 -14.7 Horiz LBE UNII2c - 5470MHz @ CH100,				+9.1	+0.0							
40MHz- MCS9(180Mb) (9dBi ANT) 2 5470.000M 35.5 +31.1 -32.5 +1.5 +9.8 +0.0 54.5 68.2 -13.7 Horiz +9.1 +0.0 LBE UNII2c - 5470MHz @ CH108, Set10PWR 80MHz- MCS9(390Mb) (17.5dBi ANT) 3 5470.000M 34.5 +31.1 -32.5 +1.5 +9.8 +0.0 53.5 68.2 -14.7 Horiz +9.1 +0.0 LBE UNII2c - 5470MHz @ CH100,												
MCS9(180Mb) (9dBi ANT) 2 5470.000M 35.5 +31.1 -32.5 +1.5 +9.8 +0.0 54.5 68.2 -13.7 Horiz											t14PWK	
2 5470.000M 35.5 +31.1 -32.5 +1.5 +9.8 +0.0 54.5 68.2 -13.7 Horiz											ML	
2 5470.000M 35.5 +31.1 -32.5 +1.5 +9.8 +0.0 54.5 68.2 -13.7 Horiz LBE UNII2c - 5470MHz @ CH108, Set10PWR 80MHz- MCS9(390Mb) (17.5dBi ANT) 3 5470.000M 34.5 +31.1 -32.5 +1.5 +9.8 +0.0 53.5 68.2 -14.7 Horiz LBE UNII2c - 5470MHz @ CH100,												
+9.1 +0.0 LBE UNII2c - 5470MHz @ CH108, Set10PWR 80MHz- MCS9(390Mb) (17.5dBi ANT) 3 5470.000M 34.5 +31.1 -32.5 +1.5 +9.8 +0.0 53.5 68.2 -14.7 Horiz LBE UNII2c - 5470MHz @ CH100,	2	5470 000M	35.5	⊥31 1	32.5	⊥1.5	⊥0 8	±0.0	54.5	,		Horiz
5470MHz @ CH108, Set10PWR 80MHz-MCS9(390Mb) (17.5dBi ANT) 3 5470.000M 34.5 +31.1 -32.5 +1.5 +9.8 +0.0 53.5 68.2 -14.7 Horiz LBE UNII2c - 5470MHz @ CH100,	2	3470.000WI	33.3			+1.5	+7.0	+0.0	34.3			110112
CH108, Set10PWR 80MHz- MCS9(390Mb) (17.5dBi ANT) 3 5470.000M 34.5 +31.1 -32.5 +1.5 +9.8 +0.0 53.5 68.2 -14.7 Horiz +9.1 +0.0 LBE UNII2c - 5470MHz @ CH100,				17.1	10.0							
80MHz- MCS9(390Mb) (17.5dBi ANT) 3 5470.000M 34.5 +31.1 -32.5 +1.5 +9.8 +0.0 53.5 68.2 -14.7 Horiz +9.1 +0.0 LBE UNII2c - 5470MHz @ CH100,											_	
MCS9(390Mb) (17.5dBi ANT) 3 5470.000M 34.5 +31.1 -32.5 +1.5 +9.8 +0.0 53.5 68.2 -14.7 Horiz +9.1 +0.0 LBE UNII2c - 5470MHz @ CH100,												
(17.5dBi ANT) 3 5470.000M 34.5 +31.1 -32.5 +1.5 +9.8 +0.0 53.5 68.2 -14.7 Horiz +9.1 +0.0 LBE UNII2c - 5470MHz @ CH100,											Mb)	
+9.1 +0.0 LBE UNII2c - 5470MHz @ CH100,										•		
5470MHz @ CH100,	3	5470.000M	34.5	+31.1	-32.5	+1.5	+9.8	+0.0	53.5	68.2	-14.7	Horiz
CH100,				+9.1	+0.0					LBE UNII	2c -	
·											@	
Set 1/1 5PWR												
										Set14.5PW	R	
20MHz-												
MCS9(86Mb)										,		
(17.5dBi ANT)	<u> </u>	5050 0003 6	0.6.0	21.0	22.2	1.7	0.0	0.0	107.0	1		** .
4 5850.000M 86.8 +31.8 -32.2 +1.5 +9.8 +0.0 107.0 122.2 -15.2 Horiz	4	5850.000M	86.8			+1.5	+9.8	+0.0	107.0			Horiz
+9.3 +0.0 UBE UNII3 - 5850MHz @				+9.3	+0.0							
CH164,											w	
Set17.5PWR										,	P	
80MHz-											IX.	
MCS9(390Mb)											Mb)	
(17.5dBi ANT)										•		

Page 153 of 197 Report No.: 100331-24

5 5850.000M	74.6	+31.8 +9.3	-32.2 +0.0	+1.5	+9.8	+0.0	94.8	122.2 UBE UNII3 5850MHz (CH168, Set 20MHz- MCS9(86M (17.5dBi A	@ :18PWR [b)	Horiz
6 5850.000M	69.6	+31.8 +9.3	-32.2 +0.0	+1.5	+9.8	+0.0	89.8	122.2 UBE UNII3 5850MHz (CH165, Set19.5PW 40MHz- MCS9(1801 (17.5dBi A	@ R Mb)	Horiz

Page 154 of 197 Report No.: 100331-24

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(3) / 15.209 Radiated Spurious Emissions

Work Order #: 100331 Date: 11/13/2017
Test Type: Radiated Scan Time: 15:49:17
Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)

unit is in continuous mode Antenna: 90 degree Horn

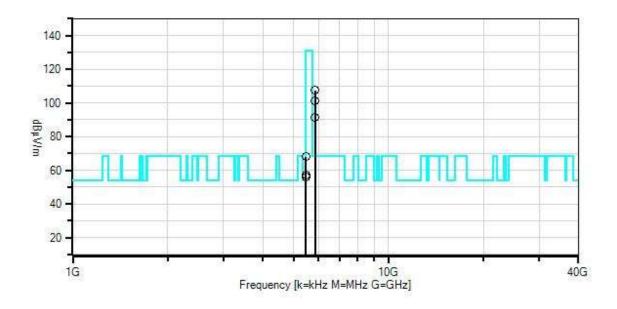
Gain: 17.5dBi

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate =86Mbps per chain Radio 3: 5240MHz – Max Data Rate =86Mbps per chain

Temperature: 14.2°C Rel. Humidity: 64%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)


The EUT is usually setup on a roof or tower. For testing, it has been placed on a tripod that mimics actual installation. The EUT has multiple radios within the EUT but all are identical. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables

Modification #1 was in place during testing.

Page 155 of 197 Report No.: 100331-24

Digital Path WO#: 100331 Sequence#: 6 Date: 11/13/2017 15.407(b)(3) / 15.209 Radated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
 × QP Readings
 ▼ Ambient

1 - 15.407(b)(3) / 15.209 Radated Spurious Emissions

O Peak Readings

* Average Readings
Software Version: 5.03.11

Page 156 of 197 Report No.: 100331-24

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00327	Horn Antenna	3115	3/4/2016	3/4/2018
T2	AN02115	Preamp	83051A	2/27/2017	2/27/2019
T3	AN03361	Cable	32022-2-29094-	1/10/2017	1/10/2019
			48TC		
T4	ANP05935	Attenuator	84A-10	1/18/2016	1/18/2018
T5	AN03543	Cable	32022-29094K-	11/7/2017	11/7/2019
			29094K-10M		
T6	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018

	rement Data:		eading list					est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	T5 dB	T6 dB	dB	dB	Table	dBμV/m	dBμV/m	dB	Ant
	5470.000M	48.9	+31.1 +9.1	-32.5 +0.0	+1.5	+9.8	+0.0	67.9	68.2 LBE UNIII 5470MHz CH102, Set11.5PW 80MHz- MCS9(390 (9dBi ANT	@ /R /Mb) (')	Horiz
2	5470.000M	38.2	+31.1 +9.1	-32.5 +0.0	+1.5	+9.8	+0.0	57.2	68.2 LBE UNII: 5470MHz CH100, Set17.5PW 40MHz- MCS9(180 (9dBi ANT	@ ZR Mb)	Horiz
3	5470.000M	36.9	+31.1 +9.1	-32.5 +0.0	+1.5	+9.8	+0.0	55.9	68.2 LBE UNII: 5470MHz CH100, Se 20MHz- MCS9(86M (9dBi ANT	@ t22PWR //b)	Horiz
4	5850.000M	87.4	+31.8 +9.3	-32.2 +0.0	+1.5	+9.8	+0.0	107.6	122.2 UBE UNII 5850MHz CH168, Se 40MHz- MCS9(180 (9dBi ANT	@ t22PWR (Mb)	Horiz

Page 157 of 197 Report No.: 100331-24

5 5050 000M	01.2	. 21.0	22.2	. 1 5	.0.0	. 0. 0	101.4	100.0	20.0	II
5 5850.000M	81.2	+31.8	-32.2	+1.5	+9.8	+0.0	101.4	122.2	-20.8	Horiz
		+9.3	+0.0					UBE UNII3	3 -	
								5850MHz (@	
								CH168, Set	19PWR	
								80MHz-		
								MCS9(390)	Mb)	
								(9dBi ANT)	
6 5850.000M	71.2	+31.8	-32.2	+1.5	+9.8	+0.0	91.4	122.2	-30.8	Horiz
		+9.3	+0.0					UBE UNII3	3 -	
								5850MHz (@	
								CH168, Set	22PWR	
								20MHz-		
								MCS9(86M	[b)	
								(9dBi ANT)	

Page 158 of 197 Report No.: 100331-24

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(4) / 15.209 Radiated Spurious Emissions

Work Order #: 100331 Date: 11/17/2017
Test Type: Radiated Scan Time: 14:19:01
Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 6				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 6				

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTP applications.

Modulation used: OFDM (802.11ac)

unit is in continuous mode Antenna: Pac Wireless Dish

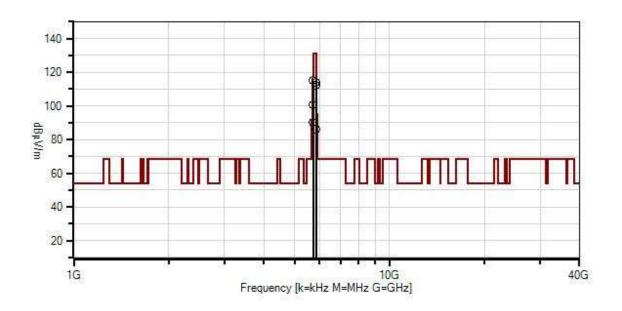
Gain: 28dBi

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate =86Mbps per chain Radio 3: 5240MHz – Max Data Rate =86Mbps per chain

Temperature: 17.8 °C Rel. Humidity: 48%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)


The EUT is usually setup on a roof or tower. For testing, it has been placed on a tripod that mimics actual installation. The EUT has multiple radios within the EUT but all are identical. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables

Modification #1 was in place during testing.

Page 159 of 197 Report No.: 100331-24

Digital Path WO#: 100331 Sequence#: 6 Date: 11/17/2017 15.407(b)(4) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
 × QP Readings
 ▼ Ambient
 1 - 15.407(b)(4) / 15.209 Radiated Spurious Emissions

O Peak Readings * Average Readings Software Version: 5.03.11

> Page 160 of 197 Report No.: 100331-24

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00327	Horn Antenna	3115	3/4/2016	3/4/2018
	AN02115	Preamp	83051A	2/27/2017	2/27/2019
	AN03361	Cable	32022-2-29094-	1/10/2017	1/10/2019
			48TC		
	ANP05935	Attenuator	84A-10	1/18/2016	1/18/2018
T2	AN03543	Cable	32022-29094K-	11/7/2017	11/7/2019
			29094K-10M		
T3	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018
	ANP05936	Attenuator	84A-6	1/18/2016	1/18/2018

Measu	rement Data:	Re	eading list	ted by ma	rgin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	5725.000M	74.2	+31.6	+9.2	+0.0		+0.0	115.0	122.2	-7.2	Horiz
									LBE UNII	3 -	
									5725MHz	@	
									CH152, Se	t15PWR	
									80MHz-		
									MCS9(390	Mb)	
									(28dBi AN	T)	
2	5850.000M	72.7	+31.8	+9.3	+0.0		+0.0	113.8	122.2	-8.4	Horiz
									UBE UNII	3 -	
									5850MHz		
									CH163, Se	t12PWR	
									80MHz-		
									MCS9(390		
									(28dBi AN	-	
3	5850.000M	71.4	+31.8	+9.3	+0.0		+0.0	112.5	122.2	-9.7	Horiz
									UBE UNII		
									5850MHz		
									CH168, Se	t24PWR	
									20MHz-		
									MCS9(86N		
									(28dBi AN		
4	5725.000M	59.8	+31.6	+9.2	+0.0		+0.0	100.6	122.2	-21.6	Horiz
									LBE UNII		
									5725MHz		
									CH149, Se	t21PWR	
									40MHz-		
									MCS9(180	,	
									(28dBi AN	T)	

Page 161 of 197 Report No.: 100331-24

5 5	725.000M	49.2	+31.6	+9.2	+0.0	+0.0	90.0	122.2	-32.2	Horiz
								LBE UNII3	3 -	
								5725MHz (@	
								CH149, Set	24PWR	
								20MHz-		
								MCS9(86M	l b)	
								(28dBi AN'	Τ)	
6 5	850.000M	45.2	+31.8	+9.3	+0.0	+0.0	86.3	122.2	-35.9	Horiz
								UBE UNII	3 -	
								5850MHz (@	
								CH165, Set	19PWR	
								40MHz-		
								MCS9(180)	Mb)	
								(28dBi AN'	Τ)	

Page 162 of 197 Report No.: 100331-24

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(3) / 15.209 Radiated Spurious Emissions

Work Order #: 100331 Date: 10/4/2017, 11/5/2017 and 11/7/2017

Test Type: Radiated Scan Time: 09:59:25

Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)

Unit is in Continuous Mode

Antenna: 50 degree Hex Array Horn (6 horns)

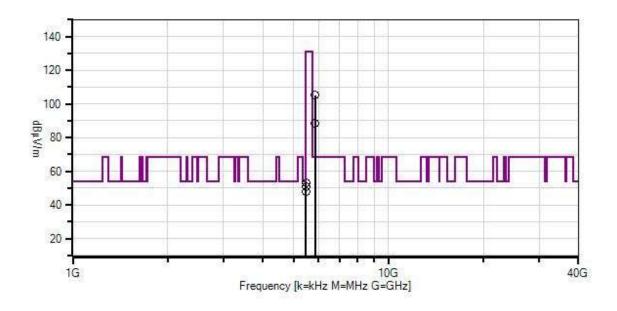
Data collected will be for both the HexHorn and the 50 Degree Horn. The customer declares that the antennas are exactly the same and so are the radios.

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate =86Mbps per chain Radio 3: 5240MHz – Max Data Rate =86Mbps per chain

Highest Generated Frequency not related to radio: 1.4GHz

Temperature: 18°C Rel. Humidity: 27%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)


The EUT is usually setup on a roof or tower. For testing, it has been placed on a non-conductive table. The EUT has 6 Horn Antennas in a hexagon shape. It has 3 radios and 4 chains. Each radio is identical as well as each transmit chain. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 163 of 197 Report No.: 100331-24

Digital Path WO#: 100331 Sequence#: 6 Date: 11/7/2017 15.407(b)(3) / 15.209 Radated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
 × QP Readings
 ▼ Ambient
 1 - 15.407(b)(3) / 15.209 Radated Spurious Emissions

Peak Readings
 Average Readings
 Software Version: 5.03.11

Page 164 of 197 Report No.: 100331-24

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018
T2	AN00327	Horn Antenna	3115	3/4/2016	3/4/2018
T3	AN03543	Cable	32022-29094K-	11/2/2015	11/2/2017
			29094K-10M		
T3	AN03543	Cable	32022-29094K-	11/7/2017	11/7/2019
			29094K-10M		
T4	AN02115	Preamp	83051A	2/27/2017	2/27/2019
T5	AN03361	Cable	32022-2-29094-	1/10/2017	1/10/2019
			48TC		
T6	ANP05411	Attenuator	54A-10	1/18/2016	1/18/2018

Cable asset 3543 went out of calibration and was recalibrating during the testing. All testing was done with this cable in calibration

Measi	ırement Data:	Re	eading lis	ted by ma	argin.		Te	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	5470.000M	34.8	+0.0	+31.1	+8.8	-32.5	+0.0	53.1	68.2	-15.1	Horiz
			+1.5	+9.4					LBE UNII		
									5470MHz		
									CH104, Se	t17PWR	
									40MHz-		
									MCS9(180		
									(13dBi AN	T)	
2	5850.000M	85.7	+0.0	+31.8	+9.0	-32.2	+0.0	105.2	122.2	-17.0	Horiz
			+1.5	+9.4					UBE UNII		
									5850MHz		
									CH164, Se	t19PWR	
									80MHz-		
									MCS9(390	,	
									(13dBi AN		
3	5470.000M	32.5	+0.0	+31.1	+8.8	-32.5	+0.0	50.8	68.2	-17.4	Horiz
			+1.5	+9.4					LBE UNII		
									5470MHz	@	
									CH100,	_	
									Set16.5PW	'R	
									20MHz-		
									MCS9(86N		
									(13dBi AN	Ί)	

Page 165 of 197 Report No.: 100331-24

4 5470.000M	29.7	+0.0 +1.5	+31.1 +9.4	+8.8	-32.5	+0.0	48.0	68.2 LBE UNII2 5470MHz (CH108, Set 80MHz- MCS9(390 (13dBi AN	@ t13PWR Mb)	Horiz
5 5850.000M	69.0	+0.0 +1.5	+31.8 +9.4	+9.0	-32.2	+0.0	88.5	122.2 UBE UNII: 5850MHz (CH165, Set 40MHz- MCS9(180 (13dBi AN	@ t22PWR Mb)	Horiz

Page 166 of 197 Report No.: 100331-24

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.407(b)(4) / 15.209 Radiated Spurious Emissions

Work Order #: 100331 Date: 11/10/2017
Test Type: Radiated Scan Time: 05:21:52
Tested By: Benny Lovan Sequence#: 6

Software: EMITest 5.03.11

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 5			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Test Conditions / Notes:

Equipment is an outdoor access point for use in PTMP applications.

Modulation used: OFDM (802.11ac)

Unit is in Continuous Mode

Antenna: 50 degree Hex Array Horn (6 horns)

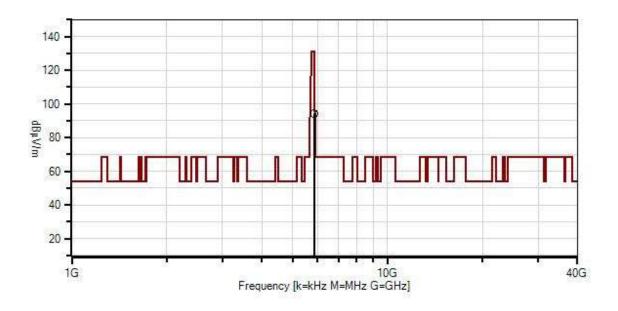
Data collected will be for both the HexHorn and the 50 Degree Horn. The customer declares that the antennas are exactly the same and so are the radios.

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate =86Mbps per chain Radio 3: 5240MHz – Max Data Rate =86Mbps per chain

Temperature: 18°C Rel. Humidity: 27%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)


The EUT is usually setup on a roof or tower. For testing, it has been placed on a non-conductive table. The EUT has 6 Horn Antennas in a hexagon shape. It has 3 radios and 4 chains. Each radio is identical as well as each transmit chain. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 167 of 197 Report No.: 100331-24

Digital Path WO#: 100331 Sequence#: 6 Date: 11/10/2017 15.407(b)(4) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Horiz

Readings
 QP Readings
 Ambient
 1 - 15.407(b)(4) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings
Software Version: 5.03.11

Page 168 of 197 Report No.: 100331-24

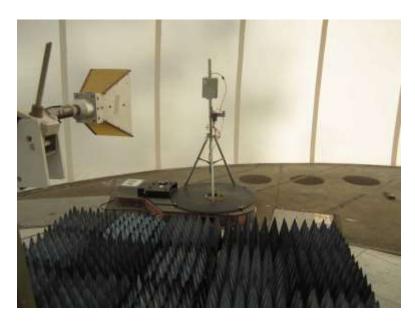
Test Equipment:

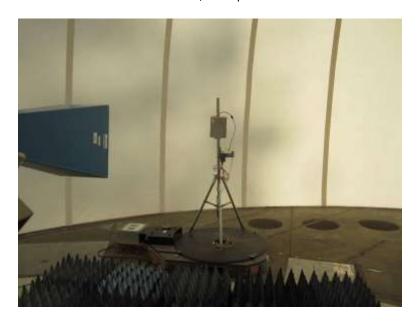
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN00327	Horn Antenna	3115	3/4/2016	3/4/2018
T2	AN02115	Preamp	83051A	2/27/2017	2/27/2019
T3	AN03361	Cable	32022-2-29094-	1/10/2017	1/10/2019
			48TC		
T4	ANP05935	Attenuator	84A-10	1/18/2016	1/18/2018
T5	AN03543	Cable	32022-29094K-	11/7/2017	11/7/2019
			29094K-10M		
T6	AN02660	Spectrum Analyzer	E4446A	10/10/2016	10/10/2018

Measi	irement Data:	Re	Reading listed by margin.				Test Distance: 3 Meters				
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\muV/m$	$dB\mu V/m$	dB	Ant
1	5850.000M	74.1	+31.8	-32.2	+1.5	+9.8	+0.0	94.3	122.2	-27.9	Horiz
			+9.3	+0.0		UBE UNII3 -					
									5850MHz	@	
									CH168, Se	t20PWR	
									20MHz-		
									MCS9(86N	Mb)	
									(13dBi AN	T)	

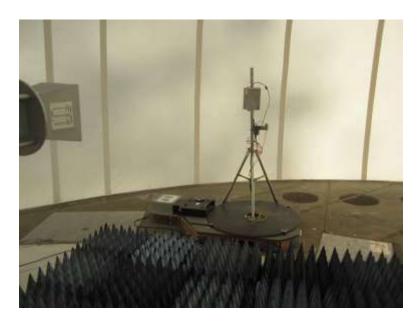
Page 169 of 197 Report No.: 100331-24

Test Setup Photos

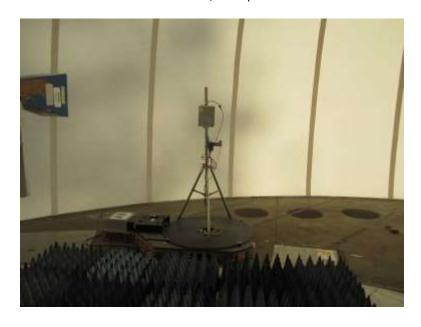

9dBi-30-1000MHz


9dBi-30-1000MHz

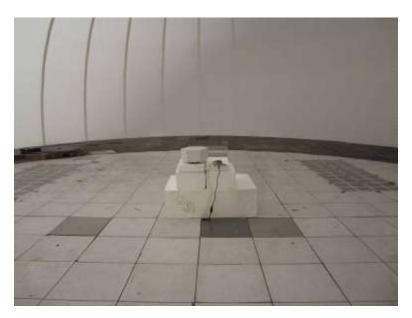
Page 170 of 197 Report No.: 100331-24



9dBi-1-12GHz, Cone placement

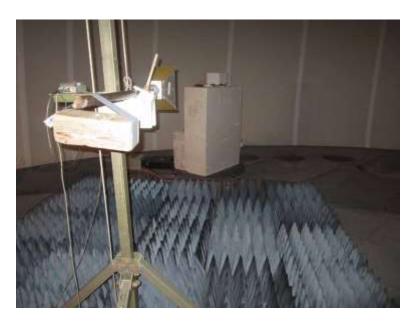


9dBi-12-18GHz, Cone placement



9dBi-18-26.5GHz, Cone placement

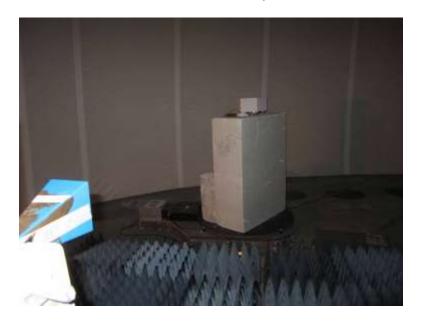
9dBi-26.5-40GHz, Cone placement


13dBi-Hex-30-1000MHz


13dBi-Hex-30-1000MHz

Page 173 of 197 Report No.: 100331-24

13dBi-Hex-1-12GHz, Cone placement

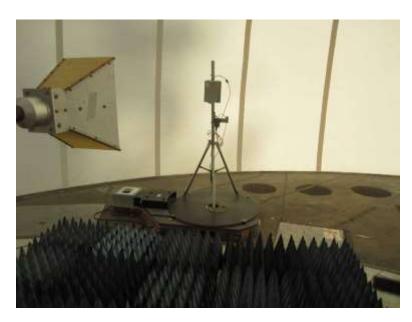


13dBi-Hex-12-18GHz, Cone placement

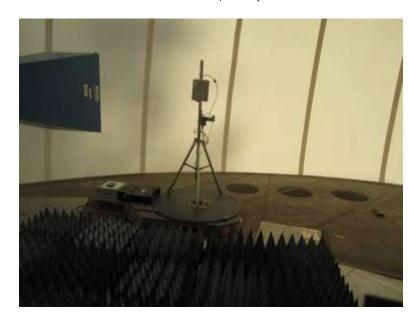


13dBi-Hex-18-26.5GHz, Cone placement

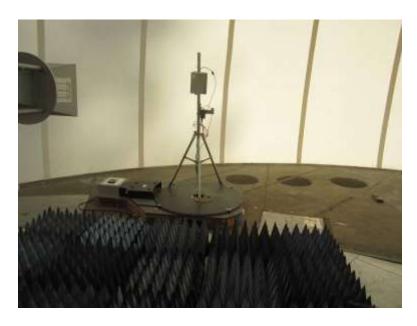
13dBi-Hex-26.5-40GHz, Cone placement



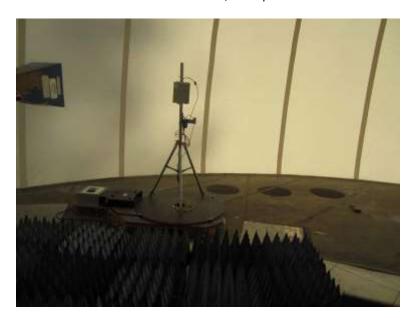
13dBi-Horn-30-1000MHz



13dBi-Horn-30-1000MHz-



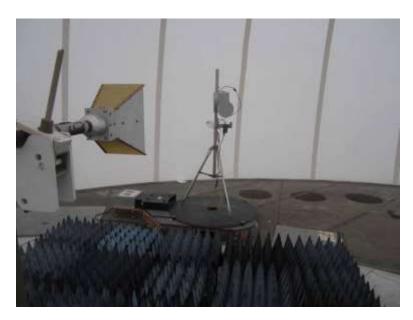
13dBi-Horn-1-12GHz, Cone placement



13dBi-Horn-12-18GHz, Cone placement

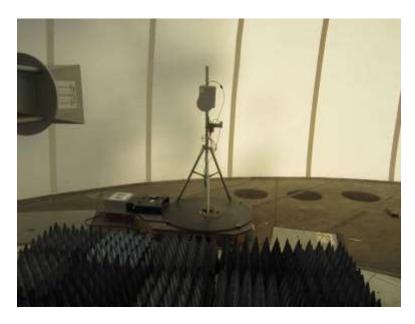
13dBi-Horn-18-26.5GHz, Cone placement

13dBi-Horn-26.5-40GHz, Cone placement



17.5dBi-30-1000MHz

17.5dBi-30-1000MHz

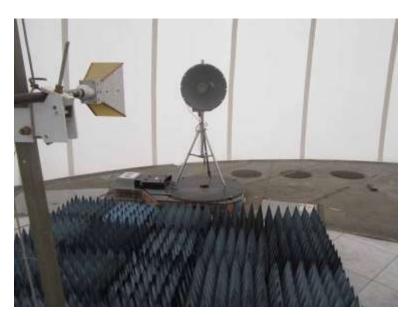


17.5dBi-1-12GHz, Cone placement

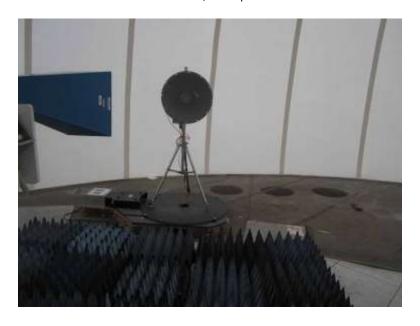
17.5dBi-12-18GHz, Cone placement

17.5dBi-18-26.5GHz, Cone placement

17.5dBi-26.5-40GHz, Cone placement



28dBi-30-1000MHz



28dBi-30-1000MHz

28dBi-1-12GHz, Cone placement

28dBi-12-18GHz, Cone placement

28dBi-18-26.5GHz, Cone placement

28dBi-26.5-40GHz, Cone placement

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.207 AC Mains - Average

 Work Order #:
 100331
 Date:
 10/4/2017

 Test Type:
 Conducted Emissions
 Time:
 11:04:45

Tested By: Benny Lovan Sequence#: 1

Software: EMITest 5.03.11 120V 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 5

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Test Conditions / Notes:

Equipment is an outdoor access point

Modulation used: OFDM (802.11ac)

Unit is continuously operating on all three radios simultaneously

Antenna: 50 degree Hex Array Horn (6 horns)

Note: The power supply for the radio is POE and has an external unit that provides it. For testing of conducted emissions, we will perform the scans on this antenna as the worst case. The radio is identical to all other configurations using different antennas. This antenna has the ability to transmit on multiple antennas simultaneously and it was chosen to represent the conducted emissions.

Operational Frequency: Radio 1 is at 5745MHz, Radio 2: 5540MHz and Radio 3: 5240MHz

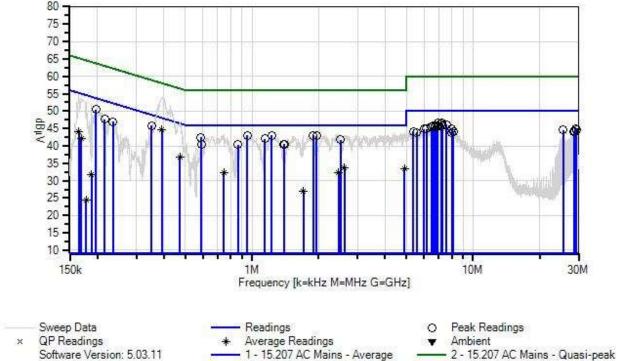
Power Output Setting: all radios set to 17dBm Frequency Range Investigated: 150kHz - 30MHz

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate =86Mbps per chain Radio 3: 5240MHz – Max Data Rate =86Mbps per chain

Temperature: 18°C Rel. Humidity: 27%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)


The EUT is usually setup on a roof or tower. For testing, it has been placed on a non-conductive tabletop. The EUT has 6 Horn Antennas in a hexagon shape. It is exercising all three radios within the system. All radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The power supply cable is shorter than 80cm so it is placed at a position above the ground plane that extends the power supply cable fully. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 185 of 197 Report No.: 100331-24

Digital Path WO#: 100331 Sequence#: 1 Date: 10/4/2017 15.207 AC Mains - Average Test Lead: 120V 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05624	Attenuator	PE7010-10	1/15/2017	1/15/2019
T2	AN00374	50uH LISN-Line (L1)	8028-TS-50-	1/9/2017	1/9/2018
		(dB)	BNC		
	AN00374	50uH LISN-Return (L2)	8028-TS-50-	1/9/2017	1/9/2018
			BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06231	Cable	CXTA04A-70	3/3/2016	3/3/2018
T5	ANP06232	Cable	CXTA04A-35	3/3/2016	3/3/2018
T6	ANP06847	Cable	LMR195-FR-6	7/31/2017	7/31/2019
	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018

Measur	rement Data:	Re	eading lis	ted by ma	ırgin.			Test Lea	d: Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6						475	
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1.226M	32.5	+10.0	+0.1	+0.2	+0.1	+0.0	43.0	46.0	-3.0	Line
			+0.1	+0.0							
2	953.754k	32.5	+10.0	+0.1	+0.2	+0.1	+0.0	43.0	46.0	-3.0	Line
	1.0003.6	22.5	+0.1	+0.0	0.0	0.1	0.0	12.0	46.0	2.0	T .
3	1.889M	32.5	+10.0	+0.1	+0.2	+0.1	+0.0	43.0	46.0	-3.0	Line
	1.0603.6	22.2	+0.1	+0.0	0.2	0.0	0.0	12.0	460	2.1	T .
4	1.962M	32.3	+10.0	+0.1	+0.2	+0.2	+0.0	42.9	46.0	-3.1	Line
	251 4261	25.6	+0.1	+0.0	.0.1	. 0. 0	. 0. 0	45.0	40.0	2.1	т
5	351.436k	35.6	+10.0	+0.1	+0.1	+0.0	+0.0	45.8	48.9	-3.1	Line
6	201 4221-	24.2	+0.0	+0.0	.0.2	.00	+ O O	11.6	40.0	2.4	T :
	391.432k	34.3	$+10.0 \\ +0.0$	$+0.1 \\ +0.0$	+0.2	+0.0	+0.0	44.6	48.0	-3.4	Line
^	Ave 391.432k	43.9	+10.0	+0.0	+0.2	+0.0	+0.0	54.2	48.0	+6.2	Line
	391.432K	43.9	+10.0	+0.1 +0.0	+0.2	+0.0	+0.0	34.2	46.0	+0.2	Line
8	196.541k	40.1	+10.0	+0.1	+0.2	+0.0	+0.0	50.4	53.8	-3.4	Line
	170.541K	40.1	+0.0	+0.0	10.2	10.0	10.0	30.4	33.0	5.4	Line
9	7.238M	35.7	+10.0	+0.1	+0.2	+0.3	+0.0	46.5	50.0	-3.5	Line
	7.230141	33.7	+0.1	+0.1	10.2	10.5	10.0	10.5	20.0	3.5	Eme
10	6.932M	35.7	+10.0	+0.1	+0.2	+0.3	+0.0	46.5	50.0	-3.5	Line
			+0.1	+0.1							
11	587.778k	32.0	+10.0	+0.1	+0.3	+0.1	+0.0	42.5	46.0	-3.5	Line
			+0.0	+0.0							
12	7.157M	35.4	+10.0	+0.1	+0.2	+0.3	+0.0	46.2	50.0	-3.8	Line
			+0.1	+0.1							
13	7.571M	35.2	+10.0	+0.1	+0.2	+0.3	+0.0	46.1	50.0	-3.9	Line
			+0.2	+0.1							
14	1.145M	31.6	+10.0	+0.1	+0.2	+0.1	+0.0	42.0	46.0	-4.0	Line
			+0.0	+0.0							
15	6.607M	35.1	+10.0	+0.1	+0.2	+0.3	+0.0	45.9	50.0	-4.1	Line
			+0.1	+0.1							
16	6.905M	35.1	+10.0	+0.1	+0.2	+0.3	+0.0	45.9	50.0	-4.1	Line
			+0.1	+0.1							

Page 187 of 197 Report No.: 100331-24

17	7.256M	35.1	+10.0 +0.1	+0.1 +0.1	+0.2	+0.3	+0.0	45.9	50.0	-4.1	Line
18	2.519M	31.2	+10.0 +0.1	+0.1 +0.1	+0.1	+0.2	+0.0	41.8	46.0	-4.2	Line
19	6.697M	35.0	+10.0 +0.1	+0.1 +0.1	+0.2	+0.3	+0.0	45.8	50.0	-4.2	Line
20	6.752M	34.7	+10.0 +0.1	+0.1 +0.1	+0.2	+0.3	+0.0	45.5	50.0	-4.5	Line
21	6.472M	34.6	+10.0 +0.1	+0.1 +0.1	+0.2	+0.3	+0.0	45.4	50.0	-4.6	Line
22	6.851M	34.6	+10.0 +0.1	+0.1 +0.1	+0.2	+0.3	+0.0	45.4	50.0	-4.6	Line
23	29.054M	32.8	+10.0 +0.4	+0.5 +0.2	+0.3	+0.8	+0.0	45.0	50.0	-5.0	Line
24	8.013M	34.2	+10.0 +0.1	+0.1 +0.1	+0.1	+0.3	+0.0	44.9	50.0	-5.1	Line
25	6.148M	34.2	+10.0 +0.1	+0.1 +0.1	+0.1	+0.3	+0.0	44.9	50.0	-5.1	Line
26	5.995M	34.1	+10.0 +0.1	+0.1 +0.1	+0.1	+0.3	+0.0	44.8	50.0	-5.2	Line
27	216.175k	37.4	+10.0 +0.0	+0.1 +0.0	+0.2	+0.0	+0.0	47.7	53.0	-5.3	Line
28	235.083k	36.7	+10.0 +0.0	+0.1 +0.0	+0.2	+0.0	+0.0	47.0	52.3	-5.3	Line
29	25.546M	32.6	+10.0 +0.4	+0.4 +0.2	+0.3	+0.7	+0.0	44.6	50.0	-5.4	Line
30	29.308M	32.4	+10.0 +0.4	+0.5 +0.2	+0.3	+0.8	+0.0	44.6	50.0	-5.4	Line
31	1.396M	30.0	+10.0 +0.1	+0.1 +0.0	+0.2	+0.1	+0.0	40.5	46.0	-5.5	Line
32	865.570k	30.0	+10.0 +0.0	+0.1 +0.0	+0.2	+0.1	+0.0	40.4	46.0	-5.6	Line
33	1.405M	29.9	+10.0 +0.1	+0.1 +0.0	+0.2	+0.1	+0.0	40.4	46.0	-5.6	Line
34	589.959k	29.8	+10.0 +0.0	+0.1 +0.0	+0.3	+0.1	+0.0	40.3	46.0	-5.7	Line
35	5.373M	33.5	+10.0 +0.1	+0.1 +0.1	+0.1	+0.3	+0.0	44.2	50.0	-5.8	Line
36	8.157M	33.4	+10.0 +0.1	+0.2 +0.1	+0.1	+0.3	+0.0	44.2	50.0	-5.8	Line
37	28.554M	32.0	+10.0 +0.4	+0.5 +0.2	+0.3	+0.7	+0.0	44.1	50.0	-5.9	Line
38	28.808M	31.8	+10.0 +0.4	+0.5 +0.2	+0.3	+0.8	+0.0	44.0	50.0	-6.0	Line
39	5.553M	33.2	+10.0 +0.1	+0.1 +0.1	+0.1	+0.3	+0.0	43.9	50.0	-6.1	Line
40	8.031M	33.1	+10.0 +0.1	+0.2 +0.1	+0.1	+0.3	+0.0	43.9	50.0	-6.1	Line
41	472.152k Ave	26.5	+10.0 +0.0	+0.1 +0.0	+0.2	+0.1	+0.0	36.9	46.5	-9.6	Line

Page 188 of 197 Report No.: 100331-24

۸	472.152k	36.7	+10.0 +0.0	+0.1 +0.0	+0.2	+0.1	+0.0	47.1	46.5	+0.6	Line
43		33.4	+10.0	+0.1	+0.5	+0.0	+0.0	44.0	55.2	-11.2	Line
44		23.1	+0.0	+0.0	+0.1	+0.2	+0.0	33.7	46.0	-12.3	Line
^	Ave 2.625M	32.9	+0.1	+0.1	+0.1	+0.2	+0.0	43.5	46.0	-2.5	Line
46		22.7	+0.1	+0.1	+0.1	+0.2	+0.0	33.3	46.0	-12.7	Line
^	Ave 4.909M	33.2	+0.1	+0.1	+0.1	+0.2	+0.0	43.8	46.0	-2.2	Line
48	168.907k Ave	31.6	+0.1 +10.0 +0.0	+0.1 +0.1 +0.0	+0.4	+0.0	+0.0	42.1	55.0	-12.9	Line
^		44.8	+10.0 +0.0	+0.0 +0.1 +0.0	+0.5	+0.0	+0.0	55.4	55.2	+0.2	Line
^	168.907k	44.1	+10.0 +0.0	+0.1 +0.0	+0.4	+0.0	+0.0	54.6	55.0	-0.4	Line
51	2.459M Ave	21.7	+10.0 +0.1	+0.1 +0.1	+0.1	+0.2	+0.0	32.3	46.0	-13.7	Line
^		33.1	+10.0 +0.1	+0.1 +0.1	+0.1	+0.2	+0.0	43.7	46.0	-2.3	Line
53	747.036k Ave	21.8	+10.0 +0.0	+0.1 +0.0	+0.2	+0.1	+0.0	32.2	46.0	-13.8	Line
^		32.3	+10.0 +0.0	+0.1 +0.0	+0.2	+0.1	+0.0	42.7	46.0	-3.3	Line
55	1.711M Ave	16.4	+10.0 +0.1	+0.1 +0.0	+0.2	+0.2	+0.0	27.0	46.0	-19.0	Line
۸		31.8	+10.0 +0.1	+0.1 +0.0	+0.2	+0.2	+0.0	42.4	46.0	-3.6	Line
57	187.815k Ave	21.2	+10.0 +0.0	+0.1 +0.0	+0.3	+0.0	+0.0	31.6	54.1	-22.5	Line
^		40.1	+10.0 +0.0	+0.1 +0.0	+0.3	+0.0	+0.0	50.5	54.1	-3.6	Line
59	177.634k Ave	14.1	+10.0 +0.0	+0.1 +0.0	+0.3	+0.0	+0.0	24.5	54.6	-30.1	Line
^		43.3		+0.1 +0.0	+0.3	+0.0	+0.0	53.7	54.6	-0.9	Line

Page 189 of 197 Report No.: 100331-24

Test Location: CKC Laboratories Inc. • 1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer: **Digital Path**

Specification: 15.207 AC Mains - Average

EMITest 5.03.11

Work Order #: 100331 Date: 10/4/2017 Test Type: **Conducted Emissions** Time: 11:11:41

Tested By: Benny Lovan Sequence#: 2 120V 60Hz

Equipment Tested:

Software:

Device Manufacturer Model # S/N Configuration 5

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 5			

Test Conditions / Notes:

Equipment is an outdoor access point

Modulation used: OFDM (802.11ac)

Unit is continuously operating on all three radios simultaneously

Antenna: 50 degree Hex Array Horn (6 horns)

Note: The power supply for the radio is POE and has an external unit that provides it. For testing of conducted emissions, we will perform the scans on this antenna as the worst case. The radio is identical to all other configurations using different antennas. This antenna has the ability to transmit on multiple antennas simultaneously and it was chosen to represent the conducted emissions.

Operational Frequency: Radio 1 is at 5745MHz, Radio 2: 5540MHz and Radio 3: 5240MHz

Power Output Setting: all radios set to 17dBm

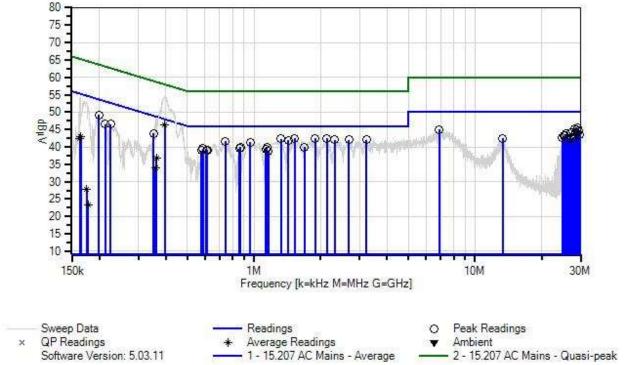
Frequency Range Investigated: 150kHz - 30MHz

Highest Generated Frequency not related to radio: 1.4GHz

Radio 1 5745MHz – Max Data Rate = 86Mbps per chain Radio 2: 5540MHz – Max Data Rate =86Mbps per chain Radio 3: 5240MHz – Max Data Rate =86Mbps per chain

Temperature: 18°C Rel. Humidity: 27%

Test method: ANSI C63.10 (2013), KDB 789033 v01r04 (May 2, 2017)


The EUT is usually setup on a roof or tower. For testing, it has been placed on a non-conductive tabletop. The EUT has 6 Horn Antennas in a hexagon shape. It is exercising all three radios within the system. All radios are identical but we are testing multiple frequencies at once. The customer's power to the EUT is POE. It has an AC to DC adapter which supplies the POE to the EUT. The power supply cable is shorter than 80cm so it is placed at a position above the ground plane that extends the power supply cable fully. The EUT is setup with unshielded Ethernet cables.

Modification #1 was in place during testing.

Page 190 of 197 Report No.: 100331-24

Digital Path WO#: 100331 Sequence#: 2 Date: 10/4/2017 15.207 AC Mains - Average Test Lead: 120V 60Hz Return

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05624	Attenuator	PE7010-10	1/15/2017	1/15/2019
	AN00374	50uH LISN-Line (L1) (dB)	8028-TS-50-	1/9/2017	1/9/2018
			BNC		
T2	AN00374	50uH LISN-Return (L2)	8028-TS-50-	1/9/2017	1/9/2018
			BNC		
T3	AN02609	High Pass Filter	HE9615-150K-	2/18/2016	2/18/2018
			50-720B		
T4	ANP06231	Cable	CXTA04A-70	3/3/2016	3/3/2018
T5	ANP06232	Cable	CXTA04A-35	3/3/2016	3/3/2018
T6	ANP06847	Cable	LMR195-FR-6	7/31/2017	7/31/2019
	AN03634	Spectrum Analyzer	E4445A	8/30/2017	8/30/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lea	d: Return		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
		10. 11	T5	T6	15	15	m	15. 11	15. **	175	
	MHz	dBμV	dB	dB	dB	dB	Table	dBμV	dBμV	dB	Ant
1	395.067k	36.0	+10.0	+0.1	+0.2	+0.0	+0.0	46.3	48.0	-1.7	Retur
	Ave		+0.0	+0.0							
^	395.067k	44.1	+10.0	+0.1	+0.2	+0.0	+0.0	54.4	48.0	+6.4	Retur
			+0.0	+0.0							
3	1.894M	32.0	+10.0	+0.1	+0.2	+0.1	+0.0	42.5	46.0	-3.5	Retur
			+0.1	+0.0							
4	2.136M	31.7	+10.0	+0.1	+0.2	+0.2	+0.0	42.4	46.0	-3.6	Retur
			+0.1	+0.1							
5	1.528M	31.9	+10.0	+0.1	+0.2	+0.1	+0.0	42.4	46.0	-3.6	Retur
			+0.1	+0.0							
6	1.324M	31.9	+10.0	+0.1	+0.2	+0.1	+0.0	42.3	46.0	-3.7	Retur
			+0.0	+0.0							
7	3.225M	31.4	+10.0	+0.1	+0.1	+0.3	+0.0	42.1	46.0	-3.9	Retur
			+0.1	+0.1							
8	2.315M	31.3	+10.0	+0.1	+0.2	+0.2	+0.0	42.0	46.0	-4.0	Retur
			+0.1	+0.1							
9	2.685M	31.4	+10.0	+0.1	+0.1	+0.2	+0.0	42.0	46.0	-4.0	Retur
			+0.1	+0.1							
10	1.430M	31.4	+10.0	+0.1	+0.2	+0.1	+0.0	41.9	46.0	-4.1	Retur
			+0.1	+0.0							
11	740.490k	31.2	+10.0	+0.1	+0.2	+0.1	+0.0	41.6	46.0	-4.4	Retur
			+0.0	+0.0							
12	198.721k	38.9	+10.0	+0.1	+0.2	+0.0	+0.0	49.2	53.7	-4.5	Retur
			+0.0	+0.0							
13	962.259k	30.9	+10.0	+0.1	+0.2	+0.1	+0.0	41.4	46.0	-4.6	Retur
			+0.1	+0.0							
14	29.061M	33.1	+10.0	+0.6	+0.3	+0.8	+0.0	45.4	50.0	-4.6	Retur
			+0.4	+0.2							
15	28.308M	33.0	+10.0	+0.5	+0.3	+0.7	+0.0	45.1	50.0	-4.9	Retur
			+0.4	+0.2							
16	6.887M	34.1	+10.0	+0.2	+0.2	+0.3	+0.0	45.0	50.0	-5.0	Retur
			+0.1	+0.1							

Page 192 of 197 Report No.: 100331-24

17	351.435k	33.6	+10.0 +0.0	+0.1 +0.0	+0.1	+0.0	+0.0	43.8	48.9	-5.1	Retur
18	28.808M	32.7	+10.0 +0.4	+0.5 +0.2	+0.3	+0.8	+0.0	44.9	50.0	-5.1	Retur
19	29.308M	32.3	+10.0 +0.4	+0.6 +0.2	+0.3	+0.8	+0.0	44.6	50.0	-5.4	Retur
20	1.141M	29.6	+10.0 +0.0	+0.1 +0.0	+0.2	+0.1	+0.0	40.0	46.0	-6.0	Retur
21	27.054M	31.9	+10.0 +0.4	+0.5 +0.2	+0.3	+0.7	+0.0	44.0	50.0	-6.0	Retur
22	28.554M	31.9	+10.0 +0.4	+0.5 +0.2	+0.3	+0.7	+0.0	44.0	50.0	-6.0	Retur
23	870.660k	29.5	+10.0 +0.0	+0.1 +0.0	+0.2	+0.1	+0.0	39.9	46.0	-6.1	Retur
24	1.694M	29.3	+10.0 +0.1	+0.1 +0.0	+0.2	+0.2	+0.0	39.9	46.0	-6.1	Retur
25	224.174k	36.2	+10.0 +0.0	+0.1 +0.0	+0.2	+0.0	+0.0	46.5	52.7	-6.2	Retur
26	25.800M	31.6	+10.0 +0.4	+0.5 +0.2	+0.3	+0.7	+0.0	43.7	50.0	-6.3	Retur
27	29.808M	31.3	+10.0 +0.4	+0.6 +0.2	+0.3	+0.8	+0.0	43.6	50.0	-6.4	Retur
28	588.504k	29.0	+10.0 +0.0	+0.1 +0.0	+0.3	+0.1	+0.0	39.5	46.0	-6.5	Retur
29	861.206k	29.0	+10.0 +0.0	+0.1 +0.0	+0.3	+0.1	+0.0	39.5	46.0	-6.5	Retur
30	212.538k	36.2	+10.0 +0.0	+0.1 +0.0	+0.2	+0.0	+0.0	46.5	53.1	-6.6	Retur
31	1.132M	28.9	+10.0 +0.0	+0.1 +0.0	+0.2	+0.1	+0.0	39.3	46.0	-6.7	Retur
32	25.553M	31.2	+10.0 +0.4	+0.5 +0.2	+0.3	+0.7	+0.0	43.3	50.0	-6.7	Retur
33	609.593k	28.6	+10.0 +0.0	+0.1 +0.0	+0.3	+0.1	+0.0	39.1	46.0	-6.9	Retur
34	614.683k	28.6	+10.0 +0.0	+0.1 +0.0	+0.3	+0.1	+0.0	39.1	46.0	-6.9	Retur
35	25.299M	31.1	+10.0 +0.3	+0.5 +0.2	+0.3	+0.7	+0.0	43.1	50.0	-6.9	Retur
36	578.323k	28.4	+10.0 +0.0	+0.1 +0.0	+0.3	+0.1	+0.0	38.9	46.0	-7.1	Retur
37	1.162M	28.3	+10.0 +0.1	+0.1 +0.0	+0.2	+0.1	+0.0	38.8	46.0	-7.2	Retur
38	27.807M	30.7	+10.0 +0.4	+0.5 +0.2	+0.3	+0.7	+0.0	42.8	50.0	-7.2	Retur
39	24.799M	30.8	+10.0 +0.3	+0.4 +0.2	+0.3	+0.7	+0.0	42.7	50.0	-7.3	Retur
40	28.054M	30.6	+10.0 +0.4	+0.5 +0.2	+0.3	+0.7	+0.0	42.7	50.0	-7.3	Retur
41	13.355M	31.2	+10.0 +0.2	+0.2 +0.2	+0.2	+0.5	+0.0	42.5	50.0	-7.5	Retur

Page 193 of 197 Report No.: 100331-24

42	26.553M	30.4	+10.0	+0.5	+0.3	+0.7	+0.0	42.5	50.0	-7.5	Retur
			+0.4	+0.2							
43	27.300M	30.4	+10.0	+0.5	+0.3	+0.7	+0.0	42.5	50.0	-7.5	Retur
			+0.4	+0.2							
44	361.616k	26.6	+10.0	+0.1	+0.2	+0.0	+0.0	36.9	48.7	-11.8	Retur
	Ave		+0.0	+0.0							
45	164.543k	32.3	+10.0	+0.1	+0.5	+0.0	+0.0	42.9	55.2	-12.3	Retur
	Ave		+0.0	+0.0							
46	163.089k	31.7	+10.0	+0.1	+0.5	+0.0	+0.0	42.3	55.3	-13.0	Retur
	Ave		+0.0	+0.0							
^	163.089k	43.6	+10.0	+0.1	+0.5	+0.0	+0.0	54.2	55.3	-1.1	Retur
			+0.0	+0.0							
٨	164.543k	43.2	+10.0	+0.1	+0.5	+0.0	+0.0	53.8	55.2	-1.4	Retur
			+0.0	+0.0							
^	160.907k	39.2	+10.0	+0.1	+0.6	+0.0	+0.0	49.9	55.4	-5.5	Retur
			+0.0	+0.0							
50	358.707k	23.7	+10.0	+0.1	+0.2	+0.0	+0.0	34.0	48.8	-14.8	Retur
	Ave		+0.0	+0.0							
٨	358.707k	39.7	+10.0	+0.1	+0.2	+0.0	+0.0	50.0	48.8	+1.2	Retur
			+0.0	+0.0							
٨	361.616k	39.5	+10.0	+0.1	+0.2	+0.0	+0.0	49.8	48.7	+1.1	Retur
			+0.0	+0.0							
53	175.451k	17.5	+10.0	+0.1	+0.3	+0.0	+0.0	27.9	54.7	-26.8	Retur
	Ave		+0.0	+0.0							
	177.633k	13.0	+10.0	+0.1	+0.3	+0.0	+0.0	23.4	54.6	-31.2	Retur
	Ave		+0.0	+0.0							
^	177.633k	43.5	+10.0	+0.1	+0.3	+0.0	+0.0	53.9	54.6	-0.7	Retur
			+0.0	+0.0							
^	175.451k	42.9	+10.0	+0.1	+0.3	+0.0	+0.0	53.3	54.7	-1.4	Retur
			+0.0	+0.0							
٨	180.541k	39.4	+10.0	+0.1	+0.3	+0.0	+0.0	49.8	54.5	-4.7	Retur
			+0.0	+0.0							

Test Setup Photos

Page 195 of 197 Report No.: 100331-24

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

	SAMPLE CALCULATIONS									
	Meter reading	(dBμV)								
+	Antenna Factor	(dB/m)								
+	Cable Loss	(dB)								
-	Distance Correction	(dB)								
-	Preamplifier Gain	(dB)								
=	Corrected Reading	(dBμV/m)								

Page 196 of 197 Report No.: 100331-24

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 197 of 197 Report No.: 100331-24